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mesh refinement are covered; mesh coars-
ening and mesh smoothing are not.

One of the main strengths of the book is
the coverage of bivariate functions over tri-
angulations. These functions are piecewise
linear over the triangulation and are used
to approximate bivariate functions as well
as discrete data. This problem gives rise to
a kind of triangulation which is not con-
sidered in CG: the data dependent triangu-
lation. For this, triangles are not optimal
with respect to a Delaunay criterion but
rather they are constructed such that they
“line up” optimally with a given function.

The chapter on least squares approxi-
mations is excellent. It shows how to re-
alistically approximate huge data sets by
a manageable piecewise linear surface. A
mix of interpolation and approximation is
also covered which is important in several
applications.

The book is meant as a text for a graduate
class on triangulations. Such a class would
fit into the area of scientific computing or
numerical analysis. A course text should
have problems and exercises, and indeed
there are about eight problems at the end
of each chapter, with a good mix of theoret-
ical problems and programming exercises.

For the programming part, students (as
well as other readers) do not have to start
from scratch: a complete software pack-
age is available from a companion web site.
There one can find descriptions of the ba-
sic data structures as well as algorithms
for constrained and unconstrained Delau-
nay triangulations, a triangulation editor,
and various query tools. This reviewer did
not try it out, but knowing that it is based
on highly successful work by the Norwegian
SINTEF organization, there is little doubt
that it is a good product.

REFERENCE

[1] M. de Berg, M. van Krefeld, M. Over-
mars, and O. Schwarzkopf, Compu-
tational Geometry: Theory and Ap-
plications, 2nd ed., Springer-Verlag,
Berlin, 2000.

GERALD FARIN

Arizona State University

Large-Eddy Simulations of Turbulence. By
Marcel Lesieur, Olivier Metáıs, and Pierre Comte.
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Hydrodynamic turbulence is often referred
to as the last open problem of classical me-
chanics. Despite nearly a century of efforts
by the best minds, many questions remain
open, and considerable progress has only
been achieved for the special case of homo-
geneous and isotropic turbulence in three
dimensions [15, 16, 4]. To a lesser extent,
there has also been some progress toward
understanding homogeneous and isotropic
turbulence in two dimensions [11, 20, 5].
On the theoretical front there has been very
limited success in understanding inhomoge-
neous turbulence, compressible turbulence,
and geophysical turbulence.

Our intuitive understanding of turbu-
lence goes back to Richardson [18], Kol-
mogorov [9, 8], and Batchelor [1], who con-
jectured that if energy is injected into the
system by forcing at large scales, then for
sufficiently large Reynolds number, hydro-
dynamic instability results in the transfer
of energy to smaller scales, and for suffi-
ciently small scales this energy is dissipated
by viscosity. In between the forcing length
scale �0, where the energy comes in, and the
dissipation length scale η, where the energy
comes out, there is a range of scales, where
the energy is cascaded by local nonlinear
interactions from wavenumber to wavenum-
ber down the range. This region is called
the inertial range, and it was conjectured
by Kolmogorov that it is governed by uni-
versal statistical principles. The conjecture
was motivated by the notion that at length
scales in the inertial range, the system for-
gets how the energy gets there, and the
only dynamics in the inertial range is the
transfer of energy to smaller scales. This
conjecture leads to predictions about the
energy spectrum E(k) of turbulence as well
as the scaling properties of the statistical
moments of velocity differences.

Kolmogorov’s idea remained a conjecture
until 1962, when it was confirmed exper-
imentally by measurements of the veloc-
ity of deep oceanic currents [6]. It was in
that same year that Kolmogorov [10] and
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Oboukhov [17] suggested that there may
be a small departure from his original pre-
dictions, and further work over the next
decades showed that this was indeed true
[19]. So, one of the open questions that
has received a lot of theoretical attention
is, Why is the energy spectrum E(k) of
turbulence in the inertial range in such sig-
nificant agreement with the predictions of
Kolmogorov’s 1941 theory (K41), and what
is the origin of the deviations from that
theory?

