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Winterberg’s conjectured breaking of the superluminal quantum correlations over large distances
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We elaborate further on a hypothesis by Winterberg that turbulent fluctuations of the zero point field may
lead to a breakdown of the superluminal quantum correlations over very large distances. A phenomenological
model that was proposed by Winterberg to estimate the transition scale of the conjectured breakdown, does not
lead to a distance that is large enough to be agreeable with recent experiments. We consider, but rule out, the
possibility of a steeper slope in the energy spectrum of the turbulent fluctuations, due to compressibility, as a
possible mechanism that may lead to an increased lower-bound for the transition scale. Instead, we argue that
Winterberg overestimated the intensity of the ZPF turbulent fluctuations. We calculate a very generous corrected
lower bound for the transition distance which is consistent with current experiments.

I. INTRODUCTION

A compelling paradox in our current understanding of na-
ture is the fundamental inconsistency between the non-locality
of quantum mechanics and the Lorentz invariance demanded
by the theory of relativity. This inconsistency can be con-
cealed to a large extent because it is possible to formulate rel-
ativistic quantum theories that predict Lorentz-invariant sta-
tistical behaviour. Thus, from a strictly empiricist standpoint,
all appears to be well since non-locality cannot be exploited
to transmit information. The inconsistency becomes more ob-
vious when one attempts to formulate a Bohmian interpreta-
tion of quantum mechanics [1–6]. Then it becomes necessary
to introduce the quantum potential interactions which violate
Lorentz invariance. There is also the problem of making the
equilibrium condition ρ = |ψ |2 Lorentz invariant [7]. Though
resolving this latter problem is possible for the case of non-
interacting but entangled particles [8], the non-local nature of
the quantum potential interaction is unavoidable by any in-
terpretation that agrees with experiment [9]. Even when one
decides to avoid the problem of interpretation altogether (by
ignoring it) one still has to contend with the presumably in-
stantaneous entanglement between distant quanta in situations
such as the well-known EPR two-photon experiment [10–13].

The original Aspect experiment [14] confirmed the exis-
tence of quantum entanglement over a range as large as 10
meters by confirming the violation of Bell’s inequality. More
recent experiments have extended the range, initially to 4 km
[15], and subsequently to 11 km [16–18] and even 50 km [19].
Winterberg [20] observed that we cannot presume, on the ba-
sis of these experiments, that quantum correlations will indef-
initely continue to hold over larger distances. For example,
it would be a bold extrapolation from a 11 km experiment to
presume that quantum correlations persist over interstellar and
intergalactic distances. He also noted that the notion that the
collapse of the wavefunction occurs instantaneously is proba-
bly an unjustified idealization. It may be more reasonable to
expect that quantum correlations propagate at a finite superlu-
minal speed, which may be significantly larger than the speed
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of light, but nonetheless finite.
If it is true that quantum correlations break down beyond

a certain “transition” length scale, then we are lead to the
following implications: First, when we switch into a differ-
ent inertial reference frame, the transition length scale should
be expected to contract over certain directions in accordance
with the Lorentz transformation. Consequently, it becomes
possible to establish a unique reference frame “at rest”, as the
reference frame where the transition length scale is constant
in all directions. This then, makes the idea of the original
pre-Einstein theory of relativity by Lorentz and Poincare com-
pelling once again [21]. Furthermore, if the propagation speed
of the superluminal interactions responsible for the collapse of
the wavefunction is indeed finite, that would then indicate the
existence of a medium through which these interactions are
transmitted.

Winterberg proposed the hypothesis that this medium is the
field of zero-point vacuum energy, also known as the ZPF field
[20, 22]. The physical reality of the ZPF field has been estab-
lished experimentally by the Casimir effect [23]. However
the underlying physical principles that govern the ZPF field
at the Planck scale are poorly understood. According to Win-
terberg, the simplest possible model for the ZPF field is as a
“Planck-mass plasma” of two coupled superfluids, one with
positive mass particles and one with negative mass particles
[24–28]. Under small perturbations, the Winterberg Planck-
mass plasma is analogous to a compressible fluid with p ∝ ρ2

[24]. Winterberg [22] conjectured that over large length scales
this medium undergoes turbulent fluctuations which disrupt
the quantum correlations at length scales where the turbulence
energy spectrum exceeds the ZPF energy spectrum.

