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ROTATION

Earth’s atmosphere and oceans
Tornadoes, hurricanes

The planets, sun and stars, galaxies, and the
origin of their magnetic fields (the dynamo)

* Interplay between turbulent eddies & waves

Role of symmetry breaking
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OUTLINE

* The helical but non-rotating (ABC)
« The rotating but non-helical (Taylor-Green)

* Helical and rotating (ABC forcing and Coriolis force)

- Self-similarity of the energy cascade to small scales

* A new spectral law for fluid turbulence in the presence of both helicity
and strong rotation: lack of universality?

- The domain of validity of this new law, using LES modeling

« Discussion



 Helicity H= <U.VxU> is an ideal invariant woreau, 1961; Moffatt, 1969,
as well as energy E, with H(k) < KE(k)

* Kraichnan, 1973: Absolute equilibria in the helical non-rotating case
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— No tendency for an inverse cascade of energy,
unlike the two-dimensional case



No rotation, H#0

Spectra of energy < ool |
(solid)& helicity (dash) : R —
both compensated =
by a Kolmogorov
5/3 law

" |

S - - - e =

E(K) ~ £.2/3 k513
H(K) ~ .13 ¢ k573

Rates of transfer: e =dE/dt, €,,=dH/dt

(two-point closures, André & Lesieur, 1977,
and numerous direct numerical simulations,
e.g. Chen et al. 2003)

10243 DNS
H= u.0 with o=Vxu

Both E & H dissipate at
the same wavenumber



Dynamical equations

G r
—twHxu-Hlxu=-VP-rViu-F
i
Vu=0
Re = ULV ; 1/Ro = 2QL /U ; 1/Ek = Re/Ro = 2QL 2/ v

Reynolds nb.; Swirl (inverse of Rossby nb.); inverse Ekmann nb. or vortex Reynolds nb.

Frequency of inertial waves: o, =+ k, Q/k ~ Q



Numerous previous investigations

« Anisotropy of the resulting
flow and tubular structures

« \Weak turbulence of inertial
Waves (Galtier, 2003)

« Both a direct an inverse
cascade of energy can coexist
with three-dimensional forcing

E,(k,). Elk,.k, =0)

Smith et al., 1996



Energy flux normalized by U, . for three Rossby numbers

5123, k,=4 4 | -

Solid: Ro= 1.4
Dots: Ro= 0.35
Dash: Ro= 0.07

Weaker direct cascade of energy/at
lower Rossby number
together with an inverse cascade

Mininni, Alexakis & AP, Phys. Fluids, 21, 2009 Taylor-Green forcing



Phenomenology of turbulence with waves:

- Small parameter: 1,/ T\, ; transfer time 1, evaluated as:

T = T (T /Twy) with ty,=l/u, and =, .= 1/

« Constant energy flux: e = DE/Dt ~ kK*E(k) / T},

> E(k) ~ [SQ]” 2 K= (Dubrulle & Valdetarro, 1992; Zhou, 1995)
Structure functions: <du(/)p> ~ f*, { =p/2

At dissipation wavenumber k, T4 =[VK4]" = 14 ; this leads to

Ky ko~ e/[v2Q]V2 ~ Re * RO (canuto & Dubovikov, 1997)



The scaling of
the energy
spectrum can
differ from the
classical
Kolmogorov

spectrum
e.g. E(k) # k573,

at high enough
rotation rate




But it does not stop at k2....

The scaling of
the energy
spectrum can
differ from the
classical
Kolmogorov

spectrum
e.g. E(k) # k573,

at high enough
rotation rate




From the Taylor-Green forcing
(globally non helical)

to

the ABC forcing
(Beltrami flow, fully helical)

for rotating flows



Structures

Top view
and

side view

of vorticity,

when large




ZOOM on
Vorticity:

