Your Name

Fall 2009

Your Signature

Stude	nt ID	#			_

Problem	Total Points	Score
1	4	
2	4	
3	4	
4	4	
5	4	
Total	20	

- This exam is closed book. You may use one $8\frac{1}{2} \times 11$ sheet of notes.
- Do not share notes.
- Only a scientific non-graphing, non-programmable, small-screen calculator is allowed during exams.
- In order to receive credit, you must show your work. Do not do computations in your head. Instead, write them out on the exam paper.
- Place a box around **YOUR FINAL ANSWER** to each question.
- If you use a trial and error (or guess and check) method when an algebraic method is available, you will not receive full credit.
- Raise your hand if you have a question.

1 (4 points): 4 3 2 1 0 Find the domain of the following function $f(x) = \sqrt{x^2 + 3x + 2}$

$$\lim_{x \to 0} \frac{\sqrt{9+x}}{x}$$

3 (4 points): 4 3 2 1 0
Evaluate the following limits
(a)
$$\lim_{x \to +\infty} \frac{2x - 3x^2}{(x+3)(x+1)}$$

(b) $\lim_{x \to 0} \frac{\tan(3x)}{\sin(2x)}$

4 (4 points): 4 3 2 1 0
Evaluate the following limit
$$\lim_{x \to -1^{-}} \frac{x^2 + x - 5}{x + 1}$$

1st Exam

5 (4 points): 4 3 2 1 0 Show that the equation $x(\sin x + x) = 1$ has at least one solution in [0, 2].