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Outline

KLB theory (2D turbulence).

Review of Frisch reformulation of K41 theory.

My reformulation of Frisch to address 2D turbulence

Locality and stability of the cascades of 2D turbulence.
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Governing equations for 2D

In 2D turbulence, the scalar vorticity ζ(x, y, t) is governed by

∂ζ

∂t
+ J(ψ, ζ) = −[ν(−∆)κ + ν1(−∆)−m]ζ + F, (1)

where ψ(x, y, t) is the streamfunction and ζ(x, y, t) = −∇2ψ(x, y, t).

The Jacobian term J(ψ, ζ) describes the advection of ζ by ψ, and is defined as

J(a, b) =
∂a

∂x

∂b

∂y
− ∂b

∂x

∂a

∂y
. (2)

Two conserved quadratic invariants: energy E and enstrophy G defined as

E(t) = −1

2

∫
ψ(x, y, t)ζ(x, y, t) dxdy G(t) =

1

2

∫
ζ2(x, y, t) dxdy. (3)
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Flux directions

Assume that 2D turbulence is forced in a narrow band [k1, k2] of wavenumbers.

Let ΠE(k) and ΠG(k) be the rate with which energy and enstrophy are transfered by
the nonlinearity J(ψ, ζ) from [0, k] to [k,+∞).

Then, under stationarity the fluxes ΠE(k) and ΠG(k) will satisfy the inequalities

∫ k

0
qΠE(q) dq < 0, ∀k > k2 and

∫ +∞

k
q−3ΠG(q) > 0, ∀k < k1. (4)

Thus in 2D turbulence energy goes upscale and enstrophy goes downscale.

Further discussion in

R. Fjørtøft (1953), Tellus, 5, 225-230.

P.E. Merilees and T. Warn (1975), J. Fluid. Mech., 69, 625–630.

E. Gkioulekas and K.K. Tung (2007), J. Fluid Mech., 576, 173-189.

There is no known proof that energy goes downscale in 3D turbulence!
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KLB theory I

Kraichnan, Leith, and Batchelor (KLB) proposed that in two-dimensional turbulence
there is an upscale energy cascade and a downscale enstrophy cascade. (1967)

The energy spectrum in the upscale energy range is

E(k) = Cirε
2/3k−5/3, (5)

and in the downscale enstrophy range is

E(k) = Cuvη
2/3k−3[χ+ ln(k�0)]−1/3. (6)

Falkovich and Lebedev (1994) predict that the vorticity ζ structure functions have
logarithmic scaling given by

〈[ζ(r1) − ζ(r2)]n〉 ∼ [η ln(�0/r12)]2n/3. (7)

Confirmed using spectral reduction by Bowman, Shadwick and Morrison (1999).
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KLB theory II

lnE(k)

ln k
× × ×

�

Cirε
2/3k−5/3

Cuvη2/3k−3[χ+ ln(k�0)]−1/3

kir k0 kuv

k0 = forcing wavenumber

kir = IR dissipation wavenumber

kuv = UV dissipation wavenumber

ε = upscale energy flux

η = downscale enstrophy flux
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Open Questions

Enstrophy cascade is difficult to reproduce numerically. It requires:

A large-scale sink (Ekman or hypodiffusion)

High numerical resolution

All published simulations so far have used hyperdiffusion.

The inverse energy cascade is often disrupted by coherent structures.

Coherent structures give a dominant k−3 contribution to E(k) even though they
occupy a small percentage of the physical domain

Removing coherent structures artificially recovers the k−5/3 spectrum.

Eyink (2001): We know why the enstrophy cascade has no intermittency corrections.

Why does the inverse energy cascade not have observable intermittency corrections?