Although the physics of the ZPF field at the Planck scale is
currently unknown to us, if it is assumed that the ZPF field is
Lorentz invariant, then it must follow the Boyer energy spec-
trum

E(k) = ~ck3, (1)

which can be shown [29, 30] to be the only Lorenz invari-
ant spectrum as long as it is infinitely extended to arbitrarily
large wavenumbers k. More realistically, k should be cut off
at wavenumbers corresponding to the Planck length scale rp ,
in which case Lorentz invariance would be broken only when
the Planck length scale is approached. The cutoff wavenum-
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ber defines a length, which in turn can define a rest reference
frame as the one where the cut-off length is isotropic. The
truncated spectrum

E(k) =
{
~ck3, if k ≤ 2π/rp
0, if k > 2π/rp

(2)

is still Lorentz invariant in terms of slope and numerical co-
efficient [31]. However, the cutoff scale contracts under a
Lorentz transformation like any other length. It remains a
point of controversy whether or not the actual Planck length
scale is the same or different for different observers. Accord-
ing to the recently proposed “double special relativity theory”
[32] (DSR), the Planck length scale should be the same for all
observers. Under DSR, Eq. (2) would also be invariant for
all inertial frames of reference. However, that would still not
necessarily apply to the quantum correlations breakdown tran-
sition scale, which would still define a rest reference frame.

Knowing the energy spectrum of the ZPF field makes it pos-
sible to estimate the transition length scale λ0 where quantum
correlations break down by finding the transition wavenum-
ber k0 where the Boyer energy spectrum is comparable with
the energy spectrum of the ZPF turbulent fluctuations. The
salient feature of this approach is that it is reliant only on
our assumptions concerning energy spectra, and does not in-
volve further speculative modelling assumptions. Winterberg
[22] used the Kolmogorov-Batchelor [33–35] energy spec-
trum E(k) ∝ k−5/3 and showed that

λ0 = 12κ−3/14m, (3)

where κ represents the degree of turbulent fluctuations and
ranges as 0 < κ < 1. For κ = 1, we get the lower-bound
length scale of 12m which is too small to be consistent with
the experiments of Gisin [16–19]. Winterberg [22] proposed
that one should use instead the evaluation κ = 10−5 , which
is equal to the spatial temperature variation observed in the
cosmic microwave radiation. This choice was thought to be
plausible because “the microwaves are refracted by the fluc-
tuating gravitational field of the eddies” [36]. Nonetheless, a
simple calculation shows that, contrary to Winterberg’s claim,
this only gives us one more order of magnitude:

λ0 = 12(10−5)−3/14m ≈ 120m. (4)

This is still too small to agree with experiments.
In the present paper we will consider the ramifications of

weakening the assumption that the ZPF turbulent fluctuations
are governed by the Kolmogorov scaling k−5/3. The idea is
that a steeper slope will give a larger value for the transition
length scale. We will show that even with steeper slopes we
still do not get a transition scale larger than 10 km. Instead,
we will argue that the choice κ = 10−5 is too large because it
corresponds to an unrealistically large energy dissipation rate.

The paper is organized as follows. The energy spectrum of
the turbulent fluctuations is discussed in section 2. We recal-
culate the transition length scale in section 3. The problem of
guessing the parameter κ is discussed in section 4. Conclu-
sions are given briefly in section 5.

II. THE SPECTRUM OF ZPF TURBULENCE

The underlying assumption of Kolmogorov’s theory of tur-
bulence [33–35] is that energy is injected into the system at
small wavenumbers by random forcing, which is then cas-
caded to larger wavenumbers where it is being dissipated. Be-
tween the forcing range of wavenumbers where energy comes
in, and the dissipation range of wavenumbers were energy
comes out, it is assumed that there is a so-called “inertial
range” of wavenumbers through which the energy is trans-
ferred to small scales via nonlinear interactions. This theory
has been confirmed both experimentally [37, 38], and repeat-
edly with numerical simulations [39]. There has also been
considerable progress towards formulating a statistical theory
of the energy cascade [40–42]. On the other hand, it is im-
portant to note that the theory has only been investigated ex-
tensively in the context of incompressible turbulence, and it is
not obvious that it is applicable for compressible turbulence.

