
Algorithms with Matlab

Eleftherios Gkioulekas
Mathematical Sciences Computing Center

University of Washington

December, 1996

1 Introduction

Numerical analysis is the branch of mathematics whose goal is to figure out how computers can
solve problems in a way that’s fast, efficient and accurate. Linear algebra is a large part of numerical
analysis, because many problems eventually reduce to one of the following linear algebra problems:
• We want to solve a system of linear equations.
• We want to solve an eigenvalue problem.
For this reason, researchers think of these problems as “elementary” the way you would think of
addition and multiplication elementary enough to use a calculator. Likewise, researchers will use a
“calculator” in some sense of the word. Matlab can serve as such a calculator. Beyond Matlab you
have the option of using software libraries. Such libraries exist for most commonly used languages
like C++ (e.g. LAPACK++) and FORTRAN (e.g. LINPACK, EISPACK). For more information about the
latter visit the Netlib repository at http://www.netlib.org/ or send email to netlib@ornl.gov
with one line that says send index.

In this tutorial we are assuming that you have read and understood the “Programming with
Matlab” tutorial. The purpose of this tutorial is to review the mathematical concepts of linear
algebra to give you a feel for the “big picture” and at the same time show you how you can
experiment with these concepts using Matlab. As you will see, these problems are not quite
“elementary”

2 Basic concepts

A complex matrix A of size n×m is a mapping

A : {1, . . . , n} × {1, . . . ,m} 7→ C

where C is the set of complex numbers. In other words, a matrix will take two integers i and j such
that 1 ≤ i ≤ n and 1 ≤ j ≤ m and return back a complex number. That number we denote with
aij (we use the lowercase letter). The set of all n×m complex matrices is denoted as Cn×m. If we
restrict ourselves to real values only, then we are dealing with real matrices and the set of these is

1

denoted as Rn×m. Finally, for the sake of notation, we will denote the set of all integers from 1 to
n with the symbol:

[n] = {1, . . . , n}

In Matlab all data structures are matrices. In particular ordinary numbers are 1 × 1 matrices,
vectors (or “arrays” in general) are 1 × n matrices. The Programming with Matlab tutorial has
covered the basics of how all these data structures are setup in Matlab.

There exist various operations defined for matrices:

Definition 1 (a) Let A,B ∈ Cn×m be two matrices. The sum and difference of these matrices is:

C = A + B ⇐⇒ cij = aij + bij , ∀(i, j) ∈ [n]× [m]
C = A−B ⇐⇒ cij = aij − bij , ∀(i, j) ∈ [n]× [m]

(b) Let A ∈ Cn×m and B ∈ Cm×p. The product of these matrices is

C = AB⇐⇒ cij =
m∑
k=1

aikbkj , ∀(i, j) ∈ [n]× [p]

(c) The transpose of a matrix A ∈ Cn×m is:

B = AT ⇐⇒ bij = aji, ∀(i, j) ∈ [n]× [m]

(d) The hermitian or complex conjugate transpose is:

B = AH ⇐⇒ bij = a∗ji, ∀(i, j) ∈ [n]× [m]

Moreover, there are the following important classes of matrices that we will see mentioned later on:

Definition 2 A matrix A ∈ Cn×n is:
(a) symmetric ⇐⇒ A = AT

(b) hermitian ⇐⇒ A = AH

(c) orthogonal ⇐⇒ AAT = ATA = I
(d) unitary ⇐⇒ AAH = AHA = I
(e) normal ⇐⇒ AAH = AAH

For real matrices, hermitian means the same as symmetric, unitary means the same as orthogonal,
and both of these distinct classes are normal.

In Matlab matrices that are stored in A and B can be added or multiplied quite simply by
saying:

C = A + B;
C = A - B;
C = A * B;

2

The transpose and the hermitian of a matrix can be obtained by

B = A.’; % transpose
B = A’; % hermitian

The usual rules apply to these operations except for the following:

• Multiplication is not commutative for all matrices. That is there exist matrices such that

AB 6= BA

• Square matrices don’t always have a multiplicative inverse. A multiplicative inverse is defined
by:

B = A−1 ⇐⇒ AB = BA = I

The first exception is not very interesting, but the second one is related to one of the two “Big
Questions” in linear algebra: Solving linear systems of equations.

