Homework 03: Series solution of linear differential equations

1. Derive the complete series expansion for the following functions around the indicated points and find the correspond-
ing convergence radius
(a) f(x)=e*sinx, around x = xp
(b) f(x) =e*In(1+ x), around x = x

2. The binomial series is given by
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(b) For the special case a = —2, show that
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with the double factorial n!! defined via:
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3. Find all terms of the unique power series solution to the following initial value problem:

{ y"(x) —2xy' (x) +2y(x) =0
y(0) =11y (0) =0

4. Use the Frobenius method to show that the general homogeneous solution for the equation
4xy" (x) + 2y (x) +y(x) =0
is given by
Vx € (0,400) : y(x) = Ay cos(v/x) + Ay sin(y/x)
5. Use the Frobenius method to show that the general homogeneous solution for the equation

x(1 = x)y"(x) + (1= 5x)y'(x) —4y(x) =0

is given by
y(x) = My1(x) + Aaya(x)
with
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