
Multilocality and fusion rules on the
generalized structure functions in

two-dimensional and three-dimensional
Navier-Stokes turbulence

Eleftherios Gkioulekas

University of Texas Rio Grande Valley

October 24, 2019

Eleftherios Gkioulekas University of Texas Rio Grande Valley

Multilocality and fusion rules on the generalized structure functions in two-dimensional and three-dimensional Navier-Stokes turbulence



Outline

◮ Brief review of turbulence phenomenology

◮ Development of analytical theories of
turbulence

◮ Review of my extensions of the
Lvov-Procaccia theory

◮ Locality and multilocality
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K41 theory. I.

◮ In three-dimensional turbulence there is an energy cascade from
large scales to small scales driven by the nonlinear term of the
Navier-Stokes equations

◮ Kolmogorov (1941) predicts that the structure functions Sn(x, re)
of longitudinal velocity differences, defined as

Sn(x, re) = 〈{[u(x+ re, t)− u(x, t)] · e}n〉 (1)

are governed by self-similar scaling Sn(x, λre) = λζnSn(x, re)
for scales r in the inertial range η ≪ r ≪ ℓ0 (intermediate
asymptotics) with

◮ ℓ0 = forcing length scale
◮ η = (ν3/ε)1/4 = dissipation scale. (Kolmogorov microscale)
◮ ε = rate of energy injection

◮ Kolmogorov (1941) predicts that ζn = n/3 and thus
Sn(x, re) ∼ Cn(εr)

n/3 in the inertial range.
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K41 theory. II.
◮ Oboukhov (1941) argued that the energy spectrum E(k) will

scale as E(k) ∼ k−1−ζ2 , and will thus be given by

E(k) ∼ Cε2/3k−5/3 (2)

◮ 1962: First experimental confirmation of the
Kolmogorov-Oboukhov prediction by measurement of oceanic
currents.

◮ 1962: Kolmogorov predicts intermittency corrections to ζn:

ζn =
n

3
−
µn(n− 3)

18
(3)

◮ Not self-consistent statistically, because ζn should not decrease.

◮ The existence of intermittency corrections confirmed by
experimental measurements

◮ The problem of calculating ζn rigorously is still open.
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Governing equations for 2D turbulence

◮ In 2D turbulence, the scalar vorticity ζ(x, y, t) is governed by

∂ζ

∂t
+ J(ψ, ζ) = −[ν(−∆)p + β(−∆)−h]ζ + F, (4)

where ψ(x, y, t) is the streamfunction and
ζ(x, y, t) = −∇2ψ(x, y, t).

◮ The Jacobian term J(ψ, ζ) describes the advection of ζ by ψ, and
is defined as

J(ψ, ζ) =
∂ψ

∂x

∂ζ

∂y
−
∂ζ

∂x

∂ψ

∂y
. (5)

◮ Two conserved quadratic invariants: energy E and enstrophy G
defined as

E(t) = −
1

2

∫

ψ(x, y, t)ζ(x, y, t) dxdy G(t) =
1

2

∫

ζ2(x, y, t) dxdy.

(6)
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KLB theory. I

Kraichnan, Leith, and Batchelor (KLB) proposed that in
two-dimensional turbulence there is an upscale energy cascade and a
downscale enstrophy cascade. The energy spectrum in the upscale
energy range is

E(k) = Cirε
2/3k−5/3, (7)

and in the downscale enstrophy range is

E(k) = Cuvη
2/3k−3[χ+ ln(kℓ0)]

−1/3. (8)

Falkovich and Lebedev (1994) predict that the vorticity ζ structure
functions have logarithmic scaling given by

〈[ζ(r1)− ζ(r2)]
n〉 ∼ [η ln(ℓ0/r12)]

2n/3. (9)

Confirmed using spectral reduction by Bowman, Shadwick and
Morrison (1999).
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KLB theory. II

b

lnE(k)

ln k
× × ×

b

Cirε
2/3k−5/3

Cuvη
2/3k−3[χ+ ln(kℓ0)]

−1/3

kir k0 kuv

k0 = forcing wavenumber
kir = IR dissipation wavenumber
kuv = UV dissipation wavenumber
ε = upscale energy flux
η = downscale enstrophy flux

Eleftherios Gkioulekas University of Texas Rio Grande Valley

Multilocality and fusion rules on the generalized structure functions in two-dimensional and three-dimensional Navier-Stokes turbulence



Open questions with 2D turbulence

◮ Both cascades have been reproduced successfully in numerical
simulations, however the cascades of 2D turbulence are not as
robust as those of 3D turbulence

◮ The enstrophy cascade is hard to reproduce without using
hyperdiffusion – first observed by Lindborg in 1999

◮ The inverse energy cascade readily manifests but tends to be
disrupted by coherent vortices as it approaches steady state

◮ Lack of intermittency corrections to the downscale enstrophy
cascade and inverse energy cascade.
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Analytical theories.
◮ In the beginning: Quasinormal closure models.

◮ 1957: Kraichnan showed that they give negative E(k).

