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Problem Statement. I

I The problem: Let uα(r, t) be a space-time vector field governed
by the equation

∂uα

∂t
= Λα[u] + fα

If fα is a random field, then what are the statistical properties of
uα?

I Note that the functional Λα is local in time.
I Motivation: Most statistical theories of turbulence, model

turbulence via a randomly forced Navier-Stokes equation.
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Problem Statement. II

I We are interested in the quadratic case:

∂uα
∂t

= Vαβγuβuγ + Lαβuβ + fα

I Repeated indices represent summation over components and
space-time integration.

I For example, using xk = (rk, tk), we write

Lαβuβ =
∑
β

∫
dx2 Lαβ(x1,x2)uβ(x2)

Vαβγuβuγ =
∑
βγ

∫
dx1

∫
dx2 Vαβγ(x1,x2,x3)uβ(x2)uγ(x3)
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Functional Calculus.
Variational derivative

I A functional F : u(x)→ ` maps a scalar or vector field u(x) to a number
`. We write F[u] = `.

I Let ∆α(x) be a gaussian peak with variance a. We define the variational
derivative of F with respect to u via

δF[u]

δf(ξ)
= lim
h→0

lim
a→0+

F[u(x) + h∆α(x− ξ)]− F[u]

h

= lim
h→0

F[u(x) + hδα(x− ξ)]− F[u]

h

with δ(x) the Dirac delta function.
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Functional Calculus.
Feynman path integral

I Assume that the functional F[u] can be discretized via a sequence of
functions fN :

fN (u1, u2, . . . , uN )→ F[u], as N → +∞

I The Feynman path integral is defined as∫
DuF[u] = lim

N→+∞

1

c

∫
du1

c
· · ·
∫

duN
c

fN (u1, . . . , uN )

I Consider a linear hyperfunctional A {F} that maps the functional F to a
number such that

∀λ1, λ2 ∈ R : A {λ1F1 + λ2F2} = λ1A {F1}+ λ2A {F2}

I We can associate with A {F} a generalized functional A[u] and write

A {F} =

∫
DuA[u]F[u]
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Random fields
Characteristic functional

I Let u be a random field, and let F [u] be an analytical functional.
I 〈F [u]〉 denotes the ensemble average (or expected value) of F [u], and

can be represented via a probability hyperfunctional P[u] such that

〈F [u]〉 =

∫
Du P[u]F [u]

I We define the corresponding characteristic functional C[p] of u as

C[p] = 〈exp(ipαuα)〉 =

∫
Du P[u] exp(ipαuα)

I C[p] contains all statistical information about the field u.
I For example, correlation functions of the field uα can be obtained as

variational derivatives of the characteristic functional

〈uα〉 =

∫
Du P[u]uα =

1

i

δC[p]

δpα

∣∣∣∣
0

〈uαuβ〉 =

∫
Du P[u]uαuβ =

1

2!i2
δ2C[p]

δpαδpβ

∣∣∣∣
0
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Gaussian fields
I In general we have

〈uα1uα2 · · ·uαn〉 =
1

n!in
δnC[p]

δpα1δpα2 · · · δpαn

∣∣∣∣
0

I A field uα is Gaussian if and only if for any field cα the random variable
x = cα(uα − 〈uα〉) is Gaussian.

I The characteristic functional C[p] of a random Gaussian field with
〈uα〉 = 0 is given by

C[p] = exp(−(1/2)pαpβFαβ)

with Fαβ = 〈uαuβ〉.
I It follows that

〈uαuβuγ〉 = 0

〈uαuβuγuδ〉 = FαβFγδ + FαγFβδ + FαδFβγ
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Gaussian vs. non-Gaussian fields
I In general, for a Gaussian random field:

I All odd-order correlators are zero〈
uα1uα2 · · ·uα2n+1

〉
= 0

I Let Πn be the set of all partitions ` ∈ Πn of the set {1, 2, . . . , 2n}
denoted as ` = {{`1, `2}, {`3, `4}, . . . , {`2n−1, `2n}}. Then, the
general correlator is given by