The underlying fundamental question is to explain why the cascades of 3D turbulence
are robust and the cascades of 2D turbulence are not.

locality and stability talk – p.8/25



Frisch reformulation of K41. I

Define the Eulerian velocity differences wα:

wα(x,x′, t) = uα(x, t) − uα(x′, t). (8)

H1: Local homogeneity/isotropy/stationarity

wα(x,x′, t) x,x′
∼ wα(x + y,x′ + y, t) ,∀y ∈ R

d. (9)

wα(x,x′, t) x,x′
∼ wα(x0 +A(x − x0),x0 +A(x′ − x0), t) ,∀A ∈ SO(d). (10)

wα(x,x′, t) x,x′
∼ wα(x,x′, t+ ∆t) ,∀∆t ∈ R. (11)

H2: Self-similarity

wα(λx, λx′, t) x,x′
∼ λhwα(x,x′, t) (12)

H3: Anomalous energy sink: energy will still be dissipated when ν → 0+.
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Frisch reformulation of K41. II

The argument

H1 and H3 =⇒ 4/5 law =⇒ ζ3 = 1

H2 =⇒ ζn = nh

Therefore: ζn = n/3 =⇒ k−5/3 scaling

2005: Frisch questions self-consistency of local homogeneity

Proof of 4/5 law

2007: These issues discussed further by Gkioulekas in

E. Gkioulekas (2007), Physica D, 226, 151-172

The above theory rules out intermittency corrections.

To allow intermittency corrections we need a better theory which at the very least

Weakens H2

Tolerates H1 and H3

Leads to a calculation of the correct ζn exponents.
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Revisions to the Frisch framework

The KLB theory can be reformulated similarly.

Such a theory implicitly assumes locality and universality of the two cascades.

The conditions needed for the existence of universal cascades is the question!

A deeper theory of 2D turbulence can be formulated as follows

1. Begin with the Frisch reformulation of Kolmogorov theory in 3D turbulence.

2. Replace anomalous sink assumption with the axiom of universality.
(non-perturbative theory of L’vov and Procaccia)

3. Weaken the multifractal self-similarity hypothesis.

4. Adapt the non-perturbative theory of L’vov and Procaccia to 2D turbulence.

Then, it is possible to:

1. Deduce conditions for locality and stability of both cascades.

2. Deduce existence of anomalous sinks from our axioms.
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The new framework of hypotheses. I

Define the Eulerian velocity differences wα:

wα(x,x′, t) = uα(x, t) − uα(x′, t). (13)

The Eulerian generalized structure function is defined as

Fα1α2···αn
n ({X}n, t) =

〈[
n∏

k=1

wαk (xk,x
′
k, t)

]〉
, (14)

where {X}n = {x,x′}n is shorthand for a list of 2n position vectors.

We also define the conditional correlations

Φn({X}n, {Y}m, {wk}m
k=1, t) =

〈 [
n∏

k=1

wαk (Xk, t)

]∣∣∣∣∣ w(yk,y
′
k, t) = wk

〉
. (15)

locality and stability talk – p.12/25



The new framework of hypotheses. II

Hypothesis 1: The velocity field is locally stationary, locally homogeneous, and locally
isotropic, defined as

∂Fn({X}n, t)

∂t
= 0,∀t ∈ R (16)

n∑
k=1

(∂αk,xk + ∂αk,x′
k
)Fn({X}n, t) = 0 (17)

Fn({X}n, t) = Fn(r0 + A({X}n − r0), t), ∀A∈ SO(2) (18)

as long as the evaluations {X}n, {X}n + ∆r, r0 + A({X}n − r0), lie within an
inertial range.

Hypothesis 2: The velocity field is self-similar in the sense that for every evaluation
{X}n within an inertial range

∃ε > 0 : Fn(λ{X}n, t) = λζnFn({X}n, t), ∀λ ∈ (1 − ε, 1 + ε) (19)
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The new framework of hypotheses. III

Hypothesis 3: Let {X}n and {Y}m represent the geometries of velocity differences
and let W = {w(yk,y

′
k, t) = wk}. Then, if in the direct cascade they satisfy

‖{X}n‖ � ‖{Y}m‖ � �0, or alternatively if in the inverse cascade they satisfy
‖{X}n‖  ‖{Y}m‖  �0, then the conditional correlations Φn preserve local
stationarity, local homogeneity, and local isotropy, with respect to {X}n, defined as

∂Φn

∂t
= 0

Φn({X}n,W, t) = Φn({X}n + ∆r,W, t)

Φn({X}n,W, t) = Φn(r0 + A({X}n − r0),W, t), ∀A∈ SO(2)

(20)

and also self similarity, with the same scaling exponents ζn, defined as

∃ε > 0 : Φn(λ{X}n,W, t) = λζnΦn({X}n,W, t), ∀λ ∈ (1 − ε, 1 + ε) (21)
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The new framework of hypotheses. IV

Hypothesis 1 is incremental stationarity, homogeneity, and isotropy

Hypothesis 2 is the L’vov–Procaccia self-similarity principle.

