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Introduction to denesting radicals. I. What are they?

I Using basic arithmetic, we can expand
(2 +

√
2)2 = 22 + 2 · 2

√
2 + (

√
2)2 = 6 + 4

√
2 and then turn that around to write√

6 + 4
√
2 = 2 +

√
2.

I The left-hand-side is an example of a nested radical, which is defined as an
expression involving rational numbers, the basic four operations of arithmetic
(addition, subtraction, multiplication, division), and roots, such that some root
appears under another root.

I Denesting means rewritting the expression so that only rational numbers appear
inside roots.

I Here, we limit ourselves to enesting expressions of the form A =
√
a± b√p and√

a
√
p+ b

√
q with a, b rational numbers and p, q rational positive numbers

I Such expressions may occur in solutions of quadratic or biquadratic equations,
trigonometry problems, integrals of rational functions, and so on.
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Introduction to denesting radicals. II. A broader problem

I Nested radicals involving a square root inside a cubic root routinely emerge when
solving cubic equations

I More complicated examples of nested radicals were given by Ramanujan such as:

3
√

3
√
2− 1 =

3

√
1

9
− 3

√
2

9
+

3

√
4

9
, (1)√

3
√
5− 3
√
4 = (1/3)(

3
√
2 +

3
√
20− 3

√
25), (2)

I Open question: Is there a systematic algorithm that can be used to denest radical
expressions of arbitrary complexity?

I Blomer 1982: Algorithm that can handle nested radicals with depth 2 (roots inside roots)
but cannot handle depths greater than 2

I Zippel 1992: Method that is able to denest some radicals with mixed roots
I Landau 1992: Most general algorithm with shortcomings: the denested expression will

use complex roots of unity; exponential time with respect to the depth of the expression;
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Introduction to denesting radicals. III. Nested square roots

I For the simple case A =
√
a± b√p, Borodin (1985) showed that it can denest in

only two ways, or not at all:√
a± b√p =

√
x±√y; or

√
a± b√p = 4

√
p(
√
x±√y), (3)

with x, y, p also positive rational numbers.
I In this talk, we will

I Derive the necessary and sufficient conditions for the existence of denestings in
accordance to Eq. (3), without however going as far as to show that these are the only
possible denestings.

I Show related examples.

I The proofs can serve as excellent examples for introducing concepts of proof in
lower-level coursework, such as proof by contradiction, proof by cases, and
quantified statements.
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Definition: Direct vs indirect denesting

I Q represents the set of all rational numbers
I We define also Q∗ = Q− {0} and Q∗

+ = {x ∈ Q|x > 0}.
I We pose the problem of denesting the expression A =

√
a± b√p via the

following definition:

Definition 1
Let A =

√
a± b√p with a, b, p ∈ Q∗

+ and
√
p 6∈ Q. We say that:

A denests directly ⇐⇒ ∃x, y ∈ Q∗
+ : A =

√
x±√y,

A denests indirectly ⇐⇒ ∃x, y ∈ Q∗
+ : A = 4

√
p(
√
x±√y).

I The goal is to derive necessary and sufficient conditions for the statements “A
denests directly” and “A denests indirectly” and to calculate the corresponding
rational numbers x, y.

I To show these theorems, we begin with showing the following lemmas
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Preliminaries. I. Irrationality of root difference
Lemma 2
Let a, b ∈ Q∗

+ be given. Then

(
√
a 6∈ Q ∧ a 6= b) =⇒

√
a−
√
b 6∈ Q

Proof.
Assume that

√
a 6∈ Q and a 6= b. To show that

√
a−
√
b 6∈ Q, we assume that√

a−
√
b ∈ Q in order to derive a contradiction. Since, a 6= b =⇒

√
a−
√
b 6= 0, we

may write

√
a = (1/2)[(

√
a+
√
b) + (

√
a−
√
b)]

=
1

2

[
(
√
a)2 − (

√
b)2

√
a−
√
b

+ (
√
a−
√
b)

