2-D Turbulence for Forcing in all Scales

N. Balci ${ }^{1}$, C. Foias ${ }^{2}$, M. S. Jolly ${ }^{1}$
${ }^{1}$ IMA, ${ }^{2}$ Texas A\&M University, ${ }^{3}$ Indiana University

1. Dissipation cut-off estimates via finite time averages
2. Cascades of pseudo fluxes
3. Dissipation law
4. Inertial range

Navier-Stokes eqns w/ per BCs on $\Omega=[0, L]^{2}$

$$
\begin{gathered}
\frac{d u}{d t}+\nu A u+B(u, u)=f(t), \quad u=u(t) \in H, t \geq t_{0}, u\left(t_{0}\right)=u_{0} \\
A=-\mathcal{P} \Delta, \quad B(u, v)=\mathcal{P}((u \cdot \nabla) v), \quad \mathcal{P}=\text { Helmholtz-Leray proj. } \\
u=\sum_{k \in \mathbb{Z}^{2}} \hat{u}_{k}(t) e^{i \kappa_{0} k \cdot x}, \quad u_{\kappa, \kappa^{\prime}}=\sum_{\kappa \leq \kappa_{0}|k|<\kappa^{\prime}} \hat{u}_{k} e^{i \kappa_{0} k \cdot x} \\
\kappa_{0}=\frac{2 \pi}{L}, \quad \hat{u}_{0}=0, \quad \hat{u}_{k}^{*}=\hat{u}_{-k} \\
p_{\kappa}=u_{\kappa_{0}, \kappa}, \quad q_{\kappa}=u_{\kappa, \infty}
\end{gathered}
$$

Pseudo-flux of Enstrophy

$\left(\mathrm{NSE}, A q_{k}\right), \quad|\cdot|=|\cdot|_{L^{2}}, \quad\|\cdot\|=\left|A^{1 / 2} \cdot\right| \ldots$

$$
\frac{1}{2} \frac{d}{d t}\left\|q_{\kappa}\right\|^{2}+\nu\left|A q_{\kappa}\right|^{2}=\frac{1}{\kappa_{0}^{2}} \mathfrak{F}_{\kappa}=-\left(B(u, u), A q_{\kappa}\right)+\left(f, A q_{\kappa}\right)
$$

net rate of exchange of enstrophy from low to high modes

$$
\begin{gathered}
\mathfrak{F}_{\kappa}=\mathfrak{E}_{\kappa}-\mathfrak{E}_{\kappa}^{\leftarrow}+\kappa_{0}^{2}\left(f, A q_{\kappa}\right) \\
\mathfrak{E}_{\kappa}^{\rightarrow}(u)=-\kappa_{0}^{2}\left(B\left(p_{\kappa}, p_{\kappa}\right), A q_{\kappa}\right) \quad \mathfrak{E}_{\kappa}^{\leftarrow}(u)=-\kappa_{0}^{2}\left(B\left(q_{\kappa}, q_{\kappa}\right), A p_{\kappa}\right) \\
\text { enstrophy cascade: }\left\langle\mathfrak{F}_{\kappa}\right\rangle \approx \text { const for } \underline{\kappa}_{i} \leq \kappa \leq \bar{\kappa}_{i}
\end{gathered}
$$

Original dissipation cut-off estimate for time indep. force

$$
\begin{aligned}
\eta & \left.=\left.\nu \kappa_{0}^{2}\langle | A u\right|^{2}\right\rangle_{\infty}, \quad \kappa_{\eta}=\left(\frac{\eta}{\nu^{3}}\right)^{1 / 6}, \quad G=\frac{|f|}{\nu^{2} \kappa_{0}^{2}} \\
\langle\cdot\rangle_{\infty} & =\text { "infinite time" average (via generalized, H-B limit) } \\
& =\text { ensemble average over global attractor }
\end{aligned}
$$

Theorem. [Foias-Manley-Temam '93]

$$
G^{1 / 6} \lesssim \frac{\kappa_{\eta}}{\kappa_{0}} \leq G^{1 / 3} \quad(\text { both acheived })
$$

Framework for time dep force

$$
\begin{gathered}
\overline{|f|}=\sup _{t \in \mathbb{R}}|f(t)|<\infty \quad \bar{G}=\frac{\overline{|f|}}{\nu^{2} \kappa_{0}^{2}} \\
\text { finite time ave }\langle\cdot\rangle=\langle\cdot\rangle_{t_{1}}^{t_{2}}=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} \cdot d t \\
t_{2}-t_{1} \geq T_{\text {min }} \quad \bar{G} \geq \bar{G}_{\text {min }} \\
f \in L^{\infty}\left(t _ { 0 } , \infty ; D (A ^ { j / 2 }) \quad \text { and either } \quad \left\{\begin{array}{l}
\dot{f} \in L^{\infty}\left(t_{0}, \infty ; H\right) \\
|\langle f\rangle|>0
\end{array}\right.\right.
\end{gathered}
$$

