Analysis of a Symmetry leading to an Inertial Range Similarity Theory for Isotropic Turbulence.

Mogens V Melander

Department of Mathematics

Southern Methodist University, Dallas TX 75275-0156

We present a theoretical attack on the classical problem of intermittency and anomalous scaling in turbulence. Our focus is on an ideal situation: high Reynolds number isotropic turbulence driven by steady large scale forcing. Moreover, the fluid is incompressible and no confining boundaries are present. We start from a good set of basis functions for the velocity field. These are real and divergence-free. To each wave-vector \vec{k} in Fourier space there is one pair of basis functions with respectively left and right-handed polarity. Isotropy makes all \vec{k} on the shell of constant $|\vec{k}|$ statistically equivalent. Consequently, the coefficients , χ^+ and χ^- , to the basis functions in that shell become two random variables whose joint pdf describes the statistics at scale $\ell = 2\pi/k$. Moreover, $(\chi^+)^2 + (\chi^-)^2$ becomes a random variable for the energy. Switching to polar coordinates, the joint pdf expands in azimuthal modes. We focus on the axisymmetric mode which is itself a pdf and characterized by it radial profile $P_0(r; \ell)$ scale as power laws in ℓ ,

and (2) the profile obeys an affine symmetry $P_0(r; \ell) = C(\ell) f\left(\frac{\ln r - \mu(\ell)}{\sigma(\ell)}\right)$. We raise

the question: What statistics agree with both observation? The answer is pleasing. We find the functions f, μ, σ and C analytically in terms of a few constants. Moreover, we obtain closed form expressions for both scaling exponents and coefficients in the power laws. A virtual origin also emerges as an intrinsic length scale ℓ_o for the inertial range.