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2D Navier-Stokes equations

◮ In 2D turbulence, the scalar vorticity ζ(x , y , t) is governed by

∂ζ

∂t
+ J(ψ, ζ) = d + f ,

where ψ(x , y , t) is the streamfunction, and
ζ(x , y , t) = −∇2ψ(x , y , t), and

d = −[ν(−∆)κ + ν1(−∆)−m]ζ

◮ The Jacobian term J(ψ, ζ) describes the advection of ζ by ψ, and
is defined as

J(a, b) =
∂a

∂x

∂b

∂y
− ∂b

∂x

∂a

∂y
.



Energy and enstrophy spectrum. I

◮ Two conserved quadratic invariants: energy E and enstrophy G

defined as

E(t) = −1

2

∫

ψ(x , y , t)ζ(x , y , t) dxdy G(t) =
1

2

∫

ζ2(x , y , t) dxdy .

◮ Let a<k (x) be the field obtained from a(x) by setting to zero, in

Fourier space, the components corresponding to wavenumbers

with norm greater than k:

a<k (x) =

∫

dyP(k |x − y)a(y)

=

∫

R2

dx0

∫

R2

dk0
H(k − ‖k0‖)

4π2
exp(ik0 · (x − x0))a(x0)

◮ Filtered inner product:

〈a, b〉k =
d

dk

∫

R2

dx a<k (x)b<k (x)



Energy and enstrophy spectrum. II

◮ Energy spectrum: E(k) = −〈ψ, ζ〉k

◮ Enstrophy spectrum G(k) = 〈ζ, ζ〉k

◮ Consider the conservation laws for E(k) and G(k) :

∂E(k)

∂t
+
∂ΠE(k)

∂k
= −DE(k) + FE(k)

∂G(k)

∂t
+
∂ΠG(k)

∂k
= −DG(k) + FG(k)

◮ In two-dimensional turbulence, the energy flux ΠE(k) and the
enstrophy flux ΠG(k) are constrained by

k2ΠE(k)− ΠG(k) ≤ 0

for all k not in the forcing range.



Energy and enstrophy spectrum. III

◮ Assuming a forced-dissipative configuration at steady state,

ΠE(k) =

∫

+∞

k

DE(q)dq,

ΠG(k) =

∫ +∞

k

DG(q)dq,

and it follows that:

k2ΠE(k)−ΠG(k) =

∫

+∞

k

[k2DE(q)−DG(q)]dq =

∫

+∞

k

∆(k , q)dq.

◮ For the case of two-dimensional Navier-Stokes turbulence,
DG(k) = k2DE (k), therefore

∆(k , q) = k2DE(q)− DG(q) = (k2 − q2)DE (q) ≤ 0

so we get k2ΠE(k)− ΠG(k) < 0.



KLB theory.

b

ln E(k)

ln k
× × ×

b

Cirε
2/3k−5/3

Cuvη
2/3k−3[χ+ ln(kℓ0)]

−1/3

kir k0 kuv

k0 = forcing wavenumber
kir = IR dissipation wavenumber

kuv = UV dissipation wavenumber

ε = upscale energy flux
η = downscale enstrophy flux



Cascade Directions

◮ Proofs that energy goes mostly upscale in 2D turbulence:
◮ Fjørtøft (1953): Famous wrong argument.
◮ Merilee and Warn (1975): Noticed error in Fjørtøft
◮ Eyink (1996): Correct argument, but assumes inertial ranges.
◮ Gkioulekas and Tung (2007): Flux inequality for 2D Navier-Stokes

◮ Linear Cascade Superposition hypothesis:
◮ E. Gkioulekas and K.K. Tung (2005), Discr. Cont. Dyn. Sys. B 5,

79-102
◮ E. Gkioulekas and K.K. Tung (2005), Discr. Cont. Dyn. Sys. B 5,

103-124.

◮ Under coexisting downscale cascades of energy and enstrophy:

E(k) ≈ C1ε
2/3
uv k−5/3 + C2η

2/3
uv k−3

with ηuv the downscale enstrophy flux and εuv the downscale

energy flux.