]

=
1

2

[
a− b
√
a−
√
b
+ (
√
a−
√
b)

]
,

and it follows that
√
a−
√
b ∈ Q =⇒

√
a ∈ Q which is a contradiction, since by

hypothesis we have
√
a 6∈ Q. We conclude that

√
a−
√
b 6∈ Q.
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Preliminaries. II. Equality condition for mixed expressions

Lemma 3
Let a1, a2, b1, b2 ∈ Q with b1 > 0 and b2 > 0 and

√
b1 6∈ Q. Then

a1 ±
√
b1 = a2 ±

√
b2 ⇐⇒ (a1 = a2 ∧ b1 = b2).

Proof.
(=⇒): Assume that a1 ±

√
b1 = a2 ±

√
b2. We distinguish between the following cases:

Case 1: Assume that b1 = b2. Then

a1 ±
√
b1 = a2 ±

√
b2 =⇒ a1 ±

√
b1 = a2 ±

√
b1 [ via b1 = b2]

=⇒ a1 = a2,

and we conclude that a1 = a2 ∧ b1 = b2.
Case 2: Assume that b1 6= b2. Then

a1 ±
√
b1 = a2 ±

√
b2 =⇒ ±(

√
b1 −

√
b2) = a2 − a1

=⇒
√
b1 −

√
b2 ∈ Q. [via a1, a2 ∈ Q]

This is a contradiction because, using Lemma 2, we have
(
√
b1 6∈ Q ∧ b1 6= b2) =⇒

√
b1 −

√
b2 6∈ Q. This means that this case does not materialize.

(⇐=): Assume that a1 = a2 ∧ b1 = b2. Then, it trivially follows that a1 ±
√
b1 = a2 ±

√
b2.
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Preliminaries. III. The fundamental linear-quadratic system

Lemma 4
Let f(z) = z2 − az + b with zeroes z1, z2 ∈ R. It follows that{

x+ y = a
xy = b

⇐⇒
{

x = z1
y = z2

∨
{

x = z2
y = z1.

Proof.
Since z1, z2 ∈ R are zeroes of f(z) = z2 − az + b, from the fundamental theorem of
algebra, we write z2 − az + b = (z − z1)(z − z2) = z2 − (z1 + z2)z + z1z2, ∀z ∈ R,
and therefore z1 + z2 = a. It follows that z1 = a− z2 and z2 = a− z1. Then, we argue
that:{

x+ y = a
xy = b

⇐⇒
{

y = a− x
x(a− x) = b

⇐⇒
{

y = a− x
ax− x2 = b

⇐⇒
{

y = a− x
x2 − ax+ b = 0

⇐⇒
{

y = a− x
x = z1 ∨ x = z2

⇐⇒
{

x = z1
y = a− z1

∨
{

x = z2
y = a− z2

⇐⇒
{

x = z1
y = z2

∨
{

x = z2
y = z1.
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Preliminaries. IV. Positive zeroes Lemma

Lemma 5
∀x, y ∈ R :

({
x+ y > 0
xy > 0

⇐⇒
{

x > 0
y > 0

)
.

Proof.
(=⇒): Let x, y ∈ R be given such that x+ y > 0 and xy > 0. To show that
x > 0 ∧ y > 0, we assume the negation of that statement, which reads x ≤ 0 ∨ y ≤ 0,
in order to derive a contradiction. Since the lemma remains invariant with respect to
the exchange x↔ y, we may assume, with no loss of generality, that x ≤ 0 and then
distinguish between the following cases:
Case 1: Assume that y ≤ 0. Then x ≤ 0 ∧ y ≤ 0 =⇒ x+ y ≤ 0, which is a
contradiction, so this case does not materialize.
Case 2: Assume that y > 0. Then{

x ≤ 0
y > 0

=⇒
{
−x ≥ 0
y > 0

=⇒ −xy ≥ 0 =⇒ xy ≤ 0,

which is also a contradiction, since xy > 0, so this case also does not materialize.
Since neither case materializes, we have an overall contradiction and we conclude that
x > 0 ∧ y > 0
(⇐=): Assume that x > 0∧ y > 0. It follows immediately that x+ y > 0∧ xy > 0.
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Direct denesting theorem. I

