Locality and stability of the cascades of two-dimensional turbulence.

Eleftherios Gkioulekas

Department of Mathematics, University of Central Florida

Publications

This presentation is based on

- 1. E. Gkioulekas and K.K. Tung (2005), *Discrete and Continuous Dynamical Systems B*, **5**, 79-102
- 2. E. Gkioulekas and K.K. Tung (2005), *Discrete and Continuous Dynamical Systems B*, **5**, 103-124.
- 3. E. Gkioulekas (2007), *Physica D*, **226**, 151-172
- E. Gkioulekas (2007), submitted to Phys. Rev. E, arXiv:0801.3006v1 [nlin.CD].
- Other relevant papers include:
 - 1. U. Frisch, Proc. R. Soc. Lond. A 434 (1991), 89–99.
 - 2. U. Frisch, *Turbulence: The legacy of A.N. Kolmogorov*, Cambridge University Press, Cambridge, 1995.
 - 3. V.S. L'vov and I. Procaccia, *Phys. Rev. E* **52** (1995), 3840–3857.
 - 4. V.S. L'vov and I. Procaccia, *Phys. Rev. E* **54** (1996), 6268–6284.

Outline

- KLB theory (2D turbulence).
- Review of Frisch reformulation of K41 theory.
- My reformulation of Frisch to address 2D turbulence
- Locality and stability of the cascades of 2D turbulence.

Governing equations for 2D

In 2D turbulence, the scalar vorticity $\zeta(x, y, t)$ is governed by

$$\frac{\partial \zeta}{\partial t} + J(\psi, \zeta) = -[\nu(-\Delta)^{\kappa} + \nu_1(-\Delta)^{-m}]\zeta + F, \tag{1}$$

where $\psi(x, y, t)$ is the streamfunction and $\zeta(x, y, t) = -\nabla^2 \psi(x, y, t)$.

The Jacobian term $J(\psi, \zeta)$ describes the advection of ζ by ψ , and is defined as

$$J(a,b) = \frac{\partial a}{\partial x} \frac{\partial b}{\partial y} - \frac{\partial b}{\partial x} \frac{\partial a}{\partial y}.$$
 (2)

Two conserved quadratic invariants: energy E and enstrophy G defined as

$$E(t) = -\frac{1}{2} \int \psi(x, y, t) \zeta(x, y, t) \, dx dy \quad G(t) = \frac{1}{2} \int \zeta^2(x, y, t) \, dx dy. \tag{3}$$

Flux directions

- Assume that 2D turbulence is forced in a narrow band $[k_1, k_2]$ of wavenumbers.
- Let $\Pi_E(k)$ and $\Pi_G(k)$ be the rate with which energy and enstrophy are transferred by the nonlinearity $J(\psi, \zeta)$ from [0, k] to $[k, +\infty)$.

Then, under stationarity the fluxes $\Pi_E(k)$ and $\Pi_G(k)$ will satisfy the inequalities

$$\int_{0}^{k} q \Pi_{E}(q) \, dq < 0, \, \forall k > k_{2} \quad \text{and} \quad \int_{k}^{+\infty} q^{-3} \Pi_{G}(q) > 0, \, \forall k < k_{1}.$$
 (4)

Thus in 2D turbulence energy goes upscale and enstrophy goes downscale.

- Further discussion in
 - R. Fjørtøft (1953), Tellus, 5, 225-230.
 - P.E. Merilees and T. Warn (1975), *J. Fluid. Mech.*, **69**, 625–630.
 - E. Gkioulekas and K.K. Tung (2007), *J. Fluid Mech.*, **576**, 173-189.
- There is no known proof that **energy goes downscale** in 3D turbulence!

KLB theory I

- Kraichnan, Leith, and Batchelor (KLB) proposed that in two-dimensional turbulence there is an upscale energy cascade and a downscale enstrophy cascade. (1967)
- The energy spectrum in the upscale energy range is

$$E(k) = C_{ir} \varepsilon^{2/3} k^{-5/3},$$
(5)