3 Matrix inversion is not easy

Suppose that A ∈ Cn×n is a square matrix and x,b ∈ Cn×1 are vectors (actually, column matrices).
If A and b are known, then we want to find an x such that

Ax = b

If A has an inverse then x is unique and given by:

x = A−1b

otherwise x will either not exist, or will not be unique.
In order for a matrix to have an inverse, the matrix has to be square. Given that, the existence

of matrix inverses is determined by a quantity called determinant. The determinant is defined in
terms of permutations so we must explain what these are first. A permutation σ ∈ Sn of order n is
a bijection that maps:

σ : [n] 7→ [n]

The set of permutations of order n is written as Sn and it has n! elements. In simple terms, take
an ordered set of integers say (1, 2, 3, 4, 5) and reorder it to (4, 1, 3, 2, 5). Our concept of how we
reordered an ordered set of things is what is being modeled by permutations. There are as many
permutations as there are ways in which we can reorder things. One way to represent permutations
is by showing reorderings of (1, 2, . . . , n). For example the permutations of order 3 are:

S3 = {(1, 2, 3), (2, 3, 1), (3, 1, 2), (1, 3, 2), (3, 2, 1), (2, 1, 3)}

3

Permutations have an important property called parity. If σ ∈ Sn is a permutation then we define
the parity to be equal to:

s(σ) = sign
n−1∏
j=1

n∏
i=j+1

(σ(i)− σ(j))

When the parity is +1 we talk of even permutations. When it is -1 we talk of odd permutations.
You can verify that the even permutations in S3 are

{(1, 2, 3), (2, 3, 1), (3, 1, 2)}

and the odd ones are
{(1, 3, 2), (3, 2, 1), (2, 1, 3)}.

Given these definitions, the determinant of a matrix A ∈ Cn×n is defined by:

det(A) =
∑
σ∈Sn

s(σ)
n∏
i=1

ai,σ(i)

Unfortunately, this is not the most useful definition in terms of numerics. There are n! terms
to add, and every one of these terms involves n multiplications. This will overwhelm any computer
soon enough, not to mention round-off errors. You have probably seen many recursive definitions
of the determinant in other courses. Those are not helpful either because they also involve work
that increases by n!.

Most computations of determinants are based on the following theorem:

Theorem 1 Let A,B ∈ Cn×n be two square matrices. Then,

det(AB) = det(A) det(B)

We write our matrix as a product of matrices whose determinants are easy to compute and apply
the theorem. More on this later.

Now the reason why determinants are important is because of this theorem:

Theorem 2 Let A ∈ Cn×n be a square matrix.

A−1exists⇐⇒ det(A) 6= 0

Notice by the definition that the determinant varies continuously as you vary one of the elements of
the matrix. This means that determinants are quite reasonable functions of n2 variables which has
the following implication: Most of the time, the determinant will be quite nonzero and an inverse
will exist. Sometimes, the determinant will be very close to zero and an inverse will exist but will
be so sensitive to the original matrix that it will be hard to compute. In this case we say we have
an ill-conditioned matrix. Finally, on very rare matrices the determinant will be exactly zero and
then the inverse just doesn’t exist. In this case we have a singular matrix. These last two cases
cause trouble from a numerical point of view. To make matters worse, deciding numerically which
case is which is not trivial either.

In Matlab computing determinants and inverses may appear innocuously simple. If A is your
matrix then

4

x = det(A);

will compute the determinant and

B = inv(A);

will return the inverse. However, for ill-conditioned matrices, inv will not give you the correct
inverse. Sometimes Matlab will detect this, but not always.

There exists a class of square matrices H(n) called the Hilbert matrices that are defined by:

hij =
1

i+ j − 1

The matlab command hilb will return a Hilbert matrix of any size. That is:

A = hilb(10);

will return a Hilbert matrix of size 10. These matrices have two properties: Inverting them is very
sensitive to floating point error but there is an analytic equation that gives their exact inverse! The
inverse is given by

h̃ij = h̃ji =
rij

i+ j − 1
,∀ 1 ≤ i ≤ j ≤ n

where rij is defined for j > i by the following recurrences:
ri,i = p2

i

rij = −(n− j + 1)(n+ j − 1)
(j − 1)2

ri,j−1, j > i

p0 = n

pi =
(n− i+ 1)(n− i− 1)

(i− 1)2
pi−1, 1 ≤ i ≤ n

This computation is being done by the invhilb command. For example, for n = 10 you would say:

A = invhilb(10);

We can use these matrices to show you the limitations of the inv command. Try the following
program:

for i = 1:20
x = max(max(abs(invhilb(i)-inv(hilb(i)))));
fprintf(1,’For size i = %d deviation is x = %g \n’,i,x);
end

This program will progressively increase the matrix size and attempt to invert the matrix.
Then it will compare it with the exact known inverse and report the worst value of the element by
element difference. The output of the program is:

For size i = 1 deviation is x = 0
For size i = 2 deviation is x = 3.55271e-15
For size i = 3 deviation is x = 6.82121e-13
For size i = 4 deviation is x = 5.96629e-10

5

For size i = 5 deviation is x = 1.43918e-08
For size i = 6 deviation is x = 0.000447804
For size i = 7 deviation is x = 0.436005
For size i = 8 deviation is x = 35.4408
For size i = 9 deviation is x = 395134
For size i = 10 deviation is x = 3.657e+08
For size i = 11 deviation is x = 3.17671e+11

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 3.659249e-17

For size i = 12 deviation is x = 2.81767e+14
[....etc....]

Notice that the deviation managed to increase all the way to 3.657e+08 before Matlab started
giving out warnings. Not good! There are two or three sets of errors involved here:
• The errors caused by representing hilb(n)
• The errors caused in the matrix inversion process
• The errors, if any, in representing invhilb(n)
It turns out that the first of these, which involves representing fractions like 1/3 and 1/5 in floating-
point, is the most significant. This error is propagated throughout the matrix inversion and is
significantly amplified.

The moral of the story: Sometimes computers don’t answer the question you think you are
asking them. You think you are asking the computer to find the inverse. When you use the inv
function, you are asking it to apply an algorithm which you believe will give you the inverse.

Exercise 1 Write a Matlab function that implements the recurrence formula for the inverse Hilbert
matrix. Compare your results with the invhilb command.

Exercise 2 Can we trust the det function in evaluating the determinant for the Hilbert matrix?
Look at the errors in computing: det(hilb(n))*det(invhilb(n)) and det(hilb(n)*invhilb(n))
Which is more accurate? Why?

4 Algorithms related to solving linear systems

After spending all this time talking about inverses, we need to tell you a little secret: we rarely
ever compute inverses explicitly, because even if we did, multiplying them with other vectors or
with the original matrix itself is susceptible to many floating point errors. In most problems our
main goal is to solve the system

Ax = b

and we can do this without computing the inverse. The purpose of our earlier discussion was to
alert you that there are difficulties we have to overcome: it’s hard to compute determinants, so

6

Cramer rule is out of the question; matrices can be nasty and matrix inversion can be error-prone.
Now we come to the techniques that help us deal with these difficulties.

The techniques are quite involved, and Matlab wants to hide the complexity for the user.
Therefore, Matlab uses the backslash operator to do the job

x = A\b;

This will work provided that the matrix A is well-behaved. However, in order for Matlab to be
flexible, they provide you with further access to particular techniques that you may want to use to
do matrix inversions by yourself.

4.1 LU decomposition

One technique is with the LU decomposition. The idea here is that we write A as the product of
a lower triangular matrix L with 1 in the diagonal, and an upper triangular matrix U. Then we
reduce our problem to the following two systems of equations:

Ax = b⇐⇒ LUx = b⇐⇒
{

Ly = b
Ux = y

These systems can be solved directly without having to find the inverse. As a matter of fact, given
the LU decomposition of a matrix you can find the inverse of A by rewritting the equation

AA−1 = I

as n linear systems involving the unknown columns of A−1. Also, since the diagonal elements of L
are 1 and since U is upper triangular, the determinant of A can be determined by:

det(A) = det(L) det(U) = det(U) =
n∏
i=1

uii

The work involved in computing the LU decomposition increases by O(n3) which is a vast improve-
ment over O(n!). In Matlab, the LU decomposition can be computed with the command:

[L,U] = lu(A);

Unfortunately, there is a wrinkle with this method as well as with the matrix L returned by Matlab
that has to do with the LU decomposition existance theorem. That theorem states:

Theorem 3 Let A ∈ Cn×n be a square matrix and Ak ∈ Ck×k be the k × k submatrix of A
containing the upper left part. Then,