◮ Transition wavenumber: kt =
√

η/ε.



Nastrom-Gage spectrum schematic

ln E(k)

ln k

k−3

k−5/3

kt

k−3 → 3000km − 800km

k−5/3 → 600km− ≪ 1km
kt ≈ 700km ≈ kR



Nastrom-Gage spectrum



Tung and Orlando spectrum



Generalized multi-layer model. I.

◮ Consider the generalized form of an n-layer model:

∂qα

∂t
+ J(ψα, qα) = dα + fα

dα =
∑

β

Dαβψβ

q̂α(k, t) =
∑

β

Lαβ(‖k‖)ψ̂β(k, t)

◮ We consider two types of forms for the dissipation term dα:
◮ Let Dα(k) be the spectrum of the operator Dα

◮ Streamfunction dissipation:

dα = +Dαψα =⇒ Dαβ(k) = δαβDβ(k)
◮ Symmetric streamfunction dissipation: (all layers have the

same operator)

dα = +Dψα =⇒ Dαβ(k) = δαβD(k)



Generalized multi-layer model. II

◮ The energy spectrum E(k) and the potential enstrophy spectrum
G(k) are given by:

E(k) = −
∑

α

〈ψα, qα〉k = −
∑

αβ

Lαβ(k)Cαβ(k)

G(k) =
∑

α

〈qα, qα〉k =
∑

αβγ

Lαβ(k)Lαγ(k)Cβγ(k)

with Cαβ(k) = 〈ψα, ψβ〉k
.

◮ The energy dissipation rate spectrum DE(k) and the

layer-by-layer potential enstrophy dissipation rate spectra DGα
(k)

are given by

DE(k) = 2
∑

αβ

Dαβ(k)Cαβ(k),

DGα
(k) = −2

∑

βγ

Lαβ(k)Dαγ(k)Cβγ(k).



Multi-layer QG model. I.

◮ In a multi-layer quasigeostrophic model, the relation between qα

and ψα reads

q1 = ∇2ψ1 + µ1k2
R(ψ2 − ψ1)

qα = ∇2ψα − λαk2
R(ψα − ψα−1) + µαk2

R(ψα+1 − ψα), for 1 < α < n

qn = ∇2ψn − λnk2
R(ψn − ψn−1)

◮ Here λα, µα are the non-dimensional Froude numbers given by

λα =
h1

hα

ρ2 − ρ1

ρα − ρα−1
, for 1 < α ≤ n

µα =
h1

hα

ρ2 − ρ1

ρα+1 − ρα
, for 1 ≤ α < n

with h1, h2, . . . , hn, the thickness of layers from top to bottom, in

pressure coordinates.

◮ For h1 = h2 = . . . = hn, we note that λα+1 = µα for all 1 ≤ α < n.



Multi-layer QG model. II.

◮ The corresponding matrix Lαβ(k) is given by:

Lαα(k) =







−k2 − µ1k2
R , if α = 1

−k2 − (λα + µα)k
2
R, if 1 < α < n

−k2 − λnk2
R, if α = n

Lα,α+1(k) = µαk2
R , for 1 ≤ α < n

Lα−1,α(k) = λαk2
R, for 1 < α ≤ n

◮ We define:

γα(k , q) = k2 +
∑

β

Lαβ(q) = k2 − q2 < 0, for k < q

◮ We consider the case where hα = h for all layers. Then, Lαβ(k)
is symmetric, and our theoretical framework becomes applicable.



Multi-layer QG model. III.

◮ Let Uα(k) = 〈ψα, ψα〉k ≥ 0 for 1 ≤ α ≤ n. (streamfunction
spectrum)

◮ Recall that:

k2ΠE(k)−ΠG(k) =

∫

+∞

k

[k2DE(q)−DG(q)]dq =

∫

+∞

k

∆(k , q)dq.