and in the downscale enstrophy range is

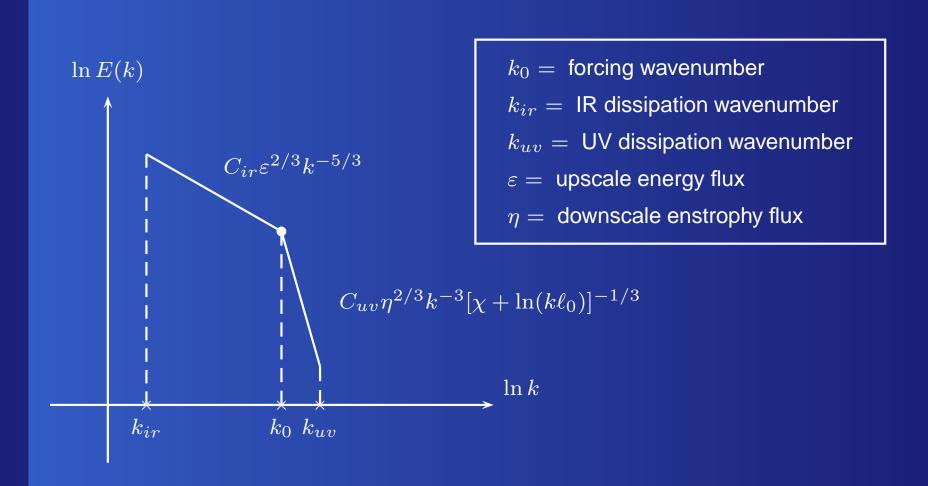
$$E(k) = C_{uv} \eta^{2/3} k^{-3} [\chi + \ln(k\ell_0)]^{-1/3}.$$
(6)

Falkovich and Lebedev (1994) predict that the vorticity ζ structure functions have logarithmic scaling given by

$$\langle [\zeta(\mathbf{r}_1) - \zeta(\mathbf{r}_2)]^n \rangle \sim [\eta \ln(\ell_0/r_{12})]^{2n/3}.$$
(7)

Confirmed using spectral reduction by Bowman, Shadwick and Morrison (1999).

KLB theory II



Open Questions

Enstrophy cascade is difficult to reproduce numerically. It requires:

- A large-scale sink (Ekman or hypodiffusion)
- High numerical resolution
- All published simulations so far have used hyperdiffusion.
- The inverse energy cascade is often disrupted by coherent structures.
 - Coherent structures give a dominant k^{-3} contribution to E(k) even though they occupy a small percentage of the physical domain

Removing coherent structures artificially recovers the $k^{-5/3}$ spectrum.

- Eyink (2001): We know why the enstrophy cascade has no intermittency corrections.
- Why does the inverse energy cascade not have observable intermittency corrections?
- The underlying fundamental question is to explain why the cascades of 3D turbulence are robust and the cascades of 2D turbulence are not.

Frisch reformulation of K41. I

Define the Eulerian velocity differences w_{α} :

$$w_{\alpha}(\mathbf{x}, \mathbf{x}', t) = u_{\alpha}(\mathbf{x}, t) - u_{\alpha}(\mathbf{x}', t).$$
(8)

H1: Local homogeneity/isotropy/stationarity

$$w_{\alpha}(\mathbf{x}, \mathbf{x}', t) \stackrel{\mathbf{x}, \mathbf{x}'}{\sim} w_{\alpha}(\mathbf{x} + \mathbf{y}, \mathbf{x}' + \mathbf{y}, t), \forall \mathbf{y} \in \mathbb{R}^{d}.$$
 (9)

$$w_{\alpha}(\mathbf{x}, \mathbf{x}', t) \stackrel{\mathbf{x}, \mathbf{x}'}{\sim} w_{\alpha}(\mathbf{x}_0 + A(\mathbf{x} - \mathbf{x}_0), \mathbf{x}_0 + A(\mathbf{x}' - \mathbf{x}_0), t), \forall A \in SO(d).$$
 (10)

$$w_{\alpha}(\mathbf{x}, \mathbf{x}', t) \stackrel{\mathbf{x}, \mathbf{x}'}{\sim} w_{\alpha}(\mathbf{x}, \mathbf{x}', t + \Delta t), \forall \Delta t \in \mathbb{R}.$$
 (11)

H2: Self-similarity

$$w_{\alpha}(\lambda \mathbf{x}, \lambda \mathbf{x}', t) \stackrel{\mathbf{x}, \mathbf{x}'}{\sim} \lambda^h w_{\alpha}(\mathbf{x}, \mathbf{x}', t)$$
 (12)

 \blacksquare H3: Anomalous energy sink: energy will still be dissipated when $\nu \rightarrow 0^+$.