Two forms of diss cut-off estimates:

$$
\begin{gathered}
\left(\frac{\bar{G}}{C_{*}}\right)^{1 / 6} \leq \frac{\kappa_{\eta}}{\kappa_{0}} \leq\left(C^{*} \bar{G}\right)^{1 / 3} \\
{\left[\frac{\kappa_{\tau} \kappa_{\sigma}}{\kappa_{0}^{2}}\right]^{1 / 3}\left(\frac{\bar{G}}{K_{*}}\right)^{1 / 6} \leq \frac{\kappa_{\eta}}{\kappa_{0}} \leq\left[\frac{\kappa_{0}^{2}}{\kappa_{\tau} \kappa_{\sigma}}\right]^{1 / 3}\left(C^{*} \bar{G}\right)^{1 / 3}}
\end{gathered}
$$

where

$$
\kappa_{\sigma}=\left(\frac{\left.\left.\langle | A u\right|^{2}\right\rangle}{\left\langle\|u\|^{2}\right\rangle}\right)^{1 / 2} \quad \kappa_{\tau}=\left(\frac{\left\langle\|u\|^{2}\right\rangle}{\left.\left.\langle | u\right|^{2}\right\rangle}\right)^{1 / 2}
$$

Ave enstrophy lower bound:

$$
\left\langle\|u\|^{2}\right\rangle \geq C\left(\nu \kappa_{0}\right)^{2} \bar{G}
$$

As in [Foias-J.-Manley-Rosa '02] for $\mathfrak{E}_{\kappa}=\mathfrak{E}_{\kappa}^{\vec{~}}-\mathfrak{E}_{\kappa}^{\leftarrow}$
Theorem. Under conditions on f such that

$$
\begin{gathered}
\left(\frac{\bar{G}}{C_{*}}\right)^{1 / 6} \leq \frac{\kappa_{\eta}}{\kappa_{0}}, \\
\text { we have for } t_{2}-t_{1} \geq \frac{2 C_{*} \bar{G}}{\delta \nu \kappa_{0}^{2}} \text { and any } \delta>0, \\
1-\left(\frac{\kappa}{\kappa_{\sigma}}\right)^{2}-\delta \leq \frac{\left\langle\mathfrak{F}_{\kappa}\right\rangle}{\eta} \leq 1+\delta .
\end{gathered}
$$

Suff cond for direct enstr cascade: $\quad \kappa_{0} \ll \kappa_{\sigma} \Longrightarrow$

$$
\left\langle\mathfrak{F}_{\kappa}\right\rangle \approx \eta \quad \text { for } \quad \kappa_{0} \leq \kappa \ll \kappa_{\sigma}
$$

Pseudo-flux of Energy

net rate of exchange of energy from low to high modes

$$
\mathfrak{f}_{\kappa}=-\left(B(u, u), q_{\kappa}\right)+\kappa_{0}^{2}\left(f, q_{\kappa}\right)=\overrightarrow{\mathfrak{e}_{\kappa}}-\mathfrak{e}_{\kappa}^{\leftarrow}+\kappa_{0}^{2}\left(f, q_{\kappa}\right)
$$

net rate of exchange of energy from high to low modes

$$
\mathfrak{g}_{\kappa}=-\left(B(u, u), p_{\kappa}\right)+\kappa_{0}^{2}\left(f, p_{\kappa}\right)=-\left[\mathfrak{e}_{\kappa}-\mathfrak{e}_{\kappa}^{\leftarrow}\right]+\kappa_{0}^{2}\left(f, p_{\kappa}\right)
$$

where

$$
\overrightarrow{\mathfrak{e}_{\kappa}}(u)=-\kappa_{0}^{2}\left(B\left(p_{\kappa}, p_{\kappa}\right), q_{\kappa}\right), \quad \text { and } \quad \mathfrak{e}_{\kappa}^{\leftarrow}(u)=-\kappa_{0}^{2}\left(B\left(q_{\kappa}, q_{\kappa}\right), p_{\kappa}\right) .
$$