Beltrami
core
vortices

Helical
forcing at
k=7

DNS on
15363 grid
points,
Re=5100
R0=0.06

Mininni & AP,
arXiv:0909.1272
and 1275




Mininni & AP,
arXiv:0909.1272
and 1275

amidst a tangle
of smaller-scale
vortex filaments

Together with
particle
trajectories

15363 grid, k=7,
Re=5100,
Ro=0.06




Clyne et al.,
New J. Phys. 9, 2008

Vertical
velocity V.,
global view

15363 grid, k=7,
Re=5100, Ro=0.06




With helicity, strong
coherent structures
form that are laminar,
fully helical &

at relatively small scale::
Beltrami core vortices | ®

They are embedded
In a complex tangle
of vorticity, with also
a large-scale
component due to
the inverse cascade
15363 grid, kF=7’ FIG. 9: From top to bottom and from left to right, slices

of the energy density, vorticity intensity, = component of the
Re=5100, Ro=0.06 velocity, and helicity density, in run B at £ = 30.



With helicity, strong
coherent structures
form that are laminar:

FIG. 9: From top to bottom and from left to right, slices
of the energy density, vorticity intensity, = component of the
velocity, and helicity density, in run B at £ = 30.




Lack of intermittency of the direct energy cascade

o PdF of normalized

[ locity gradients (solid line)
! II III /
rd { 1I B
s '- helicity gradients (dash)

L ~. | atsmall scale
(dots: Gaussian)



Scaling exponents 0.7p
of structure

. A velocity, st tati
functions velocity, strong rotation

<> helicity, strong rotation

p/3

<SF=f(x+r)-f(X)]P> ~ rep

of velocity . ,

and helicity . * velocity, weak 2
+ helicity, . weak 2

Y

The velocity in the direct cascade is self-similar for strong rotation

whereas helicity displays some modicum of intermittency

g“p = p/2 for the non-helical case (Simand et al., 2000; Baroud et al., 2002; Mininni+AP, 2009)
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New spectral law for energy and helicity at high rotation

 (Consider the case of the cascade to small scales
dominated by the flux g, of helicity H

e, =dH/dt ~ kH(k) /1, ~ constant, with 1, the transfer time

When assuming t,.= 1, E(K) ~ k¢, H(k) ~ k " --> e+2h=5 (Brissaud et al., ‘73)



New spectral law for energy and helicity at high rotation

 (Consider the case of the cascade to small scales
dominated by the flux g, of helicity H

e, =dH/dt ~ kH(k) /1, ~ constant, with T, the transfer time
When assuming 1,= Ty, E(k) ~ k¢, H(k) ~ k" --> e+2h=5 (Brissaud et al., ‘73)

A Assume instead a slowing down of transfer to small scales
because of wave interactions a a iroshnikov-Kraichnan in MHD:

Ttr — TNL* (TNL/TW) with TNL=I/U/ and TW — 1/Q

* Hence, g, ~ k H(k) * k> E(k) / 2 = constant, or
e + h =4 in the helical case with rotation wininni & ap, Pre 79)

Is e=h=2 the only solution (thereby recovering the non-helical case)?



kX - Compensated spectra for energy (x=e) & helicity (x=h)

15363 run

Ke=7
R0=0.06 T

-

Solid; e=2.1
Dash: h=1.9

Dash-dot:
h=2.1 (=e)

Mininni & AP, ]
arXiv:0909.1272 Compensated spectra for the new spectral law:

and 1275 kK *E(K)*"H(K)/ke



Going beyond, using models of
turbulence

* Are spectral indices universal or do they change

— with Rossby number, at fixed Reynolds number?

— with Reynolds number, at fixed Rossby number?

Large Eddy Simulation (LES) with spectral modeling of turbulent

flows (chollet & Lesieur, 1981) but implementing:
— A dynamical fit to the computed energy spectrum instead of imposing Kolmogorov law
— Inclusion of helicity in both the eddy viscosity and the eddy noise
— (somewhat phase-preserving) eddy noise reconstruction



Numerical modeling

Direct Numerical Simulations

(DNS) 3D space &  Spectral space
— b resclved modaled
%
Versus S =
T i __i- ,I. | - {3
= IRt AN N S S,
Large Eddy Simulations = } TR
(LES) P
DNS
LES |
* Resolve all scales

