Learn Unix Fast (L.U.F)

1 Some basics

The purpose of this handout is to introduce you to the nuisances of the Unix operating system. The operating
system of a computer is what Administration is to Caltech, only operating systems usually do a better job.
The operating system is responsible for administrating the processes that run on CPU (which involves handling
memory usage, interfacing interprocess communication, exterminating processes, swaping, etc...), interfacing
processes with external devices like the filesystem, audio devices, terminal devices, etc.. For networked machines,
like the ones we use, the operating system is also responsible for networking. (Making and responding to
connections from other machines, delivering email and so on.). In short the operating system is what makes
the machine “alive”.

The most basic thing about any operating system, and UNIX in particular is the shell. The shell is a program
that prompts the user for commands, accepts them, parses them and calls the appropriate programs/processes
to carry out the order. With the exception of a very limitted number of “incantations” most things you type
on the prompt are the names of programs that will be loaded from the hard disk and run. For instance if you

type

gluttony-50: who

jalano pty/ttyp0 Sep 30 15:26
napalm pty/ttypl Sep 29 01:13
napalm pty/ttyp2 Sep 29 14:44

maxim pty/ttyp3 Sep 30 15:14
garylfay pty/ttyp4 Sep 30 15:00
et pty/ttyp6 Sep 28 11:15
1f pty/ttyp7 Sep 30 15:03

your shell will call a program called “who” which will tell who is logged in on the same machine as you are.
The most elementary Unix commands are:

e cat <filename> <filename> ...
The catenate command opens files listed, reads their contents and spits the output on the terminal. The
files are opened in the order by which they are listed in the commandline.

e mkdir <directory-name>
This command creates a new directory. A directory in Unix is a special file which points to a list of files,
some of which can be directories themselves.

e cd <directory-name>
This command enters a directory that’s listed under the current directory and makes that your current
directory. When you first log in, your current directory can be referenced as /home/username where
username is your username. This is your home directory. If you get lost, to return to your home directory,
you simply say:

gluttony-36: cd

You can also obtain your current directory with the pwd command:

gluttony-37: pwd
/net/envy/root/mnt/scsi_2/ufs/1f

The giberish in the output have to do with the specific drive that my home directory is located. /home/1f
is a link which pretends to be my home directory. When you try to enter it, it sends you off to the real
location of my home directory. The current directory can be addressed by a single dot.

gluttony-51: cd .

will make you enter the current directory, which is stupid because you are already there. The directory
up one level can be addressed by a double dot:

gluttony-65: pwd
/net/envy/root/mnt/scsi_2/ufs/1f/tex
gluttony-66: cd ..

gluttony-67: pwd
/net/envy/root/mnt/scsi_2/ufs/1f

mv <filenamel> <filenamel>

mv <filenamel> <filename2> ... <directory-name>

The first incantation renames file 1 to file 2. The second incantation will move the files listed under the
directory, listed at the end. Note that because Unix treats directories as special files, you can also move
entire directories under a directory.

cp <filenamel> <filenamel>

cp <filenamel> <filename2> ... <directory-name>

Same as the mv command. The difference is that the files are duplicated rather than “moved” with a
different name, or a different directory.

rm <filenamel> <filename2> ...

This command will delete the files listed. It will refuse to remove directories. It is possible to force it
to remove directories, but if you find out how to do that BE CAUTIOUS!. If you happen to delete a
file that has been around for a while by accident, there may be a chance to recover it from the periodic
backups of the cluster. You would need to talk with a system administrator. Sysadmin’s username is
usually root.Don’t make deleting files accidentally a habit though. To remove a directory you should
enter the directory first and delete everything inside. Then, get out of it and say

gluttony-55: rmdir dirname
where dirname is the directories name. If you really really need to wipe out a big directory tree, and you

don’t feel like doing all this fuss, there is an option that forces rm to wipe out the dir-tree for you. We
will tell you later how to find out this information.

e 1s
1s -al
The 1s command shows the contents of the current directory. By adding the -al flag, it lists the files
with more information attached to them.

gluttony-72: 1s
luf.aux luf.dvi luf.log 1luf.tex
gluttony-73: 1ls -al

total 36

drwxr-xr-x 2 1f users 1024 Sep 30 15:39 ./
drwxr-xr-x 22 1f users 2048 Sep 30 14:32 ../
-IWw-r—--r-- 1 1f users 8 Sep 30 19:04 luf.aux
-Iw-r--r-- 1 1f users 6360 Sep 30 19:04 luf.dvi
-rw-r--r-—- 1 1f users 846 Sep 30 19:04 luf.log
“rW-r—-r-- 1 1f users 5308 Sep 30 19:04 luf.tex

