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Dissipation scales and anomalous sinks in steady two-dimensional turbulence
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In previous papers I have argued that the fusion rules hypothesis, which was originally introduced by L’vov
and Procaccia in the context of the problem of three-dimensional turbulence, can be used to gain a deeper
insight in understanding the enstrophy cascade and inverse energy cascade of two-dimensional turbulence. In
the present paper we show that the fusion rules hypothesis, combined with non-perturbative locality, itself a
consequence of the fusion rules hypothesis, dictates the location of the boundary separating the inertial range
from the dissipation range. In so doing, the hypothesis that there may be an anomalous enstrophy sink at small
scales and an anomalous energy sink at large scales emerges as a consequence of the fusion rules hypothesis.
More broadly, we illustrate the significance of viewing inertial ranges as multi-dimensional regions where the
fully unfused generalized structure functions of the velocity field are self-similar, by considering, in this paper,
the simplified projection of such regions in a two-dimensional space, involving a small scale r and a large scale
R, which we call, in this paper, the r R -plane. We see, for example, that the logarithmic correction in the
enstrophy cascade, under standard molecular dissipation, plays an essential role in inflating the inertial range
in the r R plane to ensure the possibility of local interactions. We have also seen that increasingly higher
orders of hyperdiffusion at large scales or hypodiffusion at small scales make the predicted sink anomalies more
resilient to possible violations of the fusion rules hypothesis.
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I. INTRODUCTION

A very surprising property of Navier-Stokes turbulence in
three-dimensions is that it has an anomalous energy sink. This
means that in the forced-dissipative case, with energy injected
by random forcing at a constant average rate in, the rate of
energy dissipation caused by the viscous term 2u of the
Navier-Stokes equation will eventually be equalized with in,
even under the limit 0 where the viscosity vanishes.
This is surprising because one might expect that in the limit

0 , the Navier-Stokes equation should lose its capability
to dissipate energy. This does not occur because as we de-
crease the viscosity , the energy cascade adjusts by moving
the dissipation length scale , also known as the Kolmogorov
microscale, further out into larger wavenumbers (i.e. smaller
length scales). This intensifies the Laplacian 2u thus com-
pensating for the decrease in the viscosity at the dissipa-
tion term 2u . In textbooks (e.g. in Ref. [1]), the lo-
cation of the dissipation scale is consequently derived by
first assuming the existence of an anomalous energy sink and
the existence of an energy cascade, and then deducing where
the dissipation scale must be placed to dissipate the injected
amount of energy. Thus, we obtain the well-known estimate

3 1 4.
The problem here is that whereas the existence of an

anomalous energy sink has been well-established by experi-
ments and numerical simulations [2–4], there is no mathemat-
ical proof, directly from first principles. A rigorous argument
should be able to establish from first principles: (a) that an
energy cascade exists with energy spectrum scaling between
k 3 and k 1; (b) the location of the dissipation scale itself.
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Then, from (a) and (b), the existence of an anomalous en-
ergy sink follows. This is obviously not an easy task. In fact,
showing (a) is essentially almost the same thing as solving the
problem of turbulence itself from first principles! From the
standpoint of physics, it is fairly obvious that the reason why
there is an anomalous energy sink in three-dimensional turbu-
lence is the robust presence of a local energy cascade. The
difficulty in translating this physical intuition into a mathe-
matical argument perhaps originates from the fact that we do
not really have good grasp of what the proper mathematical
definition for a stable local cascade should be in general.

The corresponding problem of whether two-dimensional
turbulence has an anomalous enstrophy sink at small scales
and an anomalous energy sink at large scales, with certain
caveats to be discussed below, remains open too. Short of
a first-principles mathematical argument, as we shall show in
this paper, it is relatively easy to formulate a weaker argument
that addresses a weaker claim of the form: “two-dimensional
or three-dimensional turbulence will have anomalous sinks
if and only if the fusion rules hypothesis (defined in Sec-
tion II) is satisfied”. We can then go a step further and ar-
gue that “the fusion rules hypothesis is satisfied if and only
if two-dimensional or three-dimensional turbulence has uni-
versal self-similar scaling.” The relationship between the fu-
sion rules hypothesis and universality has been discussed in a
previous paper [5] by L’vov and Procaccia, in the context of
three-dimensional turbulence, and some of their results were
generalized and extended to two-dimensional turbulence in
my previous paper [6].

Before getting into the details of the matter, it is important
to note that a proper investigation of the two-dimensional tur-
bulence anomalous sinks problem is complicated by the ap-
parent lack of robustness of the two-dimensional turbulence
cascades for which there is not currently a widely accepted
explanation [7–14]. For example, it is well-known, from the
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work of Tran and Bowman [11–13], that the enstrophy cas-
cade can fail to develop in the absence of a sufficiently strong
large-scale sink. The large-scale sink is needed to dissipate the
excess injected energy that cannot be disposed of by the small-
scale sink. In the absence of a sufficiently strong large-scale
sink, both energy and enstrophy will pile up in the vicinity of
the forcing wavenumber where they will eventually be dissi-
pated when the pile-up becomes sufficiently high. Likewise,
for the inverse energy cascade, as Danilov and Gurarie [8–10]
have shown, the inverse energy cascade can be “buried” under
coherent vortices that hoard most of the energy of the system,
resulting in a k 3 contribution to the energy spectrum that
dominates the k 5 3 contribution of the still-existing inverse
energy cascade. In a recent paper [15], I proposed that these
coherent structures originate from a self-amplification of the
sweeping interactions part of the Navier-Stokes non-linearity.
So far as we know, the inverse energy cascade coexists with
these coherent structures, and can be recovered by artificially
eliminating them [7, 9, 16]. A theoretical explanation for this
recoverability of the inverse energy cascade was given in pre-
vious papers [14, 17, 18].

Contrast this behavior with the case of the energy cascade
of three-dimensional turbulence. While it is also possible
for the energy cascade to fail to develop, under a forcing-
dissipation configuration where there is insufficient separation
between the forcing scale and the dissipation scale, this can
always be rectified by either increasing the rate of energy in-
jection, or by decreasing the viscosity. In two-dimensional
turbulence, a far more delicate tuning between forcing and the
two sinks is required to recover a steady-state inverse energy
cascade or a direct enstrophy cascade. We are thus faced with
the additional challenge of accounting for the conditions that
are required for the existence of the cascades, in addition to
addressing the existence of anomalous sinks, when these con-
ditions are satisfied.

Further confusion arises from the fact that under the Tran-
Bowman scenario [11–13], we can have a trivial type of an
anomalous energy sink simply by having energy pile up at
the forcing range until the dissipation terms become strong
enough to balance the rate of energy injection. In fact, it can
be shown that, at steady state, for finite viscosity, the total
energy always has an upper bound [19]. It follows that two-
dimensional turbulence always has an anomalous energy sink,
even if it is merely of this trivial type. There is no known proof
that a similar upper bound exists for the total enstrophy. As
Eyink [19] noted, if one hypothesizes the existence of an up-
per bound for the total enstrophy, one may then predict that the
placement of the dissipation scales gives a non-trivial anoma-
lous enstrophy sink. However, in the absense of a proof for
that bound, the existence of an anomalous enstrophy sink re-
mains a completely open question. From the above remarks,
we see that when we discuss the existence of anomalous sinks
in the context of two-dimensional turbulence, we should qual-
ify that our main interest is in the existence of a non-trivial
anomalous energy sink that dissipates the energy in a dissipa-
tion range, located far away from the forcing range, so that
the formation of an inverse energy cascade can be facilitated.
We are, likewise, interested in the existence of a non-trivial

anomalous enstrophy sink, again located far away from the
forcing range, that can facilitate an enstrophy cascade.

Currently, there is a lot of interest in understanding this
question of anomalous sinks in terms of the singular solutions
of the Euler equations [20]. In this paper we will explore a
different route through the Navier-Stokes equations based on
a mathematical framework that consists of the generalized bal-
ance equations governing the generalized structure functions
Fn and the fusion rules hypothesis. This mathematical frame-
work was originally introduced by L’vov and Procaccia in the
context of studying the energy cascade of three-dimensional
turbulence [5, 21–31]. In earlier papers [17, 18], I proposed
that the method underlying this approach could be generalized
to tackle the open questions that plague two-dimensional tur-
bulence, and I used this approach to investigate the locality
and stability of the two-dimensional inverse energy cascade
and downscale enstrophy cascade [6]. This investigation is
continued in the present paper.

The structure of the overall argument, in broad strokes, runs
as follows: The generalized structure functions Fn are defined
as products of velocity differences where each velocity differ-
ence is evaluated at two points in space distinct from any other
point-pair associated with the rest of the velocity differences.
The usual standard structure functions, on the other hand, use
the same point-pair for every velocity difference. The fusion
rules govern the scaling of these generalized structure func-
tions when some but not all of the velocity point separations
approach each other, while still remaining within the inertial
range. We begin with the hypothesis that there is a region
of scales in which the generalized structure functions satisfy
incremental homogeneity, incremental isotropy, and a reason-
ably weak hypothesis of self-similarity, and the requirement
that these symmetries be universal. We consider this set of
assumptions as a generalized abstract definition of the con-
cept of a “universal cascade”. The first step of the argument
is to derive the fusion rules from the universality hypothesis.
Then, we proceed using the fusion rules, with input from the
governing Navier-Stokes equations, to show that: (1) within
both inertial ranges the nonlinear interactions are local and
therefore a “universal cascade” driven by the Navier-Stokes
equations has to be a “local cascade”; (2) the self-similar
scaling is indeed stable with respect to perturbations on the
stochastic forcing term for the inverse energy cascade, and
marginally stable for the downscale enstrophy cascade; (3) the
self-similar scaling is not perturbed by the dissipation terms
for some region of scales, and the dissipation scales are po-
sitioned as is necessary to provide for anomalous sinks that
can dissipate the injected energy and enstrophy at wavenum-
bers far away from the forcing range. The formal setup of the
argument and parts (1) and (2) were developed in a previous
paper [6]. Part (3) is the subject of the present paper. This
entire argument has been carefully summarized in the conclu-
sion of the present paper.

With respect to part (3) of the argument, our agenda in this
paper, briefly stated, is as follows: We will show that in both
two-dimensional and three-dimensional turbulence the fusion
rules hypothesis implies the existence of anomalous sinks. We
will also show that a failure of the fusion rules hypothesis im-
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plies a corresponding failure of the anomalous sink hypothe-
sis, with the caveat that this failure can be ameliorated by in-
creasing the order of the corresponding dissipation operators.
This equivalence relation between the two hypotheses is inter-
esting because using the fusion rules hypothesis as a point of
departure makes it also possible to investigate the locality and
stability of the corresponding cascades. Our main focus in the
present paper will be the case of idealized two-dimensional
Navier-Stokes with linear dissipation both at small and large
scales. However, the same argument easily carries over to
three-dimensional turbulence, and that will be discussed here
briefly as well. We will also derive some intermediate re-
sults regarding the dissipation scales of two-dimensional tur-
bulence that are relevant to the question of the cascade stabil-
ity.