A has an LU decomposition⇐⇒ ∀k ∈ [n] : det(Ak) 6= 0

There are many cases where the condition of this theorem will almost fail: one of the submatrix
determinants will be close to zero. The workaround is to permute the rows and columns of A in

7

such a way so that these determinants turn out okey. When you do that you essentially find the
LU decomposition of a new matrix PA where P is a permutation matrix. Permutation matrices
have one 1 located in each row and column and when they are applied to another matrix, they
permute the other matrix’s rows or columns. Since permutations are easy to undo, P is yet-another-
matrix that’s easy to invert: It’s inverse is P−1 = PT . When you run the matlab function lu as
quoted above, it will not really return an actual lower triangular matrix in L. Instead it will do the
decomposition PA = LU and return back P−1L and U!. If you don’t like that, you can call lu like
this:

[L,U,P] = lu(A);

Now, L will be an actual lower triangular matrix and P will be a permutation matrix, and the
actual decomposition will be

A = PTLU

The solution to our system of linear equations then is:

x = U−1L−1Pb

Now we have a problem: Matlab doesn’t have documented facilities for applying L−1 and
U−1 with the well-known back/forward-substitution algorithms. Typically, if you want to solve a
system of equations with this method , the backslash operator will do it all in one scoop. However,
suppose that you want to solve many systems of linear equations in which A is the same and only
b vary. Then, you can have a more efficient program going if do the LU decomposition once and
use the L,U,P arrays on each different vector b. You can write your own function to do that. Then
again, if efficiency is such a concern, then perhaps it’s time to switch to a programming language.

4.2 QR decomposition

Another technique is the QR decomposition. This method will decompose A to an orthogonal
matrix Q and a right-triangular matrix R. That Q is orthogonal means that:

Q−1 = QT

which makes it easy to invert. Also R can be easily inverted being a right-triangular matrix, so by
rewriting a linear-systems problem as

Rx = QTb

we can solve it, following the footsteps of the LU technique. You can also compute determinants.
It turns out that

det(Q) = 1

so

det(A) = det(R) =
n∏
i=1

rii

8

The QR method requires twice as many operations as LU, so LU is more commonly used. However,
as you will learn in your numerical methods course, there are many other instances where QR
decompositions can come in handy. One application of QR decompositions is in obtaining an
orthonormal basis to a vector space. If you think of the columns of A and the columns of Q as
vectors, then both sets of vectors span the same space. The difference is that the vectors obtained
through matrix Q are orthogonal with one another.

To do a QR decomposition in Matlab call:

[Q,R] = qr(A);

This will produce two matrices Q and R such that A = QR. Matlab provides a few variations to
this call:

[Q,R,P] = qr(A);

will produce a permutation matrix P, and return in Q and R the QR decomposition of AP. The
permutation matrix is chosen so that the absolute values of the diagonal elements |rii| is decreasing
as i increases.

4.3 Cholesky decomposition

When a matrix A ∈ Rn×n is symmetric and positive definite it has a more efficient triangular
decomposition. Symmetric means that

aij = aji,∀ i, j ∈ [n]

and positive definite means that
xTAx > 0∀x ∈ Rn×1

If both conditions are true, then A can be decomposed to

A = RTR

where R is an upper triangular matrix and RT is the transpose. In complex matrices, you must use
the complex conjugate transpose instead. The Cholesky algorithm will attempt to compute this
decomposition. The algorithm can self-detect when it fails, and in practice this ability is used to
establish whether symmetric matrices are positive definite. In Matlab, you can invoke the Cholesky
algorithm with the chol command:

R = chol(A);

If the algorithm fails, Matlab will issue a warning. You can suppress the warning by calling chol
like this:

[R,p] = chol(A)

If p is non-zero, then this means that the cholesky algorithm failed and the original matrix is not
positive definite. Positive definiteness is an important property. Many theorems in linear algebra
are known for positive definite matrices, and many times it is useful to be able to decide numerically
whether a symmetric matrix is positive definite. Also, when we know that the matrix A in a system
Ax = b is positive definite, we can use this method to solve the system; it would be faster than
LU.

9

4.4 SVD decomposition

To conclude, another very useful decomposition is the SVD decomposition. The theorem behind
SVD decompositions states:

Theorem 4 If A ∈ Rm×n then there exist two orthogonal matrices U ∈ Rm×m and V ∈ Rn×n
such that

UTAV = diag(σ1, σ2, . . . , σp) ∈ Rm×n

where p = min{m,n} and σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0.

