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The two-layer model. I.
▶ The governing equations for the two-layer quasi-geostrophic

model are

∂ζ1
∂t

+ J(ψ1, ζ1 + f) = −2f

h
ω + d1

∂ζ2
∂t

+ J(ψ2, ζ2 + f) = +
2f

h
ω + d2

∂T

∂t
+

1

2
[J(ψ1, T ) + J(ψ2, T )] = −N

2

f
ω +Q0

where ζ1 = ∇2ψ1; ζ2 = ∇2ψ2; T = (2/h)(ψ1 − ψ2). f is the
Coriolis term; N the Brunt-Väisälä frequency; Q0 is the thermal
forcing on the temperature equation; d1, d2 the dissipation terms.

▶ The Jacobian term J(a, b) is defined as

J(a, b) =
∂a

∂x

∂b

∂y
− ∂b

∂x

∂a

∂y
.
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The two-layer model. II.
▶ The three equations are situated in three layers:

▶ ψ1: At 0.25Atm, upper streamfunction layer
▶ T : At 0.50Atm, temperature layer.
▶ ψ2: At 0.75Atm, lower streamfunction layer

▶ The potential vorticity is defined as

q1 = ∇2ψ1 + f +
k2R
2
(ψ2 − ψ1)

q2 = ∇2ψ2 + f − k2R
2
(ψ2 − ψ1)

with kR ≡ 2
√
2f/(hN) and it satisfies

∂q1
∂t

+ J(ψ1, q1) = f1 + d1

∂q2
∂t

+ J(ψ2, q2) = f2 + d2

with f1 = (1/4)k2RhQ0 and f2 = −(1/4)k2RhQ0.
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The two-layer model. III.

▶ We use the following asymmetric dissipation configuration:

d1 = ν(−1)p+1∇2p+2ψ1, (1)

d2 = (ν +∆ν)(−1)p+1∇2p+2ψ2 − νE∇2ψs. (2)

▶ Differential hyperdiffusion: ∆ν > 0. [see Gkioulekas (2004)]
▶ ψs = λψ2 + µλψ1: Streamfunction at the surface boundary layer

(p2 ≤ ps ≤ 1atm), with

µ =
p2 − ps
ps − p1

and λ =
ps − p1
p2 − p1

=
1

µ+ 1
. (3)

▶ µ = 0: Standard Ekman term with ψs = ψ2.
▶ µ = −1/3: Phillips Extrapolated Ekman term with ps = 1atm.
▶ µ ∈ (−1/3, 0): Extrapolated Ekman term with p2 < ps < 1atm.
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Energy and potential enstrophy spectrum. I.
▶ Two conserved quadratic invariants: energy E and potential enstrophy
G1, G2 per layer:

E(t) = −
∫
R2

dx [ψ1(x, t)q1(x, t) + ψ2(x, t)q2(x, t)], (4)

G1(t) =

∫
R2

dx q21(x, t), G2(t) =

∫
R2

dx q22(x, t), (5)

▶ Filtered inner product:

⟨a, b⟩k =
d

dk

∫
R2

dx a<k(x)b<k(x)

▶ The distribution of energy and potential enstrophy for each layer in
Fourier space is described by:

E(k) = −⟨ψ1, q1⟩k − ⟨ψ2, q2⟩k , (6)

G1(k) = ⟨q1, q1⟩k , G2(k) = ⟨q2, q2⟩k . (7)
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Salmon’s phenomenology
▶ Barotropic vs Baroclinic energy spectrum:

▶ Let ψ = (ψ1 + ψ2)/2 and τ = (ψ1 − ψ2)/2
▶ Barotropic energy spectrum: EK(k) = 2k2 ⟨ψ,ψ⟩k
▶ Baroclinic energy spectrum: EP (k) = 2(k2 + k2R) ⟨τ, τ⟩k

▶ Salmon’s phenomenology:
▶ Energy injected as baroclinic at k ≪ kR.
▶ Converted from baroclinic to barotropic at k ∼ kR.
▶ Energy mostly barotropic at k ≪ kR.
▶ Energy about half barotropic half baroclinic at k ≫ kR.
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Tung and Orlando spectrum
▶ Tung-Orlando simulation: Coexisting downscale potential enstrophy

cascade and downscale energy cascade
▶ Gkioulekas-Tung linear superposition principle:

▶ Energy spectrum: E(k) ≈ C1ε
2/3
uv k

−5/3 + C2η
2/3
uv k

−3

▶ Scaling transition at kt =
√
η/ε
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Previous work on two-layer QG model
▶ Conditions for observable transition to k−5/3 scaling:

▶ Violation of flux inequality k2ΠE(k)−ΠG(k) ≤ 0 for k > kt
▶ Energy and enstrophy injection rates should place kt ∼ kR.

