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The Navier-Stokes

The Navier-Stokes equations

T+ (0-V0) —vAT=—Vp+f €
Incompressibilitycondition _; 0=0 mn C2
i

initial condition {XO,QQ = Vo

on [0,T] x 9Q

boundary condition 7=10
or periodic boundary condition

cylinder Q@ =1(0,7T) x Q2

T:[0,7T] x Q@ —R" - is the velocity field
unknowns:: '

p:[0,T] xQ—R - is the pressure

—

forcing | f:[0,7] x Q — R”

I/ - is the viscosity




The Navier-Stokes Equations

. I y:
2u—uAu+(u-V)u: Vp=1F

ot Po
V.ou=20

Plus Boundary conditions, say periodic in the box

Q=[0,LT



- We will assume that g, =1

Denote by (¢ ) = jQ o (x)dx

Observe that if <L70> = <]7> =0 then <17[> = 0.
* Poncare’ Inequality

For every gpeHl with <g0> =0 we have

< cL|V o

H(O ‘ L2 L2



Sobolev Spaces

H*(Q)={p= Zcok
keZ®
such that
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S lpe| @+ k] ) <o)
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Navier-Stokes Equations Estimates

 Formal Energy estimate

;jt L2+_[(u V)u - ﬁ+IVp-ﬁ:(f,ﬁ)

.

 Observe that since V.-u=>0 we have

j(ﬁ-V)ﬁ-ﬁdx =jvp-zzdx =

= (7.a)

1 d
2 dt
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By the Cauchy-Schwarz and Poincare’ inequalities

ld‘
2 dt

L2 —

By the Young's inequality
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By Poincare’ inequality

d . U - cL® || -
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By Gronwall’'s inequality
4
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Theorem (Leray 1932-34)

Forevery T>0 there exists a weak solution
(in the sense of distribution) of the
Navier-stokes equations, which also satisfies

i e C, ([0, T], Q)N (0, T], H' ()

The uniqueness of weak solutions in the three
dimensional Navier-Stokes equations case is
still an open question.



Strong Solutions of Navier-Stokes

i e C([0,T], H' (Q))NL ([0, T], H* ()

Enstrophy
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Formal Enstrophy Estimates
%%”WH; oG, + (@ V)i (~Aid) +  Vp(-Aid) = ] F-(~Ad)

Observe that I Vp- (—Au)dx=0

2
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By Cauchy-Schwarz

J f-(—Aﬁ)‘ <

Y,
By HOlder inequality

I(i V)i - (-Aib)| <

Vu| ., |Au

L4 L4 L2



Calculus/interpolation (Ladyzhenskaya)

Inequatlities
i ! !
o] . < 1Pl Vo,
Pl = Vi v Y
\C gﬂ I ‘ gp L




The Two-dimensional Case

T
)'/Scy2 & Iy(f)dTSK(T)
0

—=(0) <K(T)

Global regularity of strong solutions to the
two-dimensional Navier-Stokes equations.



Navier-Stokes Equations

e Two-dimensional Case

* Global Existence and Uniqueness
of weak and strong solutions

* Finite dimension global attractor



One can instead use the following Sobolev inequality

||ﬁ| 10 = C‘”VI/_[|

L2
T

Which leadsto p<¢)’ & j Wo)dr <K
0

Theorem (Leray 1932-1934)
There exists T.( ﬂ 0, L) such that
L

y(t) < oo forevery t€[0,T,).
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Navier-Stokes Equations

* The Three-dimensional Case
* Global existence of the weak solutions
* Short time existence of the strong solutions
* Uniqueness of the strong solutions

* Open Problems:
* Unigueness of the weak solution
* Global existence of the strong solution.



Vorticity Formulation

ow
ot
Vorticity Stretching Term (@ -V )u

VAG + (i V) —(&-V)ii =V x f

—

Two dimensional case (@-V)u =0
%—?— A+ (ii- V)=V f

_ 2
‘a)(x, t)| Satisfies a maximum principle




The Three-dimensional Case
(w-V)u £0

o~ Z

(0-V)i ~2°

For large initial data Cf_jo the vorticity balance takes
the form

Z ~ Z2 —> Potential “Blow Up”!!



Special Results of Global Existence for
the three-dimensional Navier-Stokes

Theorem (Fujita and Kato)

Let [u,

..y be small enough . Then the 3D

Navier - Stokes equations are globally
well - posed for all time with such initial

data. The same result holds if the initial data

is small in L’ (Q) (Kato, Giga & Miyakawa)



% D

e () — Revolution Domain around the z - axis

[away from z - axis]

* Let us move to Cylindrical coordinates

Theorem (Ladyzhenskaya) Let
iy (x,,2) = (9, (r,2), 0, (r, 2), 0. (1, 2))

be axi-symmetric initial data. Then the three-dimensional

Navier-Stokes equations have globally (in time) strong solution
corresponding to such initial data. Moreover, such strong solution

remains axi-symmetric.



Theorem (Leiboviz, Mahalov and E.S.T.)

Consider the three-dimensional Navier-Stokes
equations in an infinite pipe. Let

iy = (@, (r,n0+az),py(r,n0+az),¢. (r,n6 +az))

(Helical symmetry). For such initial data we have
global existence and uniqueness. Moreover,
such a solution remains helically symmetric



Remarks

For axi-symmetric and helical flows the vorticity
stretching term is nontrivial, and the velocity
field is three-dimensional.