To compute the SVD decomposition of a matrix A in matlab you use the svd function as follows:

[U,S,V] = svd(A);

where S will be a diagonal matrix containing the σi. If you only want to look at the σi, then do

s = svd(A);

This call will return an array containing just the σi. Given the SVD decomposition, the inverse of
a square nonsingular matrix A can be computed with:

A−1 = V · [diag(1/σj)] ·UT

and the solution to a linear system Ax = b becomes:

x = V · [diag(1/σj)] ·UTb

The reason why SVD is important is because it can diagnose two pathologies: ill-conditioning and
singularity. That you can tell from the condition number which is defined by:

cond(A) =
max{σi}
min{σi}

When the condition number is too large, i.e. close to 1/ε where ε is the floating point accuracy, then
we say that the matrix is ill-conditioned. When this happens, merely computing the equation above
for the inverse is very susceptible to floating point errors. One remedy is to increase the floating
point accuracy to that needed. However, there is a theorem that suggests a better approach. That
theorem says that if you take those 1/σi that are really bad and replace them with zero and then
do the equation above as if nothing is wrong, then you can get a much more accurate answer than
both the SVD solution and a direct method; accurate in the sense that the residual:

r = |Ax− b|

will be much smaller than the numerical result yielded by a direct method or the ordinary SVD
method. It takes some discretion to decide which 1/σi to kill, and whether you get the desirable
accuracy in the residual. A recommended tolerance is to eliminate those σi such that

σi < ε ·max{m,n} ·max{σi}

10

where m and n are the size of A, and ε the floating point precision. The matrix A−1 obtained by
the expression above in which the small σi have been eliminated is called the pseudoinverse matrix.
You can use the pinv command to compute the pseudoinverse using the SVD method. One way
to invoke this command is by saying:

B = pinv(A);

in which case the tolerance mentioned above is used. Alternatively, you can specify your own
tolerance tol by invoking the pinv command like this:

B = pinv(A,tol);

It is important to understand that the pseudoinverse matrix is not really the same as the
inverse matrix. The point is that in an ill-conditioned problem, we are going to get a more accurate
answer if we use the pseudoinverse, rather than if we attempt to compute the inverse and use that
instead.If, in the worst case scenario, the residual we get by this method is still not good enough
then your other option is to increase your floating point precision. To do this, assign the variable
eps in matlab to your desired precision. For example, to get quad precision set:

eps = 1e-32;

When the condition number is infinite, that is when some σi = 0 exactly, the matrix has
no inverse. Unfortunately, numerics being what it is, if you have an actual singular matrix, you
probably won’t see exact zeroes because of round-off error. So, it takes some discretion to decide
whether you are dealing with a singular matrix or an ill-conditioned matrix as well.

Matlab has a special command for estimating condition numbers:

c = cond(A);

The cond will compute the condition number. There are two other algorithms for condition esti-
mation that can be invoked by the commands condest and rcond. See the help pages for more
information.

The orthogonal matrices U and V can also give us their share of information. If the n
columns of A are vectors spanning a vector space of interest, then the columns of U will contain
an orthogonal set of vectors spanning the same space. Nothing special so far, since you can do
this with the QR decomposition too. The bonus is that with SVD you can detect whether the
dimensionality of the vector space is the same as the amount of vectors that you use to span the
space. If any zeroes (or nearly zeroes) occur in one of the σi then this means that the vector space
was not in fact n-dimensional. To deal with that case, you just eliminate the columns in U that
correspond to the ill-behaved σi. The vectors in U that remain will be an orthogonal basis for the
vector space.

An equivalent way of stating the previous paragraph is to say that SVD can be used to
determine the rank of the matrix A. Rank is the dimensionality of the vector space spanned by
the columns of a matrix. 1 We say that a square matrix A ∈ Rn×n is full rank if it has rank n.

1it doesn’t actually make a difference if you pick the rows of the matrix. A theorem tells you that you will get the
same number, always

11

Many theorems in linear algebra apply only on matrices that are full-rank, so from the numerical
perspective we want to have a way to diagnose matrices that are not full rank. SVD provides us
with a method to do that.