Theorem. Under the conditions on f such that $\left\langle\|u\|^{2}\right\rangle \geq C\left(\nu \kappa_{0}\right)^{2} \bar{G}$ we have for $t_{2}-t_{1} \geq \frac{2 \bar{G}}{C \delta \nu \kappa_{0}^{2}}$ and any $\delta>0$,

$$
1-\left(\frac{\kappa}{\kappa_{\tau}}\right)^{2}-\delta \leq \frac{\left\langle\mathfrak{f}_{\kappa}\right\rangle}{\epsilon} \leq 1+\delta,
$$

and

$$
1-\left(\frac{\kappa_{\sigma}}{\kappa}\right)^{2}-\delta \leq \frac{\left\langle\mathfrak{g}_{\kappa}\right\rangle}{\epsilon} \leq 1+\delta
$$

direct cascade of pseudo energy flux: $\left\langle\mathfrak{f}_{\kappa}\right\rangle \approx \epsilon$ for $\kappa_{0} \leq \kappa \ll \kappa_{\tau}$ inverse cascade of pseudo energy flux: $\left\langle\mathfrak{g}_{\kappa}\right\rangle \approx \epsilon$ for $\kappa_{\sigma} \ll \kappa$

Effect of forcing terms on the pseudo fluxes

For time-indep $f=f_{\kappa, \bar{\kappa}}$, nonlin fluxes $\mathfrak{E}_{\kappa}=\mathfrak{E}_{\kappa} \rightarrow \mathfrak{E}_{\kappa}^{\leftarrow}, \mathfrak{e}_{\kappa}=\mathfrak{e}_{\kappa}-\mathfrak{e}_{\kappa}^{\leftarrow}$

$$
\begin{gathered}
\text { satisfy } \quad\left\langle\mathfrak{E}_{\kappa}\right\rangle_{\infty},\left\langle\mathfrak{e}_{\kappa}\right\rangle_{\infty} \begin{cases}\geq 0, & \text { if } \kappa>\bar{\kappa} \\
\leq 0, & \text { if } \kappa \leq \underline{\kappa}\end{cases} \\
\text { Yet } \mathfrak{F}_{\kappa}=\mathfrak{E}_{\kappa}+\left(f, A q_{\kappa}\right), \mathfrak{f}_{\kappa}=\mathfrak{e}_{\kappa}+\left(f, q_{\kappa}\right) \text { and } \mathfrak{g}_{\kappa}=-\mathfrak{e}_{\kappa}+\left(f, p_{\kappa}\right) \\
\text { satisfy }\left\langle\mathfrak{F}_{\kappa}\right\rangle>0 \text { for } \kappa<\kappa_{\sigma} \text { and }\left\langle\mathfrak{f}_{\kappa}\right\rangle>0 \text { for } \kappa<\kappa_{\tau} \\
\left\langle\mathfrak{g}_{\kappa}\right\rangle>0 \text { for } \kappa>\kappa_{\sigma}
\end{gathered}
$$

For general force conclude: $\left|\left\langle\mathfrak{e}_{\kappa}\right\rangle\right|<\left\langle\left(f, p_{\kappa}\right)\right\rangle$ for $\kappa>\kappa_{\sigma}$

Rationale for forcing terms in the pseudo-fluxes

net rate of energy exchange into low modes : $\mathfrak{g}_{\kappa}=-\mathfrak{e}_{\kappa}+\left(f, p_{\kappa}\right)$
injection of energy into p_{κ} from sources external to p_{κ} minus loss of energy from p_{κ} to q_{κ}

$$
\begin{aligned}
\frac{\mathfrak{e}_{\kappa}}{\kappa_{0}^{2}} & =-\left(B(u, u), q_{\kappa}\right)=\left(B(u, u), p_{\kappa}\right) \\
& =\left(B\left(q_{\kappa}, q_{\kappa}\right), p_{\kappa}\right)+\left(B\left(p_{\kappa}, q_{\kappa}\right), p_{\kappa}\right)+\underbrace{\left(B\left(q_{\kappa}, p_{\kappa}\right), p_{\kappa}\right)}_{0}+\underbrace{\left(B\left(p_{\kappa}, p_{\kappa}\right), p_{\kappa}\right)}_{0} \\
& =\left(B\left(q_{\kappa}, q_{\kappa}\right), p_{\kappa}\right)-\left(B\left(p_{\kappa}, p_{\kappa}\right), q_{\kappa}\right)
\end{aligned}
$$

Rationale for forcing terms in the psedo-fluxes

$$
\underbrace{\frac{d}{d t}\left|p_{\kappa}\right|^{2}}_{\text {net change }}+\underbrace{\nu\left\|p_{\kappa}\right\|^{2}}_{\text {internal source }}=\underbrace{\left.-(B(u, u)), p_{\kappa}\right)+\left(f, p_{\kappa}\right)}_{\text {external source }}=\frac{\mathfrak{g}_{\kappa}}{\kappa_{0}^{2}}
$$

- viscous term has same sign for all κ
- f may have mixing effect similar to nonlinear term

2-D dissipation law $\eta \sim \kappa_{0}^{3} U^{3}$ where $\left.U=\left.\kappa_{0}\langle | u\right|^{2}\right\rangle^{1 / 2}$