◮ PROPOSITION 1: In a generalized n-layer model, under

symmetric streamfunction dissipation dα = +Dψα with spectrum
D(k), we assume that Lαβ(q) ≥ 0 when α 6= β, and

Lαβ(q) = Lβα(q), and γα(k , q) ≤ 0 when k < q for all α. It follows
that:

∆(k , q) ≤ D(q)
∑

α

γα(k , q)Uα(q) ≤ 0

◮ It follows that under symmetric streamfunction, the flux inequality
is satisfied.

◮ The case dα = Dqα presents unexpected challenges, and may
violate the flux inequality in models with more than 2 layers.



The two-layer model. I

◮ The governing equations for the two-layer quasi-geostrophic

model are

∂ζ1

∂t
+ J(ψ1, ζ1 + f ) = −2f

h
ω + d1

∂ζ2

∂t
+ J(ψ2, ζ2 + f ) = +

2f

h
ω + d2

∂T

∂t
+

1

2
[J(ψ1,T ) + J(ψ2,T )] = −N2

f
ω + Q0

where ζ1 = ∇2ψ1; ζ2 = ∇2ψ2; T = (2/h)(ψ1 − ψ2). f is the

Coriolis term; N the Brunt-Väisälä frequency; Q0 is the thermal
forcing on the temperature equation; d1, d2 the dissipation terms.

◮ The three equations are situated in three layers:
◮ ψ1: At 0.25Atm, top streamfunction layer
◮ T : At 0.5Atm, temperature layer.
◮ ψ2: At 0.75Atm, bottom streamfunction layer



The two-layer model. II

◮ The potential vorticity is defined as

q1 = ∇2ψ1 + f +
k2

R

2
(ψ2 − ψ1)

q2 = ∇2ψ2 + f − k2
R

2
(ψ2 − ψ1)

with kR ≡ 2
√

2f/(hN) and it satisfies

∂q1

∂t
+ J(ψ1, q1) = f1 + d1

∂q2

∂t
+ J(ψ2, q2) = f2 + d2 + e2

with f1 = (1/4)k2
RhQ0 and f2 = −(1/4)k2

RhQ0.



The two-layer model. III

◮ We use the following asymmetric dissipation configuration:

d1 = ν(−1)p+1∇2p+2ψ1, (1)

d2 = (ν +∆ν)(−1)p+1∇2p+2ψ2 − νE∇2ψs. (2)

◮ Differential hyperdiffusion: ∆ν > 0.

◮ The Ekman term is given in terms of the streamfunction ψs at the

surface layer (ps = 1Atm) which is linearly extrapolated from ψ1

and ψ2 and it is given by ψs = λψ2 + µλψ1, with λ and µ given by

λ =
ps − p1

p2 − p1
and µ =

p2 − ps

ps − p1
. (3)

◮ 0 < p1 < p2 < ps =⇒ −1 < µ < 0



The two-layer model. IV

◮ The dissipation term configuration corresponds to setting the

generalized dissipation operator spectrum Dαβ(k) equal to

D(k) =

[

D1(k) 0
µd(k) D2(k) + d(k)

]

, (4)

with D1(q), D2(q), and d(q) given by

D1(k) = νk2p+2 and D2(k) = (ν +∆ν)k2p+2 and d(k) = λνEk2.
(5)

◮ The nonlinearity corresponds to an operator Lαβ with spectrum
Lαβ(k) given by

L(k) = −
[

a(k) b(k)
b(k) a(k)

]

, (6)

with a(k) and b(k) given by a(k) = k2 + k2
R/2 and b(k) = −k2

R.



The two-layer model. V

◮ PROPOSITION 2:Assume streamfunction dissipation with both

differential small-scale dissipation and extrapolated Ekman
dissipation with −1 < µ < 0. Assume also that

k2 − a(q) − b(q) < 0, and b(q) < 0, and

∆D(q) ≡ D2(q)− D1(q) ≥ 0, and also that D1(q), ∆D(q), and
d(q) satisfy

2D1(q) + µd(q)

∆D(q) + (µ+ 1)d(q)
>

b(q)

k2 − a(q)− b(q)
. (7)

Then it follows that ∆(k , q) ≤ 0.