◮ 1958: Kraichnan DIA theory =⇒ k−3/2 scaling.

◮ 1961: Wyld shows that DIA is 1-loop line-renormalized
diagrammatic theory

◮ 1962: Experiments confirm k−5/3 scaling.

◮ 1964: Kraichnan notes the need to eliminate the sweeping
interactions via a Lagrangian transformation.

◮ 1965: LHDIA theory =⇒ Locality =⇒ k−5/3 scaling.

◮ 1973: Martin-Siggia-Rose theory (MSR theory)

◮ 1977: Phythian reformulates MSR theory in terms of path
integrals.

◮ 1987: Belinicher-Lvov: quasi-Langrangian representation

◮ 1995-2000: Lvov-Procaccia theory – going beyond LHDIA
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Structure of the Lvov-Procaccia theory

◮ MSR formalism applied on Navier-Stokes equations using the
quasi-Lagrangian representation

◮ Perturbative theory
◮ Uses the Schwinger-Dyson equations of MSR theory with line

renormalization
◮ Generalizes LHDIA =⇒ reproduces K41 scaling to finite order
◮ Cause of intermittency: Ladder diagram divergences
◮ Derivation of the fusion rules
◮ Perturbative calculation of ζn

◮ Non-perturbative theory
◮ Navier-Stokes equations =⇒ balance equations for generalized

structure functions
◮ Balance equations + fusion rules =⇒ non-perturbative locality
◮ Stability of cascades with respect to forcing
◮ Transition to the dissipation range
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Extensions of Lvov-Procaccia theory to 2D turbulence
by Gkioulekas

◮ Coexisting cascades – linear superposition principle

◮ Generalized fusion rules to upscale cascades

◮ Generalized non-perturbative theory to 2D turbulence
◮ Inverse energy cascade is stable with respect to forcing but can be

disrupted by sweeping.
◮ Downscale enstrophy cascade is marginally stable. Stability

depends on downscale energy flux
◮ Fusion rules imply anomalous sinks at small scales and large

scales.
◮ Logarithmic correction is essential in separating the dissipation

range from the inertial range of downscale enstrophy cascade
dissipated under regular diffusion. Not needed under
hyperdiffusion.
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Framework for non-perturbative theory

◮ Define the nth-order generalized structure functions:

Fα1α2···αn

n ({x,x′}n, t) =

〈

n
∏

k=1

wαk
(xk,x

′

k, t)

〉

◮ Differentiating with respect to time t yields an equation of the
form

∂Fn

∂t
+ OnFn+1 = In + DnFn +Qn

with:
◮ OnFn+1 representing the nonlinear local interactions that govern

the cascades
◮ In representing the sweeping interactions
◮ DnFn representing the dissipation terms
◮ Qn representing the forcing terms
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What is locality and multilocality. I

◮ The mathematical structure of OnFn+1 takes the form

OnFn+1({X}n, t) =
n
∑

k=1

∫∫

dY1dY2O(Xk,Y1,Y2)Fn+1({X}kn,Y1,Y2).

◮ Locality means that the integrals do not diverge in the IR and UV limits
and the main contributions originates at the scale R ∼ {X}n

◮ Locality implies that if Fn ∼ Rζn =⇒ OnFn+1 ∼ Rζn+1−1.

◮ Multilocality: Show that the integrals of the terms that comprise
OnOn+1 · · ·On+p−1Fn+p are also local.

◮ Multilocality implies that
Fn ∼ Rζn =⇒ OnOn+1 · · ·On+p−1Fn+p ∼ Rζn+p−p

◮ Multilocality is needed by: previous argument to establish bridge
relations; future study of dissipation scales.

◮ Special challenge by crossterms.
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What is locality and multilocality. II
◮ For example:

OnOn+1Fn+2({X}n, t) =
n∑

l=1

∫∫
dZ1dZ2 O(Xl,Z1,Z2)On+1Fn+2({X}ln, Z1,Z2)

=

n∑
l=1

n∑
k=1
k 6=l

∫∫
dZ1dZ2

∫∫
dY1dY2O(Xl,Z1,Z2)O(Xk,Y1,Y2)Fn+2({X}

kl
n ,Y1,Y2,Z1,Z2)

+

n∑
l=1

∫∫
dZ1dZ2

∫∫
dY1dY2O(Xl,Z1,Z2)O(Z1,Y1,Y2)Fn+2({X}

l
n,Y1,Y2, Z2)

+

n∑
l=1

∫∫
dZ1dZ2

∫∫
dY1dY2O(Xl,Z1,Z2)O(Z2,Y1,Y2)Fn+2({X}

l
n,Y1,Y2, Z1)

◮ The second and third terms are cross-terms and require a separate
locality argument.