Hypothesis 3 is the universality principle.

The events W = {w(yk,y
′
k, t) = wk} partition the ensemble of all possible

forcing histories into subensembles defined by the parameters {wk}m
k=1.

Each choice of {Y}m represents a distinct partition.

We assume that Hypothesis 1 and 2 hold for each subensemble {wk}m
k=1 and for

all possible partitions {Y}m. (with ‖{X}n‖ � ‖{Y}m‖ � �0 if it is a downscale
cascade or ‖{X}n‖  ‖{Y}m‖  �0 if it is an upscale cascade)

These hypotheses are an efficient definition of the concept of an “inertial range”.

The hypotheses are valid only a multidimensional domain of velocity differences
geometries {X}n ∈ In.

The extent of this domain In is the extent of the inertial range itself.

A different set of exponents ζn and region Jn is associated with each range.
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The fusion rules hypothesis

Step 1: Hypothesis 3 =⇒ the fusion rules hypothesis.

Consider a geometry of velocity differences {X}n such that ‖{X}n‖ = 1 and define

F
(p)
n (r,R) = Fn(r{Xk}p

k=1, R{Xk}n
k=p+1). (22)

The fusion rules give the scaling properties of F (p)
n in terms of the following general

form:

F
(p)
n (λ1r, λ2R) = λ

ξnp

1 λ
ζn−ξnp

2 F
(p)
n (r,R) (23)

A concise statement of the fusion rules hypothesis is that for the direct enstrophy
cascade ξnp = ζp , and for the inverse energy cascade ξnp = ζn − ζn−p for
1 < p < n− 1.

We will also consider the case of “regular” violations to the fusion rules where the
scaling exponents ξnp satisfy 0 < ξnp < ζn
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Balance Equations and Locality. I

Step 2: The fusion rules hypothesis =⇒ Locality

We employ the balance equations introduced by L’vov and Procaccia (1996).

The Navier-Stokes equations, where the pressure term has been eliminated, read

∂uα

∂t
+ Pαβ∂γ(uβuγ) = Duα + Pαβfβ , (24)

where Pαβ = δαβ − ∂α∂β∇−2 is the projection operator and D is the dissipation
operator given by

D≡ (−1)κ+1νκ∇2κ + (−1)m+1β∇−2m (25)

The balance equations are obtained by differentiating the definition of Fn with respect
to time t and substituting the Navier-Stokes equations
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Balance Equations and Locality. II

Thus one obtains the equation:

∂Fn

∂t
+ OnFn+1 + In = νJn + βHn +Qn (26)

where:

OnFn+1 represents the local nonlinear interactions

In represents the sweeping interactions

Qn represents the forcing term

νJn and βHn represent the dissipation terms

We propose that the locality of the interaction integral in OnFn+1 is the mathematical
definition that corresponds most closely with our physical conception of locality in a
local eddy cascade.

We assume, without proof, that the sweeping term In can be disregarded in the inertial
range
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Locality conditions

For either a downscale or an upscale cascade the locality conditions are

UV locality: ξn+1,2 > 0, ∀n ∈ N : n > 1

IR locality: ζn+1 ≤ ξn+1,2 + ξn+1,n−1 ∀n ∈ N : n > 1

The fusion rules hypothesis implies the conditions above

Consider a regular violation of the fusion rules hypothesis with:

ξnp = ζp + ∆ξnp (downscale) (27)

ξnp = ζn − ζn−p + ∆ξnp (upscale) (28)

UV localiy is still maintained, because 0 < ξnp < ζn

For IR locality, the sufficient condition becomes

∆ξn+1,2 + ∆ξn+1,n−1 ≥ 0 ∀n ∈ N : n > 1 (downscale) (29)

∆ξn+1,2 + ∆ξn+1,n−1 ≤ 0 ∀n ∈ N : n > 1 (upscale) (30)

locality and stability talk – p.19/25



Stability of cascades. I

Conclusion: Given the fusion rules hypothesis, both the inverse energy cascade and
the enstrophy cascade are local.

