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1. INTRODUCTION

According to Kraichnan (1967), the study of two-
dimensional turbulence was motivated by the hope that it
would prove a useful model for atmospheric turbulence.
This idea was later encouraged by Charney (1971) who
claimed that quasi-geostrophic turbulence is isomorphic to
two-dimensional turbulence. The question that was then
posed was whether the energy spectrum of the atmosphere
at length scales that are orders of magnitude larger than the
depth of the atmosphere can be explained in terms of the
theory of two-dimensional turbulence. This question con-
tinues to be debated today.

Early observations suggested that the energy spec-
trum of the atmosphere follows a k−3 power law behavior
(see Tung & Orlando (2003b) for review) consistent with
an enstrophy cascade. An analysis of wind and temper-
ature measurements taken during the Global Atmospheric
Sampling Program by Nastrom & Gage (1984) showed that
there is a robust k−3 spectrum extending from approxi-
mately 3,000 km to 1,000 km in wavelength (the “synoptic
scales”) and a robust k−5/3 spectrum extending from 600
km down to a few kilometers (the “mesoscales”). A theoreti-
cal analysis by Gage & Nastrom (1986) showed that the ob-
served spectrum indeed represents quasi-two-dimensional
turbulence. Recent measurements (Cho, Newell & Bar-
rick, 1999a; Cho, Zhu, Newell, Anderson, Barrick, Gregory,
Sachse, Carroll & Albercook, 1999b; Marenco, Thouret,
Nedelec, Smit, Helten, Kley, Karcher, Simon, Law, Pyle,
Poschmann, Wrede, Hume & Cook, 1998) have confirmed
the k−5/3 part of the atmospheric energy spectrum, and
it has also been reproduced in General Circulation Model
simulations (Koshyk & Hamilton, 2001; Koshyk, Hamilton &
Mahlman, 1999).

2. THE DOUBLE CASCADE THEORY

It was conjectured by Tung & Orlando (2003a) that the
observed atmospheric energy spectrum results from the
downscale cascade of enstrophy and energy injected at
the large scales by baroclinic instability and dissipated at
the smallest length scales. If ηuv is the downscale enstro-
phy flux and εuv is the downscale energy flux, it was sug-
gested that the transition from -3 slope to -5/3 slope oc-
curs at the transition wavenumber kt with order of mag-
nitude estimated by kt =

√
ηuv/εuv. Tung & Orlando

(2003a) have also demonstrated numerically that a two-
layer quasi-geostrophic channel model with thermal forcing,
Ekman damping, and hyperdiffusion can reproduce the at-

mospheric energy spectrum. The diagnostic shown in fig-
ure 7 of Tung & Orlando (2003a), clearly shows both the
constant downscale energy and enstrophy fluxes coexisting
in the same inertial range. Furthermore, recent measure-
ments and data analysis by Cho & Lindborg (2001) have
confirmed the existence of a downscale energy flux and
estimate ηuv ≈ 2 × 10−15s−3 and εuv ≈ 6 × 10−11km2s−3.
From these estimates we find the mean value of the tran-
sition scale kt =

√
ηuv/εuv ≈ 0.57 × 10−2km−1 and

λt = 2π/kt ≈ 1 × 103km which has the correct order of
magnitude.

This theory is contrary to the widely accepted mis-
conception that the argument by Fjørtøft (1953) forbids a
downscale energy flux in two-dimensional turbulence, and
through the isomorphism theorem of Charney (1971) also
in quasi-geostrophic turbulence. This misconception has
been clarified by Merilees & Warn (1975) and Tung & Welch
(2001). In fact, as has been pointed out by previous au-
thors (Borue, 1994; Eyink, 1996), as long as the dissipation
terms at large-scale and small scales have finite viscosity
coefficients and the inertial ranges exist, the downscale en-
strophy flux will be accompanied by a small downscale en-
ergy flux, and the upscale energy flux will be accompanied
by a small upscale enstrophy flux.

3. SUPERPOSITION PRINCIPLE

Gkioulekas & Tung (2005a) have shown that these small
fluxes are associated with a subleading downscale energy
cascade and a subleading inverse enstrophy cascade that
contribute linearly to the total energy spectrum in addition to
the contributions from the dominant cascades. As a result,
in the downscale inertial range, the total energy spectrum
E(k) has the following three contributions:

E(k) = E(ε)
uv (k) +E(η)

uv (k) + E(p)
uv (k), ∀k�0 � 1, (1)

where E(ε)
uv (k), E(η)

uv (k) are the contributions of the down-
scale energy and enstrophy cascade, given by

E(ε)
uv (k) = auvε

2/3
uv k

−5/3
D

(ε)
uv (k�(ε)uv )

E(η)
uv (k) = buvη

2/3
uv k

−3[χ+ ln(k�0)]
−1/3

D
(η)
uv (k�(η)

uv ),
(2)

with D
(ε)
uv and D

(η)
uv describing the dissipative corrections.

The scales �(ε)uv ,�(η)
uv are the dissipation length scales for the

downscale energy and enstrophy cascade. Finally, E (p)
uv (k)

is the contribution from the effect of forcing and the sweep-
ing interactions. The latter can become significant via the
violation of statistical homogeneity caused by the bound-
ary conditions (see Gkioulekas & Tung (2005a) for details).
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Thus, in the inertial range where the effect of forcing and
dissipation can be ignored, the energy spectrum will take
the simple form

E(k) ≈ auvε
2/3
uv k

−5/3 + buvη
2/3
uv k

−3[χ+ ln(k�0)]
−1/3. (3)

It should be emphasized that the formation of cascades ob-
servable in the energy spectrum is by no means guaran-
teed. There are two prerequisites that need to be satisfied:
first, the contribution of the particular solution E (p)

uv (k) has
to be negligible both downscale and upscale of the injection
scale, i.e.