The main thrust of the argument is to derive from the fusion
rules the location of the dissipation scales both at the down-
scale range and the upscale range. We then use that to con-
clude that the scaling dependence of the upscale energy dissi-
pation ir on the large-scale dissipation viscosity coefficient
is given by

ir
1 2 2m 2 2 1 2m (1)

Likewise the dependence of the downscale enstrophy dissipa-
tion rate uv on the viscosity coefficient is given by

uv
1 2 2 1 2 1 2 1 ln 0 uv

a3 1 (2)

Here 0 is the forcing scale and uv is the enstrophy dissipa-
tion scale. Furthermore, a3 is a scaling exponent associated
with the logarithmic scaling of the third-order vorticity struc-
ture function, 2 is the scaling exponent associated with the
second-order velocity generalized structure function, 2 1 is
the fusion scaling exponent of that same structure function,
is the order of the dissipation operator at small scales, and m
the order of the dissipation operator at large scales. Under the
fusion rules hypothesis we have 2 1 2 for the downscale
range, and 2 1 0 for the upscale range. For these values,
the dissipation rates uv and ir become independent of the
viscosities and . Thus, under the fusion rules hypothe-
sis we have non-trivial anomalous sinks. Furthermore, under
the Falkovich-Lebedev prediction that a3 1 [32, 33], the en-
strophy dissipation rate uv also becomes independent of the
logarithmic factor ln 0 uv . We also see that increasing
and m leads to asymptotic independence of uv and ir from

and even when the fusion scaling exponents deviate from
the prescribed values.

Aside from the anomalous sink problem, the argument pre-
sented in this paper also sheds further light onto the problem
of cascade stability discussed in the preceding paragraphs.
The main idea is to re-envision the inertial range as a multi-
dimensional region of scales in which the corresponding gen-
eralized structure functions retain self-similar scaling. Con-
sider, for example, the case of the downscale enstrophy cas-
cade. To first approximation let us assume that for the gener-
alized structure function Fn, all velocity differences are eval-
uated at the length scale R except for one pair evaluated at a
smaller scale r R with both r and R in the inertial range. The

crossover from the inertial range to the dissipation range oc-
curs when r is made small enough to be approximately equal
to an R-dependent dissipation scale n

uv R . Our argument
shows that the function n

uv R can be calculated from the fu-
sion rules hypothesis. The standard dissipation scale n

uv that
delineates the crossover from the inertial range to the dissipa-
tion range when all velocity difference pair separations are of
the same length scale R while being reduced simultaneously,
is then obtained from the equation n

uv
n

uv
n

uv . To have
non-trivial anomalous sinks, the dissipation scale n

uv must
have the correct leading-order dependence on the Reynolds
number corresponding to the downscale cascade. More than
that, we will argue that cascade stability with respect to the
dissipation terms requires n

uv R to satisfy the admissibility
condition a n

uv
n

uv a n
uv for all a with 1 a 0

n
uv .

For the upscale inverse energy cascade we begin with a gen-
eralized structure function Fn where all velocity differences
are evaluated at length scale r, and we expand one velocity dif-
ference to the length scale R with R r. The crossover to the
dissipation range occurs when R n

ir r , thereby defining
the dissipation scale function n

ir r . Similarly, we define the
standard dissipation scale n

ir as the solution to the equation
n

ir
n

ir
n

ir . Cascade stability with respect to the dissi-
pation terms again requires an admissibility condition, and for
the inverse energy cascade it reads: a n

ir
n

ir a n
ir for all

a with 0
n

ir a 1.
Let us now summarize our main results on cascade stabil-

ity. For the case of the downscale enstrophy cascade we dis-
tinguish between the case where the cascade has intermittency
corrections (i.e. n n n with 2 0 and n 0 for all n
with n 3) and the case of no intermittency corrections with
molecular dissipation (i.e. n n and 1). The fundamen-
tal difference between the two cases is that in the first case
the dissipation scale function n

uv R has a power-law leading-
order dependence on the Reynolds number, whereas in the
second case, the dependence becomes exponential to leading
order. It should be noted that the mathematical argument for
the first case also applies when there is the combination of no
intermittency corrections and hyperdiffusion at small scales
(i.e. n n and 1), where the leading-order dependence of

n
uv R on the Reynolds number still follows a power-law. For

the first scenario of intermittency corrections we have shown
that cascade stability with respect to the dissipation terms re-
quires that 2 2 . It follows that under molecular diffu-
sion 1, a downscale enstrophy cascade with intermittency
corrections would not be stable. For the second scenario of
no intermittency corrections with molecular dissipation (i.e.

n n and 1) we find that the downscale enstrophy cas-
cade is stable with respect to the dissipation terms provided
that n

uv 0 e. For hyperdiffusion (i.e. n n and 1)
this minor constraint is removed.

As for the inverse energy cascade, we find that cascade sta-
bility with respect to the dissipation terms requires that the
scaling exponents n of the generalized structure functions Fn
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must satisfy the inequality n 1 n 2m 1. Given that we
do not know whether the inverse energy cascade has intermit-
tency corrections, the status of this inequality is uncertain. It
should be noted that in the above, cascade stability is under-
stood in the strong sense of requiring all generalized structure
functions Fn to have an inertial range with universal scaling.
These results add to our previous results on cascade stability
with respect to the forcing terms [6].

Combined with the results of my previous paper [6], we are
beginning to see a big picture in which the fusion rules hy-
pothesis operates as a unifying nexus that can subsume three
distinct assumptions that everyone makes about turbulence
cascades: locality, stability, and the existence of anomalous
sinks. This unification provides us with two opportunities.
First, it is possible to investigate the validity of the fusion
rules hypothesis with numerical simulations, which are eas-
ier to do in two dimensions. Second, and more important,
the validity of the fusion rules can be investigated further on
theoretical grounds, by generalizing similar arguments prof-
fered for the problem of three-dimensional turbulence [21–
24] and the passive scalar problem [34]. It is worth not-
ing that experiments have corroborated the fusion rules both
for three-dimensional turbulence [35–40] and for the passive
scalar problem [41, 42].

This paper is organized as follows. Section II reviews the
framework of the generalized balance equations and the fu-
sion rules hypothesis. In Section III we show how the law
governing the location of dissipation scales follows as a con-
sequence of the fusion rules hypothesis. Underlying this ar-
gument is a geometrical conception of either inertial range as
a two-dimensional region separated by the corresponding dis-
sipative region, by a curve whose shape is deduced from the
fusion rules hypothesis and locality (itself a consequence of
the fusion rules hypothesis). The curvature of that line pro-
vides us with an admissibility condition and also leads to the
standard dissipation scale which is relevant to the anomalous
sink question. In Section IV we apply the method of Section
III for the case of the enstrophy cascade, and in Section V we
consider the case of the inverse energy cascade. Having de-
rived the laws governing the standard dissipation scales from
the fusion rules for both cascades, in Section VI we turn to
the question of anomalous sinks. Conclusions and discussion,
summarizing the logical structure of the argument as a whole,
are given in Section VII. Technical matters are taken up in the
appendixes.

II. SUMMARY OF PRIOR RESULTS

The generalized balance equations were originally derived
by L’vov and Procaccia [5] and, combined with the fu-
sion rules hypothesis, they are the foundation of the non-
perturbative L’vov-Procaccia theory of three-dimensional tur-
bulence [5, 25, 26, 28–30], and also the foundation for a cor-
responding investigation of the cascades of two-dimensional
turbulence [6, 17, 18]. We begin, in this section, by sum-
marizing the main results from our previous paper [6] on the
generalized balance equations and the fusion rules hypothesis.

A. The balance equations

We begin with the Navier-Stokes equation for the velocity
field in two dimensions:

u
t

u u u f (3)

Here, u is the Eulerian velocity field, the partial spatial
derivative in the -direction, is the projection operator

2, f is the forcing term, and is the
dissipation operator given by

1 1 2 1 m 1 2m (4)

Here the integers and m describe the order of the dissipation
mechanisms, and the numerical coefficients and are the
corresponding viscosities. The first term in is the small-
scale sink, and the second term is the large-scale sink. The
case 1 corresponds to standard molecular viscosity, and
the case m 0 corresponds to Ekman damping.

From the Navier-Stokes equations we derive the exact sta-
tistical theory of velocity differences. Let w x x t be the
Eulerian velocity difference, defined as:

w x x t u x t u x t (5)

To write equations concisely, we introduce the following no-
tation to represent aggregates of position vectors

X x x (6)
X n X1 X2 Xn (7)

X k
n X1 Xk 1 Xk 1 Xn (8)

Below, the notation X n R means that all point to
point distances in the geometry of velocity differences X n
have the same order of magnitude R. Similarly, the notation

X n Y n means that all the point to point distances
in Y n are much larger than all the point to point distances
in X n.

The Eulerian one-time fully unfused correlation tensors are
formed by multiplying n velocity differences w x x t eval-
uated at 2n distinct points X n:

Fn X n t
n

k 1
w k Xk t (9)

Differentiating Fn with respect to t and applying the Navier-
Stokes equations yields equations of the form

Fn

t
Dn Jn Hn Qn (10)

where Dn is the combined contribution of the pressure and the
nonlinear term, Qn is the contribution of the forcing term, Jn
accounts for diffusion or hyperdiffusion, and Hn accounts for
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large-scale dissipation. We call these equations the general-
ized balance equations. The dissipation terms are given by

Hn X n t
n

k 1
1 m 1 2m

xk
2m

x k
Fn X n t

Jn X n t
n

k 1
1 1 2

xk
2
x k

Fn X n t

(11)

where 2
xk

is a hyperLaplacian operator that differentiates
with respect to xk and similarly with 2

x k
, 2m

xk
and 2m

x k
.

The forcing contribution is given by

Qn X n t
n

k 1
Qkn X k

n Xk t

Qkn X n 1 Y t
n 1

k 1
w k Xk t Y t

(12)

where

X t f x t f x t (13)

The non-linear term Dn can be rewritten as

Dn X n t
n

k 1
Dkn X n t In X n t (14)

with In representing the sweeping interactions given by

In X n t
n

k 1
xk x k X n t

n

k 1
w k Xk t

(15)

where X n t is the mean velocity field associated with
the configuration X n defined as

X n t
1
2n

n

k 1
u xk t u x k t (16)

The term Dkn represents the local non-linear interactions
given, in general form, via a linear integrodifferential oper-
ator , as follows:

Dkn X n t

dY1dY2 Xk Y1 Y2 Fn 1 X k
n Y1 Y2 t (17)

The detailed form of the local nonlinear term Dkn is tedious
and was given in our previous paper [6].

B. Self-similar scaling and the fusion rules

For a stationary problem, the generalized balance equations
can be rewritten as

nFn 1 In Jn Hn Qn (18)

As we have explained in our previous paper [6], to con-
siderable detail, the downscale or upscale inertial range of
two-dimensional turbulence can be identified with a region

n
2n in which for X n n, the contributions of the non-

linear term nFn 1 dominate all the other terms of the balance
equations. The region n is circumscribed on one side by the
forcing term Qn and on the other side by the corresponding
dissipation terms Jn and Hn. Meanwhile, we assume, for
the time being without further proof, that the sweeping term In
also remains negligible with respect to nFn 1 in the region

n. A preliminary study of the sweeping term was given in
another paper [15].