〈uα1uα2 · · ·uα2n〉 =
∑
`∈Πn

n∏
m=1

〈
uα`2m−1

uα`2m

〉
I In a non-Gaussian field uα, the correlator decomposes to a Gaussian and

non-Gaussian (also called connected) contribution:

〈uα1uα2 · · ·uαn〉 = 〈uα1uα2 · · ·uαn〉G + 〈uα1uα2 · · ·uαn〉c
with the connected contribution given by

〈uα1uα2 · · ·uαn〉c =
1

n!in
δn lnC[p]

δpα1δpα2 · · · δpαn

∣∣∣∣
0
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Relevance to hydrodynamic turbulence
The closure problem

I Turbulence is governed by the Navier-Stokes equations:

∂uα
∂t

+ Pαβ∂β(uβuγ) = ν∇2uα + Pαβfβ (1)

with Pαβ = δαβ − ∂α∂β∇−2.
I As such, it corresponds to a general quadratic problem of the form:

∂uα
∂t

= Vαβγuβuγ + Lαβuβ + fα

I Kolmogorov energy cascade:
I fluid stirred randomly at large length scales
I energy is transfered to small scales where it is dissipated
I at intermediate scales, the fluid forgets the details of forcing.

I The velocity field of turbulence is not random Gaussian. In a Gaussian
velocity field, an energy cascade is not possible.

I This leads to the closure problem.
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Relevance to hydrodynamic turbulence
Correlation and Response function

I Kraichnan proposed closure models based on a correlator Fαβ and a
Green’s function Gαβ such that

Fαβ = 〈uαuβ〉 Gαβ =

〈
δuα
δfβ

∣∣∣∣
0

〉
I MSR theory: Martin-Siggia-Rose proposed a broad theoretical

framework for building such theories
I MSR theory admits three equivalent formulations:

I The path integral formulation proposed by Phythian
I The variational differential equation formulation
I The Dyson-Wyld formulation
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MSR Theory
Characteristic functional

I Consider the general system ∂uα/∂t = Λα[u] + fα with fα random
forcing with 〈fα〉 = 0.

I Let C[p] be the characteristic functional of fα, and let F [p] = lnC[p]

I MSR theory defines a characteritic functional Z[`,m] for uα given by

Z[`,m] =

∫
Du

∫
Dp exp(−iS[u, p])

with S[u, p] the action given by

S[u, p] = pα(∂uα/∂t− Λα[u])− F [p] + i`αuα −mαpα

I The correlator Fαβ and response function Gαβ are given by

Fαβ = 〈uαuβ〉 =
δ2Z[`,m]

δ`αδ`β

∣∣∣∣
0

Gαβ =

〈
δuα
δfβ

∣∣∣∣
0

〉
=

δ2Z[`,m]

δ`αδmβ

∣∣∣∣
0

= 〈uα(ipβ)〉
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MSR Theory
Schwinger Equations

I In general, a mixed correlation-response function satisfies:

G
(m,n)
α1···αnβ1···βm =

〈
n∏
k=1

(
δ

δfαk

) m∏
l=1

uβl

〉

=

n∏
k=1

(
δ

δmαk

) m∏
l=1

(
δ

δ`βl

)
Z[`,m]

∣∣∣∣∣
0

I An equivalent formulation of MSR theory gives the characteristic
functional in terms of the Schwinger equations:

∂

∂tα

δZ

δ`α
= mαZ + Λα

(
δ

δ`α

)
Z +Gα

[
1

i

δ

δm

]
Z

∂

∂tα

δZ

δmα
= −`αZ −Hαβ

(
δ

δ`

)
δZ

δmβ

with Gα[p] and Hαβ [u] given by

Gα[p] =
δF [p]

δpα
Hαβ [u] =

δΛβ [u]

δuα
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MSR Theory
The case of projected forcing

I To apply MSR to the Navier-Stokes equation, we consider the modified
problem

∂uα
∂t

= Λα[u] + Pαβfβ

where we can assume Pαβ = Pβα.
I If F [p] is the connected characteristic functional for fα, then the

corresponding characteristic functional for the modified force
gα = Pαβfβ is denoted as Fg[p].

