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Two-dimensional turbulence has been a very active and in-
triguing area of research over the last five decades, since the
publication of Robert Kraichnan’s seminal paper [1] postu-
lating the dual cascade theory. Some reviews are given in
[2–4]. The original motivation for studying two-dimensional
turbulence was the belief that it would prove to be an eas-
ier problem than three-dimensional turbulence and that math-
ematical techniques developed for the two-dimensional prob-
lem would then be used for the three-dimensional problem.
It was also believed that two-dimensional turbulence theory
could explain flows in very thin domains, such as the large-
scale phenomenology of turbulence in planetary atmospheres.

In general terms, theoretical studies of turbulence use a
wide range of strategies, including phenomenological theo-
ries, analytic theories that depend on hypotheses established
experimentally or via numerical simulations, and mathemati-
cally rigorous theorems on the Navier-Stokes equations. With
a phenomenological approach, one makes a series of hypothe-
ses based on experimental evidence and physical intuition
from which conclusions can be drawn about universal features
of turbulence. The Kolmogorov theory of three-dimensional
turbulence [5–7] and Kraichnan’s theory of two-dimensional
turbulence [1] typify this approach. In both cases, minimal
contact is made with the Navier-Stokes equations. Neverthe-
less, a lot of successful numerical and experimental work has
been motivated by phenomenological theories. With the more
rigorous strategy of formulating analytical theories of turbu-
lence, one uses the governing equations as a point of depar-
ture to formulate perturbative closure models or nonpertur-
bative strategies. The mathematical foundation for the most
advanced of these theories is the Martin–Siggia–Rose formal-
ism [8, 9] (hereafter MSR formalism), with reviews given in
[10, 11]. These theories cannot be completely rigorous on
their own since the use of the MSR formalism entails certain
assumptions: (a) existence and uniqueness of a deterministic
solution for the velocity field given a choice of deterministic
forcing field; (b) the assumption that the system was initial-
ized at time t → −∞ and has already converged to statisti-
cal steady state. Furthermore, some lack of rigor stems from
the dependence on Feynman path integrals. Finally, to con-
nect theoretical predictions about ensemble averages with nu-
merical simulations and experiments requires the additional
assumption of ergodicity. Having made these assumptions,
the payoff is that it is possible to make considerable inroads
toward clarifying, explaining, and predicting the phenomeno-
logical behavior of turbulence for the two-dimensional as well
as the three-dimensional case. Finally, another strategy is
to prove mathematically rigorous theorems about the Navier-
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Stokes equations using functional analysis and dynamical sys-
tems theory techniques. This approach, pioneered by distin-
guished mathematicians like Leray, Foias, Temam, and many
others, has successfully yielded solid results. The price is that
it is too difficult to venture as far as one can go using less
rigorous strategies that incorporate hypotheses evidenced by
experiment or numerical simulations.

Ultimately, all of the above strategies have strengths and
weaknesses that complement one another. A curious irony
of two-dimensional turbulence research is that whereas the
phenomenology of two-dimensional turbulence is richer and
poses many more challenges than that of three-dimensional
turbulence, two-dimensional turbulence has turned out to be
far more amenable to the pure mathematician’s toolbox. The
current book under review by Kuksin and Shirikyan surveys
recent developments in the mathematical theory of the two-
dimensional Navier-Stokes equations that are, with no exag-
geration, quite breathtaking. The authors use the randomly
forced two-dimensional Navier-Stokes equation with a regu-
lar Laplacian dissipation term at small scales as their ansatz.
Three types of random forcing are considered: (a) kick forc-
ing, consisting of, equispaced in time, delta function spikes
with random amplitudes; (b) white noise, i.e. random Gaus-
sian delta-correlated in time forcing, commonly used in MSR
theories; (c) compound Poisson processes, which are random
kick forces where both the amplitude and the temporal sepa-
ration between the delta function spikes are randomized.