Within the region n we expect that Fn will be self-similar
according to the following scaling law:

Fn X n t nFn X n t (19)

This scaling law is expected to hold when X n n, and the
scaling exponents n characterize the corresponding inertial
range, and will obviously differ between the upscale range and
the downscale range. Within the same region n it is expected
that Fn will be incrementally homogeneous and incrementally
isotropic.

We also introduced [6] the hypothesis that both cascades
of two-dimensional turbulence, when they exist, will satisfy
another group of self-similarity laws called the fusion rules.
We would now like to briefly summarize the content of these
rules. Consider a geometry of velocity differences x n such
that all point to point distances have order of magnitude 1, and
define

F p
n r R Fn r xk

p
k 1 R xk

n
k p 1 (20)

The function F p
n r R reflects the case where p velocity dif-

ferences have separations with order of magnitude r, and
n p velocity differences have separations with order of
magnitude R. The case of interest is when the evaluation
r xk

p
k 1 R xk

n
k p 1 is within the inertial range n and

r R. The fusion rules give the scaling properties of F p
n .

We distinguish between two cases. For a direct cascade,
such as the energy cascade of three-dimensional turbulence
and the enstrophy cascade of two-dimensional turbulence, the
fusion rules are given by

F p
n 1r 2R n p

1
n n p

2 F p
n r R (21)

for 2 p n 2 with n p p. In my previous paper [6],
I also introduced the notion of a regular violation of the fu-
sion rules, if the fusion exponents n p satisfy the inequality
0 n p n, which is necessary and sufficient to ensure that

1 and 2 are not governed by negative exponents, since, by
definition, Fn should vanish in the limits 1 0 or 2 0.
For the cases p 1 and p n 1 the fusion exponents are
given by n 1 2 and n n 1 n. For the case p 1 it is
assumed that one of the end points of the small velocity differ-
ence is attached to one of the big velocity differences, that is
x1 x2. This assumption holds when working with partially
fused correlations, where all point-pairs share a point in com-
mon. It also holds when integrating F2 to compute the energy
spectrum.
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For the inverse energy cascade of two-dimensional turbu-
lence, as was shown in my previous paper [6], the fusion expo-
nents are given instead by n p n n p for 2 p n 2.
For the cases p 1 and p n 1 the fusion exponents are
given by n n 1 n 2 and n 1 0. Again, the case
p n 1 requires the assumption that the large velocity dif-
ference is attached to one of the small velocity differences,
that is xn xn 1. Note that, compared to the direct cascade,
the roles of small and large velocity differences are switched.

The fusion rules can be shown to be a consequence of the
universality hypothesis, which we have introduced previously
[6] in a generalized form that is applicable to both the upscale
and the downscale ranges of two-dimensional turbulence. Ac-
cording to the universality hypothesis, the conditional gener-
alized structure functions n, given by

n X n Y m wk
m
k 1 t

n

k 1
w k Xk t w Yk t wk k 1 m

(22)

will honor the same symmetries, with respect to the point-
pairs X n, as the unconditional correlations Fn, in the asymp-
totic limit where Y m is situated between X n and the
forcing scale 0 (i.e. 0 Y m X n for a downscale
cascade; 0 Y m X n for an upscale cascade).
These symmetries are: incremental homogeneity, incremental
isotropy, and self-similarity with the same scaling exponents

n. The ensemble here is constrained by a control condition
imposed on the velocity differences w Yk t . It can be shown
that the values of the fusion rules scaling exponents n p can
be derived as a consequence of this hypothesis of universal-
ity for both inertial ranges [5, 6, 25]. A better formulation of
the universality hypothesis would use a control on the forcing
term Y t instead of a control on the velocity differences
w Yk t . Unfortunately, this weakens the hypothesis so much
that obtaining the fusion rules exponents n p becomes a very
challenging problem. We discuss this important matter in the
conclusion of this paper.

From the fusion rules we can show that the integrals in the
nonlinear interactions term nFn 1 are local, which implies
that the scaling exponent of nFn 1 is n 1 1. If the fu-
sion rules fail, then as long as the violation is regular (i.e.
0 n p n), UV locality is still maintained. Let us assume
that n p p n p in the downscale range and n p n

n p n p in the upscale range, with n p the correspond-
ing perturbation. Then, IR locality is also maintained if the de-
viations in the fusion exponents satisfy n 1 2 n 1 n 1
0 (downscale range) or n 1 2 n 1 n 1 0 (upscale
range), for n 1. If both UV and IR locality are maintained,
then the scaling exponent of nFn 1 is still n 1 1.

Knowing the scaling of the nonlinear term, it becomes pos-
sible to compare it against the other terms of the balance equa-
tions. As we have shown in our previous paper [6], if we as-
sume that the forcing term is random-Gaussian, then we may
calculate the scaling exponent of Qn and compare it against

nFn 1. Thus, one can effectively circumscribe the boundary

between the region n and the forcing range. In the present pa-
per we will show how to compare the nonlinear term against
the dissipation terms Jn and Hn. In doing so, we deter-
mine the position of the corresponding dissipation scales and
may then show that they are positioned consistently with the
anomalous sinks hypothesis. Thus, we will show that the
anomalous sinks hypothesis can be derived as a consequence
of the fusion rules hypothesis, which in turn follows from the
proposed universality hypothesis.

III. DISSIPATION SCALES FROM THE FUSION RULES

The obvious problem with estimating the position of the
dissipation scales by dimensional analysis is that by doing so
we presuppose the validity of a corresponding anomalous sink
hypothesis. The argument that we will use instead is similar
to the argument of L’vov-Procaccia [26] for the case of the
energy cascade of three-dimensional turbulence. We now re-
view this method, show how it can be extended for the inverse
energy cascade, and present an additional consideration that
is very relevant in two-dimensional turbulence.

Consider the case where in the correlation F 1
n r R be-

tween n velocity differences, one of them is evaluated at sep-
aration r and all others at R such that r R 0. Here,
we assume that both r and R are still in the inertial range.
For sufficiently small r, universal scaling fails as one leaves
the inertial range and enters the dissipation range. The scale

n
uv where this crossover occurs is dependent on R. Thus,

one may define a dissipative length scale function r n
uv R

whose graph traces out the dissipative boundary of the en-
strophy inertial range in the r R plane. Similarly, in the
case where 0 r R, one may define a large-scale dissipa-
tion length scale function R n

ir r that marks the crossover
point where the function F n 1

n r R enters the large-scale
dissipation range when R exceeds n

ir r . The function n
ir r

sketches out the shape of the inverse energy cascade in the
r R plane. It should be remembered that a complete repre-

sentation of the extent of one of the inertial ranges requires at
least an 2n dimensional region n

2n for the correlation Fn.
Nevertheless, this two-dimensional representation is sufficient
for our purposes, and certainly a step forward from the usual
one-dimensional representation.

In the enstrophy inertial range, when r is still in the inertial
range, the function F 1

n r R evaluates according to the p 1
fusion rule, and it is given by

F 1
n r R

F2 r Fn R
F2 R

(23)

Since we are ultimately interested in the dissipation length
scales of structure functions, we may safely assume that one
end point of the small velocity difference coincides with one
of the end points of another velocity difference. The validity
of the p 1 fusion rule, used above, is contigent on mak-
ing this assumption. When r enters the dissipation range, the
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dominant balance in the balance equations is

2
x1

F 1
n r R

Fn 1 R
R

(24)

and solving for F 1
n r R yields

F 1
n r R

r2 Fn 1 R
R

(25)

The dissipation length scale function is determined by match-
ing the two asymptotic expressions for F 1

n r R :

F2
n

uv R Fn R
F2 R

n
uv R 2 Fn 1 R

R
(26)

and solving for n
uv R . The next step is to determine the

length scale n
uv where a cross-over to the dissipation range

occurs when all velocity differences are shrinked simultane-
ously. We estimate the location of this cross-over scale by
solving the equation n

uv
n

uv
n

uv with respect to n
uv . If

the enstrophy cascade forms successfully, then the dissipation
length scale of the energy spectrum will be approximately lo-
cated at 2

uv , thus 2
uv is effectively an estimate of the Kol-

mogorov microscale. Similarly, the dissipation scales of the
standard structure functions Sn will be approximately at n

uv .
In this sense, we say that n

uv are the standard dissipation
length scales.

Although the standard dissipation scales are the ones that
we are ultimately interested in, the shape of the function

n
uv R is also significant in the following sense: Suppose that

all the velocity differences have been shrunk down to the scale
n

uv , and we begin to stretch simultaneously n 1 velocity dif-
ferences by a factor a 1 to length a n

uv while adjusting the
remaining velocity difference to length n

uv a n
uv such that

we remain on the boundary between the inertial range and the
dissipation range. Then, the shape of the function n

uv has to
be such that we may remain on the boundary without being
forced to increase the separation of the small velocity differ-
ence more than we have increased the other n 1 velocity
differences. In other words, we propose that in a valid inertial
range it is necessary that the following admissibility condition
be satisfied:

a n
uv

n
uv a n

uv a 1 0
n

uv (27)

When this condition fails, we can have the inconsistent sit-
uation of exiting the inertial range and entering the dissipa-
tion range if we increase all velocity differences separations
simultaneously by the same factor! This condition is obvi-
ously satisfied when n

uv is a decreasing function. However,
it can also be satisfied when n

uv is increasing, as long as the
curve r n

uv R remains underneath the line r R. It will be
shown later that this condition fails for the enstrophy range in
certain cases.

The same technique can be applied to the inverse en-
ergy cascade inertial range. The evaluations of the function

F n 1
n r R in the inertial range and the dissipation range are

given by

F n 1
n r R

F2 R Fn r
F2 r

F n 1
n r R

R 2mFn 1 r
r

(28)

and the dissipation scale function n
ir r is found by matching

the two equations of F n 1
n r R and solving the equation

F2
n

ir r Fn r
F2 r

n
ir r 2mFn 1 r

r
(29)

Then we obtain the standard dissipation scale n
ir by solving

the equation n
ir

n
ir

n
ir and we demand that the shape

of the function n
ir should satisfy the condition

a n
ir

n
ir a n

ir a 0
n

ir 1 (30)

We would like to stress again the significance of the form
of the functions n

uv and n
ir from another point of view. Con-

sider for example the case of the enstrophy cascade. Sup-
pose that we plot the lines r R and r n

uv R on the r R
plane. These lines intersect at the standard dissipation scale

n
uv and they may or may not intersect elsewhere. The re-

gion between the line r n
uv R and the line r R can be

thought of as a two-dimensional representation of the region
where dissipation is negligible. Every point within that re-
gion represents a set of velocity differences configurations for
which the correlations maintain self-similar universal scaling.
To actually have an inertial range, the curve r n

uv R has to
be underneath the line r R from the point of intersection at
the standard dissipation scale n

uv at least up until the forcing
scale 0; the region between them needs to be reasonably in-
flated to allow local interactions to take place. A similar argu-
ment is applicable for the case of the inverse energy cascade.
We see therefore that these admissibility conditions are essen-
tially cascade stability conditions with respect to the dissipa-
tion terms. As such, they complement the cascade stability
conditions with respect to the forcing terms that we discussed
in our previous paper [6].