VS. .£L Jqf.-"

log &
* Model (many) small scales

Slide from Comte, Cargese Summer school on turbulence, July 2007



Validation of LES: temporal evolution
of total energy
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Savings in CPU : 0.5*[1536/96]* ~ 30,000 (also for memory)



Validation of LES, spectral space
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Parametric study using LES
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E(k), Hik)

Parametric study using LES
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Sum of spectral

indices -(e+h)

as a function of time.
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Given e(t),
what would

H-index

h, from run h(t) be

f, Trorm e+2h=5
f, Trom e+h=4
h, Trom a+h=10/3
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Scatter plot (Re, Q) plane
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Scatter plot (Re, Q) plane
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Scatter plot (Re, Q) plane
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Summary of results

In the presence of helicity and rotation, the direct transfer to small
scales is dominated by the helicity cascade and the energy
cascade to small scales is (strongly) quenched because of inverse cascade

This provides a small parameter for the problem (the normalized
ratio of energy to helicity fluxes), besides the Rossby number

The energy cascade to small scale is non-intermittent, a result
that differs from the known self-similarity of the inverse cascade of
energy to large scales

This leads to a change of inertial index in the small scales from a
Kolmogorov law to a law steeper than the non-helical model predicts,
and to a breaking of universality

The flow produces strong laminar long-lived columnar structures,
Beltrami Core Vortices, at scales smaller than the injection scale,

structures that are fully helical (on top of the structures that form at scales
larger than the forcing and different from the early Taylor columns)



Questions and future directions

Can helicity help in interpreting laboratory experiments or atmospheric data?
Can there be experimental evidence for this e+th=4 [aw?

Same as above for e+2h=5, at higher Reynolds number, e.g., in the
atmosphere?

How does the dynamics change in terms of relative helicity p(k)=H(k)/kE(k)?

Does the organization of the force at large scale play a role (random vs.
deterministic forcing)? 2D vs 3D forcing?

What happens locally in space? What are the Beltrami Core Vortex
structures? How do they evolve and interact to lead to both a direct and
inverse cascade (A. Fournier, local -wavelet- analysis, in progress) ?

How does the helicity cascade behave in non-helical rotating flows?

Universality?



Thank you for your attention

* Mininni et al.,” Scale interactions and scaling laws in rotating flows at moderate Rossby numbers
and large Reynolds numbers," Phys. Fluids, 21, 015108, 2009

* Mininni & Pouquet, ""Helicity cascades in rotating turbulence," Phys. Rev. E 79, 026304, 2009

» Baerenzung et al., **Spectral Modeling of Rotating Turbulent Flows,"
submitted to Phys. Rev. E. See also arXiv:0812.1821

* Mininni & Pouquet, ""Persistent cyclonic structures in self-similar turbulent flows,"
submitted to Phys. Rev. E, see also arXiv:0903.2294

* Pouquet et al., , "Modeling of turbulent flows in the presence of magnetic fields or rotation,"TI2009
Conference (Ste Luce), to appear, Notes on Numerical Fluid Mechanics and Multidisciplinary Design,
Springer Verlag, Michel Deville, Jean-Pierre Sagaut and Thien Hiep Eds. (2009). See also arXiv:0904.4860

* Baerenzung et al., "Where we observe that helical turbulence prevails over inertial waves in forced rotating

e

flows at high Reynolds and low Rossby numbers,” ... almost submi

Data & code available, just come and visit us :)



New spectral laws for energy & helicity at high rotation,
using a well-known model of transfer in the presence of waves

« Consider the case of the cascade to small scales dominated by the
flux X of helicity H (1, is the transfer time):

> =dH/dt ~ H /1, ~ constant , 1, =t 2/ Ty
and assume X=k; g; using dimensional analysis with €, one gets:

E(k) ~e2 QP k -¢ with  2a=3-e , 2b=3e-5

H(k) ~Xc Qb ke-4 with  2c=e-1
Note that:
» Positivity of b implies 5/3 < e < 7/3, 5/3<h<7/3 (it also fulfills a>0, ¢>0)