The authors begin in Chapter 1 with a very terse yet com-
prehensive review of essential concepts, needed for the proofs
of the main results, from the areas of function spaces, measure
theory, and Markov random dynamical systems. A solid grad-
uate education in functional analysis is necessary to follow the
chapter, but the authors provide citations to many other books
that explain underlying concepts in more detail. Chapter 2
begins with a review of the classical Leray results on the ex-
istence, uniqueness, and regularity of solutions for the case of
the two-dimensional Navier-Stokes equations with determin-
istic forcing. For the case of stochastic forcing, a series of
important general results are proved that culminate in proving
the existence of at least one stationary measure. In physical
terms, a stationary measure describes the steady-state solu-
tion to the randomly forced Navier-Stokes equations when a
dynamical balance has been established between forcing and
dissipation and the ensemble averages for all observables be-
come constant with respect to time.

The argument continues in Chapter 3 with an array of re-
sults establishing the uniqueness of the stationary measure
as well as the property of exponential mixing, both for pe-
riodic flows on an infinite domain and for flows on a bounded
domain for various random forcing configurations. In physi-
cal terms, the property of exponential mixing means that re-
gardless of the initial condition, the randomly forced two-
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dimensional Navier-Stokes equation will statistically con-
verge to the steady-state solution at an exponential rate. This
convergence has been established for both the velocity field
itself and for relevant observables, dependent on the velocity
field, such as the energy spectrum. The authors also establish
that if the random force is homogeneous, then the velocity
field at steady state will also be homogeneous. The chapter
concludes with a literature review as well as a physical sum-
mary of the main results.

Chapter 4 establishes ergodic theorems as well as some in-
teresting limiting theorems. In particular, the authors establish
that the time average of observables, dependent on the veloc-
ity field, quickly converge to the ensemble average as one ex-
tends the time interval over which the time average is taken.
The authors also establish a central limit theorem that shows
that the velocity probability distribution is close to Gaussian,
in agreement with experiments and numerical simulations (see
[3] for a review). Furthermore, the authors prove that the sta-
tistical properties of the velocity field at steady state will vary
continuously as one varies the statistical parameters of ran-
dom forcing. Finally, the authors prove that the steady state
solution of a system forced by random kicks will converge
to the steady-state of the system forced by white noise if the
time gap between kicks is shrunk by a factor ε , taking the
limit ε → 0+ , as long as the amplitude of the kicks is also
decreased by a factor of

√
ε .

Having established the existence and uniqueness of a sta-
tionary measure for the case of finite viscosity, in Chapter 5,
the authors investigate the stationary measure under the limit
ν → 0+ of viscosity approaching zero. For technical reasons,
instead of using a continuous limit it is necessary to work with
the discrete limit νk→ 0+ with k ∈N for some chosen viscos-
ity sequence that converges to zero. The authors prove that for
every such viscosity sequence, the corresponding stationary
measures have a nontrivial limit, as long as forcing is moder-
ated by an

√
νk factor. It remains an open question whether

all possible sequences such that νk→ 0+ with k ∈ N lead to a
unique limit for the stationary measure. However, it is proved
that all stationary measures obtained from any viscosity se-
quence limit to zero will satisfy certain universal properties
from which a phenomenology of two-dimensional turbulence
can be deduced. From these universal properties, if we intro-
duce the assumption that the energy spectrum follows a power
law, downscale from the forcing range, it is predicted that the
energy spectrum will scale as k−a with a ≥ 5, where k is the
wavenumber. The authors also identify an unproven conjec-
ture that would rigorously imply a = 5.

Finally, in Chapter 6 the authors outline without proof
a number of incomplete results whose development is the
subject of current active research. A special highlight is a
result that shows that the stationary measure of the three-
dimensional Navier-Stokes equations, defined in a quasi-two-
dimensional domain in which the vertical direction is very
thin, and also randomly forced by random kicks, will con-
verge to the corresponding stationary measure of the two-
dimensional Navier-Stokes equations. However, it remains an
open question whether this result can be extended for the case
of white noise forcing.