Frisch reformulation of K41. II

The argument \blacksquare H1 and H3 \Longrightarrow 4/5 law \Longrightarrow $\zeta_3 = 1$ $I 2 \Longrightarrow \zeta_n = nh$ **J** Therefore: $\zeta_n = n/3 \Longrightarrow k^{-5/3}$ scaling 2005: Frisch questions self-consistency of local homogeneity Proof of 4/5 law 2007: These issues discussed further by Gkioulekas in E. Gkioulekas (2007), *Physica D*, **226**, 151-172 The above theory rules out intermittency corrections. To allow intermittency corrections we need a better theory which at the very least Weakens H2 Tolerates H1 and H3 Leads to a calculation of the correct ζ_n exponents.

Revisions to the Frisch framework

- The KLB theory can be reformulated similarly.
- Such a theory implicitly assumes locality and universality of the two cascades.
- The conditions needed for the existence of universal cascades is the question!
- A deeper theory of 2D turbulence can be formulated as follows
 - 1. Begin with the Frisch reformulation of Kolmogorov theory in 3D turbulence.
 - 2. Replace anomalous sink assumption with the axiom of universality. (non-perturbative theory of L'vov and Procaccia)
 - 3. Weaken the multifractal self-similarity hypothesis.
 - 4. Adapt the non-perturbative theory of L'vov and Procaccia to 2D turbulence.
 - Then, it is possible to:
 - 1. Deduce conditions for locality and stability of both cascades.
 - 2. Deduce existence of anomalous sinks from our axioms.

The new framework of hypotheses. I

Define the Eulerian velocity differences w_{α} :

$$w_{\alpha}(\mathbf{x}, \mathbf{x}', t) = u_{\alpha}(\mathbf{x}, t) - u_{\alpha}(\mathbf{x}', t).$$
(13)

The Eulerian generalized structure function is defined as

$$F_n^{\alpha_1\alpha_2\cdots\alpha_n}(\{\mathbf{X}\}_n, t) = \left\langle \left[\prod_{k=1}^n w_{\alpha_k}(\mathbf{x}_k, \mathbf{x'}_k, t)\right] \right\rangle,$$
(14)

where $\{\mathbf{X}\}_n = \{\mathbf{x}, \mathbf{x}'\}_n$ is shorthand for a list of 2n position vectors.

We also define the conditional correlations

$$\Phi_n(\{\mathbf{X}\}_n, \{\mathbf{Y}\}_m, \{\mathbf{w}_k\}_{k=1}^m, t) = \left\langle \left[\prod_{k=1}^n w_{\alpha_k}(\mathbf{X}_k, t)\right] \middle| \mathbf{w}(\mathbf{y}_k, \mathbf{y'}_k, t) = \mathbf{w}_k \right\rangle.$$
(15)

The new framework of hypotheses. II

Hypothesis 1: The velocity field is locally stationary, locally homogeneous, and locally isotropic, defined as

$$\frac{\partial F_n(\{\mathbf{X}\}_n, t)}{\partial t} = 0, \forall t \in \mathbb{R}$$
(16)

$$\sum_{k=1}^{n} (\partial_{\alpha_k, \mathbf{x}_k} + \partial_{\alpha_k, \mathbf{x}'_k}) F_n(\{\mathbf{X}\}_n, t) = 0$$
(17)

$$F_n(\{\mathbf{X}\}_n, t) = F_n(\mathbf{r}_0 + \mathcal{A}(\{\mathbf{X}\}_n - \mathbf{r}_0), t), \ \forall \mathcal{A} \in SO(2)$$
(18)

as long as the evaluations $\{\mathbf{X}\}_n$, $\{\mathbf{X}\}_n + \Delta \mathbf{r}$, $\mathbf{r}_0 + \mathcal{A}(\{\mathbf{X}\}_n - \mathbf{r}_0)$, lie within an inertial range.

9

Hypothesis 2: The velocity field is self-similar in the sense that for every evaluation $\{X\}_n$ within an inertial range

$$\exists \varepsilon > 0 : F_n(\lambda\{\mathbf{X}\}_n, t) = \lambda^{\zeta_n} F_n(\{\mathbf{X}\}_n, t), \ \forall \lambda \in (1 - \varepsilon, 1 + \varepsilon)$$
(19)

