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The problem of hydrodynamic Navier-Stokes turbulence is
considered to be one of the last open problems of classical me-
chanics, and also one of the most tantalizing ones. According
to an often-told tale, Sir Haroce Lamb once said: “I am an
old man now, and when I die and go to Heaven, there are two
matters on which I hope enlightenment. One is quantum elec-
trodynamics and the other is turbulence of fluids. About the
former, I am really rather optimistic” [1].

Throughout the 20th century, a series of significant break-
throughs by Taylor, Kolmogorov, Batchelor, Kraichnan, and
many others, have began to shed light on this old and impor-
tant problem. Our current understanding is that the defining
feature of turbulence is the existence of an energy cascade
which transfers the energy of the velocity field from large
scales, via local nonlinear interactions, towards small scales,
where it is dissipated by the viscous term. The intermediate
range of length scales, where this energy transfer occurs, is
known as theinertial range. Kolmogorov originally proposed
that, during this cascade process, the forcing mechanism via
which energy is injected into the system is forgotten within
the inertial range [2–4]. From this assumption, the energy
spectrum and the scaling exponentsζn of the structure func-
tions (defined as the statistical moments of Eulerian velocity
differences) can be predicted. Kolmogorov’s theory was first
confirmed experimentally in 1962 [5, 6], but during the same
year, Kolmogorov [7] and Oboukhov [8] argued that the scal-
ing exponents for the higher-order structure functions should
deviate from his original prediction. These deviations are ex-
pected to be negligible for low-order structure functions and to
increase for higher-order structure functions. Known asinter-
mittency corrections, their existence was confirmed by experi-
ments [9] and various theories have been proposed to calculate
these scaling exponents from first principles [10–14].

This is where shell models come into play. Shell models
are simple nonlinear systems of ordinary differential equa-
tions that are intended to merely model the scale by scale local
transfer of energy by the energy cascade of three-dimensional
turbulence. The main reason why these models have captured
our imagination is because, not only do they correctly repli-
cate the Kolmogorov energy spectrum, but they also repro-
duce the intermittency scaling exponents for the high-order
structure functions, consistently with the values found by ex-
periments [15]. Getting the same numbers from both the
three-dimensional Navier-Stokes equations and a stripped-
down system of ordinary differential equations is a hint that
there is a very basic and fundamental principle underlying the
phenomenology of intermittency, and one that has yet to be
rigorously understood.
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The book has been written with the intention that it may
serve as a first introduction to both shell models and turbu-
lence, from the standpoint of a researcher primarily interested
in shell-model research. As such, it can be an excellent text-
book for a special topics graduate course intended to bring
young graduate students up to speed with both shell models
and turbulence in a timely manner.

Chapter 1 begins with a brief and standard exposition of the
Kolmogorov theory for three-dimensional Navier-Stokes tur-
bulence. The author discusses the spectral form of the Navier-
Stokes equation at some length, as it is the launching point for
the formulation of shell models, and usual topics such as the
closure problem, and 4/5-law, intermittency, and the dissipa-
tion anomaly. An unusual feature here is a deep discussion of
self-similarity. The proof of the 4/5-law is the standard one
by Landau. The author does not cover more modern proofs,
or discuss local homogeneity, as they are not relevant to shell
models.

Chapter 2 focuses on two-dimensional Navier-Stokes tur-
bulence and atmospheric turbulence, which can also be mod-
eled via shell models. The treatment is again standard and
easy to understand, but for the case of two-dimensional tur-
bulence it perpetuates two misconceptions: First, the author
claims that “cascade of energy to small scales is impossible
in two-dimensional turbulence”. In recent papers [16, 17],
we argued that for finite Reynolds number, two-dimensional
turbulence does have a subdominant downscale energy cas-
cade associated with a small amount of energy cascading to
small scales. Second, and more importantly, the author uses
the Fjørtøft argument [18] (without naming it as such) to jus-
tify the direction of the dominant inverse energy cascade and
the downscale enstrophy cascade. Merilee and Warn [19] first
noted that Fjørtøft’s argument is not rigorous, this was re-
viewed in Ref. [20], and a simple alternative to the Fjørtøft
argument was given by Gkioulekas and Tung [21]. In a fu-
ture edition, the fallacy of the Fjørtøft argument would make
for an excellent exercise for the end of the chapter. The re-
maining sections 2.2-2.6 give a detailed and very enjoyable in-
troduction to atmospheric turbulence and its governing equa-
tions. Section 2.7 discusses the Nastrom-Gage spectrum of
the atmosphere, and it is already out of date with respect to
recent developments in the literature, but for the purpose of
this book, it is fair enough that the author presents the essence
of the problem without engaging into the details of the con-
troversies involved.