In the inviscid case, i.e. v=0, the question of
global regularity of the three-dimensional helical
or axi-symmetrical Euler equations is still open.
Except the invariant sub-spaces where the
vorticity stretching term is trivial.



 Theorem [Cannone, Meyer & Planchon]
[Bondarevsky] 1996

Let M be given, as large as we want, and let ||U0 HHl <M

Then there exists K(M) such that for every initial data of the
form

0 L
P € [VERY OSCILLATORY]

the three-dimensional Navier-Stokes equations have global
existence of strong solutions.

Remark Such initial data satisfies

|, 15 << 1.

So, this is a particular case of Kato’s Theorem.



The Effect of Rotation

%—L;+(ﬁ-V)ﬁ+Vp+ﬁsz:O

V.-u=20

e Thereis €2, (T,u,) such thatif ‘Q‘ > (2, the solution

existson [0, T).
e Thatis there exists T, (u, ‘ﬁ‘) such that the solution
existson [0,T,). Observethat

T, —> o as ‘fl‘ —> o0

¢ Babin - Mahalov- Nicolaenko.
e Embid- Majda.
e Chemin, Ghalagher,Granier, Masmoudi,...

e [ .1u and Tadmor.



An lllustrative Example

Inviscid Burgers Equation
u,+uu_=0 1n R
M(X,O) — z/lO(X)

olf u,(x) is decreasing function on some subinterval
of R then the solution of the above equation
develops a singularity (Shock) in finite time.

The solution is given implicitly by the relation:

u(x,t) =u,(x —tu(x,t))



The Effect of the Rotation

ueC zeC
u, +uu_, +iQu =0
1/[0 (Z) — M(ZDO)

v(z,t) =e"u(z,t)



v.+e vy, =0

—th
W(z,t) = v, (z - Lz.0)
— Q)
i
' e
5 Vv, (z s v(z 1))
g\/ — e—iQt 1 . e—iQt
] Vv, (z v(z 1))

—1Q) —1Q)



[fQA>>1,0.e Q>Q (u,))
9,

8_ v remains finite and the
7

solution remains regular for all 7> 0.



The above complex system is equivalent
to 2D Rotating Burgers:

u=u,+iu,, z=x+1y

0 —1)
10




Direct Numerical Simulation (DNS)

Re = Nonlinear Intensity
Viscous Strength

Re =96000

N3=79x 10", M=21x10°

Simulations are performed at 1 Gigaflop

(Assuming 1000 operations per mode per step)




Do we have the time?

How Long Does it Take to Finish The Job?

5000 Years




Experimental data from Wind Tunnel
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Histogram for the experimental data
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Reynolds Equations

Figure No. 1 ['_]li]ﬂ
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Signal Corrupted with Zero-Mean Random Rloise
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_ 1
(@ - mean (@) () = ¢(x) = lim T d(x,t) dt

]
(@ - fluctuations around the mean



. Averaged Equations of Motion

v="70v4+0 0 R
vV + (V- VU) — VAT = —Vp
p=p+p @ L
V-ur=20
. NSE
v/ = ’:00
-0  V-u=0 Vo=V =0

(v-V)o+ (v -V)v'=vAv — Vp
V-v=0

Incompressibility
condition




- Closure Problem

~ Reynods averaged Navier-Stokes Equations
(v-V)YO+|V- (v @v)|=vAv—Vp
V-v=0

Incompressibility condition

Fundamental Problem in Turbulence I The Closure Problem

(equations are not closed: more unknowns than equations)




- Turbulence Modeling

 Reynolds averaged Navier-Stokes Equations
(v-V)YO+|V- (v @v)|=vAv—Vp

‘;7 v =0 How to model
» this in terms
Incompressibility of ¥ ?
condition

How to close the Reynolds averaged system?

R N\ o _
Ti; = (v —20) @ (v ——Jy))ij

:Iluiﬁ _'ﬁiﬁj




Large Eddy Simulations

« Spatial Filtering
» Large Eddy Simulations
» Sub-grid Scale Model

Let ¢ be nice/smooth spatial filter/kernel L e
o= [ 6@ — v

v

(; — VAT + (0-V)T = =V - (1 + pI)
Ut

V-o=20

Here again the problem is to model:
div T

and close the system in terms of v

R . ~
T = (v —7)® (v — Il'j))'ij

= ;v j v;v J




Smogarinsky Model

5. — 1 [ 0v; N dv;
79 dr;  Ox;

S|P =2) (S5i)°
)]

B .. = L B
i N 2y = (-0 e @-0),
vp = l§|c_f|

= ;U 7 ’ﬁ;’, v J

8% — VAT + (T - V)T = —Vp+in V - (|S]|S(5)+F




This and a more general model was also
iIntroduced and studied by Ladyzhenskaya.

She proved global existence and
uniqueness of the three-dimensional
Smagorinsky model.