Now, one can argue that we already have
a pretty good theory of hydrodynamic tur-
bulence: the Navier–Stokes equations! All
the physics of the Kolmogorov energy cas-
cade can come from the numerical solu-
tion of the Navier–Stokes equations! The
problem is that a numerical solution of the
Navier–Stokes equations by direct numeri-
cal simulation is not possible for Reynolds
numbers large enough to be of any practi-
cal interest. To the best of my knowledge,
the state of the art in direct numerical sim-
ulations is 40963 resolution [7], performed
by one of the largest supercomputers in
the world, the Earth Simulator in Japan.
Furthermore, for geophysical fluid dynam-
ics and engineering applications one has to
go beyond the Navier–Stokes equations and
consider more accurate models that include
temperature and density. A practical al-
ternative to direct numerical simulation is
large eddy simulation (LES), the topic of
the book under review. The essential idea
is that in practical situations we are inter-
ested in the effect of turbulence on fluid
motions at large scales, so we go ahead and
model the nonlinear dynamics at smaller
scales so that it is not necessary to resolve
them numerically.

The book begins in the preface with a
delightful historical introduction by Jim Ri-
ley. The first chapter gives a very concise
overview of the Kolmogorov theory as well
as a conceptual introduction to LES in gen-
eral. The second chapter gives a very inter-
esting discussion of vortex dynamics which
will be of interest to a wider audience of
turbulence researchers. Emphasis is given
to criteria that can be used to characterize
coherent structures in turbulence. In ad-
dition to researchers of three-dimensional
turbulence, this topic is also relevant to the

investigation of two-dimensional turbulence
as well as geophysical turbulence. Chapter
3 discusses the traditional LES models. An-
other chapter of general interest is Chap-
ter 4, which discusses spectral LES models
such as EDQNM and RNG. These models
are often used, not only for numerical simu-
lations, but also for theoretical arguments,
as in, for example, [14]. There’s also an in-
teresting discussion of the famous “bump”
in the inertial range energy spectrum, for
which a variety of explanations have been
suggested [2, 12]. The remaining chapters
discuss various more modern LES models
and a wide range of engineering and indus-
trial applications of these models. Chap-
ter 5 discusses models for inhomogeneous
turbulence, Chapter 6 discusses structure
function models, and Chapter 7 discusses
models for compressible turbulence. Com-
pressible turbulence is of unique interest
due to its applications in aerodynamics and
aerospace engineering. Finally, Chapter 8
discusses geophysical fluid dynamics, begin-
ning with a very nice conceptual introduc-
tion, and emphasizes the modeling of storm
formation.

For graduate students, I should note that
the book does not give a comprehensive
introduction to the theory of turbulence,
Chapter 1 notwithstanding. One should
also study other textbooks, starting from
Frisch [3] and Lesieur [13], to gain a deeper
appreciation of what is understood and
what is not understood in this very excit-
ing research area, before specializing into
numerics. The book also doesn’t discuss
the numerical implementation of the cor-
responding simulation codes. On the other
hand, the objective of the book, as stated in
the introduction, is to present in detail a va-
riety of LES models, and to give the reader
a thorough understanding of turbulence dy-
namics through numerical results obtained
by these models. The authors have done an
excellent job in achieving these objectives.
Furthermore, they have included material,
such as in Chapter 7, that hasn’t been re-
viewed previously in the literature, as well
as material of general interest to the com-
munity, such as in Chapters 2 and 4. With
its impressive bibliography, it will be an
invaluable resource for students who want
to study the literature of this field, as well
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as researchers who are currently working in
LES.
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This is a readable introduction to using
MATLAB 7 (and the immediate prede-
cessor versions of MATLAB). Much of the
book is devoted to describing how to use the
various computational facilities provided by
MATLAB and only a small proportion to
the language itself and to its mathematical
software library. The authors assume from
the start that the reader has access toMAT-
LAB, Simulink, and the Symbolic Toolbox,