For the simplest case of adiabatic compressible turbulence
where the pressure is dependent only on the density via the
relation p ∝ ργ with γ the adiabatic constant, the Moisseev-
Shivamoggi prediction [43, 44] is that the energy spectrum of
the energy cascade is steeper and has slope k−a with a given
by

a =
5γ − 1
3γ − 1

. (5)

The steeper spectral slope arises because of a distributed
energy dissipation throughout the inertial range by acoustic
waves. The Moisseev-Shivamoggi spectrum reads:

E(k) = C[ργ−1ε2γc−2k−(5γ−1)]1/(3γ−1) . (6)

Here, C is a universal constant, ρ the density, ε the rate of en-
ergy injection per unit time and volume, and k the wavenum-
ber. The spectrum approaches the Kolmogorov spectrum

E(k) = Cρ1/3ε2/3k−5/3, (7)

when γ → ∞ and the Kadomtsev-Petviashvili spectrum

E(k) = Cεc−1k−2, (8)

when γ = 1 [45]. Note that arbitrarily steeper slopes are pos-
sible, in principle, if 1/3 < γ < 1, but a spectrum steeper than
k−3 would violate the locality of the nonlinear interactions that
drive the energy cascade, and wouldn’t really represent phys-
ically a state of fully developed turbulence. Considering that
for small fluctuations the Winterberg Planck-mass plasma be-
haves as a compressible fluid with γ = 2 [24], the energy
spectrum of compressible turbulence may be more relevant to
the problem at hand.

Let us now generalize Winterberg’s calculation of the en-
ergy spectrum of ZPF turbulence for the general slope a. As-
sume that the energy spectrum of the turbulent fluctuations
reads

Eturb(k) = Ak−a, (9)
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where A is constant and a the scaling exponent. To estimate
the constant A, we follow Winterberg [22], and we assume
that the total energy of the turbulent fluctuations is

E = κρc2, (10)

where ρ is the average density of the universe and κ is a con-
stant 0 < κ < 1 that measures the degree of turbulence. We
estimate the density ρwith the critical density ρcrit which sep-
arates the open and closed universe scenaria:

ρ ≈ ρcrit =
3H2

8πG
. (11)

Here H is the Hubble constant and G Newton’s gravity con-
stant. We also assume that the largest eddies have length scale
of the order of the world radius R ∼ c/H . It follows from
these considerations that the total energy E also satisfies

E =

∫ ∞

1/R
Ak−a dk = −

A
1 − a

1
R1−a , (12)

and combining (10) and (12) we find A:

A = (a − 1)κρc2R1−a . (13)

A related question, which was not addressed by Winterberg,
is how the energy is injected and dissipated for the turbulent
fluctuations of the field. On a cosmological scale there is an
amount of energy which is injected into the universe due to the
extension of the event horizon. This rate of energy injection
represents the total available energy and it is, of course, an
upper bound to the actual rate of energy injection into the ZPF
field’s turbulent fluctuations, which can be very much smaller.
Following this idea, it is possible to arrive to an alternative
derivation of the energy spectrum of the turbulent fluctuations
of the ZPF field.

If R is the radius of the event horizon, and ρc2 the av-
erage energy density of the universe, then the rate with
which the horizon expansion increases the total energy is
ρc2(4πR2)(dR/dt). To get the rate of energy injection ε we
must divide this quantity with the volume of the universe.
Thus, since the radius R expands with the speed of light (i.e.,
dR/dt = c), it follows that

ε = ρc2 4πR2dR
dt

1
(4/3)πR3 (14)

= 3ρc2R−1c = 3ρc3R−1. (15)

Substituting ε to the Moisseev-Shivamoggi spectrum, and us-
ing the speed of light for c, yields:

E(k) = C[ργ−1(3ρc3R−1)2γc−2k−(5γ−1)]1/(3γ−1) (16)