These are only meant to be a starting point. For more information, you should read the man pages. For
instance, to find about all the bells and whistles associated with the rm command, you should just type:

gluttony-76: man rm

Usually man pages at the end reference to other commands that have something to do with the command you
just looked at. This is a good way for beginners to explore Unix. An even better way is to look for a good book
in the bookstore, but familiarity with man pages is essential. For the user’s convenience, you can get a list of
things you can man about a topic by using the -k flag. For instance

gluttony-77: man -k convert

will give you a list of stuff that have something to do with conversions. You will be amazed at the abudence of
information that there is in the man pages. If you feel adventurous you can try:

e man csh
The man page for the csh shell.

e man man
The man page of the man command itself.

e man sex
This is not a joke! Some sites actually carry that! ;-)

Finally, there exists a program local to our cluster, which is very cool for reading man pages. Try
gluttony-78: tkmank

and a fancy viewer with lots of buttons and stuff will pop up. Note that there exist man pages for the C calls.
If you try

gluttony-89: man printf

you will get the man page for printf. Notice that sometimes there can be confusion. For instance, there exists
a Unix command called unlink. and a C function also called unlink. Um, in cases like that, you may not get
the man page you want if you simply say:

gluttony-90: man unlink
In cases like that, you do this to go around this obstacle:

gluttony-97: man -k unlink

link, unlink (1m) - exercise link and unlink system calls
unlink (2) - remove directory entry; delete file
gluttony-98: man 2 unlink

gluttony-99: man 1m unlink

2 Some features of the shell

As we said earlier, when you type something on the shell’s prompt, the shell will load a program that is called
so and run it. However the shell can do more than that for you. An essential feature of almost all shells is pipes
and redirection.

Take a look at the following incantation:

gluttony-79: cat luf.tex | more

This call involves two programs: cat and more. What the call does is run the first program and feed it’s output
as input to the second program. In this case, the second program is more, a pager. If you just direct the output
of cat on the screen, the screen will be scrolling for ever until the file is exhausted. If you send it to a pager the
pager will make sure to wait for the user to press a key between pages. A better pager you can use is less

gluttony-80: cat luf.tex | less

Try them and see which one you like best. Two other useful things you can use with a construction like the
above are tee and mail. tee will take input and send it both on the screen and on a file. This is extremily
useful for keeping a log of your session with a program. If you say

gluttony-81: prog | tee log

where prog is a program of yours, it will execute fine, but silently the output will be logged on a file called log
The command mail can be used in this way to send copies of file over email to another user. For instance, you
can send your homework to your TA by typing:

gluttony-82: cat homework | mail evilta@inquisition.caltech.edu

or something like that :-) (address may vary). To have a “Subject” show up along with the message, you’d
better do something like:

gluttony-83: cat extension.req | mail -s "Extension request" evilta@inquisition.caltech.edu

The quote marks are essential for forcing the shell to treat the two words “Extension request” as one argument.
Omitting them will treat the word “request” as an email address and the message will bounce back. Also, a
very useful tool to use with pipes is grep. grep will read its input line by line, and only send to the screen the
lines that contain a certain word. For instance,

gluttony-83: last |less

will list the logs of who logged in when, in the current machine. If you are specifically interested in user evilta,
you can insert a grep filter between last and the pager:

gluttony-84: last |grep evilta |less
You can invert the operation with the -v flag.
gluttony-85: last |grep -v ftp |grep -v root |less

This will list all lines except for the ones that contain the words ftp and root. If you have lots of free time you
can try reading the man pages for awk. It allows for more sophisticated filtering and is way cool. A useful tool,
for things like hum papers is we (word count) If you have a paper, you can say:

gluttony-127: cat luf.tex |wc
539 3989 23969

This returns the number of lines, words and characters of 1uf.tex.

At this point I should mention a very important detail. When programs send output, they do it through
two channels: stdout and stderr. stdout is where you would normally send output, and thats where output
goes with the printf () command. stderr is where you should send your error messages if the program screws
up. When you do piping, as in the above constructs, only stdout is being sent to the next program.stderr is
still being directed to the screen. To have your program send stuff to stderr you use the following C command:

fprintf (stderr,...);

Another term that should be mentioned is stdin. stdin is a reference to standart input. Normally this is the
stuff that you type on the keyboard. If the program is part of a pipeline though (like grep, last,and so on,
then stdin is taken from the stdout of the previous program in the pipeline.

Another feature of shells is redirection. As opposed to piping which sends the stdout of a process to another
process, redirection will send the stdout (and the stderr if desired) into a file. The syntax for redirection is:

e prog > filename
Will send stdout of prog to file filename. It’s better that file filename doesn’t exist when this is
executed.

e prog >& filename
Will send both stdout and stderr to the file.