The new framework of hypotheses. III

Hypothesis 3: Let $\{\mathbf{X}\}_n$ and $\{\mathbf{Y}\}_m$ represent the geometries of velocity differences and let $\mathcal{W} = \{\mathbf{w}(\mathbf{y}_k, \mathbf{y'}_k, t) = \mathbf{w}_k\}$. Then, if in the direct cascade they satisfy $\|\{\mathbf{X}\}_n\| \ll \|\{\mathbf{Y}\}_m\| \ll \ell_0$, or alternatively if in the inverse cascade they satisfy $\|\{\mathbf{X}\}_n\| \gg \|\{\mathbf{Y}\}_m\| \gg \ell_0$, then the conditional correlations Φ_n preserve local stationarity, local homogeneity, and local isotropy, with respect to $\{\mathbf{X}\}_n$, defined as

$$\frac{\partial \Phi_n}{\partial t} = 0$$

$$\Phi_n(\{\mathbf{X}\}_n, \mathcal{W}, t) = \Phi_n(\{\mathbf{X}\}_n + \Delta \mathbf{r}, \mathcal{W}, t)$$

$$\Phi_n(\{\mathbf{X}\}_n, \mathcal{W}, t) = \Phi_n(\mathbf{r}_0 + \mathcal{A}(\{\mathbf{X}\}_n - \mathbf{r}_0), \mathcal{W}, t), \, \forall \mathcal{A} \in SO(2)$$
(20)

and also self similarity, with the same scaling exponents ζ_n , defined as

$$\exists \varepsilon > 0 : \Phi_n(\lambda\{\mathbf{X}\}_n, \mathcal{W}, t) = \lambda^{\zeta_n} \Phi_n(\{\mathbf{X}\}_n, \mathcal{W}, t), \ \forall \lambda \in (1 - \varepsilon, 1 + \varepsilon)$$
(21)

The new framework of hypotheses. IV

- Hypothesis 1 is incremental stationarity, homogeneity, and isotropy
- Hypothesis 2 is the L'vov–Procaccia self-similarity principle.
- Hypothesis 3 is the universality principle.
 - The events $\mathcal{W} = \{\mathbf{w}(\mathbf{y}_k, \mathbf{y'}_k, t) = \mathbf{w}_k\}$ partition the ensemble of all possible forcing histories into **subensembles** defined by the parameters $\{\mathbf{w}_k\}_{k=1}^m$.
 - **Each choice of** $\{\mathbf{Y}\}_m$ represents a distinct partition.
 - We assume that Hypothesis 1 and 2 hold for each subensemble $\{\mathbf{w}_k\}_{k=1}^m$ and for all possible partitions $\{\mathbf{Y}\}_m$. (with $\|\{\mathbf{X}\}_n\| \ll \|\{\mathbf{Y}\}_m\| \ll \ell_0$ if it is a downscale cascade or $\|\{\mathbf{X}\}_n\| \gg \|\{\mathbf{Y}\}_m\| \gg \ell_0$ if it is an upscale cascade)
- These hypotheses are an efficient *definition* of the concept of an "inertial range".
- The hypotheses are valid only a multidimensional domain of velocity differences geometries $\{\mathbf{X}\}_n \in \mathcal{I}_n$.
- The extent of this domain \mathcal{I}_n is the extent of the inertial range itself.
- A different set of exponents ζ_n and region \mathcal{J}_n is associated with each range.

The fusion rules hypothesis

- **Step 1:** Hypothesis $3 \Longrightarrow$ the fusion rules hypothesis.
- Consider a geometry of velocity differences $\{X\}_n$ such that $\|\{X\}_n\| = 1$ and define

$$F_n^{(p)}(r,R) = F_n(r\{\mathbf{X}_k\}_{k=1}^p, R\{\mathbf{X}_k\}_{k=p+1}^n).$$
(22)

$$F_n^{(p)}(\lambda_1 r, \lambda_2 R) = \lambda_1^{\xi_{np}} \lambda_2^{\zeta_n - \xi_{np}} F_n^{(p)}(r, R)$$
(23)

A concise statement of the fusion rules hypothesis is that for the direct enstrophy cascade $\xi_{np} = \zeta_p$, and for the inverse energy cascade $\xi_{np} = \zeta_n - \zeta_{n-p}$ for 1 .