Step 3: Locality =⇒ stability

Locality implies that the contributions Dkn to OFn+1 are also self-similar with scaling
exponent δn and satisfy

Dkn(λ{X}n, t) = λζn+1−1Dkn({X}n, t) (31)

Statistical stability: there should be a region Jn such that Qn({X}n) is negligible
relative to the contributions to Dkn({X}n) for all {X}n ∈ Jn

The forcing term Qn is also self-similar with scaling exponent qn and satisfies

Qn(λ{X}n, t) = λqnQn({X}n, t) (32)
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Stability of cascades. II

Assume that fα is a delta-correlated stationary gaussian field with 〈fα(x)〉 = 0, and

〈
fα(x1, t1)fβ(x2, t2)

〉
= 2εCαβ(x1,x2)δ(t1 − t2), (33)

where ε is constant, and Cαβ is normalized such that Cαα(x,x) = 1.

It can be shown that:

Q
α1···αn−1β

kn ({X}n−1,Y, t) =

n−1∑
l=1

F
α1···αl−1αl+1···αn−1
n−2 ({X}l

n−1)Qαlβ(Xl,Y),

Qαβ(X,Y) = 2ε[Cαβ(y,x) − Cαβ(y′,x) − Cαβ(y,x′) + Cαβ(y′,x′)].

For Gaussian delta-correlated in time forcing qn = ζn−2 + q2

We see that Fn−2 provides feedback to Qn, when the forcing is gaussian.

For statistical stability we need this feedback to be negligible in the inertial range.
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Stability of cascades. III

It follows that the ratio Qn/Dkn scales as

Qn(R)

Dkn(R)
∼

(
R

�0

)∆qn

. (34)

with ∆qn = (ζn−2 + q2) − (ζn+1 − 1).

Stability conditions for downscale cascades

In a downscale cascade q2 = 2

Downscale cascades: this ratio must vanish when �0 → +∞
⇐⇒ ∆qn > 0, ∀n ∈ N, n > 1

⇐⇒ h < 1 for monofractal scaling ζn = nh

The stability condition is neither satisfied nor broken, because h = 1!

When the downscale energy flux is small enough, then q2 ≥ 3, and the stability
condition is satisfied.
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Stability of cascades. IV

Recall that the ratio Qn/Dkn scales as

Qn(R)

Dkn(R)
∼

(
R

�0

)∆qn

. (35)

with ∆qn = (ζn−2 + q2) − (ζn+1 − 1).

Stability conditions for upscale cascades

In an upscale cascade q2 < 0

Upscale cascades: this ratio must vanish when �0 → 0

⇐⇒ ∆qn < 0, ∀n ∈ N, n > 1

⇐⇒ h > (1 + q2)/3 for monofractal scaling ζn = nh

The stability condition is satisfied, because h = 1/3.

However the inverse energy cascade can be disrupted by the sweeping interactions
term In.
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Concluding remarks

Paradox: The constraint 0 < ζ2 < 2 does not appear anywhere in our locality proof!

The inequality 0 < ζ2 < 2 can come in as a necessary condition

for the survival of locality under the Fourier integral

for perturbative locality for each Feynman diagram

The enstrophy cascade is non-perturbatively local and borderline non-local only in
the perturbative sense.

Closure models unwittingly exchange non-perturbative locality with perturbative
locality!

Stability of cascades (required for universality) imposes constraints on ζ3:

for downscale enstrophy cascade: 0 < ζ3 < 3

for upscale inverse energy cascade: ζ3 ≥ 1

The stability of the downscale enstrophy cascade requires considerable separation
between forcing and small-scale separation
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Conceptual Summary

Cascades are homogeneous solutions of the balance equations.

Dissipation distorts homogeneous solutions, thereby introducing a dissipative region.

Non-universal effects (e.g. coherent structures) are particular solutions forced upon
the homogeneous solutions by Qn (forcing) and In (sweeping).

The robustness of cascades depends on

the competition between homogeneous and particular solutions (homogeneous
should be dominant ⇐⇒ stability)

the containment of the dissipative region. (topic of some future talk)

The fusion rules hypothesis also leads to the existence of anomalous sinks, thus
leading us back to the original Frisch framework.
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