▶ Previous work on flux inequality on two-layer QG model:
▶ E. Gkioulekas and K.K. Tung (2007): Discrete Contin. Dyn. Syst. Ser.

B, 7, 293-314
▶ E. Gkioulekas (2014): Physica D 284, 27-41
▶ No transition to k−5/3 scaling, with symmetric dissipation
▶ Asymmetric dissipation needed =⇒ asymmetric Ekman term.
▶ Concentration of potential enstrophy at top layer

▶ Previous work on forcing spectra on two-layer QG model:
▶ E. Gkioulekas (2012): J. Fluid Mech. 694, 493-523
▶ Forcing spectra: FG(k) = (k2 + k2R)FE(k)
▶ Ratio of potential enstrophy to energy injection rates place kt near
kR.

▶ Unknown: [effect of Ekman term] on injection rates and potential
enstrophy cascade.
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Energy and potential enstrophy distributions. I.
▶ New idea: Define Γ(k) and P (k) such that:

▶ EK(k) = [1− P (k)]E(k) and EP (k) = P (k)E(k)
▶ G1(k) = Γ(k)G(k) and G2(k) = [1− Γ(k)]G(k)
▶ P (k): Controls distribution of energy between barotropic and

baroclinic
▶ Γ(k): Controls distribution of potential enstrophy between upper

and lower layers.

▶ Major result: Γ(k) and P (k) are rigorously restricted via:

|2Γ(k)− 1| ≤ k2 + [1− P (k)]k2R
k2 + k2RP (k)

. (8)

▶ In the limit k ≪ kR (note: k < kR/10 is close enough), Eq. (8)
reduces to

|2Γ(k)− 1| ≤ min

{
1,

1− P (k)

P (k)

}
, for k ≪ kR. (9)
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Energy and potential enstrophy distributions. II.
▶ Region constraining Γ(k) and P (k) using the representation

Γ(k) = 1/2 + x and P (k) = 1− y.
▶ The smallest “pointy box” corresponds to the limit k ≪ kR.
▶ The larger boxes correspond to the wavenumber ratios
k/kR = 10−1/2, 1, 101/2, with the box area increasing with the ratio
k/kR.

0.5

−0.5

0.5 1.0
y

x
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Ekman term dissipation rate spectra
▶ Another major result:

DE(k) =
[B

(1)
E (k)k2 +B

(2)
E (k)k2R]d(k)E(k)

k2(k2 + k2R)
,

DG1(k) = 0

DG2(k) =
[B

(1)
G (k)k4 +B

(2)
G (k)k2k2R +B

(3)
G (k)k4R]d(k)E(k)

2k2(k2 + k2R)
,

with

B
(1)
E (k) = 2[1− Γ(k)] + µ[1− 2P (k)],

B
(2)
E (k) = [1− 2Γ(k)P (k)] + µ[1− P (k)],

B
(1)
G (k) = 4[1− Γ(k)] + 2µ[1− 2P (k)],

B
(2)
G (k) = [−4Γ(k)P (k) + 2P (k)− 2Γ(k) + 3] + µ[3− 2Γ(k)− 4P (k)],

B
(3)
G (k) = (µ+ 1)[1− 2Γ(k)]P (k).
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DG2
(k) in the limit k ≪ kR. I.
▶ In the limit k ≪ kR, the dominant contribution to DG(k) is given by

DG2(k) ∼
µ+ 1

2

(
kR
k

)2

[1− 2Γ(k)]P (k)d(k)E(k), with k ≪ kR.

▶ All factors unconditionally positive or zero except [1− 2Γ(k)]

▶ Stable fixed point dynamic:
▶ Γ(k) > 1/2 =⇒ DG2(k) < 0 =⇒ potential enstrophy injected at

bottom layer =⇒ Γ(k) decreases.
▶ Γ(k) < 1/2 =⇒ DG2(k) > 0 =⇒ potential enstrophy removed at

bottom layer =⇒ Γ(k) increases.
▶ Recall: Energy is injected as baroclinic =⇒ P (k) ≈ 1 =⇒ Γ(k) is

initially constrained in a narrow interval around 1/2.
▶ Ekman potential enstrophy dissipation rate spectrum =⇒ [stable

fixed point] Γ(k) ≈ 1/2
▶ Diminished potential enstrophy dissipation =⇒ [happy enstrophy

cascade]
▶ Energy mostly barotropic at k ≪ kR =⇒ P (k) close to 0 at k ≪ kR =⇒

Leading term suppressed (expect P (k) ∼ 0.1)
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DG2
(k) in the limit k ≪ kR. II.
▶ When Γ(k) is near 1/2 or P (k) near 0, the subleading contribution to the

potential enstrophy dissipation rate spectrum DG2(k) becomes
dominant.