In addition to rank, we can also determine the null space of a matrix A ∈ Cn×m. The null
space is defined to be

null(A) = {x ∈ Cm×1 : Ax = 0}
that is, the set of vectors x for which Ax is zero. For non-singular matrices, the null-space consists
only of x = 0. For matrices of rank(A) = r < m the last m− r columns of V give an orthonormal
basis for the nullspace. Finally for matrices of rank(A) = r > m the null space is null(A) = {0}

These concepts become useful when you are trying to solve linear systems

Ax = b

in which A ∈ Cn×m is no-longer a square matrix. In such cases, if A actually has a null space,
to find the set of x that satisfy the linear system, we find one particular solution x0. Then full
solution set becomes:

{x ∈ Rm×1 : Ax = b} = {x + x0 : x ∈ null(A)}

In practice, we don’t care to know the full solution space. Instead we want to find the unique x
that minimizes the residual

r(x) = |Ax− b|
The backslash operator will solve this problem. To find the x that minimizes the residual do:

x = A\b;

Exercise 3 Write a matlab function which will accept a set of vectors spanning a linear space
in the form of a matrix, and optionally a threshold for the σi. Your function should return an
orthogonal set of vectors that span the same space, but take care to remove the vectors whose σi
falls bellow the threshold.

5 Eigenvalue Problems

A completely different type of problem that shows up in many forms is the eigenvalue problem. Let
A ∈ Cn×n be a square matrix, x ∈ Cn×1 be a vector and λ ∈ C be a complex number. We want to
find the pairs (λ,x) that satisfy the linear equation:

Ax = λx

The set of λ for which corresponding x exist are the eigenvalues of the matrix. The x that
correspond to each eigenvalue form the corresponding eigenvector space. Individual members of
that space are called eigenvectors. Finding the eigenvalues, and then from these the eigenvectors
is the problem at hand.

One approach to solving this problem is to find the eigenvalues first, and then from them, find
the eigenvectors. To find the eigenvalues we use this theorem:

12

Theorem 5 Let A ∈ Cn×n and λ ∈ C.

λis an eigenvalue of A⇐⇒ det(λI−A) = 0

It turns out that if you expand that determinant, you obtain a polynomial

p(λ) = det(λI−A) =
n∑
k=1

akx
k

which is called the characteristic polynomial, so to find the eigenvalues we need find the roots of
that polynomial. For matrices up to size n = 4 there are direct methods that will give you the
solution. So for such matrices, the eigenvalue problem is trivial. For larger polynomials there are
no direct methods, and in many cases there is no simpler way to solve polynomial equations except
by reducing them to eigenvalue problems! In fact, it is quite common to solve even 3rd order and
4th order polynomials this way.

In Matlab we usually solve eigenvalue problems with the eig function. The call:

e = eig(A);

will return a vector containing the eigenvalues of A. The call:

[V,D] = eig(A);

produces a diagonal matrix D of eigenvalues and a full matrix V whose columns are the corresponding
eigenvectors.

The grand strategy of all eigenvalue algorithms is based on the fact that the matrix Z−1AZ
has the same eigenvalues as A for all non-singular Z. What we want to do then is to apply
the appropriate sequence of Z matrices that will diagonalize our matrix A. Then, the diagonal
elements of the diagonal matrix will also be it’s eigenvalues. Of course, this is easier said than
done. In what follows, we will sketch out how this is done, and introduce you to all the related
nifty Matlab functions. You can use these functions to operate on a lower level, and experiment
with the eigenvalue algorithms more directly.

5.1 Hessenberg Forms

The first thing we want to do to our matrix A is bring it to the so-called Hessenberg Form. The
Hessenberg form of a matrix is zero bellow the first lower subdiagonal and non-zero everywhere
else. The existence theorem for Hessenberg forms says that:

Theorem 6 If A ∈ Cn×n then there exists a unitary P ∈ Cn×n such that

PHAP = H

where H is such that
hij = 0,∀(i, j) : i > j + 1

13

The theoretical emphasis here is that we can bring our A to this funky form by applying a sequence
of unitary Z matrices. In your numerical analysis course you will learn that this guarantees the
numerical stability of these repeatitive transformations.