More details about redirection can be found in the man pages of the shell.
Another thing that may be good to know about is the path. This is a list of the directories under which the
shell will look for the programs it invokes. To see what your current path is, you should say:

gluttony-124: echo $path
/usr/ug/bin/TeX /home/1f /usr/ug/bin /usr/gnu/bin /usr/ug/bin/X11 /usr/bin/X11
/usr/local/bin /usr/contrib/bin /usr/bin /bin . /home/1f/bin

Do you see that little dot in the middle of all the junk? This dot is important. What it says is that the shell
should also look in the current directory for a program. Without the dot, if you compile a program and try to
run it, the shell won’t find it because it won’t look in the current directory. (remember that the dot refers to
the current directory. If you were wondering what use that is, now you know). If your shell ever refuses to run
a program, that could be for one of two reasons: The program is not in the path, which can be checked, or you
need to rebuild an internal hash-table thingamajig which you can do with the following incantation:

gluttony-125: rehash

This is usually necessary, when a new executable is introduced in a directory other than the current directory.
It shouldn’t be necessary if you just compiled something in the current directory. It shouldn’t be necessary next
time you log in either. Another little toy is which. If you say

gluttony-60: which grep
/bin/grep

you will get the actual location of the executable grep. This, in case you are wondering where all those Unix
commands are actually located.

3 Using an Editor

An editor is a program that allows you to create and edit text files. You would normally use an editor to enter
the code for a program. Because of capitalism, you shouldn’t be surprised that there are more than one editors
out there. The most prevelent ones are vi and emacs. emacs is a huge and slow program. It’s made of a
ELISP interpreter, and a pile of ELISP code which is the actual editor. It’s full of bells and whistles that have
nothing to do with editing (including an adventure game, the game of life, Eliza, Zippy the pinhead, etc...)
and has divided the world into emacs fanatics and emacs loathers. The advantage of emacs is that it has an
easy learning curve. You can get used to it right from the beginning. It’s disadvantage is that after you use
it for a while, you realise that it’s slow, cumbersome and annoying. When you log in to the UGCS machines,
by default, two windows will pop up. One of them is the shell. The other one is EMACS. All T will explain
about the EMACS window is how to get rid of it. Move the mouse inside the window and press the following
key sequence: ctrl-x ctrl-c. The vi editor is smaller and more efficient to use, but it has a harder learning
curve. People think it is unintuitive at first, but once you get used to it, you can do your editing with less
key-strokes that in emacs. Also, the vi editor is the native Unix editor. emacs is an accessory. You won’t find
it everywhere. For these reasons, although CS 1 students are normally encouraged to use emacs (I mean, what
would you make out of that silly emacs window that pops by itself?), this handout will discuss vi.
To start vi, you tell the shell:

gluttony-666: vi hello.c

where hello.c is the file you want to edit. If your compiler says that you have an error in line 251, you can
invoke the editor as:

gluttony-667: vi +251 hello.c

Once into the vi editor, you can edit. There are two modes in vi: command mode and insert mode. If you are
not sure which mode you are in, pressing esc will get you to command mode. In command mode you can move
the cursor around, read/write files, and so on. In insert mode you are typing in text.

e Cursor Moving commands

h moves one character to the left

j moves down one line

k moves up one line

1 moves one character to the left

W moves forward one word

5w moves forward five words (get the idea?)
b moves back one word

G moves to the last line in the file

10G moves to the tenth line in the file

:10 same thing

$ moves to the end of the current line

0 moves to the beginning of the current line

e Deletions
X Deletes the character under the cursor
dd Deletes the current line
4dd Deletes four lines
dw Deletes the current word
8dw Deletes the next eigth words

e Other stuff

W Save the file to the disk

:r file Paste a file from the disk at the cursor’s current position

:q Quit only if the file is saved

:q! Force quit without saving the file. Good when you screw up
u Undo the last change.

/string Search for string

n Find the next occurence of string

N Find the previous occurence of string

ctrl-L Redraw the screen (for bad terminals)

e Entering Insert mode

a Appends text after the cursor position
Inserts text at the current cursor position
Inserts a new line below the current line.
Inserts a new line avove the current line.
Replace existing text on a line

X O O -

e Once in insert mode
Type in text
esc Exit insert mode and back to command mode

4 Other goodies

Unix is a multi-tasking system. This means that the CPU is capable of running many processes at the same
time. To get a list of the processes that you are running, you say:

gluttony-90: ps
PID TTY TIME COMMAND
14811 ttyp7 0:00 ps
9781 ttyp7 0:01 uglogind
9782 ttyp7 0:00 csh
814 ttyp7 0:00 badboy

The first process on the list is the command we just executed. The second one is a UGCS thingamajig. The
third one is the shell, csh. PID stands for Process ID and it is a number that uniquely references a process. To
kill a process, you issue a kill command:

gluttony-91: kill 814

will kill the process badboy. Some processes (like the shells) capture the signal that tells them to die and ignore
it. To override that feature, use the -9 flag:

gluttony-91: kill -9 9782

Killing the shell is generally stupid. The only occurance when it can be useful is when you were logged in on
a lame terminal and the terminal gets confused and you can’t log out. In that case, you can go to another
terminal, log in and kill the shell of your previous log in. That will log you out.