▶ The sign of the subleading contribution is controlled by the numerical
coefficient B(2)

G (k).
▶ We have shown that µ = −1/3 =⇒ B

(2)
G (k) > 0

▶ Otherwise, under the assumption 0 ≤ Γ(k) < 1, we have: −1/3 < µ < 0

|2Γ(k)− 1| ≤ min

{
1,

1− P (k)

P (k)

}
=⇒ B

(2)
G (k) > 0, (10)

 µ = 0

|2Γ(k)− 1| < min

{
1,

1− P (k)

P (k)

}
=⇒ B

(2)
G (k) > 0. (11)

▶ For Γ(k) = 1/2: Leading term zero, subleading term positive =⇒
potential enstrophy removed from bottom layer =⇒ Γ(k) increases.

▶ Stable fixed point shifts to Γ(k) = 1/2 + γ0(k) with γ0(k) > 0
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DG2
(k) in the limit k ≫ kR

▶ In the limit k ≫ kR, the dominant contribution to DG2(k) is given by

DG2(k) ∼ (1/2)B
(1)
G (k)d(k)E(k),

B
(1)
G (k) = 2[1− Γ(k)] + µ[1− 2P (k)].

▶ For standard Ekman:
▶ µ = 0 =⇒ DG2(k) > 0 =⇒ potential enstrophy will be dissipated

from the bottom layer =⇒ potential enstrophy becomes
increasingly concentrated in the top layer =⇒ helps violate flux
inequality.

▶ Expect P (k) near 1/2. When P (k) < 1/2 =⇒ B
(2)
G (k) > 0,

subleading contribution is dissipative. Otherwise fixed-point Γ(k)
for no potential enstrophy dissipation shifted slightly below 1

▶ For extrapolated Ekman: We showed that Γ(k) < 5/6 =⇒ B
(1)
G (k) > 0.

Same dynamic with stable fixed point at 5/6 ≤ Γ(k) ≤ 1.
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The energy dissipation rate spectrum DE(k). I.
▶ For standard Ekman dissipation =⇒ DE(k) ≥ 0 =⇒ asymmetric Ekman

term will always dissipate energy
▶ For extrapolated Ekman dissipation, in the limit k ≪ kR

DE(k) ∼
B

(2)
E (k)d(k)E(k)

k2
with k ≪ kR, (12)

▶ Expected barotropization =⇒ not in negative region
▶ In negative region, tend to increase y =⇒ [leave]

0.5

−0.5

0.5 1.0
y

x

+

−

Eleftherios Gkioulekas University of Texas Rio Grande Valley

The effect of the asymmetric Ekman term on the phenomenology of the two-layer quasigeostrophic model



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The energy dissipation rate spectrum DE(k). II.
▶ For extrapolated Ekman dissipation, in the limit k ≫ kR

DE(k) ∼
B

(1)
E (k)d(k)E(k)

k2
with k ≫ kR. (13)

▶ Barotropization necessary to be in the negative region.
▶ In negative region, tend to increase y =⇒ [stay]

0.5

−0.5

0.5 1.0
y

x

+

−
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Conclusion

▶ Constaint between Γ(k) (potential enstrophy distribution between
layers) and P (k) (energy distribution between barotropic and
baroclinic).

▶ For k ≪ kR, the tendency of the Ekman term is to stabilize the
equipartition of potential enstrophy between the two layers towards a
stable fixed point distribution in which the Ekman term does not
dissipate potential enstrophy, which prevents distortion of potential
enstrophy cascade.

▶ For k ≫ kR the Ekman term is expected to dissipate potential enstrophy
from the bottom layer.

▶ Standard Ekman term unconditionally dissipates energy over all
wavenumbers k

▶ Extrapolated Ekman term has negative regions, both in the limit k ≪ kR
and k ≫ kR where the Ekman term may be injecting energy
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Thank you!
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