
Homework 02: Linear Differential Equations

1. Consider a general linear differential equation of the form

∀x ∈ A : y′′(x) + a(x)y′(x) + b(x)y(x) = 0

for some interval A ⊆ R with a, b ∈ C0(A). Assume that y1 ∈ C2(A) is a solution, and define y2 ∈ C2(A) as:

∀x ∈ A : y2(x) = y1(x)
∫ x

c

Q(t)
[y1(t)]2

dt

with c ∈ A and with Q(t) given by

∀t ∈ A : Q(t) = exp
(
−
∫

a(t) dt
)

(a) Show that y2(x) is also a solution.

(b) Show that y1, y2 are linearly independent.

Remark: An immediate consequence of (a) and (b) this is that if we define an operator L : C2(A)→ C0(A) with Ly = 0,
then it follows that its null space is given by

null(A) = span{y1, y2}

The corresponding general solution of the equation Ly = 0 is given by

∀x ∈ A : y(x) = λ1y1(x) + λ2y2(x)

Remark: This exercise shows that if we can guess one solution of the second order linear ODE Ly = 0, we have an
equation that can be used to find a second linearly independent solution. Then, given the aforementioned theorems,
we have the null space and the general solution.

2. Find all solutions of the form ∀x ∈ R : y1(x) = ebx for the linear ODE

∀x ∈ R : y′′(x) + 2ay′(x) + a2y(x) = 0

with a ∈ R. Use the previous exercise to find the second linearly independent solution and write the corresponding
general solution.

3. Show that the initial value problem{
y′(x)− 2(p + a)y′(x) + p2y(x) = 0
y(0) = 0 ∧ y′(0) = 1

with a, p ∈ (0,+∞) has solution

y(x|a, p) =
exp(A(p, a)x)− exp(B(p, a)x)

2
√

a(2p + a)

with

A(p, a) = p + a +
√

a(2p + a)

B(p, a) = p + a−
√

a(2p + a)

without substituting the solution to the ODE. Then, show that:

lim
a→0+

y(x|a, p) = xepx

1



Remark: This result shows that when considering a second order linear differential equation, in which the two distinct
zeroes of the corresponding characteristic polynomial approach each other, the solution obtained using the initial
condition y(0) = 0 ∧ y′(0) = 1 converges continuously to the “screwball” y(x) = xept solution that we find when the
two zeros of the characteristic polynomial are exactly equal to each other. Note that this argument does not establish a
solution for the case where the zeros coincide; it only shows that the transition into that case does not exhibit any
discontinuities.

4. Show that the linear differential equation

ax3y′′′(x) + (b + 3a)x2y′′(x) + (a + b + c)xy′(x) + dy(x) = 0

with a, b, c, d ∈ R has characteristic polynomial

p(x) = ax3 + bx2 + cx + d.

Remark: This solves the inverse problem of constructing an equidimensional linear differential equation that has a
desired characteristic polynomial.

5. Solve the general damped oscillator problem, which is defined as the following initial value problem:{
y′′(x) + βy′(x) + ω2y(x) = f (x)
y(0) = y0 ∧ y′(x)(0) = y1

with β, ω ∈ (0,+∞) and y0, y1 ∈ R. Distinguish between the following cases:

(a) Case 1: β < 2ω (underdamped oscillator)

(b) Case 2: β = 2ω (critically damped oscillator)

(c) Case 3: β > 2ω (overdamped oscillator)

Remark: It is easier to solve the combined case β 6= 2ω, allowing the use of exponentials of complex numbers for
the underdamped subcase. This gives a common solution form for both cases β < 2ω and β > 2ω, but for the
underdamped case, additional work is then needed to convert the exponentials involving complex numbers into
trigonometric functions. This approach will be more economical than attempting to handle the underdamped case
from scratch.
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