IV. THE CASE OF THE ENSTROPHY CASCADE

We now employ the method described in the previous sec-
tion to study the geometry of the enstrophy range in the r R
plane. In this section, we let uv represent the amount of the
enstrophy that flows downscale. The value of uv is the re-
sponse of the system to the combined forcing and large-scale
dissipation that drive the enstrophy cascade. A Reynolds num-
ber can be defined for the enstrophy range as

uv

1 3
uv

2
0 (31)
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We will consider two possibilities: an enstrophy inertial range
with intermittency corrections and a logarithmic enstrophy
range without intermittency corrections. Although the pos-
sibility of intermittency corrections was recently ruled out by
Eyink [43], it is still instructive to consider the possibility on
a hypothetical basis. The reason for doing so is because we
will show that in the case 1, corresponding to standard
molecular diffusion, the geometry of the boundary between
the inertial range and the dissipation range offers sufficient
grounds to reject the intermittency scenario!

Because the argument below is somewhat technical, we will
begin by first summarizing our main results. For the first case
of an enstrophy cascade with intermittency corrections (i.e.

n n n with 2 0 and n 0 for all n with n 3), the
dissipation scale function uv R is given by

uv R
0

uv

2 uv

R
0

2
1 2 2

(32)

where 2 uv is the critical Reynolds number. Note that this
result also applies when 2 2 (no intermittency corrections)
and 1 (hyperdiffusion). Solving the equation uv uv

uv gives the standard dissipation scale uv, which reads

uv

0

uv

2 uv

1 2 2 1

(33)

The admissibility condition a uv uv a uv requires that
2 2 . For the higher-order generalized structure functions,

the corresponding dissipation scale function n
uv R is given

by

n
uv R

0

R
0

xn
uv

n uv

1 2 2

(34)

with the scaling exponents xn given by

xn
n 1 n 2 1

2 2
(35)

The standard dissipation scale n
uv then reads

n
uv

0

uv

n uv

1 1 2 n 1 n

(36)

The admissibility condition for Fn gives again the condition
2 2 .
A distinct argument is needed for the case 2 2 and 1

because then the dissipation scale function uv R changes
from a power-law dependence on the Reynolds number uv
to exponential dependence. Using the evaluation Fn R

1 3
uv R n ln 0 R an , we find that the dissipation scale func-

tion n
uv R is given by

n
uv R

0
exp uv

2 uv

1 a2
R
0

2 a2

ln 0

R

bn

(37)
with bn given by

bn
an 1 an a2

a2
(38)

The standard dissipation scale n
uv is found by solving the

transcendental equation

0
n

uv

2 a2

ln 0
n

uv

1 bn
uv

2 uv

1 a2

(39)

The admissibility condition is satisfied given sufficient sepa-
ration between n

uv and 0
We now proceed with the detailed derivation and discussion

of the above results.

A. Enstrophy range with intermittency corrections

As a point of departure, we assume the evaluation given by
the 1 8 law that F3 r uvr3 A derivation of the 1 8 law
is given by Lindborg [44], Bernard [45], and Davidson [46].
For the other correlations we will allow the general form

Fn r r 0 n n 1 3
uv r n (40)

where the scaling exponents n satisfy n n n with 2 0
and n 0 for all n with n 3. It follows from the p 1 fusion
rule that the evaluation of the correlation F 1

2 r R , when r is
in the inertial range and the dissipation range correspondingly,
reads

F 1
2 r R F2 r r 0 2 2 1 3

uv r 2

F 1
2 r R

r2 F3 R
R

r2 R2 (41)

These evaluations coincide at the boundary between the iner-
tial range and the dissipation range. For a fixed R, the cor-
responding dissipation length scale uv R is found from the
following matching condition

uv R 0 2 2 1 3
uv uv R 2 uv R 2 R2

(42)

and solving for uv R we obtain

uv R
0

1 3
uv

2
0 R

0

2 1 2 2

(43)
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We may transform this relation into an equation by introduc-
ing a constant of proportionality via a critical Reynolds num-
ber 2 uv and write the leading-order estimate of uv R as:

uv R
0

uv

2 uv

R
0

2
1 2 2

(44)

Recall that this length scale marks the point r uv R where
one enters the dissipation range in a correlation of two velocity
differences where one of them is held constant at R while the
other is shrunk down to r. Implicit in our use of the fusion
rules is the assumption that the two velocity differences have
one point in common. It is remarkable that the dissipation
scale uv R is an anomalous function (i.e.. R dependent) even
for F2. This should be contrasted with the energy range of
three-dimensional turbulence where the dissipation scale is an
anomalous function only for the higher order correlations Fn
with n 2. [26].

In the hyperdiffusion case 1, we have 2 2
0, when the hypothetical intermittency corrections respect
Eyink’s constraint 2 11 3 [47]. It follows that with increas-
ing Reynolds number the separation of scales increases with
the dissipation scale uv R approaching 0. When 1, with
increasing Reynolds number, the dissipation scale uv R di-
verges to large scales instead of small scales, thereby demon-
strating that such terms cannot provide a dissipation sink at
small scales. The case 1 with 2 2 is interesting because
it does not provide a well-behaved function either, and see be-
low for more comments. Finally, when 1 and 2 2,
this evaluation is not valid, unless the logarithmic correction
is taken into account. This case is discussed in section IV B.

It should be remembered that the dissipation scale uv R is
not observed in the energy spectrum. The standard dissipation
scale that we do observe can be found by solving the equation

uv uv uv. This leads to,

uv

0

A
uv

2 uv

1 2 2

(45)

where the scaling exponent A is given by

A 1
2

2 2
2 2 1

2 2
(46)

and the solution is

uv

0

uv

2 uv

1 2 2 1

(47)

When 1, the separation of scales between this dissipation
scale uv and the integral length scale 0 still increases with
increasing Reynolds number, as we expect it to. For the case

1 and 2 2, this evaluation is identical to the dissipation
scale evaluation that can be obtained by dimensional analy-
sis. However, as we have noted in the previous paragraph, the

function uv R , from which this evaluation has been obtained,
is not valid in the absence of a logarithmic correction.

The dissipation scale function uv R is admissible if it sat-
isfies the condition

a uv uv a uv a 1 (48)

The condition holds if and only if

uv a uv
a uv

a2 2 2
uv uv

a uv
(49)

a 1 2 2 2 a A 1 a 1 (50)

which is true if and only if

A 2 2 1
2 2

0 (51)

Note that the same condition guarantees that uv goes to zero
when the Reynolds number is taken to infinity. For 1
and 2 11 3, it is easy to see that 2 2 1 2 4
11 3 4 1 3 0, therefore, the condition A 0 requires
that 2 2 0.

The remarkable result is that in the physically relevant case
1, the constraint imposed on any hypothetical intermit-

tency corrections is 2 4 (steeper than k 5). Because it
contradicts the constraint 2 11 3 of Eyink [47], we con-
clude that we may not have an enstrophy inertial range with
intermittency corrections when 1. In exact terms, we
have shown that an enstrophy cascade with intermittency cor-
rections will be destabilized if it is dissipated by standard
molecular diffusion. It is an interesting coincidence, and one
that may warrant some further reflection, that the slope k 5

also occurs in the Tran-Bowman theory [11–13] at the down-
scale range, where the two-dimensional Navier-Stokes equa-
tion does not have an infrared sink.

Although intermittency corrections do not seem to be for-
bidden in the hyperdiffusion case, as far as stability with re-
spect to dissipation is concerned, a more careful study [43] has
already revealed additional constraints that exclude the inter-
mittency scenario altogether, for the case of an enstrophy cas-
cade with asymptotically constant enstrophy flux. Numerical
simulations of the enstrophy cascade also corroborate the ab-
sence of intermittency corrections [48–50]. Nevertheless, this
analysis sheds some light into the fundamental differences be-
tween an enstrophy range dissipated by ordinary diffusion and
one dissipated by hyperdiffusion. In the hyperdiffusion case,
an enstrophy range that has already been somewhat destabi-
lized into a steeper slope by the presence of a downscale en-
ergy flux [6] will not be further disturbed by the dissipation
range. In the ordinary diffusion case, we may find it more dif-
ficult to obtain a robust enstrophy cascade with k 3 scaling,
because any steepening deviation from that scaling caused by
perturbation from the forcing term Qn or the sweeping term In
would provoke further disturbance from the dissipation range.
This is why it is very significant to investigate numerically
whether an enstrophy cascade can exist under regular diffu-
sion.

We will now consider the dissipation scale functions for the
higher order correlations Fn. As usual, one velocity difference
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is shrunk down to scale r while the others are kept constant at
scale R. It is further assumed that the small velocity difference
is sharing an endpoint with at least one of the other velocity
differences. Let us assume that the boundary between the en-
strophy range and the dissipation range is located on the line
r n

uv R . To find the function n
uv , we start from the match-

ing condition

F2
n

uv R Fn R
F2 R

n
uv R 2 Fn 1 R

R
(52)

and solve for n
uv R . A simple calculation, given in detail in

Appendix A, gives the leading-order estimate of n
uv R as::

n
uv R

0

R
0

xn
uv

n uv

1 2 2

(53)

where the scaling exponents xn are given by

xn
n 1 n 2 1

2 2
(54)

Note that the use of matching conditions, corresponding to
different values of n, may be introducing a different constant
of proportionality, consequently the critical Reynolds num-
bers n uv will depend on n. These higher order dissipation
scale functions have the same dependence on the Reynolds
number as uv R . So, in that respect they behave similarly.
The only difference is that the anomalous correction now
scales with xn.

The standard dissipation scales for Fn are found by solving
the equation n

uv
n

uv
n

uv , leading to

n
uv

0

uv

n uv

1 1 2 n 1 n

(55)

Details are given in Appendix A. Note that as the Reynolds
number goes to infinity, the dissipation scale n

uv goes to zero,
as it is supposed to, even for the case 1. Still, that does not
necessarily mean that all these scenarios are admissible. The
inertial range of the higher order correlations is admissible if
it satisfies.

n
uv a n

uv

a n
uv

axn n
uv

n
uv

a n
uv

axn 1 1 a 1 (56)

This happens if and only if xn 1 lna 0 a 1 and that
requires 1 xn 0. Note that n 1 n 0, by the Hölder
inequalities for a downscale cascade [6], which implies that
1 xn 2 2 1 2 n 1 n 1 2 0

1. It is therefore necessary that 2 2 0. For the case,
1 the constraint 2 2 0 can never be satisfied when

2 2, and that again excludes intermittency corrections.

B. Enstrophy range without intermittency corrections

We now repeat the previous analysis for the case n n
and 1. This particular case deserves special attention, be-
cause in this case, and this case only, the leading dependence

of n
uv R on the Reynolds number uv becomes exponential.