In light of the foregoing discussion, the significance of
these results is clear. In every well-known theory of two-
dimensional and three-dimensional turbulence, one takes for
granted the existence and uniqueness of the statistical steady-
state solution, that a forced dissipative system will always
converge to the steady-state solution, that the ensemble aver-
age can be exchanged with a time average, and that the dis-
crete kick forcing typically used by numerical simulations,
where time is discretized, properly approximates the case of
continuous white noise forcing. These are all assumptions
that underlie every theoretical effort to understand the phe-
nomenology of turbulence, but they are also assumptions that
are not easy to prove. It is very reassuring to see that dur-
ing the last decade, at least for the case of two-dimensional
Navier-Stokes turbulence, all of these assumptions have been
proved rigorously. This is a major achievement, and the au-
thors are leading experts who have played a key role in the
development of many of these results.

It is also worth commenting on the phenomenology of the
k−5 energy spectrum predicted in Chapter 5. This is not an
entirely new result. It was first proposed by Tran and Shep-
herd [12] and Tran and Bowman [13], who predicted a k−5

spectrum downscale from the forcing range and a k−3 spec-
trum upscale from the forcing range. This phenomenology is
inconsistent with Kraichnan’s theory [1] of a downscale en-
strophy cascade with k−3 scaling and an upscale inverse en-
ergy cascade with k−5/3 scaling. As was explained by Tran
and Shepherd [12], the Kraichnan cascades will fail to mate-
rialize in the absence of a dissipation term at large scales in a
bounded domain flow. On an infinite domain, energy can sim-
ply cascade forever to larger and larger scales, and enstrophy
can cascade to small scales and be dissipated by the small-
scale diffusion term. However, on a finite domain, if there is
no mechanism to dissipate the upscale energy cascade before
it hits the largest possible scales, then the cascade configu-
ration will collapse and transition to the conjectured joint k−3

and k−5 configuration. The results by the authors vindicate the
work of Tran et al. [12–14] by eliminating unproven assump-
tions that they made in order to establish their predictions. As
important as this development is, the greater challenge of un-
derstanding the robustness of the Kraichnan cascades remains
an open question.

Finally, I should like to make some comments about the
book itself. It has been written primarily for an audience
of pure mathematicians who wish to familiarize themselves
with this research area so they can make further contributions.
The writing style is very concise; however, the authors pro-
vide complete proofs for almost all of their results. An ex-
tensive array of very general preliminary results needs to be
established before the main results can be proved. The pre-
liminary results are useful in and of themselves and can be
used for the future investigation of systems other than the ran-
domly forced two-dimensional Navier-Stokes equations. The
authors mention the complex Ginzburg–Landau equation as
a possible area of exploration. An extensive bibliography of
more than 200 references is given, and I very much appreciate
the reverse citation system in which for each item in the bib-
liography the authors give the page numbers where the given
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item is cited in the text. Much heavy notation is used through-
out the book; however, the authors provide a very useful sum-
mary of notation conventions at the end. Last but not least, in
Chapters 3, 4, and 5 where the main results are discussed, the
authors conclude each chapter with a very clear discussion of
the physical implications of their results. These sections are
essential to making this work accessible to a more applied au-
dience. A very detailed literature review is also given at the
end of every chapter for those who wish to consult the original
research papers.

In summary, this is an excellent book presenting and prov-
ing a body of results that are of fundamental importance in the

development of theories of two-dimensional turbulence. For
pure mathematicians, there is much to be learned from the
techniques used to prove the theorems that can be applied to
a wider range of problems. For applied mathematicians, it is
certainly useful to have some understanding of what has been
proved rigorously for two-dimensional Navier-Stokes. The re-
sults themselves are very interesting and their physical impli-
cations are clearly explained. While this is not a book for the
faint of heart, I find it an excellent addition to my library and
strongly recommend it to everyone engaged in theoretical re-
search on two-dimensional turbulence.
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