Theorem 6
LetA =

√
a±
√
b with a, b ∈ Q∗ and b > 0 and

√
b 6∈ Q and a±

√
b > 0. Then, it follows that

A denests directly ⇐⇒
{
∃δ ∈ Q∗

+ : a2 − b = δ2

a > 0
,{

δ =
√
a2 − b

a > 0
=⇒

√
a±
√
b =

√
a+ δ

2
±
√
a− δ

2
. (4)

Proof.
Under the assumption x > y > 0, we establish the following equivalence:√

a±
√
b =
√
x±√y ⇐⇒ a±

√
b = (

√
x±√y)

2
[require x > y]

⇐⇒ a±
√
b = (

√
x)

2 ± 2
√
x
√
y + (

√
y)

2

⇐⇒ a±
√
b = (x+ y)±

√
4xy

⇐⇒
{

x+ y = a
4xy = b

[via Lemma 4]

⇐⇒
{

x+ y = a
xy = b/4.

(5)
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Direct denesting theorem. II. Proof continued
Define the quadratic f(z) = z2 − az + b/4 and calculate its discriminant
∆ = (−a)2 − 4 · 1 · (b/4) = a2 − b. The corresponding zeroes are given by
z1 = [a+

√
a2 − b]/2 and z2 = [a−

√
a2 − b]/2. Furthermore, they satisfy z1 + z2 = a and

z1z2 = b/4. The main argument reads:

A denests directly ⇐⇒ ∃x, y ∈ Q∗
+ :

√
a±
√
b =
√
x±√y [via Definition 1]

⇐⇒ ∃x, y ∈ Q∗
+ :

{
x+ y = a
xy = b/4

[via Eq. (5) and x, y ∈ Q∗
+]

⇐⇒ z1 ∈ Q∗
+ ∧ z2 ∈ Q∗

+

⇐⇒
{ √

a2 − b ∈ Q∗

z1 > 0 ∧ z2 > 0
[via
√
b 6∈ Q]

⇐⇒
{
∃δ ∈ Q∗

+ : a2 − b = δ2

z1z2 > 0 ∧ z1 + z2 > 0
[via Lemma 5]

⇐⇒
{
∃δ ∈ Q∗

+ : a2 − b = δ2

a > 0 ∧ b > 0

[
via
{

z1 + z2 = a
z1z2 = b/4

]
⇐⇒

{
∃δ ∈ Q∗

+ : a2 − b = δ2

a > 0.
[via b > 0]

The possibility a2 − b = 0 is ruled out by the assumption
√
b 6∈ Q which is why we write√

a2 − b ∈ Q∗ on the third to last statement above. Furthermore, the requirement x > y is easy to
satisfy with the choice x = z1 and y = z2.
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Direct denesting theorem. III. Proof continued

For the second statement, using δ =
√
a2 − bwe note that since z1 = (a+ δ)/2 and

z2 = (a− δ)/2, it follows that√
a±
√
b =
√
x±√y ⇐⇒

{
x+ y = a
xy = b/4

[via Eq. (5)]

⇐⇒
{

x = (a+ δ)/2
y = (a− δ)/2 ∨

{
x = (a− δ)/2
y = (a+ δ)/2

[via Lemma 4]

⇐⇒
{

x = (a+ δ)/2
y = (a− δ)/2, [via x > y]

and therefore, we obtain the denesting equation:√
a±
√
b =

√
a+ δ

2
±
√
a− δ

2
. (6)

I The main result is the denesting equation

I The theorem also shows that when the formula fails to result in a successful direct denesting,
that means that no such denesting is possible.
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Indirect denesting theorem. I
Theorem 7
LetA =