Note that when 1, the evaluation of the dissipation scales
in the intermittency case above also applies to case n n with
subleading corrections introduced by the logarithmic correc-
tion to the structure functions Fn which, to first approximation,
we can safely ignore. When 1, on the other hand, the role
of these logarithmic corrections is crucial and has to be taken
into account.

We use the following evaluation for the correlations

Fn R 1 3
uv R n ln 0 R an (57)

where an are the scaling exponents of the logarithmic correc-
tion. The prediction of Falkovich and Lebedev [32, 33] is that
an 2n 3. To first approximation, we have disregarded the
Bowman correction [51] to the logarithmic factor, which is
negligible when R is not close to 0, in terms of order of mag-
nitude. The balance condition for the dissipation length scale
of F2 leads to

1 3
uv uv R 2 ln 0 uv R 2 3

uv R 2 R3

R
ln 0 R

(58)
Note that without the logarithmic correction, the dissipation
scale function uv R cancels out completely from the match-
ing condition. This means that the condition is always satis-
fied, and therefore a hypothetical k 3 spectrum without log-
arithmic correction would have to be part of the dissipation
range for all wavenumbers k. The presence of the logarithmic
correction however gives a solution for the dissipation scale

uv R . Introducing a critical Reynolds number 2 uv, we may
therefore write the leading-order estimate of uv R as:

uv R
0

exp uv

2 uv

3 2
R
0

3
ln 0

R

3 2

(59)
Note the exponential dependence of uv R on the Reynolds
number uv . In the limit of infinite Reynolds number, the
dissipation scale uv R goes to zero, thus it is well-behaved.
Solving the equation uv uv uv, the standard dissipation
scale uv is found to satisfy

0

uv

3
ln 0

uv

1 2
uv

2 uv

3 2

(60)

This equation cannot be solved in closed form, however when
the separation of scales is large we get

0

uv

uv

2 uv

1 2

(61)

consistent with the evaluation obtained from dimensional
analysis.
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In general, the dissipation scale functions n
uv R of the cor-

relations Fn can be derived directly from the matching condi-
tion

F2
n

uv R Fn R
F2 R

n
uv R 2 Fn 1 R

R
(62)

Solving for n
uv R we find, for the case of generalized, as

opposed to Falkovich-Lebedev scaling, that the leading-order
estimate is:

n
uv R

0
exp uv

2 uv

1 a2
R
0

2 a2

ln 0
R

bn

(63)
where the logarithmic scaling exponents bn are given by

bn
an 1 an a2

a2
(64)

The details are given in appendix B. We stress again that this
result is confined only to the special case n n and 1 in
which the logarithmic factors are dominant, as discussed pre-
viously. For Falkovich-Lebedev scaling [32, 33], the scaling
exponent an reads an 2n 3, which gives bn 3 2 for all n.
For n 2 and an 2n 3, the equation for n

uv R reduces to
our previous equation for uv R .

The standard dissipation scale n
uv is the solution of the

equation n
uv

n
uv

n
uv which simplifies to the following

transcendental equation

0
n

uv

2 a2

ln 0
n

uv

1 bn
uv

2 uv

1 a2

(65)

and in the limit of large Reynolds numbers it vanishes as
1 2.

We can now confirm that the dissipation scale function
n

uv R satisfies the admissibility condition n
uv a n

uv

a n
uv for all a n

uv
n

uv 0 . The argument is somewhat
tedious, but given in detail in appendix B. We find that the
admissibility condition is satisfied if n

uv 0 exp bna2 2 .
This condition is readily satisfied with sufficient separation
between n

uv and 0. For Falkovich-Lebedev scaling, we
have a2 2 3 and bn 3 2 and the condition reduces to

n
uv 0 e. It should be noted that the proof in appendix

B uses the claim that n
uv 0 0 which requires in turn that

bn 0. In general, utilizing only mathematical, as opposed to
physical considerations, it can be shown that the assumption
that the logarithmic scaling exponents a2 and a3 satisfy a2 0
and a3 0 implies that bn 0 for all n with n 1 (see
appendix C).

We conclude that in the physical case n n and 1,
Kraichnan scaling is admissible but it is also necessary to have
a logarithmic correction to allow the inertial range to form. In
effect, the role of the logarithmic correction is to “inflate” the

region between the curve r n
uv R and the line r R. In the

hypothetical case where the logarithmic correction is absent,
the two curves will coincide and that won’t leave any room for
local interactions.

It is interesting to note that when we have hyperdiffusion,
the logarithmic correction is not needed to inflate the iner-
tial range region. This points to an interesting difference be-
tween the case of physical diffusion and hyperdiffusion. In
the hyperdiffusion case, the inertial range will be reasonably
inflated as soon as the energy spectrum has nearly converged
to k 3 scaling, and we may expect that it will exhibit inertial
range behavior before it converges completely. In the case of
physical diffusion, on the other hand, the enstrophy range will
not begin to inflate until it begins converging toward the loga-
rithmic correction. In fact, it is possible that the absence of a
region in the r R plane in which local interactions can occur,
when the spectrum is still steep, might make it impossible for
the enstrophy range to converge at all.

V. THE CASE OF THE INVERSE ENERGY CASCADE

For the inverse energy cascade, the dissipation scale theory
is a lot simpler. We let ir represent the upscale energy flux.
We begin with the evaluation given by the 3 2 law [45, 46, 52,
53], that F3 r irr, and for the other correlations we use

Fn r irr n 3 r 0 n n 3 (66)

The dissipation scale is obtained from the matching condition

F2
n

ir r Fn r
F2 r

n
ir r 2mFn 1 r

r
(67)

and that leads for n 2 to

ir ir r 2 3
ir r 0 2 2 3 ir r 2m

irr
r

(68)

It follows that ir r is constant with respect to r with ir r
ir, and the dissipation scale ir reads, to leading order:

ir

0

ir

2 ir

1 2 2m

(69)

where ir is the Reynolds number corresponding to the in-
verse energy cascade given by

ir

1 3
ir

2 3 2m
0 (70)

This dissipation scale corresponds to the partially fused cor-
relation F2 where one of the two velocity differences is being
stretched towards larger scales while the other velocity differ-
ence is held fixed at r. Note that, unlike the case of the enstro-
phy cascade, here the dissipation scale ir r is independent of
r. Consequently, for all r in the inertial range, ir r coincides
with the standard dissipation scale ir, corresponding to the
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cross-over to the dissipation range when both velocity differ-
ences are stretched simultaneously, i.e. ir r ir. We have
a similar situation in the energy cascade of three-dimensional
turbulence [26]. In the limit of the Reynolds number going to
infinity, the dissipation scale ir also goes to infinity because

2 2m 0. It is interesting to note that this also holds when
m 0. In other words, Ekman damping can provide a sink for
the inverse energy cascade, whereas we’ve seen earlier that it
cannot provide one for the enstrophy cascade.

The dissipation scales that correspond to the correlations Fn
with n 2, on the other hand, are functions of r. Again, we
consider the case where the velocity differences are partially
fused, and one velocity difference is being stretched to large
scales while all others remain constant at r, and we write the
corresponding dissipation scale as n

ir r ir r 0
xn . From

this, we may rewrite F2
n

ir r as:

F2
n

ir r F2 ir r 0
xn 2

F3 r
r 2m

ir
r 0

xn 2

F3 r

r n
ir r 2m

r 0
xn 2 2xnm

(71)

Substituting that into the matching condition (67) reads

Fn 1 r

r n
ir r 2m

F3 r

r n
ir r 2m

r 0
xn 2 2xnm Fn r

F2 r
(72)

After all the cancellations, we obtain the following constraint
for the scaling exponents

n 1 n 1 3 n n 3 2 2 3 xn 2 2m
(73)

Solving for xn yields

xn
n 1 n 2 1

2 2m
(74)

Note that in an inverse cascade n 1 n forms an increasing
sequence, by the Hölder inequalities [6], and since x2 0, it
follows that xn is an increasing sequence and therefore

xn 0 n 2 (75)

Next, we solve the equation n
ir

n
ir

n
ir , and obtain the

standard dissipation scales, which read, to leading order:

n
ir

ir
xn
0

1 1 xn

(76)

The dissipation scale function itself is admissible if it satisfies
the condition

n
ir a n

ir axn n
ir

n
ir axn n

ir a n
ir a 1 (77)

which holds if and only if

1 xn lna 0 a 1 (78)

and this requires in turn that

1 xn
2m 1 n 1 n

2 2m
0 n 2 (79)

This condition will be satisfied as long as the scaling expo-
nents satisfy the following constraint

n 1 n 2m 1 n 2 (80)

From the Hölder inequalities, we know that n 1 n is ei-
ther constant (for the case of no intermittency corrections) or
increasing (otherwise) [6]. Therefore, in the presense of hypo-
thetical intermittency corrections to the scaling exponents n,
we should entertain the possibility that this inequality could
be violated for large enough n. If that were to happen, then
there would be no possibility of an inertial range for general-
ized structure functions Fn for large values of n, which would
make for an interesting situation indeed. Here’s what we can
say with certainty: to violate this inequality for the least fa-
vorable case m 0, we require multifractal contributions to
the inverse energy cascade with Hölder exponents h 1. In
our previous paper [6], we have shown that such contributions
do not necessarily violate locality in the nFn 1 term. Fur-
thermore, they do not violate the stability constraint h 1 3
with respect to Gaussian forcing either! If n grows linearly
as n , then there exists an m such that the inequality can
hold for all n. If, however, the growth rate of n is faster than
linear, then for any choice of m there is a n0 for which the
inequality is violated for all n n0. Consequently, as long as
the question of whether the inverse energy cascade has inter-
mittency corrections to the scaling exponents n with super-
linear growth rate remains open, the question of whether the
inequality (80) is broken at large n also remains open.

Obviously, a possible violation of the inequality (80), were
it to occur, can be ameliorated by increasing m. On the other
hand, it is reasonable to expect that a receding dissipation pro-
file, that comes with increasing m, would eventually fail to
dissipate the sweeping term effectively [15], leading to the
non-universal behavior of Danilov-Gurarie [8–10]. Thus, the
realization of a steady-state inverse energy cascade could re-
quire a balancing act in setting up the dissipation sink: a low-
order m dissipates the sweeping term In more efficiently but
makes it easier to break the inequality (80). A higher-order
m will delay the violation of Eq. (80) considerably, but at the
price of less efficient dissipation of the sweeping effect.

VI. ON THE EXISTENCE OF ANOMALOUS SINKS

In this section we will now use some of the above results to
show that if the fusion rules are satisfied then the correspond-
ing cascades will have anomalous sinks. Furthermore, we will
show that if the fusion rules are not satisfied, then the dissipa-
tion scales will not be positioned in a manner that provides for
anomalous sinks. Therefore, in cases where either the enstro-
phy cascade or the inverse energy cascade has been observed
experimentally or numerically, the fusion rules hypothesis has
to hold.
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Before we proceed with the main argument, we have to first
take care of the following difficulty: In the argument of the
preceding sections we have made the casual assumption that
we may evaluate the generalized structure function F3 using
the 1 8-law for the enstrophy cascade or the 3 2-law for the
inverse energy cascade. The immediate concern is that we
could be engaging in a circular argument if the anomalous
sink hypothesis is needed to establish these laws in the first
place. Fortunately, this does not affect an argument by contra-
diction where we deliberately assume the existence of anoma-
lous sinks and the violation of the fusion rules to deduce a
contradiction. On the other hand, we would like to have a
way to break this apparent vicious circle.