Navier-Stokes-a

S. Chen
 C. Foias
D. Holm
E. Olson
S. Wynne
E.S. Titi



Camassa-Holm Water Wave Equation

Camassa-Holm Water Wave Equation

a

Hamiltonian

/(\uP + 0?|ug|?) da

N




Inviscid Equations

/Euler equations

Hamiltonian

/ lu(z,t)|? dx V - u = 0 constraint

/Euler-a equations (Holm-Marsden-Ratiu)

Hamiltonian

/ |“’|2 + 052|VU|2 dx V - u = 0 constraint

&

AN

/
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Euler-a (Inviscid Second-Grade Fluid

3
ov
— +(u-V)v — v:Vu; + Vo= f
- + (V) ; iV
V-u=>0
v = (I — a?A)u

Or Equivalently
v
— —ux (Vxv)+Vp=f
ot
V-u=20
v= (I —a’Au



Euler-a (inviscid second grade fluid)

ov ’
Fn +Mu-V)2;—j;z;jVuj +Vr=f
V-u=20

v= (I —a*A)u

45



-
f

Navier-Stokes-a (The viscous Camassa-Holm equations

. 3

v

— — VAWV u-V)v — v:Vu: + VT =

5 + (u ) Z v Vu; + f
7=1

V-u=20

v=(I— c‘.rQﬂ)u

v
%_UA@—’ELX(VXEJ)—FVE):)“
ot

V-u=20

v= (I —a*A)u



Vorticity Formulation

NSE w=V xwu

Ow

(Tf vAwt (- Vw = (w - V)u=V x f
L

N1a=0

r - 2
VCHE ¢=V xv vV =u— a“Au

u-Vqg—q-Vu v-Vqg—q-Vu




Dimension of Global Attractor (NS-a)

=B (E)

Y




The Navier-Stokes-o as Sub-grid Scale Model
Ta = 2v(1 — a?A)D — pI + o°D
1 .
D = 5 (Vu + VuT)
1 T
() = 5(?’?_5 — Vu")

D=u-VD+DQ—QD



The Navier-Stokes-a as a Closure Model

(v-V)o=V- 71

r=v(Vo+Vol)—pl — v @

The Navier-Stokes-a as a Closure Model

(w-Viu =V - 714
To = 2v(1 —a?A)D — pl + o*D

L
D = §(Vu + vul)

where

1
2
D=u-VD+ DO — QD

Q= —(Vu— Vul)



Turbulent Channel Flow

o Z
"’0‘ A
l
AQ“ !
|
|
|
|
U
0“ /
0"‘ /
"“ /
0“’ /
. 7
/
/
/
/
k (1 = {(1133 Y, Z) : _d S ~ S d}



Reynolds Averaged Equations

— VA (u) = ((u-Vu)) +V(p) =0
V-(u) =0

Facts: (i) (_f(z)
w=| o
0]



Reynolds Stresses

The Reynolds stresses
<u > uv) , (uw) < > vw) , <u:2>

are functions of z alone.

Reynolds Equations

—vU"” 4+ 0. (wu) = -0, P



Steady Navier-Stokes-a

U(z)
ansatz U — 0
0
/ Steady NS-a Reynolds equations \
—vU" +va?U"" = —8,p —vU" + 0. (wu) = -8, P
0= —0.(p— r:l'j(_ i'_'-’r’f)j) 0. <w2> = 0. P

U /




|ldentifying Terms in VCHE & Reynolds equations

The General Solution of VCHE

~osh(z/« 2
U(2) = CL(_I_ - cosh( /u)) b (.l_ _Z )
cosh(d/a) d

}

|

o

a, b constants



Physical Parameters

 Boundary Stress
+70= —(T13) |2=4q = VU (2) + (wu) |s=+4q

To = —1/[;”'(;3' = —d)

» Averaged Streamwise Velocity Across the Channel

d
U= — U(z)dz
2d ) _q ( )
* Reynolds Numbers
_ 1/2
wd o' d
= — Ry = —
L/ 1/

» Length Scales

d, v, o = — wall unit




Normalized quantities

Let n = z+d  normalized distance
[« from the wall
| U(nls —d)
o) = ——7
7o

normalized velocity profile




Drag Law

The drag law for the wall friction

-

210 2R
u? R?




Profile

The Profile @ depends on:

(i) ¢, R, Ro or
(ii) ¢, R, D

Blasius drag law

D = \R1/4 A = constant




Blasius Law

Having Blasius law as an input into our theory we obtain:

A
(i) Ro =4/ =R"/®
2
d A
(i) — = —R3/4
o 2c

(iii) Let [4 be the Kolmogorov Fluctuation Dissipation Length

d . . -
(iv) 7~ R3/4 (lassical Theory of Turbulence
d

— a o~y




z/d

-1

Figure 1 and Figure 2
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4P>Oo

R, Ry ¢m b/2a d/a
2970 170 176 1.2 12.850378
14914 714 20.9 1.1  48.782079
22776 989 23 9  65.TTTTT7
39582 1608 24.6 .9 100.569105

z/d

2

cosh b
o= (- adre) *u (- 7)




R, Ry ®m b/2a d/a
2070 170 176 1.2 12.850378
14914 714 20.9 1.1  48.782079
22776 989 23 9 65.7TT7T7
39582 1608 24.6 9 100.569105

b= (i) T u - F)

« Experimental data from:

T. Wei and W.W. Willmarth
« Having blasius drag law
0 5 10 15 20 25 30 A=0.00




Figure 5
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Figure 6

____theoretical curve
R,=170,714,
0.25f 989,1608 :
. °R,=170
& 02 [1R,=714 T
g AR =989
0.15 v R =1608
A
o
=
7 0.1
* Experimental data from:
0.05 T. Wei and W.W. Willmarth
* Having blasius drag law
LS, s A =0.06
0 il
0 2 3



25 — 25 SR -
°R =170 i [1R,=714 :
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15 i 1 15
.'!- e
""’ ‘ P
10 iy ] 107 g
4 ____theoretical ¢(n) ___theoretical ¢(n)
é’ R,=170,714,989,1608 R,=714,98
4, __DNSR =180 | 5 __ ¢,(n)=2.55In(n)+5.5,
5 y . §,(n)=2.55In(n)+5.5, 8, ()=n
' ¢, (M)=n
) 0 L 1 Ll
0 0 2 3
0 1 2 3

Figure 7 and Figure 8

Experimental data from:

T. Wei and W.W. Willmarth
DNS Kim, Moin & Moser
Having blasius drag law

A =0.06




Room for Improvement

« -- constant away from the boundary

Near the boundary

« --is a function of the distance from the boundary




> 0

viscous layer




25

201

15¢

Figure 9 and Figure 10

°R =170
[ R,=714
AR =989
v R,=1608

101 -
____theoretical ¢(n)

5 R,=170,714,989,1608 -
__ ¢k(n)=2.55In('q)+5.5,

0, (m)=n
0 ' -
0 2 3
log, ,(n)

d—do

; .97,.991, .993, .997]

Using ¢(Ro) = Pmaz as input
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Blasius Drag Law D — .06R~1/4
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Figure 11 and Figure 12
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Figure 13

30

251

20

15+

10

Using von Karman law as input (¢ | 4.6, C,~ 5.6)

T 4 e LS| T T T
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R0=1 70,714,989,1608 g

4000,8000,16000,
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paal il
10° 10

“log, ()

Von Karman drag law



An illustration (Pipe flow)
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R RO ¢m q1 '5

31577 899.98 23.586 .370349 59.926629

Zagarola’s thesis,
Princeton University




Figure 15 and Figure 16
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Figure 17
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Figure 18
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Energy Spectrum

C. Foias et al./Physica D 152—153 (2001) 505-519

100

10"

102

103

E(k)

10

10°

10®

10 100
K

Fig. 1. The DNS energy spectrum, E (k) = E,(k), versus the wavenumber & for three cases with the same viscosities, same forcings and mesh

. I . . . . . . . . 5/
sizes of 2567 for @ = 0O (solid line), % (dotted line) and é (dotted-dash line). In the inertial range (k < 20). a power spectrum with k /3 can
be identified. For finite ¢, this behavior is seen to roll off to a steeper spectrum for k = 1/a.



Energy Spectrum (NS-a)

JoquunusAem

uorjedrssip

from large scales to small scales
Jc5/3

A ~

(wmnayoedg A810U7] ) 307

a =1/a

log(wavenumber)



The Navier-Stokes-a subgrid scale model of turbulence

- 3
o
—v —vAv + (u-V)v + E viVu; +Vp = f
Ot .
J=1
Inviscid equation — introduced by
V U = V U = 0.}, Holm, Marsden and Ratiu
(Phys. Rev. Let. 1998), called
_ 2 .
Vv =U— & A’UJ Lagrangian-Averaged Euler - o
Turns into a (No global well-posedness.)
complete gradient
. : _ under the channel
original velocity Making the and pipe
nonlinearity milder symmetry

The smallest eddy scale Lagrangian-Averaged
Navier-Stokes-a.  model
(LANS-a) or

viscous Camassa-Holm equations (VCHE)

still participating actively For 0 we recover NSE
(x =

in the evolution of the flow



Leray-a Model

NS-a

v= (I —-a"A)u
Cheskidov, Holm, Olson, Titi (Royal Soc. A, MPES 2005)

The Leray-a analytic subgrid scale model of turbulence

9,
—v—VAv+ (u-V)v+Vp=Ff
t

V-u=V-v=0,
v=1u—a’Au
Aside: Leray Acta Math. 1934 — Regularized NSE

U = Qg * U

Cboc - the Green’s function associated with

(1 —a?A)



Navier-Stokes

The Navier-Stokes equations can also be
written as:

Ov
ot

vAv —v X (Vxv)+Vqg=0



- Navier-Stokes-a

If we mollify the nonlinear term in the
previous formulation in the spirit of Leray
regularization we obtain the NS-o Model:

v

(f;z‘ VA —u X (VXv)+Vp=Ff
o))

V-u=70

v=(1— t}fgﬁ)u



Energy Spectrum (Leray-a)
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Clark-a Model

C. Cao, D. Holm and E.S.T., Jour. Of Turbulence, 6 (2005)

The Clark—alpha subgrid scale model of turbulence

v — vAU + (- Vv + (v-Vu — (u-V)u—a?V - (Vu-Vul) +Vqg=g,

V- -u=V- -v=0

Global Existence and Uniqueness

Attractors dimension and Energy Sepctrum like Navier-Stokes-alpha



- ML-a Model

A. llyin, E. Lunasin and E.S.T., Journ. Nonlinear Science, 19, (2006)

Modified Leray-a sub-grid scale Model

o
8—U—L’AU+(U-V)’EL+V}3:]C
t

V-.-v=0

v=1u— a*Au

Global Existence and Uniqueness

Attractor’s dimension and Energy Spectrum like Navier-Stokes-alpha



Simplified Bardina Model

Y. Cao, E. Lunasin, and E.S.T, Comm. Math Sci. 4, (2006)

Ov — VAV + (u-V)u = —Vp + f,
V-u=V-v=0,

u — o’ Au,

()