» The helicity and energy fluxes to the small scales are equally strong,
in terms of rotation rate €, for b=d and thus fore =h =2

together with a=b=c=1/2

Je pense que cette page est inutile (incompatibilite des hypotheses)



Micro Rossby number

R =wm,.,../Q

Q) rms

1.2H---DNSs Ro=0.03
£ Aeduced CMNS .
—LES :

DNS 5123, k,=4

Ro=0.03

FIG. 6: Temporal evolution of the micro Hosshy number at
Ho = 0.35 (top) and Ho = 0.03 {bottom) for DNS (dash line]
and LES (solid line). Neote again the different scale on the
axes for the lower Rossby number run.

Taylor-Green forcing
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Z;p = p/2 for the non-helical case (Simand et al., ‘00: Baroud et al., ‘02; Mininni+AP, PRE 79 ‘09)



* Absolute equilibria in the helical non-rotating case (kraichnan, 1973
» Dual cascade of energy and helicity with zero energy flux
may have different scaling laws (Brissaud et al., 1973)

E(k) ~ ke, H(k) ~ k", e+2h=5

« Simultaneous e=h=5/3 cascade (two-point closure, André & Lesieur, 1977)
* Decomposition into helical waves (craya 1958, Herring 1974, Waleffe 1992, ...)
E(k) = E*(k) + E1(k) , H(k) =H*(k) - H(k) , H* (k)=kE*(k)
N H* flux cancellations (Q. chen et al. 2003) (Ditlevsen & Giutiani 2001)

A Different spectra & dissipation scales for H*, and for H, (id.)

** Effects of inhomogeneity (Frisch et al. 1987; Yokoi and Yoshizawa 1993, ...)



1536R0T: Energy spectra

ABQ forcing

10" 10’ 10° 10"

k

Initial conditions: fully developed non rotating Kolmogorov flow, 15363 grid
T=0 to =30, going through dark blue, green, mauve, red, pink, pale blue



Top view and
side view of

relative helicity ="

cos(v,m)

when large
(positive or negative)




kX - compensated spectra

for energy (x=e) and
helicity (x=h)

Low rotation, 5123, k=2

Solid: e = 5/3
Dots: h=e
Dash:h=e-4=7/3

Dash:h=e-4=7/3

E(k) ~ k5% ~ H(K)

Inserts: energy flux (solid) and helicity flux (dash)



kX - compensated spectra
for energy (x=e) and

helicity (x=h)
High rotation
Solid: e = 2.15

Dots: e = h e
Dash:h=e-4=1.85

5123, k=3 E(k) ~ k215 and H(k) ~ k-1-85

~ |-0.7
Inserts: energy flux (solid) and helicity flux (dash) H(k)/ kE(k) ~ k



» Helicity H= <U.VxU> is an ideal invariant (voreau, 1961; Moffatt, 1969)
» Absolute equilibria in the helical non-rotating case (kraichnan, 1973):

« Simultaneous e=h=5/3 cascade (two-point closures, André & Lesieur, 1977;
and numerous direct numerical simulations, e.q. Chen et al. 2003)

* Dual cascade of energy and helicity with zero energy flux
may have different scaling laws (Brissaud et al., 1973)

E(k) ~ ke, Hk) ~ k", e+2h=5 not observed



ABC RUNS WITH HELICITY

Fluxes in inset

T

Energy (solid): direct & inverse cascades

HeIiCity (- - - ): direct cascade only
15363, ke=7, Re=5100, Ro=0.06



3.5 Black dots: e+h=4 -
Grey dots: other
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The Brissaud law of helical flows?

p4: Chieck of 8+2h=5, a+h=4, a+h=10/3

;. It assumes zero
’ | energy flux
[ N RA i whereas here the
I'I..". Wil .-' . . .
ol - . heI|C|ty_ to. energy
/ . | flux ratiois ~ 3 so
- | Itis not really
E 10" | : different from a
L ff ]
dual Kolmogorov
cascade
107}
es2h=5 |
4 f=4
B e+h=10/3
id . ; 3
140 10 id



Ratio of helicity to energy flux normalized by k-
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