To get the entire process table type

gluttony-92: ps -ef

This works on System V Uniz. On BSD Uniz (like the CCO machines) you should use the —aux. Using grep,
you can filter out any user’s processes.
A very cool feature of Unix is background processes. If you merely type

gluttony-92: prog

the program will run, and you will have to wait for it to finish before you can get your shell prompt back. This
is ok for programs that are interactive. If however a program will just pop up a window and interact there, or
will just do some computations silently and write the output to a file, and you would like your shell back while
you are waiting for the program to finish, you should add an ampersand & at the end of your incantation:

gluttony-105: xmosaick
[2] 15010
gluttony-106:

The effect of the ampersand is that it makes your program run on the background. The returned number is the
PID of the spawned process and you can see that this is so if you say

gluttony-106: ps
PID TTY TIME COMMAND
14967 ttyp7 0:00 xdvi
15051 ttyp7 0:00 ps
9781 ttyp7 0:01 uglogind
9782 ttyp7 0:00 csh
15010 ttyp7 0:01 xmosaic

There are some restrictions for programs that run in the background. They can’t accept input from stdin and
the can’t write to stdout or stderr. However, you can use pipes and redirection to make up for the limitations.
You can have your program accept input from a file feed and redirect it’s stdout and stdin to file like this:

gluttony-107: cat feed | prog >& file&

If you are not interested in the output of the program, you can redirect it to the bit bucket: /dev/null
gluttony-107: cat feed | prog >& /dev/null&

An alternative is to have the program’s output mailed to you, as soon as the program terminates:
gluttony-108: cat feed | prog | mail 1fQugcs.caltech.edu&

or you can have the output written in a file, and mailed to the user:

gluttony-109: cat feed | prog | tee logfile | mail 1fQugcs.caltech.edu&

By now, the flexibility offered by those two simple Unix tools (piping and redirecting) should be obvious.

Another subject that you may find interesting is file permissions. Permissions determine, who can read,
write or execute a file. (for normal files, execute means invoking them from the shell; for directories it means
permitting the user to enter them with the cd command.) To obtain the permissions of a file, you use the 1s
command as follows:

gluttony-111: 1s -al luf.tex
-rw-r--r—- 1 1f users 22276 Oct 1 00:32 luf.tex

The very first field lists the permissions. The first character (a dash in our example) tells us whether the file
is a normal file or a directory. If it is a directory the first letter will be a d. The next 3 triplets of characters
determine the permissions set up for the owner (If), the group (users) and everybody else. Each triplet contains

e Read bit set to either r or -
o Write bit set to either w or -

e Ezecute bit set to eithe x or -

To change the permissions of a file, you use the chmod command. A detailed description of the command is in
the man page. When a file is created, the default permissions is that the owner can read and write but not
execute, and everybody else can only read. Compiled files have their default permissions set to read,write and
execute by the owner and only read and execute for everyone else. Some users like to create at the top of their
home directory a directory called private like this:

gluttony-116: mkdir private

gluttony-117: chmod go-rwx private

gluttony-118: 1ls -al |grep private

drwx------ 2 1f users 24 Oct 1 00:52 private/

That way they can put stuff under that directory without worrying about the prying eyes of other users. The
permissions for sensitive things like your email, are by default set to readable and writeable only by the owner.

Another toy that can get useful sometimes is the so called symbolic links. You can identify a symbolic link
by the first letter in their permission field which is an 1. A symbolic link is a file pointer that points to another
file. When you read a symbolic link, the operating system is actually opening the file pointed to by the symbolic
link. Also, when you write to a symbolic link, the operating system opens and writes the pointed file. In other
words, you can edit the pointed file, by invoking an editor on it’s symbolic link. Finally, symbolic links can be
removed just like normal files with the rm command, but that operation will leave the pointed file unaffected.
Notice that as directories are treated as special files by the Unix OS, you can have a symbolic link point to a
directory. Then, when you cd into the symbolic link, you effectively enter the pointed directory. To create a
symbolic link, you use the 1n command:

gluttony-119: 1n -s /ug/tmp/elef temp

The example command will create a symbolic link called temp that points to the temporary storage directory
/ug/tmp/elef. The -s flag tells 1n to create a soft link as opposed a hard link. Soft links are better because
they have less limitations than hard links, and are a lot safer. Symbolic links are useful on a couple of occasions.
For instance, when setting up a web server that needs to access a couple of files, it’s best to reference those files
through a symbolic link, so that if you are to move the files around, you just change the symbolic links, without
hacking the web server all over again. The man page for symbolic links is called symlink.

10