Y. Cao, E. Lunasin, E.S. Titi (CMS 2006)

Simplified Bardina turbulence model

hv —vAv+ (u-V)u=-Vp+ f,
V-u=V-v=0,

v=u— a’Au,

The Navier-Stokes equations

v —vAv+ V- (v®v)=-Vp+ [,
V-v=0,
v(z,0) = 0" (2),

1980 Bardina R(v,0) 0 R0—0 R0

2003 Layton,
LewandowskKi

O —vAT+ V- (v@0)=-Vp+ [,
V-v=0,
V- (v®@v)=V-(t®0)+V-R(v,v),
R(v,v) =1Q0—0®0



Simplified Bardina Model

Improvement from Layton and Lewandowski (2003)

initial data: fel? u0)=u"c H!

weak solution: ¢y & C([O. T]. Hl) M LQ([O, T].. HQ)

du
e L2([0.1): L?
- € ([0,77); L=)



Y. Cao, E. Lunasin, E.S. Titi (CMS 2006)

Simplified Bardina turbulence model

hv —vAv+ (u-V)u=-Vp+ f,
V-u=V-v=0,

v=1u— oAu,

12/5 12/5
di(A) < dp(A) < c (g) (E)

The mathematical theory of simplified Bardina
is complete

Continuous
dependence
on initial data

Existence of

Global existence
and uniqueness

Excellent match with experimental data

Energy spectra




Inviscid Simplified Bardina Model

Y. Cao, E. Lunasin, E.S.T., Communications in Math. Sciences, 4 (2006)

v — 1 + (u-Vyu=—Vp+ f.
Veu=V-v=0,

v=u— a’Au,

5 Ou  Ou
_I2A( : —
QO Y +8t+(u Vu+ Vp=f,
V-u=20,

w(x,0) = u'"

This result has important application in computational fluid dynamics when the inviscid
model is considered as a regularizing model of the 3D Euler equations.

Also note that the inviscid simplified Bardina model is a globally well-posed model
approximating the Euler equations without adding hyperviscous regularizing term.



Euler-Voigt Model

A. Larios and E.S.T. (2009)

5 Ou  Ou
_ IZA(\ | | . p—
A+ o (u-V)u+ Vp=f,
V-u=20,

u(x, 0) = u'"

 High order regularity: If u" € H™ , for m > 1, then u(t) € H™
forall t € (-oo0, 00).

 Similar result are also valid for Gevery regularity.



Blow-up Critertion for Euler Equations

Assume u'™ € H?, for some s > 3. Suppose there exists a finite time 7** > (
such that the solutions u, of the Euler-Voight model with v = u'®, for each
a > 0, satisfy

sup limsup a2||Vua(t)||%2([071]3) > 0.
te[0,T**) a—0
Then the three-dimensioal Euler equations with initial data «*™ develop a sin-
gularity in the interval [0, T™*].



The Navier-Stokes-Voigt Model

—a®Adyu~+ Ou —vAu~+ (u - V)u+Vp = f
V-u=0

This is a global regularization of the three-dimensional
Navier-Stokes.

This regularization works also in the case of no-slip
Dirichlet Boundary conditions.



Navier-Stokes-Voigt equations

5 O 0
—a*A 8? + 8? —vAu+ (u-Viu+ Vp = f,
V-u=20,
u(x,0) = u™

This model was introduced by Oskolkov (1973) as a model of motion of linear,
viscoelastic fluids. Models dynamics of Kelvin-Voight viscoelastic incompressible
fluids.

Global attractors, estimates of the number of determining modes by
V. Kalantarov and E.S.Titi (2009) Chinese Anals of Math.



Surface Quasi-Geostrophic

In two-dimensions:

0 +u-Véd=0
U = VL(— A)_l/zé’



Vo Satisfies:

%(Vé’) + (u-V)(VO) + (Vu)' (Vo) =0

But morally speaking:

VO|* ~ |(Vu)™ (V)

Thus it is like dz | 2
dt



Inviscid Regularization of the
Surface Quasi-Geostrophic

B. Khouider and E.S. Titi, Communications Pure Applied Math. (2007)

~a’A0 +60 +u-VO=0

u=vV+-(-A)"’8



Blow-up criterion for SQG

Theorem: [Khouider-Titi, 2007]

If for some T > 0 we have

sup limsup a?||VO(¢)||5. > 0.
te[0,T*) a—0

Then the SQG has a singularity [0, 7).



Energy Spectra for Navier-Stokes

S. Kurien

E. M. Lunasin
M. Taylor
E.S. Tifi



What has been done in 3D NS—q.?

Recall: 3D NSE Energy Spectrum
E~E(k,e) = Ck—°2/3g2/3
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What has been done in 3D NS-o.?

Large scale dynamics of the flow is captured by the NS-a egautions.

10° g

E(k)
a:ﬂ

Also by Mohseni, Kosovic, Shkoller and J.