With chapter 3 and chapter 4, the author introduces the ba-
sic theory of shell models, the raison d’êntre for the book.
The Oboukhov, Gledger, GOY, and Sabra shell models are
introduced in chapter 3, and their phenomenology is devel-
oped further in chapter 4. The discussion is excellent, to the
point, and very informative. Chapter 5 is a gentle introduction
to chaos theory. It is also very well written, the fundamen-
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tal concepts are clearly explained and illustrated numerically
on the shell models that were introduced in chapter 3. Chap-
ter 6 discusses helicity conservation and helicity cascades in
three-dimensional Navier-Stokes turbulence. This is an excit-
ing area of research in which the author has published sig-
nificant research papers, and his exposition will be of great
interest even to seasoned turbulence researchers in adjacent
areas of specialization. The chapter concludes with the devel-
opment of the generalized helical GOY model.

Chapter 7 tackles the most fascinating aspect of shell mod-
els: their ability to reproduce the intermittency scaling ex-
ponents of three-dimensional Navier-Stokes turbulence. The
author begins with a very detailed presentation of K62 the-
ory (Kolmogorov’s 1962 lognormal model [7]) predicting a
quadratic dependence of the scaling exponentsζn on n. This
is a nice treat, as it is not easy to find a pedagogical expo-
sition of the K62 theory elsewhere in the literature. The au-
thor discusses also theβ -model and the multifractal model.
With respect to the latter, I really appreciate the detailed proof
that establishes the relationship between the scaling exponents
ζn and the multifractal dimension spectrumD(h). I have not
seen this proof before in previous textbooks. Unfortunately,
the author’s discussion of intermittency in shell models is too
short and does not do justice to shell models. The most amaz-
ing feature of shell-models is that they reproduce the same
numbers for the scaling exponentsζn as one may measure in
three-dimensional turbulence experiments. This is, of course,
known to most turbulence researchers, but since the intended
audience for the book includes graduate students, this is a
missed opportunity to amaze them.

The book concludes in chapter 8 with an introduction to
equilibrium statistical mechanics. The author presents many
important concepts that admit rigorous definitions in a simple,

accessible, and careful language and provides detailed proofs
concerning fundamental concepts such as the partition func-
tion, phase-space geometry, and statistical equilibrium. The
main reason why one is interested in equilibrium statistical
mechanics, in the context of shell model research, is because
reasonable models of turbulence should not only reproduce
the cascade solutions, but also the statistical equilibrium solu-
tions. Although chapter 8 is only introductory, it will still be
of considerable interest even to active turbulence researchers.
The appendices cover various folklore-type technical details
that will surely be appreciated by graduate students.

Overall, this is a nice, short, and very accessible introduc-
tion to shell models and the background knowledge needed to
understand shell models and their relevance to turbulence re-
search. As a textbook, supplemented with a few papers from
the research literature at the instructor’s discretion, it is ideal
for a special topics graduate course. The best aspects of the
book are: the well-thought-out selection of topics, the detailed
explanation of the foundations, and, of course, the very acces-
sible introduction to shell models. At the end of each chapter
the book has exercises that instructors can assign to students
as homework. All of the exercises are very interesting and
range from easy to very challenging. The only shortcoming
of the book is that it omits a few useful topics, such as the
numerical methods for simulating shell models and extracting
the scaling exponentsζn, as well as the various points raised
above. On the other hand, that’s a fair price to pay for keeping
the book short, and it is sufficient that the book contains very
detailed explanations of the fundamentals. Any graduate stu-
dent finishing this book and having done the exercises will be
able to follow the shell model research literature and get the
rest of the story.
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