= C[ρ3γ−132γR−2γc6γ−2k−(5γ−1)]1/(3γ−1) (17)

≈ ρc2R−2γ/(3γ−1) k−(5γ−1)/(3γ−1) . (18)

It is easy to see that solving a = (5γ − 1)/(3γ − 1) for γ gives
γ = (1−a)/(5−3a) and that it follows that 2γ/(3γ−1) = a−1.
Thus, we can write E(k) in terms of a as follows:

E(k) ≈ ρc2R1−ak−a . (19)

Here we have disregarded the numerical coefficients. We see
that we essentially recover Winterberg’s spectrum for the case
κ = 1. However, if instead of ρc2 we use κρc2 for the universe
energy density, we do not obtain exactly the same dependence
on κ as we would from the generalization of Winterberg’s ar-
gument. So there is some ambiguity on how one should define
the degree κ of the turbulent fluctuations.

III. ESTIMATING THE TRANSITION SCALE

We will now show that a steeper slope for the energy spec-
trum of the turbulent fluctuations gives a larger transition
length scale. However, we will see that there is no case that
gives a large enough length scale to be consistent with Gisin’s
experiments [16–19], unless, a smaller value of κ is chosen.

The energy spectrum of the zero-point vacuum energy is
given by

Evac(k) = ~ck3. (20)

The transition wavenumber k0 where we may expect quan-
tum correlations to break can be estinated, in the sense of an
upper-bound, by matching the two energy spectra Evac(k) and
Eturb(k) = Ak−a, which yields

k ≈
(

A
~c

) 1
3+a

≡ k0. (21)

Here we deviate slightly from Winterberg [22] who compared
the cumulative spectra instead. The advantage of this ap-
proach is that we don’t need to make the assumption that these
power laws hold at all scales. Instead, it is sufficient that they
hold around the intersection wavenumber.

Using the evaluation A = (a − 1)κρc2R1−a the transition
wavenumber k0 reads:

k0 =

(
(a − 1)κρc2R1−a

~c

) 1
3+a

(22)

=

[
(a − 1)

κc
~

(
3H2

8πG

) ( c
H

)1−a] 1
3+a

(23)

=

[
3(a − 1)κc2H

8πG~

(
H
c

)a] 1
3+a

. (24)

This result generalizes equation (10) in Winterberg [22]. The
corresponding cross-over length scale reads

λ0 =
2π
k0
= 2π

[
8πG~

3(a − 1)κc2H

( c
H

)a] 1
3+a

. (25)

On a decimal logarithmic scale, the order of magnitude of λ0
is
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log λ0 = log(2π) −
1

3 + a

[
log

3c2H
8πG~

+ log κ + log(a − 1) + a log
(

H
c

)]
. (26)

Let σ~, σG , σc , and σH be the measurement errors of the corresponding constants ~, G, c, and H , and assume for simplicity
that these errors are statistically uncorrelated. The propagated statistical uncertainty is given by:

σ2
λ0
=

[
∂λ0
∂G

σG

]2
+

[
∂λ0
∂c

σc

]2
+

[
∂λ0
∂~

σ~

]2
+

[
∂λ0
∂H

σH

]2
(27)

=

[
1

3 + a
λ0σG

G

]2
+

[
a − 2
3 + a

λ0σc

c

]2
+

[
1

3 + a
λ0σ~
~

]2
+

[
1

3 + a
λ0σH

H

]2
. (28)

Consequently, in terms of the relative standard uncertainties ec = σc/c, eG = σG/G, e~ = σ~/~, eH = σH/H , and eκ = σκ/κ
we obtain(
σλ0

λ0

)2
=

e2
G + (a − 2)2e2

c + e2
~
+ (a + 1)2e2

H + e2
κ

(3 + a)2 . (29)

The 2006 CODATA recommended values for the universal
constants are: c = 2997924583 m/s, G = 6.67428× 10−11 N ·
m2kg−2, ~ = 1.054571628 × 10−34 J · s. The correspond-
ing relative standard uncertainties are: ec = 0, eG = 10−4,
e~ = 5 · 10−5. Furthermore, the recent measurement [46]
of the Hubble constant by NASA’s Chandra X-ray Observa-
tory gives H = 77 km s−1Mpc−1 (with 1Mpc = 3.26 · 106

lightyears, we get H = 2.49 · 10−18 s−1). The uncertainty of

H is eH = 0.15, which is by far the dominant contribution to
σλ0 . We may thus estimate σλ0 practically via:(
σλ0