S. Chen ef al. /Physica D 133 (1999) 6683

Inertial range

Tgn
L 2

10

- 2563
: =0 —
3 a=18  —--
E| oa=1/32  ........

a

100

Marsden (2003 Phys. Fluids)



Energy Spectrum of the 3D NS—[]

Foias, Holm, Titi (Physica D. 2001)
from large scales to small scales

L®QEDC®>®>>’

uolnedissip

3D-NSE
3D-NS-a

/R

k—5/3

JoquInNUaAEM

(WnJ108dg ABIau3)H0|

1/a

K,

log(wavenumber)



Energy Spectrum of Two-Dimensional Navier-Stokes equations

log(Energy Spectrum)

from large scales to small scales
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Observation:

In 2d NS-a. the conserved

(v=0and f=0)

“energy” and “enstrophy” are as follows

v —ux (Vxv)+Vp=rvAv+f
(1 — a*A)u

Don’t forget

un-smoothed velocity field
smoothed velocity field

d
d_

L

(v, u) = —v(|Vul? + o?|Aul?) + (f, u)

b |

(X V X v,u) =0

1 ) ¢
energy = —(\u\z + 052|V’U-|2)
onserved 2

Recall that we have two kinds of velocity

NS-a vorticity formulation

g+ (u-V)g=vAqg+V x f
q =V xXuv

vorticity

A

(q-V)u=+0

——|qI* = —v|Vg[1+ (V x f.q)

(u-Vq,q) = 0

enstrophy  :=—/|q| 2
onserved .



Analytical Result 1: The

transfer and cascade for
the 2d NS-a:

the energy and enstrophy
transfers are as follows:

below the injection of
energy, the energy and
enstrophy go from high
modes to low modes;

above the injection of
energy, the energy and
enstrophy go from low to
high modes.

The energy and
enstrophy cascades are
as follows:

below the injection of
energy, we have inverse
energy cascade

above the injection of
energy, we have direct
enstrophy cascade.

Proof: LKTT (2007, JOT)

log(Energy Spectrum)
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energy and
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log(wavenumber)

Ea)




a.

Analytical Result 2: Power laws

for the 2D NS-a

Proof: LKTT (2007, JOT):

Split the flow into 3

wavenumber ranges :
[1,k), [k,2k), [2k,1)
Assume Kk <k

Define the energy of an
eddy of size 1/k as:

Enstrophy balance for eddy
of size 1/k:

where Z,

represents the net amount
of enstrophy per unit time
transferred into
wavenumbers larger than
K.

Candidates for
averaged velocity:

u = uf,_ + U + uf,'
v = zf + UV + zf

q=aqy +a+qi -

Ea(k) = (L+ k) Y Jiy|?
7|=k

1 d
= (i i) + V(~Adi @) = Zi — Zoy
2 dt

Zk‘. — l (U.'A qk qk + f]f)

+ b(’f_ik + u.f,_? qk + f]],'> qf)
Don’t forget

D\-._,

‘A"m

| 1/2
vy |2 d.r> ~
1/2
wy, - vpdr >

1/2
|, \2 d [> ~

2=
S

2 =
S~

={z,
i={m,
i=(z,

-
;Q\




1 (1 +a?k2)m-b/2

Therefore we get the following 3 T

(PSSR S G =01,
0__ng 0 k JTn ,,3/2 _ . 1/2 (T? 7 )
characteristic timescales: KU B2 (Ea(k))

S [ PR P K2 (B (k)*
Dissipation rate: e~ (1 + k%) k" Eq(k)dk ~ (11 a2k2)(n—3)/2
,2/3 21.2\(n—3)/3
N7 (1 + o k)
Hence, Eno(k) ~ 3
Main Result: The kinetic energy
spectrum for the variable u is:
(2/3
? E. (k) % when ka < 1,
1 “+ « k Na
([ 2(6—n)/3].(21—2n) /3" when ka > 1.




Need to check
numerically

0 1 ) 1/2




from large scales to small scales

-5.6

smoothed Kk

2D NSE
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energy and
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Establish two power laws in the enstrophy inertial subrange
range numerically.

Verify the semi-rigorous arguments.

4 from large scales to small scales
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What has been done in 2D NS-o?

B. Nadiga and S. Shkoller (2001 Phys. Fluids) —
inverse energy inertial range.

Power law prediction for the energy spectrum for k > k  in the
forward enstrophy cascade regime is k% (not enough resolution to verify).



Figure 1. Energy spectra for a 2562
simulation with fixed viscosity and
varying hypoviscosity coefficient (.

The wavenumber Kk is in multiples of 2 [1.
The solid lines are the DNS [1=0
calculations of E(k).

The dotted lines are the NS-[1 model

calculations of EY(k) for small [. — 1 —

The behaviour of the spectra is largely
independent of the magnitude of the
hypoviscosity in the enstrophy cascade
subrange (6 < k < 15).

The inset shows the spectra

compensated by k#>.

E(K)

The resolution of this simulation is far to
small to observe the expected scaling
exponent.




Scale (to prevent trivial dynamics)

-

\

O —vAv —ux V x v=—(a/D)*Vp+ (a/L)? f
V-u=V-v=0

v = u — a?Au

~

Take the Iimit oo = o

-

Ov—VvAv—u XV xv=—-Vp+ f
Vou=V.v=0
v=—L?Au




S 2, By S for 1084 10242 simulation: Why NS-a equations?

simulation.