In Matlab, you can get this far by applying the hess function:

H = hess(A);

will return the matrix H. If you also want to look at P, call:

[P,H] = hess(A);

5.2 Schur Decompositions

The next step is to converge to the Schur decomposition. Here are the relevant existence theorems:

Theorem 7 If A ∈ Cn×n then there exists a unitary Q ∈ Cn×n such that

QHAQ = T = D + N

where D = diag(λ1, λ2, . . . , λn) and N ∈ Cn×n is strictly upper triangular. Furthermore, Q can be
chosen so that the eigenvalues λi appear in any order along the diagonal.

This decomposition is called the Complex Schur Form. There is another one for real matrices:

Theorem 8 If A ∈ Rn×n then there exists an orthogonal Q ∈ Rn×n such that

QTAQ =

T11 T12 · · · T1m

0 T22 · · · T2m
...

...
. . .

...
0 0 · · · Tmm

where each Tii is either a 1 × 1 matrix which is an eigenvalue of A or a 2 × 2 matrix whose
eigenvalues are also eigenvalues of A.

This one is called the Real Schur Form.
Matlab provides with a function called schur. The call

[Q,T] = schur(A)

will return the real schur form if the matrix is real, and the complex schur form if the matrix is
complex. If you don’t want the real schur form, then the function rsf2csf will convert the inputted
real schur form to complex:

[Q,T] = rsf2csf(Q,T);

How do we get to Schur from Hessenberg form? The simplest way to do it is with the so called
QR algorithm:

14

1. First of all, we get the Hessenberg form of A:

H0 = PT
0 AP0

2. Then we apply the following recurrence:{
Hk = QkRk QR decomposition
Hk+1 = RkQk

It can be proven that these repetive iterations are actually equivalent to applying unitary matrices
for Z and that they will take the Hessenberg form all the way to Real Schur form! In your
numerical analysis course you will learn more details about the various algorithms that take you
from Hessenberg to Schur. With Matlab you can actually experiment with many of these algorithms
and see how they perform.

5.3 Balancing

Before applying the QR algorithm it is a good idea to balance the matrix. By balancing we
rescale the matrix by transforming it to D−1AD where D is a diagonal matrix so that it it has
approximately equal row and column norms. In matlab, you can balance a matrix with the balance
function:

B = balance(A);

While experimenting with variations of the QR algorithm, you can see what happens as you include
or not include balancing.

5.4 Miscellaneous

With symmetric matrices, the following miracles happen: the eigenvalues are real, the Hessenberg
form is a tridiagonal matrix, and the QR algorithm doesn’t merely take us to a real Schur decom-
position, but it completely diagonalizes our matrix! An even more exciting development is that
for square symmetric matrices the Schur decomposition and the SVD decomposition are the same
thing! From this fact, plus a few theoretical results, one can obtain an algorithm for computing
the SVD by reducing it to a symmetric eigenvalue problem. The details of this are described in
“Matrix Computations” by Gene Golub.

Another application of eigenvalue problems is solving polynomial equations. As you may
know, direct methods for finding polynomial roots, exist only for polynomials up to 4th degree. Let

P (x) =
n−1∑
k=1

akx
k + xn

15

be your polynomial. Form the matrix:

C =

0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1

The eigenvalues of C are the roots of P (x). C is called the companion matrix of the polynomial.
In matlab, if an array P holds the coefficients of a polynomial with p(1) being the highest order
coefficient, the companion matrix can be retrieved by the compan function.

A = compan(p);

Of course Matlab, in it’s never-ending efforts to make this all easier for the user, provides you with
a function called roots that you can use to do all this automatically. So, if you describe your
polynomial with an array p such that

y = p(1)*x^d + p(2)*x^(d-1) + ... + p(d)*x + p(d+1)

then the roots can be obtained by simply saying:

r = roots(p);

You will obtain an array of roots in r. To verify your roots, you can use the polyval function to
evaluate the polynomial. Just call:

y = polyval(p,x);

where p is the array with the polynomial and x is a scalar.
Finally, Matlab has commands that allow the user to solve more generalized eigenvalue prob-

lems. One such problem is the following. Given two square matrices A,B ∈ Cn×n find λ ∈ C and
x ∈ Cn×1 such that

Ax = λBx.

To solve this problem call:

[V,L] = eig(A,B); % eigenvectors -> V, eigenvalues -> L
l = eig(A,B); % eigenvalues -> l

In the first version the eigenvectors are returned as columns of V and the eigenvalues as diagonals
of L. In the second version an array of the eigenvalues is returned.

16