We will also consider the case of "regular" violations to the fusion rules where the scaling exponents ξ_{np} satisfy $0 < \xi_{np} < \zeta_n$

Balance Equations and Locality. I

- **Step 2:** The fusion rules hypothesis \implies Locality
- We employ the balance equations introduced by L'vov and Procaccia (1996).
- The Navier-Stokes equations, where the pressure term has been eliminated, read

$$\frac{\partial u_{\alpha}}{\partial t} + \mathcal{P}_{\alpha\beta}\partial_{\gamma}(u_{\beta}u_{\gamma}) = \mathcal{D}u_{\alpha} + \mathcal{P}_{\alpha\beta}f_{\beta}, \tag{24}$$

where $\mathcal{P}_{\alpha\beta} = \delta_{\alpha\beta} - \partial_{\alpha}\partial_{\beta}\nabla^{-2}$ is the projection operator and \mathcal{D} is the dissipation operator given by

$$\mathcal{D} \equiv (-1)^{\kappa+1} \nu_{\kappa} \nabla^{2\kappa} + (-1)^{m+1} \beta \nabla^{-2m}$$
(25)

The balance equations are obtained by differentiating the definition of F_n with respect to time t and substituting the Navier-Stokes equations

Balance Equations and Locality. II

Thus one obtains the equation:

$$\frac{\partial F_n}{\partial t} + \mathcal{O}_n F_{n+1} + I_n = \nu J_n + \beta H_n + Q_n \tag{26}$$

where:

 $\mathfrak{O}_n F_{n+1}$ represents the local nonlinear interactions

- I_n represents the sweeping interactions
- Q_n represents the forcing term

I νJ_n and βH_n represent the dissipation terms

- We propose that the locality of the interaction integral in $\mathcal{O}_n F_{n+1}$ is the mathematical definition that corresponds most closely with our physical conception of locality in a local eddy cascade.
- We assume, without proof, that the sweeping term I_n can be disregarded in the inertial range

Locality conditions

For either a downscale or an upscale cascade the locality conditions are

DV locality: $\xi_{n+1,2} > 0, \ \forall n \in \mathbb{N} : n > 1$

IR locality: $\zeta_{n+1} \leq \xi_{n+1,2} + \xi_{n+1,n-1} \ \forall n \in \mathbb{N} : n > 1$

The fusion rules hypothesis implies the conditions above

Consider a regular violation of the fusion rules hypothesis with:

$$\xi_{np} = \zeta_p + \Delta \xi_{np} \text{ (downscale)}$$

$$\xi_{np} = \zeta_n - \zeta_{n-n} + \Delta \xi_{np} \text{ (upscale)}$$
(27)
(28)

UV localiy is still maintained, because $0 < \xi_{np} < \zeta_n$

For IR locality, the sufficient condition becomes

 $\Delta \xi_{n+1,2} + \Delta \xi_{n+1,n-1} \ge 0 \ \forall n \in \mathbb{N} : n > 1 \text{ (downscale)}$ (29)

$$\Delta \xi_{n+1,2} + \Delta \xi_{n+1,n-1} \le 0 \ \forall n \in \mathbb{N} : n > 1 \ \text{(upscale)}$$
 (30)

Stability of cascades. I

Conclusion: Given the fusion rules hypothesis, both the inverse energy cascade and the enstrophy cascade are local.

Step 3: Locality \implies stability

Locality implies that the contributions D_{kn} to $\mathcal{O}F_{n+1}$ are also self-similar with scaling exponent δ_n and satisfy

$$D_{kn}(\lambda\{\mathbf{X}\}_n, t) = \lambda^{\zeta_{n+1}-1} D_{kn}(\{\mathbf{X}\}_n, t)$$
(31)

Statistical stability: there should be a region \mathcal{J}_n such that $Q_n(\{\mathbf{X}\}_n)$ is negligible relative to the contributions to $D_{kn}(\{\mathbf{X}\}_n)$ for all $\{\mathbf{X}\}_n \in \mathcal{J}_n$

The forcing term Q_n is also self-similar with scaling exponent q_n and satisfies

$$Q_n(\lambda\{\mathbf{X}\}_n, t) = \lambda^{q_n} Q_n(\{\mathbf{X}\}_n, t)$$
(32)