The black curve is the DNS (o = 0) which
shows close to k-3 scaling in the enstrophy
cascade range 6 < k < 20.

The solid red curve is the EY(k) spectrum
as a=oo Which scales close to k7 in the
enstrophy cascade range 6< k < 25.

The energy spectra for intermediate
values of a tend to the o = oo limit as a
increases.

The inset shows the DNS energy
spectrum (black) compensated by k37 and
the a=0cc energy spectrum (red)
compensated by k74

E(k)




Figure 3. Energy spectra for 20482
simulation.

The wavenumber is in multiples of 2n.

The black curve is the energy spectrum of
the DNS which shows close to k-3 scaling
in the enstrophy cascade range 6<k<35.

The solid red curve is the EY(k) spectrum
of the case o = co which scales
approximately as k- in the wavenumber
region 6<k<25.

The inset shows the DNS energy
spectrum (black) compensated by k3° and
the a=0cc energy spectrum (red)
compensated by k7

20482

Comparing energy spectra for different values of a

E(K)




Figure 4. Energy spectra for 40962
simulation.

The black curve is the spectrum for the
DNS, the red curve is the spectrum for
o —> 00 .

The black curve in the inset corresponds
to the NSE energy spectrum
compensated by k3In(k+k)"3.

The red curve in the inset is the energy
spectrum E"(k) for NS-a. compensated by
k7.

The region 6 < k <40 is flat indicating the
nominal range over which the k-7 scaling
holds.

E(k)

40962

Power law for NS-a

10

10

10

-10
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40962

Conclusion: Power law for NS-o,

k —" power law
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Figure 5. Compensated energy spectra 204 82
for 20482 simulation for 1 =6.5

(k. =39.75; vertical dashed line).

The energy spectrum is compensated by Power law for finite [1 = 6.5

k7, k193, and, k7’3 respectively.

The region 39 < k <70 in the first subplot k
follows a flat regime which indicates the 8
nominal range over which the k-7 scaling l

holds. 6




Figure 6. Isosurfaces of vorticity »©@ v for the 10242 simulation. [1 = 0, 3.25, 15, 100, 1, reading each row
of figures from left to right. The vorticity field exhibits increasingly fine structures as [ is increased.
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Figure 7. Isosurfaces of vorticity @ u for the 10242 simulation. [1 = 0, 3,25, 15, 100, 1, reading each row of
figures from left to right. The structures become smoother with increasing (.




Numerical Results for the
Two-dimensional Leray-o Model




2D NS-a

Energy conserved® = .5 (u,v)
Enstrophy conserved® = .5 (Vx v, Vx V)

3 Power Laws

vv: k218 = k7
uv: k1953 ~ k6.3

uu: k173 ~ k5.6

10242 k74
2048% k71
40962: k-7

* -- in the absence of viscosity and forcing

/\

That is, therghanagtefistic time scale
for eddies of size less than a is given
by the timescale which depends on

%%%@g@g&ﬁﬁgymw the first
PRSIRSPRY Ksirdutse®f thes faem of 8. v)

'3 Power Laws ading enstrophy

k213 = k56
uv: k-

0 1 2\
Uy = <— / V| dI>
1/2

40962: k- U,ff, _ <%/Q \'ukzd,x>1/2

* -- in the absence of viscosity and forcing

K-17/3 ~ k4.3




40962 simulation of the 2D NS-oo equation

T T T T T T T T

E(K)

10 0 1 2 3

10 10 10 10

The red curve is the 2D Leray-a spectrum for a—o0. The red curves in the inset are
the energy spectrum compensated by k1773, k153, k133 respectively

The region 7 < k < 70 in the second subplot follows a flat regime which indicates
the nominal range over which the k-° scaling holds.



Back to the Navier-Stokes-Voigt Model

—a®Adyu~+ Ou —vAu~+ (u - V)u+Vp = f
V-u=0

* They are globally regular (even in the inviscid case).
* They have finite dimensional attractor.

* Unlike the Navier-Stokes equations they are NOT PARABOLIC. But
they have a regular attractor. [V. Kalantarov, B. Levant and E. S. Titi,
Journal of Nonlinear Science, 2008]

* They have the same steady state like the Navier-Stokes equations.

* They have the same infinite-time averaged Reynolds Equations.

* Question: Do they have the same statistics as the Navier-Stokes
equations?



In the 3-d case:

Stationay Statistical Solutions of the Navier-Stokes-
Voigt model converge to a Stationary Statistical
Solution of the Navier-Stokes Equations.

[Ramos, Titi, Discr. and Cont. Dyn. Systems, 2009].

Computational Study with Sabra Shell Model:

Structure functions of the Navier-Stokes-Voigt
regularization are investigated in comparison to the
those of the Navier-Stokes in the context of Sabra
Shell Model. [Levant, Ramos, Titi, Comm. Math.
Sci., 2009].



Sabra shell model of turbulence

* The equation describe the evolution of

complex Fourier-like components un, n=1,2,---

of the velocity field u = (u,,u,,u,,...).

d;t =ik (2u —su,, u I—I_—Eun_l un_z)—vk,f u + 1,

+2 n+l n n—
2

with the boundary conditions u_, =u,=0 .