◮ The main claim is that the fusion rules hypothesis implies both locality and
multilocality in both the IR and UV limits for the downscale energy cascade of
three-dimensional Navier-Stokes turbulence and the downscale enstrophy
cascade and inverse energy cascade of two-dimensional Navier-Stokes
turbulence.
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What are the fusion rules. I
◮ The fusion rules encapsulate mathematically the notion that deep inside

the inertial range and far away from the forcing range, the statistical
details of random forcing are forgotten. The same dynamic plays out
between the small scales r and the large scales R

◮ Define the conditional generalized structure function

Φα1...αnβ1...βm
nm ({X}n, {Y}m, {w}m, t) =

〈[

n
∏

κ=1

wαk
(Xk, t)

∣

∣

∣

∣

∣

wβk
(Yk, t) = wk, ∀k ∈ {1, . . . , m}]

〉

. (10)

◮ We postulate that for a downscale cascade, with {X}n ∼ r and
{Y}m ∼ R with r ≪ R and r,R both in the inertial range

Φnm({X}n, {Y}m, {w}m, t) = F̃n({X}n, t)Φ̃nm({Y}m, {w}m, t) (11)

◮ For the case of the inverse energy cascade we assume that the above
equation holds when {X}n ∼ R and {Y}m ∼ r, with r ≪ R and r,R
both in the inertial range.
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What are the fusion rules. II

◮ Via the Bayes theorem we can show that for {X}pk=1 ∼ r and
{X}nk=p+1 ∼ R with r ≪ R and both r,R in the inertial range, the
generalized structure function Fn({X}n, t) will give

Fn({X}n, t) = F̃p({X}pk=1, t)Ψn,p({X}nk=p+1, t)

for a downscale cascade and

Fn({X}n, t) = F̃n−p({X}nk=p+1, t)Ψn,n−p({X}pk=1, t)

for an upscale cascade

◮ Equivalently, for {X}p ∼ r and {Y}n−p ∼ R with r ≪ R, with both r,R
in the inertial range, we find that

Fn(λ{X}p, µ{Y}n−p) = λξnpµζn−ξnpFn({X}p, {Y}n−p)

with ξnp = ζp for downscale cascades and ξnp = ζn − ζn−p for upscale
cascades.
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Fusion rule for p = 1

◮ Let F
(p)
n (r,R) denote a generalized structure function with p velocity

differences reduced to length scale r and the remaining n− p velocity
differences at length scale R.

◮ For p = 1 the leading order contribution to the fusion rule vanishes,
both for upscale and downscale cascades.

◮ Define Rmin: the minimum distance between the small velocity
difference from the other velocity differences

◮ r ≪ Rmin =⇒ F
(1)
n (r,R) ∼ (r/Rmin)R

ζn

◮ r ≫ Rmin =⇒ F
(1)
n (r,R) ∼ rξn,1Rζn−ξn,1

◮ ξn,1 = ζ2 for downscale cascades and ξn,1 = ζn − ζn−2 for upscale
cascades, for all n > 3

◮ For n = 3: an additional cancellation will give ξ3,1 = ζ3 (both
upscale and downscale cascades)

◮ For n = 2: we get ξ2,1 = ζ2 (both upscale and downscale cascades)

◮ Main result: ξn+p,1 > 0 =⇒ UV multilocality for
OnOn+1 · · ·On+p−1Fn+p.
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Fusion rule for p = n− 1

R

r

◮ The p = n− 1 fusion rule velocity difference
geometry where one endpoint of the unfused
velocity difference is within the r-blob where
the other n− 1 velocity differences are gathered

◮ The leading order contribution to the fusion
rule vanishes, both for upscale and downscale
cascades.

◮ The next order contribution gives

F
(n−1)
n (r, R) ∼ rζnR0, thus ξn,n−1 = ζn, both

for upscale and downscale cascades.

◮ Responsible for ξ3,1 = ζ3 and ξ2,1 = ζ2, both for
upscale and downscale cascades.
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The α scaling exponent

◮ Separating one velocity difference away from a group of velocity
differences congregated inside a small-scale blob. The arrows indicate
the direction of the velocity differences involved in the major
cancellation of the leading rζnR0 contribution.

=

b

+

bb

◮ Leading-order term cancellation in the limit R → +∞

◮ Next order term scaling as rζnR0(r/R)α ∼ rζn+αR−α, with α > 0
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two-blob geometry and IR multilocality
◮ The two-blob velocity difference geometry with ℓ ≪ R and r ≪ R and

ℓ, r, R all within the inertial range.

ℓ

X1, . . . ,Xp

r

Xp+1, . . . ,Xn−1

Xn

R

◮ For downscale cascades, the scaling exponent ∆np of R is:

◮ For downscale cascades: ∆np = ζn − ζp+1 − ζn−p < 0
◮ For upscale cascades: ∆np = −α < 0 (with α defined in the

previous slide)

◮ IR multilocality of OnOn+1 · · ·On+p−1Fn+p follows from ∆n+p,m < 0
for all m with 1 ≤ m < p.
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Conclusion – Main Results

◮ Generalized fusion rules to upscale cascades

◮ The fusion rule for the new two-blob velocity difference
geometry, both for upscale and downscale cascades

◮ Proof that the fusion rules imply locality and multilocality.

◮ IR multilocality for downscale cascades requires fusion rules
with p > 2.
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Thank you!
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