√
a+ b

√
q with a, b ∈ Q∗ and q ∈ Q∗

+ and
√
q 6∈ Q∗

+ such that a+ b
√
q > 0. Then the

following statements hold:

A denests indirectly ⇐⇒
{
∃δ ∈ Q∗

+ : q(b2q − a2) = δ2

b > 0
,

{
δ =

√
q(b2q − a2)

a > 0 ∧ b > 0
=⇒

√
a+ b

√
q =

1
4
√
q

[√
bq + δ

2
+

√
bq − δ

2

]
,

{
δ =

√
q(b2q − a2)

a < 0 ∧ b > 0
=⇒

√
a+ b

√
q =

1
4
√
q

[√
bq + δ

2
−
√
bq − δ

2

]
.

Proof.
To show the first statement, we begin with the observation that since a+ b

√
q > 0, multiplying

both sides with
√
q > 0 gives a

√
q + bq > 0. This enables us to write

A =
√
a+ b

√
q =

√
a
√
q + b(

√
q)2

√
q

=
1
4
√
q

√
a
√
q + bq

=


1
4
√
q

√
bq + |a|√q, if a > 0

1
4
√
q

√
bq − |a|√q, if a < 0.
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Indirect denesting theorem. II. Proof continued
Noting that |a|√q =

√
a2
√
q =

√
a2q, it follows that

A =


1
4
√
q

√
bq +

√
a2q, if a > 0

1
4
√
q

√
bq −

√
a2q, if a < 0.

(7)

The main argument proving the first statement reads:

A denests indirectly ⇐⇒
√
bq ±

√
a2q denests directly [via Eq. (7) and q > 0]

⇐⇒
{
∃δ ∈ Q∗

+ : (bq)2 − a2q = δ2

bq > 0
[via Theorem 6]

⇐⇒
{
∃δ ∈ Q∗

+ : q(b2q − a2) = δ2

b > 0.
[via q > 0]

To show the next two statements, we combine Eq. (7) with the direct denesting equation given by
Eq. (4), and distinguish between the following cases:
Case 1: For a > 0, we have:

A =
√
a+ b

√
q =

1
4
√
q

√
bq +

√
a2q [via Eq. (7)]

=
1
4
√
q

[√
bq + δ

2
+

√
bq − δ

2

]
. [via Eq. (4)]
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Indirect denesting theorem. III. Proof continued

Case 2: For a < 0, we have:

A =
√
a+ b

√
q =

1
4
√
q

√
bq −

√
a2q [via Eq. (7)]

=
1
4
√
q

[√
bq + δ

2
−
√
bq − δ

2

]
, [via Eq. (4)]

and this concludes the proof.

I The theorem for indirect denesting corresponds to the following denesting equation:

√
a+ b

√
q =


1
4
√
q

[√
bq + δ

2
+

√
bq − δ

2

]
, if a > 0

1
4
√
q

[√
bq + δ

2
−
√
bq − δ

2

]
, if a < 0,

where δ =
√
q(b2q − a2).

I As long as δ is a rational number, we have a successful indirect denesting.

I From the theorems we learn, in general, that expressions of the form
√
a±
√
b do not have

direct denesting when a < 0, however it is possible that they may have an indirect denesting.
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Example of direct denesting

Example 8
Denest the expression

√
37 + 20

√
3.

Solution.
Using a = 37 and b = (20

√
3)2, we have

δ2 = a2 − b = 372 − (20
√
3)2 = 1369− 400 · 3 = 1369− 1200 = 169

= 132 =⇒ δ = 13,

and therefore√
37 + 20

√
3 =

√
(a+ δ)/2 +

√
(a− δ)/2 =

√
(37 + 13)/2 +

√
(37− 13)/2

=
√

50/2 +
√

24/2 =
√
25 +

√
12 = 5 + 4

√
3.
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Example of indirect denesting

Example 9
Denest the expression

√
3
√
2− 4.