* The scalar wave numbers satisfy &, =k, 2".



Voigt Regularization of the Sabra
shell model of turbulence

We consider the following regularization of the
Sabra shell model inspired by the Navier-
Stokes-Voigt regularization where

du, Ay,
% is replaced by (1 + a®k?) ;Lt

In Levant, Ramos,& Titi, Comm. Math. Sci. (2009),
we investigate the effect of the regularization
parameter o on the statisical properties of the
solutions.
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v=102and o =10"°

|
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shell number



v=10"° and a= 10"

1
5 10 15 20 25 30
shell number
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Collaborators: B. Levant, E. S T Statistical properties of the Navier-Stokes-Voigt Modal
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Magneto-Hydrodynamics-a

J. Linshiz and E.S. Titi, Journal of Math. Physics,
(2007).



Magnetohydrodynamic (MHD) equations

O 1
8_; -+ (Q; . V) v — rvAv + Vr + §V|B‘2 — (B ) v) B

0B
V.o=V.-B=0

v - fluid velocity field, B -magnetic field, 7 - pressure

v > 0 - kinematic viscosity, 7 > 0 - magnetic diffusivity



Lagrangian of the ideal MHD:

(1 : |
Llu, D, B] = / <5Duz —7m(D—1)— 532) dx

Averaged Lagrangian:

(‘3‘2 + C.l-:‘ﬁ_f VB2)> da

DO | —

_ 1 ; ; ;
L= / (5D (Ju]? + a*|Vul*) —7(D —1) —

s



ov
5% + (u-V)v+ ;vjvuj —vAv+ Vp+ Z(Bs>jVBj = (Bs-V)B
J

0B;
5 +(u-V)Bs— (Bs-V)u—nAB =0

v=(1-a’A)u, B=(1-a3A)B,
V- u=V-v=V-B,=V-B=0

u, Bs, p - ‘filtered’ fluid velocity, magnetic field and pressure,
a > 0, apr > 0 - length-scale parameters, represent the width of the filter

e We have shown the global well-posedness and regularity of solutions of
a 3D MHD-a model, which is a particular case of the LAMHD-«a model

without enhancing the dissipation for the magnetic field, i.e. aps = 0.



Inviscid Regularization of the 3D MHD Equations.

2 AQdv N Ov
"ot ot

1
+ (v -V)v—vAv+ Vr + §V|B|2:(B-V)B

AOB
—oz?w%—k(v-V)B—(B-V)v—nAB:O

V.- v=V-B=0

where v>0 and n>0

Global existence and uniqueness Larios, E.S.T. (2009)



Nonlinear Schrodinger Equation

vy + Av + |[v|*7v = 0, rcRY teR,
v(0) = v,

One has global existence and uniqueness for
0<o<2/N.



Nonlinear Schroedinger-Helmholtz Equation

Y. Cao, Z. Musslimani, Nonlinearity, 21 (2008)

ive + Av +ulv|” o =0,
|a—|—1
Y

—~~
(N
~— —

u— o*Au = |v
v(0) = vy,

—~
OV
~—

One can show global existence and uniqueness
for 1<o<%.



Two-dimensional Euler-a
Orq + (u ‘ V)q = 0,
qg=YV X, u— aAu = v.

Global Existence for Radon Measures.
[Oliver-Shkoller].



a-Regularization of two-dimensional
Vortex Sheet

Bardos-Linshiz-Titi, Comm. Pure Applied
Mathematics, (2009).

Convergence of 2d Euler-a to Euler.

Convergence of Radon measure
Solutions, with distinguished sign, to a
Delort weak solution of Euler.

Global well-posedness of the a Kelvin-
Helmholtz Problem, for Lipschitz curves.



Axi-symmetric 3d Euler Without Swirl

* Global existence of axi-symmetric 3d Euler
without swirl [Yudovich, (1963)]

* No results are know concerning axi-symmetric
vortex sheets, even without swirl, for the 3d
Euler equations.

« Global Regularty of the 3d Euler-a without swirl was
established by Busuioc and Ratiu (2004)



Axi-symmetric 3d Euler-a Without Swirl
- Classical Solutions

* Global Regularty of the 3d Euler-a without
swirl was established by Busuioc and Ratiu

(2004)

Theorem Let uy € H3(IR?), curlvy/r € L?>(IR*) and curlvy € LP(IR?),
for some p € [1,2]|. Then the 3d axi-symmetric Fuler—a equations without swirl
have global solution.



Axi-symmetric 3d Euler-a without swirl

+ Q. Jiu, Z. Niu, Titi and Z. Xin (2009)

Theorem Assume that the initial velocity is divergence free, axisymmetric
without swirl and curlvg/r € LP with p > % Then for any T > 0, there exists a
unique solution of 3d Euler—a over the interval [0,T].

Theorem Assume that the initial velocity is divergence free, axisymmetric
without swirl and curlvy /r € M.(IR*). Then for any T > 0, there exists a global
weak solution u € L*=([0,T] x IR*) of the 3d Euler—a. Moreover, we have that
Vu € L*((0,T); L+ L) with 1 < a < 3 and D?*u € L>((0,T); L+ L) with
1<b< 3.



Thank: You!