Stability of cascades. II

Assume that f_{α} is a delta-correlated stationary gaussian field with $\langle f_{\alpha}(\mathbf{x}) \rangle = 0$, and

$$\left\langle f_{\alpha}(\mathbf{x}_{1}, t_{1}) f_{\beta}(\mathbf{x}_{2}, t_{2}) \right\rangle = 2\varepsilon C_{\alpha\beta}(\mathbf{x}_{1}, \mathbf{x}_{2}) \delta(t_{1} - t_{2}), \tag{33}$$

where ε is constant, and $C_{\alpha\beta}$ is normalized such that $C_{\alpha\alpha}(\mathbf{x}, \mathbf{x}) = 1$. It can be shown that:

$$Q_{kn}^{\alpha_1 \cdots \alpha_{n-1}\beta}(\{\mathbf{X}\}_{n-1}, \mathbf{Y}, t) = \sum_{l=1}^{n-1} F_{n-2}^{\alpha_1 \cdots \alpha_{l-1}\alpha_{l+1} \cdots \alpha_{n-1}}(\{\mathbf{X}\}_{n-1}^l)Q_{\alpha_l\beta}(\mathbf{X}_l, \mathbf{Y}),$$
$$Q_{\alpha\beta}(\mathbf{X}, \mathbf{Y}) = 2\varepsilon [C_{\alpha\beta}(\mathbf{y}, \mathbf{x}) - C_{\alpha\beta}(\mathbf{y}', \mathbf{x}) - C_{\alpha\beta}(\mathbf{y}, \mathbf{x}') + C_{\alpha\beta}(\mathbf{y}', \mathbf{x}')].$$

- For Gaussian delta-correlated in time forcing $q_n = \zeta_{n-2} + q_2$
- \blacksquare We see that F_{n-2} provides feedback to Q_n , when the forcing is gaussian.
- For statistical stability we need this feedback to be negligible in the inertial range.

Stability of cascades. III

٩

It follows that the ratio Q_n/D_{kn} scales as

$$\frac{Q_n(R)}{D_{kn}(R)} \sim \left(\frac{R}{\ell_0}\right)^{\Delta q_n}.$$
(34)

with $\Delta q_n = (\zeta_{n-2} + q_2) - (\zeta_{n+1} - 1).$

- Stability conditions for downscale cascades
 - In a downscale cascade $q_2 = 2$

Downscale cascades: this ratio must vanish when $\ell_0 \to +\infty$

 $\implies h < 1$ for monofractal scaling $\zeta_n = nh$

- \blacksquare The stability condition is neither satisfied nor broken, because h = 1!
 - When the downscale energy flux is small enough, then $q_2 \ge 3$, and the stability condition is satisfied.

Stability of cascades. IV

Recall that the ratio Q_n/D_{kn} scales as

$$\frac{Q_n(R)}{D_{kn}(R)} \sim \left(\frac{R}{\ell_0}\right)^{\Delta q_n}.$$
(35)

with $\Delta q_n = (\zeta_{n-2} + q_2) - (\zeta_{n+1} - 1).$

- Stability conditions for upscale cascades
 - In an upscale cascade $q_2 < 0$
 - Upscale cascades: this ratio must vanish when $\ell_0 \rightarrow 0$

 $\blacksquare \iff \overline{\Delta q_n < 0, \ \forall n \in \mathbb{N}, n > 1 }$

 $\implies \implies h > (1+q_2)/3$ for monofractal scaling $\zeta_n = nh$

- **D** The stability condition is satisfied, because h = 1/3.
- However the inverse energy cascade can be disrupted by the sweeping interactions term I_n.

Concluding remarks

- Paradox: The constraint $0 < \zeta_2 < 2$ does not appear anywhere in our locality proof!
- The inequality $0 < \zeta_2 < 2$ can come in as a necessary condition
 - for the survival of locality under the Fourier integral
 - for perturbative locality for each Feynman diagram
- The enstrophy cascade is non-perturbatively local and borderline non-local only in the perturbative sense.
- 9
- Closure models unwittingly exchange **non-perturbative locality** with **perturbative locality**!
- Stability of cascades (required for universality) imposes constraints on ζ_3 :
 - for downscale enstrophy cascade: $0 < \zeta_3 < 3$
 - for upscale inverse energy cascade: $\zeta_3 \ge 1$
- The stability of the downscale enstrophy cascade requires considerable separation between forcing and small-scale separation

Conceptual Summary

- Cascades are homogeneous solutions of the balance equations.
- Dissipation distorts homogeneous solutions, thereby introducing a dissipative region.
- Non-universal effects (e.g. coherent structures) are particular solutions forced upon the homogeneous solutions by Q_n (forcing) and I_n (sweeping).
 - The robustness of cascades depends on
 - the competition between homogeneous and particular solutions (homogeneous should be dominant \leftarrow stability)
 - the containment of the dissipative region. (topic of some future talk)
 - The fusion rules hypothesis also leads to the existence of anomalous sinks, thus leading us back to the original Frisch framework.