I For Gaussian forcing with 〈fα〉 = 0 and 〈fαfβ〉 = Q0
αβ , we can show

that
iFg[p] = −(1/2)Qαβpαpβ , with Qαβ = PαγQ

0
γδPδβ

I The action S[u, p] must also be modified to take the form

S[u, p] = pα(∂uα/∂t− Λα[u])− Fg[p] + i`αuα −mαPαβpβ

I In response functions, written as ensemble averages, the ghost field pα
must be replaced with qα = Pαβpβ .
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MSR Theory
The quadratic problem. I.

I Now let us consider a problem of the form

∂uα
∂t

= PαβVβγδuγuδ + Lαβuβ + Pαβfβ

with Vαβγ = Vαγβ and Pαβ = Pβα and uα invariant under Pαβ such that
Pαβuβ = uα.

I Forcing is assumed to be random Gaussian and satisfy 〈fα〉 = 0 and
〈fαfβ〉 = Q0

αβ

I The characteristic functional for the linear problem (i.e. disregarding the
PαβVβγδuγuδ term) can be evaluated in closed form and it is given by

Z0[`,m] = exp((1/2)`αF
0
αβ`β + `αG

0
αβmβ)

where F 0
αβ and G0

αβ are the bare correlator and bare response function
given by

ΓαγG
0
γβ = Pαβ and F 0

αβ = G0
αγQ

0
γδG

0
βδ

I Here, Γαβ is a generalized function kernel representing the operation
Γαβuβ = ∂uα/∂t− Lαβuβ
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MSR Theory
The quadratic problem. II

I The characteristic functional Z[`,m] for the quadratic problem is then
obtained from Z0[`,m] by

Z[`,m] = exp

(
δ

δmα
Vαβγ

δ

δ`β

δ

δ`γ

)
Z0[`,m]

I Expanding the exponential operator results in an infinite series of
contributions.

I We use Feynman diagrams to keep track of the resulting terms and to
introduce various simplifications
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The Dyson-Wyld equations
I Various renormalizations:

I Unlinked and weakly linked diagrams add up to zero and can be
eliminated.

I Dyson renormalization gives the equation

Gαβ = G0
αβ +G0

αγΣγδGδβ

where Σγδ is a sum of strongly-linked Feynman diagrams in terms
of F 0

αβ and G0
αβ .

I Wyld renormalization gives the equation

Fαβ = Gαγ(Qγδ + Φγδ)Gβδ

where Φγδ is likewise a sum of strongly-linked Feynman diagrams
in terms of F 0

αβ and G0
αβ .

I Line renormalization: The expansions for Σαβ and Φαβ are further
resummed in terms of irreducible Feynman diagrams in terms of
Fαβ and Gαβ .

I The resulting equations can be used to formulate closure models by
truncating the expansions for Φαβ and Σαβ
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The 1-loop approximation

I For example the 1-loop approximation gives the following equations:

Gαβ = G0
αβ +G0

αγΣγδGδβ

Fαβ = Gαγ(Qγδ + Φγδ)Gβδ

Σαβ ≈ Σ1
αβ = (VαAΓ + VαΓA)(VβB∆ + Vβ∆B)GABFΓ∆

Φαβ ≈ Φ1
αβ = VαAΓ(VβB∆ + Vβ∆B)FABFΓ∆

I In general, the operators Σαβ and Φαβ can be represented with a
Feynman diagram expansion

Σαβ = Σ1
αβ + Σ2

αβ + · · · (2)

Φαβ = Φ1
αβ + Φ2

αβ + · · · (3)

Eleftherios Gkioulekas University of Texas Rio Grande Valley

Random field theory in classical dynamical systems



Conclusion

I MSR theory has been applied to the Navier-Stokes equations
successfully using the quasi-Lagrangian representation of the velocity field

I Establishes the perturbative locality of the downscale energy
cascade

I Explains the intermittency corrections to Kolmogorov theory
I Can be used to derive the fusion rules governing generalized

structure functions.
I The fusion rules can in turn be used to explore, the

non-perturbative locality, stability, dissipation scales, existence of
anomalous sinks, etc.

I An open question: application of MSR theory to 2D Navier-Stokes
turbulence and QG turbulence.

I Another open question: investigation of non-Gaussian forcing.
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Thank you!
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