◮ For dissipation term configurations, choose one of
◮ For µ = 0 and λ = 1: standard Ekman at ps = p2.
◮ For µ = −1/3 and λ = 3/2: extrapolated Ekman at ps = 1Atm.

◮ and also one of
◮ For ∆ν > 0: differential small-scale diffusion
◮ For ∆ν = 0: no differential small-scale diffusion



The two-layer model. VI

◮ For µ = 0 and λ = 1: standard Ekman at ps = p2; and ∆ν = 0:

no differential diffusion

νE

4νq2p
≤ q2 − k2

k2
R

=⇒ ∆(k , q) ≤ 0.

◮ For µ = −1/3 and λ = 3/2: extrapolated Ekman at ps = 1Atm;

and ∆ν > 0: with differential diffusion

0 <
∆νq2p + νE

4νq2p − νE

<
q2 − k2

k2
R

=⇒ ∆(k , q) ≤ 0. (8)

◮ Note that the hypothesis requires that νE < 4νq2p (thank

extrapolated Ekman)
◮ Increasing either νE or ∆ν indicates a tendency towards violating

the flux inequality.
◮ For ∆ν > 0, the LHS of hypothesis will approach ∆ν/(4ν) and

remain bounded for large wavenumbers q (thank differential

diffusion)



The two-layer model. VII

◮ For µ = 0 and λ = 1: standard Ekman at ps = p2; and ∆ν > 0:

with differential diffusion

∆νq2p + νE

4νq2p
<

q2 − k2

k2
R

=⇒ ∆(k , q) ≤ 0, (9)

◮ Hyperbolic blow-up is no longer possible.
◮ For ∆ν > 0, the LHS of hypothesis will still approach ∆ν/(4ν) and

remain bounded for large wavenumbers q

◮ For µ = −1/3 and λ = 3/2: extrapolated Ekman at ps = 1Atm;

and ∆ν = 0: no differential diffusion

νE

4νq2p
<

q2 − k2

k2
R + (q2 − k2)

=⇒ ∆(k , q) ≤ 0. (10)

◮ LHS vanishes with increasing q but RHS remains bounded.
◮ Condition is still tighter.



The two-layer model. VIII
◮ Sufficient conditions can be derived in terms of the

streamfunction spectra U1(q) = 〈ψ1, ψ1〉k , U2(q) = 〈ψ2, ψ2〉k , and

C12(q) = 〈ψ1, ψ2〉k

◮ Arithmetic-geometric mean inequality: 2|C12(q)| ≤ U1(q) + U2(q)
◮ PROPOSITION 3: Assume streamfunction dissipation with

∆ν = 0, and standard Ekman (i.e. µ = 0 and λ = 1) with
d(k) > 0 and k2 − a(q) − b(q) < 0 and b(q) < 0 and

C12(q) ≤ U2(q). Then, it follows that ∆(k , q) ≤ 0.
◮ PROPOSITION 4: Assume that b(q) < 0 and

k2 − a(q) − b(q) < 0. Assume also streamfunction dissipation
with both differential small-scale dissipation and extrapolated
Ekman dissipation with −1 < µ < 0.

1. If C12(q) ≤ 0, then ∆(k , q) ≤ 0.

2. If C12(q) ≤ min{U1(q),U2(q)} and U1(q) + µU2(q) ≥ 0, then

∆(k , q) ≤ 0.

◮ PROPOSITION 5: Assume that k2 − a(q) − b(q) < 0 and

b(q) < 0. We also assume streamfunction dissipation with
extrapolated Ekman dissipation with −1 < µ < 0 and symmetric

small-scale dissipation with D1(q) = D2(q). It follows that if

C12(q) ≤ min{U1(q),U2(q)} then ∆(k , q) ≤ 0.



Conclusions

◮ Under symmetric dissipation, the flux inequality is
satisfied unconditionally for multi-layer QG models

◮ Under asymmetric dissipation, the flux inequality is
satisfied only when the asymmetry satisfies
restrictions.

◮ The restrictions given are sufficient but not necessary.



Thank you!