λ0

)
≈

(a + 1)eH
(a + 3)

. (30)

From these evaluations we also obtain the following empirical
formula for the transition wavelength λ0

log λ0 = log(2π) −
98.045658 − 60.049519a − log κ − log(a − 1)

a + 3
. (31)

The relevant slopes a are: Kolmogorov scaling with intermit-
tency corrections (i.e. a = 1.7), compressible scaling with
γ = 2 (i.e. a = 1.8). It is also worthwhile to consider the ex-
treme case a = 2 which corresponds to the shock-dominated
Kadomtsev-Petviashvili spectrum. For κ = 1, we get the fol-
lowing transition scales: a = 1.7 gives λ0 = (16 ± 1)m, a =
1.8 gives λ0 = (53± 4)m, and a = 2 gives λ0 = (517± 46)m.
The transition scales are increased for κ = 10−5 (Winterberg’s
choice) as follows: a = 1.7 gives λ0 = (185 ± 15)m, a = 1.8
gives λ0 = (587±51)m, and a = 2 gives λ0 = (5172±465)m.
In all cases the transition scale is less than 11km. This sug-
gests that Winterberg’s choice for κ is probably too large.

IV. WHAT κ IS REASONABLE?

To get a good sense of what κ is reasonable, we shall cal-
culate the energy dissipation rate ε in terms of κ. From the
Moisseev-Shivamoggi spectrum we see that A reads:

A = [ργ−1ε2γc−2]1/(3γ−1) . (32)

Here we have assumed that the Kolmogorov constant is unity,
since we shall be doing only order of magnitude calculations.
Solving for ε we obtain

ε =

[
A3γ−1

ργ−1c−2

]1/2γ

=

[
[(a − 1)κρc2R1−a]3γ−1

ργ−1c−2

]1/2γ

(33)

= [[(a − 1)κR1−a]3γ−1ρ2γc6γ]1/2γ (34)

= ρc3[(a − 1)κR1−a](3γ−1)/(2γ) . (35)

This expression can be simplified further because the identity
2γ/(3γ − 1) = a − 1 implies that

(1 − a)(3γ − 1)
2γ

= −1. (36)

Thus the energy dissipation rate can be rewritten as

ε = ρc3R−1[(a − 1)κ]1/(a−1) . (37)

To get some physical understanding, compare the amount
of energy dissipated over the entire universe under the rate ε
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during time t, with the energy that would be released by the
annihilation of N solar masses M . Then, N Mc2 = εR3t, and
it follows that

N =
εR3t
Mc2 =

ρc3R−1[(a − 1)κ]1/(a−1) R3t
Mc2 (38)

=
ρcR2t

M
[(a − 1)κ]1/(a−1) = N0[(a − 1)κ]1/(a−1), (39)

where N0 = ρcR2t/M is a dimensionless constant. The re-
verse relation between κ and N is:

κ =
1

a − 1

(
N
N0

)a−1
. (40)

Using M = 1.98 · 1030kg (the mass of our Sun) and t = 1day,
yields N0 = 1057. The value κ = 10−5 that was proposed by
Winterberg gives N ≈ 1049 for a = 1.7. To get some sense of
what this means, consider the rescaled count

Ns = N
(
`

R

)3
= N

(
`H
c

)3
, (41)

with ` = 8 lightminutes, which is approximately the Earth-
Sun distance. We find Ns ≈ 105 . This means that every
day, within the neighborhood of Earth’s planetary orbit, the
amount of the energy dissipated should be equal to the energy
that would be released by the complete annihilation of 105 so-
lar masses. For a = 1.8 this count increases to Ns = 106

solar masses per day. Such an extraordinary amount of en-
ergy should have been somewhat conspicuous to all life on
Earth. This is why I believe that κ should be chosen to be
much smaller.

