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Universality if K | Is independent of the
forcing for properly chosen 7, and X..



Argument 1 against universality

The large scales are determined by the forcing
which can be specified arbitrarily.

Thus, S, (/,) is also arbitrary and can therefore

not be given by a universal expression
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Argument 2 against universality

The averaging of power laws with common scaling exponents
does not allow universal scaling coefficients.

Assuming that homogenous isotropic turbulence can have patches
with different structure functions the non-universality follows.



Averaging power laws
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Intrinsic scales collapse data In the
dissipation range

8.5 Intermittency models based on the velocity 153
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Fig. 8.14. Normalized longitudinal velocity spectrum in the time domain accord-

ing to different authors (Gibson and Schwarz 1963). Wlthout |ntr|nS|C ScaleS




Intrinsic inertial range units

Measured power laws:
S
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Intrinsic power laws
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Intrinsic coefficient K |
Intrinsic units ¢, and X, must be obtained solely
from the measured powers laws.

The integral scale, micro scale, and dissipation scale
do not qualify!



Inertial range length scale
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anomalous scaling means 2, > ¢,

The inequality shows that S, and S, are not
moments of a pdf when ¢ >/ .



Sp
S, =XsK (£11,)
Redundancy in the choice of X and K _
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We are free to choose, say K, =1.

Then,with /_ =/¢__ we have X = \/Sz(ﬁmax)

All other K | are now uniquely determined:
K,=S,(¢,)/S"*(¢,)



Sp
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With K | known we can rewrite for log-log plotting:
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Suppose we have two datasets with the same K,
but different values for 7 and X

and qualitatively different large scales.
a a) \P a P
S = (X&) K, (01 ey

S& = (X&) K, (019

p

How should we average the two datasets?
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Averaging data corresponding to the same / leads to a non-unversal coefficient.
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Conclusion so far:

The use of an Intrinsic length scale
for the Inertial range Is critical.



There are many ways to introduce an
Intrinsic length scale.

Some are computationally practical, e.qg.
the previous I(max).

Others are theoretically natural.

All are equivalent.



Example 1: Log Poisson model
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Suppose we have a pdf with these scaling exponents
o(x,0), x=>0.

The moments are then given by

S, ())=C

where the coefficients can be expressed in terms of f (X) = ¢(x,1)
via a Mellin transform:

C,= T xPH(xf (x))dx = M[xf (x), p]



Among the many operational rules for the Mellin transform,
we find the scaling law

M[g(x),z]=G(z)
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It is possible to express @(x,¢) in terms of f (X).
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The natural intrinsic length scale (for this example)
Is then 7, = 31.2,

because ¢(x,/) takes on negative values precise when ¢ > ¢ __



Example 2: Inertial range similarity

Let J(z,/) be the pdf for a complex variable z = x +1y
and depending parametrically on /.

Consider, the axisymmetric compoment J (z,¢) of J.

o
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The object of interest is the
collection of moments of

A=z, ie., S,(0)=(A")
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The radial profile P(r, /) provides all moments:
S,(£) =2z [ rPP(r, £)dr = 2zM[P(r, (), p + 2]
0

Computational evidence from shell models and Navier Stokes
suggest the similarity

Inr— u(/)
P(r,/)=C(/) f
(0 (){ o (?) }

with some unknown functions f , 1,0, C.
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DNS data

Radial profile log-log plot




Inertial range similarity theory

Assumptions:

(1) The moments are power laws:
S
S,(£)=C/

(2) The radial profile is self-similar

B Inr — 1(/)
P(r,/)=C(/) f { (/) }

« arXiv:physics/0702073



a#0 C =

Results

p+2

parameters: “intermittency parameter” (]

2 (5C,
p)

. a7
. “super exponent )[;i

p/3
} p>—2

. intrinsic length scale

{:’J

—
(. 3 ak.a dissipation



Radial profile in standard form
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Collanse of shell model data
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DNS collapse onto theoretical pdf




The Intrinsic length scale
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small scale

Intrinsic length scale
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The limit £ — 7, -
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Conclusion

* Without the intrinsic inertial range length scale
universal scaling coefficients can not be
identified.

 The matter of universality does not depend on
how the intrinsic scale Is chosen.

 The natural intrinsic scale is the largest | for
which the scaling laws corresponds to a pdf.