E(p)
uv (k) � E(ε)

uv (k) +E(η)
uv (k), ∀k�0 � 1

E
(p)
ir (k) � E

(ε)
ir (k) +E

(η)
ir (k), ∀k�0 � 1.

(4)

Second, the dissipative adjustment D
(η)
uv (k�

(η)
uv ) and

D
(ε)
uv (k�

(ε)
uv ) of the homogeneous solutions has to be such

that it does not destroy the power law scaling in the iner-
tial range. Furthermore, the dissipation scales � (η)

uv and �(ε)uv

have to be positioned so that the incoming energy and en-
strophy can be dissipated.

This principle of linear superposition of the enstrophy
cascade and the energy cascade is similar to the super-
position of isotropic and anisotropic contributions to the
generalized structure functions (Arad, L’vov & Procaccia,
1999). Furthermore, a similar principle of superposition
has been proposed to explain the mechanism behind inter-
mittency corrections in the direct energy cascade of three-
dimensional turbulence (Belinicher, L’vov, Pomyalov & Pro-
caccia, 1998a; Belinicher, L’vov & Procaccia, 1998b; L’vov
& Procaccia, 1998); the same idea is implicit in the multi-
fractal model of Frisch (1995)

4. DANILOV INEQUALITY

In two-dimensional turbulence, the energy flux Π E(k) and
the enstrophy flux ΠG(k) are constrained by

k2ΠE(k) − ΠG(k) < 0, (5)

for all wavenumbers outside of the forcing range. This in-
equality was communicated to us by Danilov (Gkioulekas
& Tung, 2005b) and it implies that the contribution of the
downscale energy cascade to the energy spectrum is over-
whelmed by the contribution of the downscale enstrophy
cascade and cannot be seen visually on a plot. This re-
sult was conjectured earlier by Smith (2004) who debated
the theory of Tung & Orlando (2003a) by arguing that the
downscale energy cascade can never have enough flux to
move the transition wavenumber kt into the inertial range.
The obvious counterargument is that the two-layer model
is a different dynamical system than the two-dimensional
Navier-Stokes equations, and although the superposition
principle is a deep mathematical result that is valid in both
cases, it is not obvious that the Danilov inequality cannot be
violated in the two-layer model (Gkioulekas & Tung, 2005b;
Tung, 2004).

In the two-layer model forcing is due to thermal heat-
ing, which injects energy directly into the baroclinic part of
the total energy. The two-layer fluid sits atop of an Ekman

boundary layer near the ground, which introduces Ekman
damping in the lower layer (Holton, 1979) but not in the up-
per layer. Following Salmon (1998), one may then derive
the governing equations for the model, which read:

∂ζ1
∂t

+ J(ψ1, ζ1) = d1 + f1 (6)

∂ζ2
∂t

+ J(ψ2, ζ2) = d2 + f2, (7)

where ζ1 is the potential vorticity of the top layer and ζ 2 the
potential vorticity of the bottom layer. The relationship be-
tween the vorticities ζ1 and ζ2 and the streamfunctions ψ1

and ψ2 reads:

ζ1 = ∆ψ1 − k2
R

2
(ψ1 − ψ2), (8)

ζ2 = ∆ψ2 +
k2

R

2
(ψ1 − ψ2), (9)

Here, kR is the Rossby radius of deformation wavenumber
and it is taken as a given constant. The dissipation terms
d1 and d2 include momentum dissipation of relative vortic-
ity, ∆ψi, in each layer, and Ekman damping from the lower
boundary layer, and they read:

d1 = ν(−∆)p+1ψ1, (10)

d2 = ν(−∆)p+1ψ2 − νE∆ψ2. (11)

The two inviscid quadratic invariants are the total energy E
and potential enstrophy G, defined as

E ≡ 1

2

∫∫
−(ψ1ζ1 + ψ2ζ2) dxdy (12)

G ≡ 1

2

∫∫
(ζ2

1 + ζ2
2 ) dxdy (13)

Tung & Gkioulekas (2005) have shown that it is the asym-
metric presence of Ekman damping on the bottom layer but
not the top layer which causes the violation of the Danilov
inequality in the two-layer model. As a result, the top layer
has more energy than the bottom layer, as is realistic in
the atmosphere, and provided that the difference in energy
between the two layers is large enough, the downscale
energy cascade will be observable in the energy spec-
trum. It should be noted that the simulation of Tung & Or-
lando (2003a) has already shown quite convincingly that it
is possible to have an observable downscale energy cas-
cade. The only issue that required clarification was to un-
derstand why it happens in the two-layer model but not in
two-dimensional turbulence.

5. CONCLUSION

We have shown that for the case of finite Reynolds number,
the enstrophy cascade of two-dimensional turbulence is ac-
companied with a hidden downscale energy cascade. Both
cascades provide contributions to the energy spectrum that
combine linearly, despite the nonlinearity of the governing
Navier-Stokes equations. A mathematical constraint pre-
vents the contribution of the downscale energy cascade
from becoming dominant in the inertial range. However, in
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a two-layer model, this mathematical constraint is violated.
The violation is caused by the baroclinicity induced by the
presence of Ekman damping on the bottom layer but not
the top layer.
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