As we have mentioned previously, turbulence requires both
a mechanism for injecting energy into the system, and a mech-
anism for dissipating the energy at large wavenumbers. The
question of finding a reasonable choice for the variable κ, is
equivalent to the question of deciding on an upper bound for
the dissipation rate of the turbulent fluctuations of the ZPF
field. Naturally, the underlying problem is understanding the
physical mechanism responsible for dissipating the energy
cascade of ZPF turbulence in the first place.

Rather than speculate on the particulars of the dissipation
mechanism, we can simply assume that the rate of energy out-
put from the Sun is an extremely generous upper bound for
the rate of energy dissipation over a spherical volume around
the Sun that reaches the Earth. Since the Sun has an overall
lifetime of approximately 10 billion years (which is approx-
imately 1012 days), we can further overestimate the rate of
energy output by choosing Ns = 10−12 solar masses per day.
The corresponding κ is a dependent, and it is given by

κ =
1

a − 1

(
Ns

N0

( c
`H

)3)a−1
. (42)

For a = 1.7 , this gives κ = 9 × 10−18 , from which we get for
the transition scale λ0 = 67± 5 km. The situation is improved
if we choose a = 1.8 . Then we get κ = 2× 10−20 which gives
λ0 = 630 ± 55 km. These numbers are extremely generous

underestimates for any reasonable evaluation of the transition
scale and they are both agreeable with Gisin’s experiments
[16–19]. The actual transition scale probably exceeds these
by some orders of magnitude and could be as large as, for
example, the Earth-Moon distance.

V. CONCLUSION AND DISCUSSION

In the present paper I have shown that the model of the ZPF
turbulent fluctuations proposed by Winterberg [22] to account
for the conjectured breakdown of the quantum correlations is
plausible in the sense that it does not disagree with current
experiments. However, it is still unsatisfactory to not have a
clear understanding of where the turbulence gets the energy,
how the energy gets dissipated, and where it ends up after it is
dissipated. This aspect of the model requires further elabora-
tion.

The strange behavior of quantum-mechanical systems that
involves entanglement over large distances is a very tantaliz-
ing mystery. It has led most physicists to the very extreme
position of denying the existence of an objective reality un-
derlying quantum mechanics (the Copenhagen interpretation).
This prompted Einstein to comment in a memorable way on
the non-existence of God’s gambling addiction. A more mild
position along the same lines, which is still nonetheless a par-
tial denial of objective reality, is the “relational interpretation”
[47–49]. The idea here is to deny only as much of objective
reality as is necessary to make the existing problems go away.

Part of the mystery is that we don’t really understand what
the wavefunction really is. Winterberg [20] assumes that the
wavefunction is a genuine physical field that really collapses.
In the same paper he also reviews the early literature on the
subject. It is hard to accept this viewpoint and not expect the
collapse to propagate at a finite speed, or to not be disrupted by
possible noise in the mechanism that propagates it. From the
standpoint of the Bohmian interpretation, the wavefunction of
the combined physical system and the measuring apparatus
never really collapses. Nonetheless, even in the Bohmian in-
terpretation, one models (instead of deriving from first princi-
ples) the Hamiltonian governing the interaction between sys-
tem and apparatus during measurement. Furthermore, one can
expect a breakdown in quantum correlations if there is a small
amount of noise, presumably from subquantum processes, in
the guidance condition that determines the particle velocities
from the wave function.

There is also some controversy over the experiments that
have convinced us of the reality of quantum correlations in the
first place. It is believed by some that these experiments are
susceptible to certain “loopholes” (the locality loophole and
the detection loophole) that prevent them from being conclu-
sive [50–53]. There has been some interest in developing ex-
periments that tried to close the loopholes [54–60]. Nonethe-
less, the controversy continues [61]. It may turn out that, over
increasing distances, these experiments begin to fail gradu-
ally. The “loopholes” could then represent modes of failure
that are “irrelevant” at short distances but become increasingly
relevant over larger distances. Even if the particulars of the
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model proposed by Winterberg turn out to be wrong, this un-
derlying issue of understanding the possible role of distance
with respect to entanglement remains.
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