In subsection A we will explain how this can be done. In
subsection B we give the main argument itself. The reader
who wishes to skip ahead to the main argument can continue
reading from subsection B.

A. The logical structure of the argument

Let us begin by considering, with no loss of generality, the
case of the enstrophy cascade. The validity of the 1 8-law
within an appropriate interval of length scales requires the fol-
lowing three conditions: (1) most of the enstrophy must flow
downscale and most of the energy must flow upscale; (2) there
must be a corresponding inertial range situated within a wide
separation of scales between the forcing scale and the dissipa-
tion scale; (3) the positioning of the dissipation scale must be
governed by a law such that for fixed viscosity it can dissipate
any arbitrary amount of energy and enstrophy input. A similar
set of conditions are needed for the validity of the 3/2 law, for
the case of the inverse energy cascade. We will now argue that
the first condition can be established from first principles. As
for the second condition, I will suggest that it is possible to
deal with it provided that we adopt a more careful interpreta-
tion of the argument of the previous two sections.

The first condition, namely that most of the enstrophy must
be constrained to flow downscale while most of the energy
must be constrained to flow upscale, can be established from
first principles, without assuming a priori the existence of
anomalous sinks. The original argument, proffered as proof
establishing this claim, was given a long time ago by Fjørtøft
[54]. It was later noticed [14, 55–57] that the claim under-
lying his argument, that the twin conservation of energy and
enstrophy is the sole determining reason that constrains the
direction of fluxes in two-dimensional turbulence, is flawed.
Instead, in a recent paper [58] co-authored with KK Tung, we
have shown that it is the combined effect of the twin conser-
vation laws and the mathematical structure of the dissipation
operator that constrains energy to go mostly upscale and en-
strophy to go mostly downscale.

Our key result, in that paper, is as follows: Let E k be
the energy flux and let G k be the enstrophy flux transferred
from the interval 0 k to k per unit time by the nonlin-
ear term in the Navier-Stokes equations. If the energy forcing
spectrum FE k is confined to a narrow interval of wavenum-
bers k1 k2 such that FE k 0 when k k1 k2 , then it can

be shown for the forced-dissipative case, without making any
ad hoc assumptions, that under stationarity, the energy flux

E k and the enstrophy flux G k will satisfy the inequali-
ties

k

0
q E q dq 0 k k2 (81)

k
q 3

G q dq 0 k k1 (82)

The inequality (81) implies that the negative flux in the 0 k1
interval is more intense than the positive flux in the k2
because the weighted average of E k gives more weight to
the large wavenumbers. Thus, Eq. (81) implies that energy
fluxes upscale in the net. Similarly, Eq. (82) implies that en-
strophy fluxes downscale in the net. It follows that we may
justify to some degree the evaluations used for F3, in the sense
that they represent the only self-consistent scenario in which
inertial ranges exist.

Unfortunately, this still leaves open the question of the suc-
cessful existence of inertial ranges where universal cascades
are to be situated. In the argument of the previous two sec-
tions, we seem to assume without proof the existence of a
forcing-dissipation configuration that allows cascades to ex-
ist. However, we can view the same argument in an entirely
different context if we situate it within the broader argument,
outlined in greater detail in the conclusion of the present pa-
per, of which it is a part.

The structure of the broader argument, in summary form,
consists of two basic steps [6, 17, 18]: first, we show that
the balance equations have two homogeneous solutions, cor-
responding to an energy cascade and an enstrophy cascade
for both directions, and a particular solution driven by forcing
and sweeping. The flux inequalities (81) and (82) establish the
downscale enstrophy cascade and the upscale energy cascade
as the leading homogeneous solutions. Second, to show the
conditions necessary for the existence of cascades with uni-
versal scaling, we require the existence of a region n

2n

where the homogeneous solutions dominate the particular so-
lution in the generalized structure function Fn X n t for all
X n n and for each choice of n with n 1. A sep-

arate effect is the distortion of the homogeneous solutions by
the dissipation term. This defines a separate region n

2n

where this distortion effect is negligible. For the successful
formation of a cascade we need to have a measurable region

n n n with non-zero measure wherein the regions n
and n overlap. This overlap region n is a multidimensional
representation of the extent of the inertial range for the corre-
sponding cascade, whereby the leading homogeneous solution
dominates the particular solution.

The point is that both regions n and n are to be calcu-
lated separately first, and the existence of the cascade itself
is then decided by the existence of an overlap n between the
two regions n and n. So, we can take the standpoint that
the argument of the previous two sections is the determina-
tion of the region n, whereas the argument of my previous
papers [6, 15] concerns the determination of the region n.
From this standpoint, we can argue that in the previous two
sections we were investigating the dissipative corrections to
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the homogeneous solutions independently of whether or not
the homogeneous solutions actually dominate over the par-
ticular solution. As we have shown previously [6, 17, 18],
the scaling exponent 3 evaluations as 3 1 for an energy
cascade and 3 3 for an enstrophy cascade are an inherent
characteristic of the homogeneous solutions themselves that
is unrelated entirely from the anomalous sink question.

B. Anomalous sinks from the fusion rules

With the above prefatory remarks under consideration, let
us now proceed with the anomalous sink argument. Let E k
be the energy spectrum, and suppose that a certain amount of
energy and enstrophy is dissipated at large scales and another
amount at small scales. The energy dissipation rates are given
by the following integrals,

ir 2
0

k 2mE k dk

uv 2
0

k 2 E k dk
(83)

and under steady state they satisfy ir uv, where is the
rate of energy input. Here, ir is the energy dissipation rate
at large scales and uv is the energy dissipation rate at small
scales. Similarly, the enstrophy dissipation rates are given by,

ir 2
0

k 2m 2E k dk

uv 2
0

k 2 2E k dk
(84)

and, again, under steady state they satisfy ir uv, where
is the rate of enstrophy input. Here, ir is the enstrophy

dissipation rate at large scales and uv is the enstrophy dissi-
pation rate at small scales.

We begin with the case of the inverse energy cascade. Since
the effect of the sink at small scales can be safely ignored at
large scales, the dominant contribution to the energy dissipa-
tion rate is given by the integrals

ir 2
1 ir

0
k 2mE k dk 2

1 0

1 ir
k 2mE k dk

2
1 0

k 2mE k dk
(85)

Here ir is the standard dissipation scale at large scales. For
the case of the inverse energy cascade we have found that

ir r is independent of r with ir r ir. We have also
shown that

ir

0

ir

2 ir

1 2 2m

1 2 2m (86)

The key point is that the scaling exponent 2 in the above
equation originates from the order R velocity difference sepa-
ration in the n p 2 1 fusion rule, which generally scales

as R 2 2 1 . The fusion rule hypothesis gives 2 1 0 leading
to the above estimate of ir. If this fusion rule were to be vio-
lated, the scaling exponent 2 2 1 would replace 2, and the
dissipation scale ir would then follow

ir
1 2 2 1 2m (87)

In the limit of extending the separation of scales in the inverse
energy cascade, we have 0 0 which kills the third inte-
gral and 0 which gives ir which kills the first
integral. It follows that the dominant contribution comes from
the second integral. When we substitute E k k 1 2 to
the second integral we get:

ir
1 ir

k 2mk 1 2 dk 1 ir 2 2m (88)

2 2m
ir

1 2 2m 2 2 1 2m (89)

It follows that the anomalous sink hypothesis for the inverse
energy cascade which requires that ir be independent of
is satisfied if and only if the fusion rules hypothesis 2 1 0
holds. In other words, we cannot have an anomalous sink if
the fusion rules hypothesis is violated. It is interesting to note
that large m has a tendency to mitigate the impact on the sink
anomaly of a small discrepancy between 2 2 1 and 2. That
is, when m , ir becomes independent of regardless
of the value of the scaling exponent 2 1.

A similar argument can be employed to establish the exis-
tence of anomalous enstrophy sink at small scales. The domi-
nant contribution to the enstrophy flux is given by the integrals

uv 2
1 0

0
k2 2E k dk 2

1 uv

1 0
k2 2E k dk

2
1 uv

k2 2E k dk

(90)

Here uv is the standard dissipation scale at small scales. For
the case of the enstrophy cascade with hyperdiffusion (i.e.

1) we have found that uv R is anomalous, in the sense
that it is R dependent and reads

uv R
0

uv

2 uv

R
0

2
1 2 2

(91)

As long as 2 2 0, the standard dissipation scale uv is
the solution of the equation uv uv uv and it reads:

uv

0

uv

2 uv

1 2 2 1

1 2 2 1 (92)

Again, the scaling exponent 2 now originates from the order
r velocity difference separation in the n p 2 1 fusion
rule, which scales as r 2 1 , consequently, under violation of
the fusion rules hypothesis, the scaling exponent 2 1 would
replace 2, and the dependence of uv on would be given by

uv
1 2 1 2 1 (93)
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Now, by repeating a similar line of argument as in the previous
case of the inverse energy cascade, we argue that in the limit of
extending the separation of scales in the enstrophy cascade the
dominant contribution to uv comes from the second integral.
Substituting the enstrophy spectrum E k k 1 2 to the
second integral gives:

uv
1 uv

k2 2k 1 2 dk 1 uv
2 2 2 (94)

2 2 1
uv

1 2 2 1 2 1 2 1 (95)

Consequently, we find again that the anomalous sink hypothe-
sis for the enstrophy cascade which requires that uv be inde-
pendent of is satisfied if and only if the fusion rules hypoth-
esis 2 1 2 holds. Again we see that large hyperdiffusion
helps the enstrophy sink to remain approximately anomalous
even under a small deviation of 2 1 from 2.

The careful reader will note that the evaluation of uv used
in the argument above is not valid when 1 and 2 2.
We have already shown that in this case, uv is given by the
transcendental equation

0

uv

3
ln 0

uv

1 2
uv

2 uv

3 2

(96)

for the case of Falkovich-Lebedev scaling [32, 33]. It follows
that

1 uv
3 3 2 ln 0 uv

1 2 (97)

and thus, repeating the calculation of uv, with the inclusion
of the logarithmic correction to the energy spectrum E k
k 3 ln k 0

1 3 now gives:

uv
1 uv

k4k 3 ln k 0
1 3 dk (98)

1 uv
2 ln 0 uv

1 3 (99)

1 uv
3 2 3 ln 0 uv

1 3 (100)
3 2 ln 0 uv

1 2 2 3 ln 0 uv
1 3 (101)

const (102)

which shows again that we have an anomalous sink.
Incidentally, it is an interesting exercise to consider the case

of arbitrary logarithmic scaling and derive the necessary and
sufficient condition on the exponents an for the existence of
an anomalous energy sink. In general, the energy spectrum
scales as E k k 3 ln k 0

a2 1, and it follows that

uv
1 uv

k4k 3 ln k 0
a2 1 dk (103)

1 uv
2 ln 0 uv

a2 1 (104)

The transcendental equation for uv now reads

0

uv

2 a2

ln 0

uv

1 b2 uv

2 uv

1 a2

(105)

which gives

0

uv

1 2 ln 0

uv

b2 1 a2 2
(106)

It follows that

uv
1 2 ln 0 uv

b2 1 a2 2 2 ln 0 uv
a2 1

(107)

ln 0 uv
b2 1 a2 a2 1 ln 0 uv

a2b2 1

(108)

Since a2b2 1 a3 1, we see that an anomalous enstrophy
sink exists if and only if a3 1. This is obviously consistent
with the Falkovich-Lebedev claim [32, 33] that an 2n 3.