Solution.
Since −4 < 0, this expression does not have a direct denesting. Factoring out

√
2 gives

√
3
√
2− 4 =

√
√
2

(
3−

4
√
2

)
=

4
√
2

√
3−

4
√
2

2
=

4
√
2

√
3− 2

√
2

=
4
√
2

√
1− 2

√
2 + (

√
2)2 =

4
√
2

√
(1−

√
2)2 =

4
√
2|1−

√
2|

=
4
√
2(
√
2− 1).

I Indirect denesting is equivalent to factoring out the corresponding radical and
then look for a direct denesting.

I In the above example, the denesting was obvious enough with term splitting.

I Caution: Use the identity
√
x2 = |x| in order to remove the root

Eleftherios Gkioulekas University of Texas Rio Grande Valley

On the denesting of nested square roots



Another example of indirect denesting
Example 10
Denest the expression

√
−84 + 67

√
7.

Solution.
Since−84 < 0, there is no direct denesting, so we look for an indirect denesting. Using a = −84
and b = 67 and q = 7, we have

δ
2

= q(b
2
q − a2) = 7(67

2 · 7− (−84)
2
) = 7(4489 · 7− 7056) = 7(31423− 7056)

= 7 · 24367 = 170569 = 413
2

=⇒ δ = 413,

and from the indirect denesting identity, we have√
−84 + 67

√
7 =

1
4
√
q

[√
bq + δ

2
−
√
bq − δ

2

]

=
1
4√7

[√
67 · 7 + 413

2
−
√

67 · 7− 413

2

]

=
1
4√7

[√
469 + 413

2
−
√

469− 413

2

]
=

1
4√7

[√
882

2
−
√

56

2

]

=

√
441−

√
28

4√7
=

21− 2
√

7
4√7

=

√
7

4√7

[
21
√

7
− 2

]
=

4√
7

[
21
√

7

7
− 2

]
=

4√
7(3
√

7− 2).
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A related denesting problem
I Radicals of the form

√
a
√
p+ b

√
q with a, b ∈ Q and p, q ∈ Q∗

+ can be also denested using
direct denesting (Theorem 6) or indirect denesting (Theorem 7) after factoring out

√
p or
√
q.

I It is is easy to show that
√
p factorization is equivalent to

√
q factorization, meaning that the

radical can be denested by
√
p factorization if and only if it can be denested with

√
q

factorization.

Example 11
Denest the expressionA =

√
5
√

2 + 4
√

3.

Solution.
We note that

A =

√
5
√

2 + 4
√

3 =

√√√√√2

(
5 +

4
√

3
√

2

)
=

4√
2

√
5 +

4
√

2
√

3

2
=

4√
2

√
5 + 2

√
6.

We attempt a direct denesting using a = 5 and
δ2 = 52 − (2

√
6)2 = 25− 4 · 6 = 25− 24 = 1 =⇒ δ = 1, therefore√
5 + 2

√
6 =

√
a+ δ

2
+

√
a− δ

2
=

√
5 + 1

2
+

5− 1

2
=
√

3 +
√

2

=⇒A =

√
5
√

2 + 4
√

3 =
4√

2(
√

3 +
√

2).
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Conclusion

I In its most general form, the problem of denesting roots remains an open question
for current research.

I Simple denesting techniques can be introduced in College Algebra or Precalculus
courses, in the context of solving quadratic or biquadratic equations, or evaluating
trigonometric numbers for unusual angles.

I They can also be introduced in Calculus coursework in the context of evaluating
definite integrals of rational functions.

I The proofs of the lemmas and theorems are simple and make for excellent
examples for introducing basic concepts of proof techniques, such as proof by
contradiction, proof by cases, quantifiers. and so on.

I E. Gkioulekas: “On the denesting of nested square roots”, International Journal of
Mathematical Education in Science and Technology, (2017), published online first
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Thank you!
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