It is possible to combine this argument and the previous ar-
gument to generalize this result for the case 1, provided
that the logarithmic corrections are taken into account in cal-
culating the location of the dissipation scale uv. This gives
the enstrophy dissipation rate uv as:

uv
1 2 2 1 2 1 2 1 ln 0 uv

a3 1 (109)

Again, the fusion rules hypothesis rules out the power-law de-
pendence of uv on . However, the condition a3 1 is still
needed to rule out a logarithmic dependence of uv on . Fu-
ture work should thus take another good look at these loga-
rithmic scaling exponents. In connection with this remark, it
is worth noting that, in recent papers [59, 60], Tran claims that
he proved that it is not possible for the enstrophy cascade to
have an anomalous enstrophy sink. However, the range of ap-
plicability of his result is confined only to the case of freely
decaying two-dimensional turbulence, with 1 and no sink
at large scales (i.e. 0). As such, it is not applicable under
two sinks or for the forced-dissipative case.

Although the case of the energy cascade of three-
dimensional turbulence is not the primary focus of this paper,
it is easy to see that our argument can be repeated to derive
the dependence

1 2 2 1 2 1 2 1 (110)

between the energy dissipation rate and the viscosity .
Under the regular violation of the n p 2 1 fusion rule,
where 2 1 satisfies 0 2 1 2, we see that the energy dis-
sipation rate will vanish in the limit 0 , suggesting an
insufficiently powerful energy sink. If and when such a viola-
tion does occur, the energy spectrum E k might respond by
reducing the value of the scaling exponent 2 until it converges
to the value of 2 1. That would lead to a shallower slope for
the energy spectrum E k . Such a response would not violate
locality [6] and it is therefore reasonable to expect that the en-
ergy would still trickle down via local interactions and dissi-
pate when dissipation is strong enough, thus maintaining sink
anomaly in the intermediate asymptotic sense. Our argument
shows that a regular fusion rules violation combined with in-
termediate asymptotic sink anomally must lead to a shallower
energy spectrum. This is consistent with a bottleneck-type
pile up of energy near the interface between the inertial range
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and the dissipation range. Thus, a question that should be
considered by future work is whether the well-known bottle-
neck problem [61, 62] of three-dimensional turbulence can be
understood in terms of a regular violation of the fusion rules.

VII. CONCLUSION AND DISCUSSION

In this paper we have shown that there is a close rela-
tion between the fusion rules hypothesis and the anomalous
sink hypothesis. This relation holds for both two-dimensional
and three-dimensional turbulence, even though this paper was
mainly focused on two-dimensional turbulence. We have also
investigated the boundary between the inertial range and dis-
sipation range for both inverse energy cascade and enstrophy
cascade in terms of a two-dimensional representation instead
of the usual one-dimensional interval-of-scales approach. The
purpose of that investigation was to derive the cascade sta-
bility conditions with respect to the dissipation terms. These
results add to the work presented in our previous paper [6]
where we showed that, given the fusion rules hypothesis, we
can investigate cascade locality and cascade stability with re-
spect to the forcing terms. These results, when put together,
are beginning to outline a fundamental, albeit yet incomplete,
theory of two-dimensional turbulence. Because the details of
the overall argument are quite technical, we will attempt in
these concluding remarks to outline, in very broad strokes, the
logical structure of the proposed theory. We will then review
the plausibility of the fusion rules hypothesis, and conclude
by listing some interesting insights that we have gained from
the present paper.

The point of departure is the generalized balance equations.
First, we observe that these equations have a general solu-
tion that consists of two homogeneous solutions that repre-
sent correspondingly an enstrophy cascade with 3 3 and
an energy cascade with 3 1 [17], and a particular solution
driven by forcing and sweeping. The determination of the 3
exponents for the two homogeneous solutions does not use
the anomalous sink hypothesis. It follows instead from a self-
consistency argument [17]. Second, we derive the constraints
[Eqs. (81) and (82)] on the fluxes E k and G k , which
imply that the only self-consistent manner in which these cas-
cades can manifest themselves is as a downscale enstrophy
cascade and an upscale inverse energy cascade [58]. It is pos-
sible, for the case of finite viscosities that side by side with
the dominant cascades there may be a subleading downscale
energy cascade and a subleading upscale enstrophy cascade
[17]. However, a constraint on the permitted magnitude of the
energy and enstrophy fluxes associated with these subleading
cascades, prevents them from having a significant effect on
the energy spectrum [18, 63].

As was discussed in my previous papers [6, 15, 17, 18],
in order for either the inverse energy cascade or the enstro-
phy cascade to exist, there must be a region n

2n where
the corresponding leading homogeneous solution dominates
the particular solution driven by sweeping and forcing. This
is the so-called stability condition. Furthermore, the dissipa-
tion terms effectively act to distort the homogeneous solutions

within a certain dissipative region. If n
2n is the region

where such dissipative effects on the leading homogeneous
solution are negligible, then our main requirement for the ex-
istence of a cascade is that there should be a measurable over-
lap n n n between the two regions n and n with
non-zero measure. The region n is thus a multidimensional
representation of the extent of the inertial range associated
with the generalized structure function Fn.

We may now pose the following question: does the struc-
ture of the mathematical theory of turbulence allow the exis-
tence of cascades with universal scaling? In other words, if we
require the cascades to have universal scaling exponents, can
the region n have a non-zero measure? The argument in re-
sponse to the question now runs as follows: first, the demand
that the cascades must have universal scaling implies that the
cascades, if they exist, must satisfy the fusion rules hypothe-
sis. As things stand now, this first step is the incomplete link
in the overall chain, as far as two-dimensional turbulence is
concerned. This is discussed further below.

Second, from the fusion rules hypothesis, we establish the
locality of the local interactions term nFn 1 of the balance
equations and combined with the assumption of random Gaus-
sian forcing we then derive the stability conditions of either
cascade with respect to forcing perturbations [6]. The ques-
tion of stability with respect to sweeping is still an open prob-
lem [15]. Both kinds of stability are necessary conditions for
the existence of cascades with universal scaling, because if
either type of stability were to fail, then we would reach a
contradiction with the assumption, in the beginning of the ar-
gument, that the cascades have universal scaling. Such con-
tradiction would imply the absence of universal scaling. We
have shown [6] that the inverse energy cascade is stable with
respect to perturbations of the forcing statistics. The enstro-
phy cascade is only marginally stable, with the stability con-
tingent on the smallness of the downscale energy flux.

Third, from the fusion rules hypothesis and locality (a con-
sequence of the fusion rule hypothesis) we have the argument
of the present paper which leads to establishing the location
of the dissipation scales, and, consequently, the existence of
anomalous sinks of enstrophy and energy at small and large
scales correspondingly. Our argument, more generally, estab-
lishes the relation between the energy dissipation rate ir and
the enstrophy dissipation rate uv and the corresponding fric-
tion parameters and in terms of the scaling exponents 2
and 2 1. As a matter of fact, we have seen that the scope of the
argument is broader: we have derived the shape of the bound-
ary separating the inertial range from the dissipation range in
the r R plane representation for every generalized structure
function Fn for any n 2.

As it stands now, the above argument has two loose ends.
First, we have not worked out the problem of stability with
respect to the sweeping interactions. As we have pointed out
previously [15], this problem, which was first recognized long
ago by Kraichnan [64], remains an unresolved issue that af-
fects every theoretical approach to the problem of turbulence
that has been proposed to date. Second, the first step of the
argument, establishing the fusion rules hypothesis from the
assumption of universality, has not been done in a completely
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satisfactory manner.
This last point requires further clarification. The currently

used formulation of the hypothesis of universality is that the
fundamental symmetries of the inertial range, namely incre-
mental homogeneity, incremental isotropy, and self-similarity,
defined in terms of the ensemble-averaged generalized struc-
ture functions, will survive imposing a symmetry-breaking re-
striction on the ensemble averaging [6]. Thus, the conditional
generalized structure functions n, defined via a conditional
ensemble average of products of velocity differences incorpo-
rating the restriction, will still have an inertial range where
the same symmetries are satisfied, as long as the symmetry
breaking restriction is introduced at a scale that lies between
the forcing scale and the scale defined by the velocity differ-
ences that are being averaged. Now, there is a choice: The re-
striction can be placed on the forcing field or on the velocity-
difference field. If the restriction is placed on the velocity-
difference field, then the fusion rules hypothesis is easily de-
rived from the universality hypothesis. This was noted previ-
ously by L’vov and Procaccia [5, 25] in the context of three-
dimensional turbulence, and I used the same argument to pre-
dict the fusion rules for both cascades of two-dimensional tur-
bulence [6].

Now, this is hardly a surprise. From a physical stand-
point, the hypothesis of universality, formulated in terms of
a velocity-difference constraint on the ensemble, means that
it makes no difference to the symmetries at a certain scale, if
that scale is forced directly by gaussian forcing or indirectly
by the velocity field at a larger (or smaller, for the inverse en-
ergy cascade) scale. In other words, by adopting the fusion
rules hypothesis we are already, in a certain vague sense, hy-
pothesizing the existence of a local cascade. Thus, the local-
ity and stability arguments, given previously [6], and the ar-
guments of the present paper, essentially establish a required
consistency between the existence of local cascades and the
governing Navier-Stokes equations. This is useful, but not
good enough.

To establish the fusion rules hypothesis in a more definitive
manner, we should start from a weaker universality hypoth-
esis in which we merely require that the scaling laws should
not be sensitive to forcing perturbations, and nothing more.
This is, after all, what we really intend to say when formu-
lating the universality hypothesis. Arguments of this nature
have been used to establish the fusion rules hypothesis for the
passive scalar problem [34] of Kraichnan [65] and the case
p 2 has been previously proved for the energy cascade of
three-dimensional turbulence [22–24]. This type of stronger
argument is currently missing for the case of the cascades in
two-dimensions.

This is why the mathematical argument, both in this paper
and in the previous paper [6], was carefully formulated to ac-
count for the case where the fusion scaling exponents n p get
to deviate from the values predicted by the fusion rules hy-
pothesis. For example, in the previous paper [6] I investigated
the effect a violation of the fusion rules will have on the local-
ity of nonlinear interactions in the inertial range, and derived
the required inequalities on the fusion scaling exponents n p
for preserving locality. In the present paper, I derived the gen-

eral dependence of the downscale enstrophy dissipation rate
uv on the viscosity and the upscale energy dissipation rate
ir on the viscosity in terms of the scaling exponent 2 and

the fusion scaling exponent 2 1. For the case where 2 1 satis-
fies the fusion rules hypothesis and a3 1, uv and ir become
independent of the viscosities and , which implies the exis-
tence of anomalous sinks. However, it should be stressed that
our analysis was deliberately done in a general way to cover
the case where the fusion rules hypothesis fails.

With all the aforementioned concerns notwithstanding, I
believe that a big picture is beginning to emerge, which can
sharpen our physical intuition toward a deeper understanding
of the cascades of two-dimensional turbulence. Already, from
the present argument, we have gained some interesting in-
sights about two-dimensional turbulence, which we shall now
summarize. First, we have shown that it is impossible to have
an inertial range in an enstrophy cascade dissipated by molec-
ular dissipation ( 1), if the enstrophy cascade has inter-
mittency corrections, or if, for some other reason, it deviates
from Kraichnan scaling into steeper slopes. Consequently, it
may be easier for the enstrophy cascade to converge under hy-
perdiffusion as opposed to molecular dissipation. Second, we
have shown that the logarithmic correction plays an essential
role in ensuring that the inertial range of the enstrophy cas-
cade is not entirely destabilized by dissipation, when 1.
Third, for the case of the inverse energy cascade, we have
shown that if there are intermittency corrections to the scal-
ing exponents n , then the scaling exponents must satisfy the
inequality n 1 n 2m 1 n 2 , with m being the or-
der of the hypodiffusion, in order for all generalized structure
functions Fn to have an inertial range. Last but not least, we
have not only shown that the fusion rules imply the existence
of anomalous sinks; we have also established that a possible
small violation of the fusion rules can be compensated for by
increasing the orders and m of hyperdiffusion and hypod-
iffusion correspondingly. For the case of three-dimensional
turbulence we have also pointed to a possible connection be-
tween the bottleneck problem [61, 62] and a possible tempo-
rary regular fusion rules violation.

To conclude, it should be noted that our work has focused
strictly on the mathematical problem of two-dimensional tur-
bulence that is precisely two-dimensional. More realism
would require the introduction of three-dimensional effects
at small scales, and still unaddressed remains the problem of
how these effects impact on the dynamics of two-dimensional
turbulence. In connection with this very broad question, we
can make the following remarks. First, the reason why we
have a sink at large scales is precisely to account for Ekman
damping, which is a three-dimensional large-scale frictional
effect, known to exist for the case of atmospheric turbulence
[66]. A similar frictional effect exists in soap-film experi-
ments of two-dimensional turbulence [67]. Second, at small
enough scales, one expects a change in the dynamic of the
nonlinear term. Based on what we have learned about local-
ity from my previous paper [6], I expect that the dynamic of
the two-dimensional inertial ranges will be shielded from the
nonlinear small-scale three-dimensional effect. However, the
three-dimensional effect could change the nature of the small-
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scale dissipation. Further speculating on this issue is beyond
the scope of this paper, though we have done so in previous
papers [14, 17, 18, 63]. Let us just emphasize again that, based
on our results here, we have learned that it makes a signifi-
cant difference whether the enstrophy cascade is dissipated by
diffusion or hyperdiffusion. As an anonymous referee noted,
“the short-wave dissipation is commonly considered as a pa-
rameterization which has to be designed so as to dissipate the
enstrophy flux. In contrast, in the 3D case we believe that
the true dissipation operator is known”. The fact that we do
not know the true dissipation operator in two-dimensional tur-
bulence, in light of our results, is thus revealed to be a more
urgent problem than is commonly realized.
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APPENDIX A: DISSIPATION SCALES FOR AN
ENSTROPHY CASCADE WITH INTERMITTENCY

CORRECTIONS

In this appendix we give the detailed derivation of the dis-
sipation scales n

uv R and n
uv for the case of the enstrophy

cascade with (mostly hypothetical) intermittency corrections.
To find the function n

uv , we write n
uv R uv R R 0

an ,
and proceed to evaluate an using the matching condition

F2
n

uv R Fn R
F2 R

n
uv R 2 Fn 1 R

R
(A1)

The factor F2
n

uv R can be evaluated with judicious use of
the properties of the dissipation scale functions as follows

F2
n

uv R F2 uv R R 0
an 2 (A2)

uv R 2 F3 R
R

R 0
an 2 (A3)

n
uv R 2 F3 R

R
R 0

an 2 2an (A4)

We substitute this into the matching condition and obtain

n
uv R 2 Fn 1 R

R

n
uv R 2 F3 R

R
R 0

an 2 2an Fn R
F2 R
(A5)

If we employ the general evaluation of F3 and Fn we note that
the factors n

uv R 2k, R, and 1 3
uv r cancel completely. We

are left with the balance

R 0 n 1 n 1 R 0 n n 2 2 an 2 2 (A6)

that implies the scaling exponent equations

n 1 n 1 n n 2 2 an 2 2 (A7)
Solving for an we get

an
n 1 n 2 3

2 2
(A8)

We may now go back and write the dissipation scale function
n

uv R as follows

n
uv R

0

uv R
0

R
0

an R
0

xn
uv

n uv

1 2 2

(A9)

where the scaling exponents xn are given by

xn
2

2 2
n 1 n 2 3

2 2
n 1 n 2 1

2 2

(A10)

The standard dissipation scales for Fn are found by solving
the equation n

uv
n

uv
n

uv , leading to

n
uv

0

xn
uv

n uv

1 2 2 n
uv

0
(A11)

and thus,

n
uv

0

uv

n uv

1 1 xn 2 2

(A12)

A simple calculation gives:

1 xn 2 2 (A13)

2 2 2 2 n 1 n 2 1
2 2

(A14)
1 2 n 1 n (A15)

and it follows that the dissipation scale n
uv is given by

n
uv

0

uv

n uv

1 1 2 n 1 n

(A16)
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APPENDIX B: DISSIPATION SCALES FOR AN ENSTROPHY CASCADE WITHOUT INTERMITTENCY CORRECTIONS

In this appendix we give the detailed derivation of the dissipation scales n
uv R and n

uv for the case of the enstrophy cascade
without intermittency corrections for the special case where 1. Then, we confirm the admissibility condition.

To find the function n
uv , we start by substituting Fn R 1 3

uv R n ln 0 R an to the matching condition

F2
n

uv R Fn R
F2 R

n
uv R 2Fn 1 R

R
(B1)

which gives

1 3
uv

n
uv R 2 ln 0

n
uv R a2 1 3

uv R n ln 0 R an

1 3
uv R 2 ln 0 R a2

n
uv R 2 1 3

uv R n 1 ln 0 R an 1

R
(B2)

After a few immediate cancellations we get the condition

1
R2 ln 0

n
uv R

a2

ln 0

R

an a2 1 3
uv R

R
ln 0

R

an 1

(B3)

from which we find that

ln 0
n

uv R

a2 1 3
uv R2

ln 0
R

an 1 an a2 1 3
uv

2
0 R

0

2
ln 0

R

an 1 an a2

(B4)

uv
R
0

2
ln 0

R

an 1 an a2

(B5)

Solving for the dissipation scale uv R , and introducing a critical Reynolds number 2 uv, to turn the proportionality relation
into an equation, gives the main result that reads:

n
uv R

0
exp uv

2 uv

1 a2
R
0

2 a2

ln 0

R

bn

(B6)

with bn given by

bn
an 1 an a2

a2
(B7)

The standard dissipation scale n
uv is the solution of the equation n

uv
n

uv
n

uv , which reads

ln 0
n

uv

uv

2 uv

1 a2 n
uv

0

2 a2

ln 0
n

uv

bn

(B8)

and then simplifies to the following transcendental equation

0
n

uv

2 a2

ln 0
n

uv

1 bn
uv

2 uv

1 a2

(B9)

We may now confirm that the dissipation scale function n
uv R satisfies the admissibility condition n

uv a n
uv a n

uv for
all a n

uv
n

uv 0 . First, we note that n
uv 0 0 (requires that bn 0) and n

uv
n

uv
n

uv . This means that the curve
r n

uv R intersects the line r R at the endpoints of the inertial range R n
uv and R 0. The admissibility condition
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requires that when R moves from n
uv to 0 the curve r n

uv R must remain under the line r R throughout the interval
R n

uv 0 . To confirm this behavior, consider the partial derivative of n
uv R with respect to R:

R

n
uv R

0 R
exp uv

2 uv

1 a2
R
0

2 a2

ln 0
R

bn

(B10)

n
uv R

0

uv

2 uv

1 a2
2
a2

R
0

2
a2

1 1
0

ln 0

R

bn R
0

2
a2

bn ln 0

R

bn 1 1
0 R

0

R2 (B11)

n
uv R

0

uv

2 uv

1 a2
R
0

2
a2

1
ln 0

R

bn 1 1
0

2
a2

ln 0
R

bn (B12)

All factors above are positive, including the logarithm
ln 0 R (since R 0), except for the last factor that can be
either positive or negative. To satisfy the admissibility con-
dition, it is sufficient to require that n

uv R be decreasing at
R n

uv . This occurs if and only if

2
a2

ln 0
n

uv
bn 0 (B13)

which is satisfied if and only if n
uv 0 exp bna2 2 For

R n
uv , the curve of n

uv R will continue to decrease for a
while, and will then turn around to increase and catch up with
the line r R, since n

uv 0 0.

APPENDIX C: INEQUALITIES ON LOGARITHMIC
SCALING EXPONENTS

In this appendix we show that the assumption that the loga-
rithmic scaling exponents a2 and a3 satisfy a2 0 and a3 0
implies that bn 0 for all n with n 1. This is a conse-
quence of the inequality an 1 an an an 1 which can be
established by an argument that is analogous to the one used
to establish similar inequalities between the regular scaling
exponents n [1, 6, 68, 69].

We begin by defining R as the absolute value of the
scalar vorticity difference:

R x Re t x t (C1)

where x d is given and e is a unit vector. The proof is
based on the following two assumptions: (a) For a downscale

cascade, in the limit 0 , R scales as R n

ln 0 R an . (b) For finite 0 there is a range of scales where
the above scaling law continues to hold as an intermediate
asymptotic.

Let p q 1 with 1 p 1 q 1, and let
be two random variables with 0 and 0. The
Hölder inequality for ensemble averages states that

p 1 p q 1 q. For p q 1 2 it reduces to the Schwarz
inequality: 2 2 2 . We begin by choosing

R n 1 2 and R n 1 2 and employing the
Schwarz inequality. It follows that

R n 2 2 2 2 (C2)

R n 1 R n 1 (C3)

and therefore

R n 2

R n 1 R n 1 ln 0 R 2an an 1 an 1 1

(C4)
To satisfy this inequality under the limit 0 we require
2an an 1 an 1 0 which is equivalent to an 1 an an
an 1.

Let us assume now that a2 0 and a3 0. It follows that

bn
an 1 an a2

a2
(C5)

a3 a2 a2
a2

a3
a2

0 (C6)

which concludes the proof.
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