Theorem. [Foias-J.-Manley-Rosa '02] $f=f_{\kappa, \bar{\kappa}}$, time indep

$$
\eta \lesssim\left(\frac{\bar{\kappa}}{\kappa_{0}}\right)^{4} \kappa_{0}^{3} U^{3}, \quad \text { where } \quad\langle\cdot\rangle=\langle\cdot\rangle_{\infty}
$$

Theorem. If

$$
\left[\frac{\kappa_{\tau} \kappa_{\sigma}}{\kappa_{0}^{2}}\right]^{1 / 3}\left(\frac{\bar{G}}{K_{*}}\right)^{1 / 6} \leq \frac{\kappa_{\eta}}{\kappa_{0}} \leq\left[\frac{\kappa_{0}^{2}}{\kappa_{\tau} \kappa_{\sigma}}\right]^{1 / 3}\left(C^{*} \bar{G}\right)^{1 / 3},
$$

then

$$
\eta \leq C^{*} K_{*} \kappa_{0}^{3} U^{3}, \quad \text { where }\langle\cdot\rangle=\langle\cdot\rangle_{t_{1}}^{t_{2}}
$$

Proof:

$$
\begin{gathered}
\left.\left.\left[\frac{\kappa_{0}^{2}}{\kappa_{\tau} \kappa_{\sigma}}\right] C^{*} \bar{G} \geq\left(\frac{\kappa_{\eta}}{\kappa_{0}}\right)^{3}=\left.\frac{1}{\nu \kappa_{0}^{2}}\langle | A u\right|^{2}\right\rangle^{1 / 2}=\left.\frac{1}{\nu}\left[\frac{\kappa_{\tau} \kappa_{\sigma}}{\kappa_{0}^{2}}\right]\langle | u\right|^{2}\right\rangle^{1 / 2} \\
\left.\Longrightarrow C^{*} \bar{G} \geq\left.\frac{1}{\nu}\left[\frac{\kappa_{\tau} \kappa_{\sigma}}{\kappa_{0}^{2}}\right]^{2}\langle | u\right|^{2}\right\rangle^{1 / 2} \\
\left.C^{*} \frac{\left.\left.\langle | A u\right|^{2}\right\rangle}{\nu^{2} \kappa_{0}^{4}}=C^{*}\left(\frac{\kappa_{\eta}}{\kappa_{0}}\right)^{6} \geq\left[\frac{\kappa_{\tau} \kappa_{\sigma}}{\kappa_{0}^{2}}\right]^{2} \frac{C^{*} \bar{G}}{K_{*}} \geq\left.\frac{1}{\nu K_{*}}\left[\frac{\kappa_{\tau} \kappa_{\sigma}}{\kappa_{0}^{2}}\right]^{4}\langle | u\right|^{2}\right\rangle^{1 / 2} \\
\\
=\frac{1}{\nu \kappa_{0}^{8} K_{*}} \frac{\left.\left.\langle | A u\right|^{2}\right\rangle^{2}}{\left.\left.\langle | u\right|^{2}\right\rangle^{3 / 2}} \\
\left.\left.\left.\nu\langle | A u\right|^{2}\right\rangle \leq\left. C^{*} K_{*} \kappa_{0}^{4}\langle | u\right|^{2}\right\rangle^{3 / 2}
\end{gathered}
$$

2-D dissipation law equiv to $\kappa_{\tau} \kappa_{\sigma} \sim \kappa_{0} \kappa_{\eta}$

Theorem. If

$$
\eta \leq C^{*} K_{*} \kappa_{0}^{3} U^{3}
$$

then

$$
\kappa_{\tau} \kappa_{\sigma} \leq\left(C^{*} K_{*}\right)^{1 / 3} \kappa_{0} \kappa_{\eta}
$$

Proof: The (one-sided) dissipation law can be rewritten as

$$
\left.\left.\left.\nu\langle | A u\right|^{2}\right\rangle \leq\left. C^{*} K_{*} \kappa_{0}^{4}\langle | u\right|^{2}\right\rangle^{3 / 2}=C^{*} K_{*} \kappa_{0}^{4} \kappa_{\tau}^{-3}\left\langle\|u\|^{2}\right\rangle^{3 / 2},
$$

which is equivalent to

$$
\left.\left.\langle | A u\right|^{2}\right\rangle^{2 / 3} \leq\left(C^{*} K_{*}\right)^{2 / 3} \nu^{-2 / 3} \kappa_{0}^{8 / 3} \kappa_{\tau}^{-2}\left\langle\|u\|^{2}\right\rangle,
$$

which is equivalent to

$$
\kappa_{\tau}^{2} \kappa_{\sigma}^{2}=\kappa_{\tau}^{2} \frac{\left.\left.\langle | A u\right|^{2}\right\rangle}{\left\langle\|u\|^{2}\right\rangle} \leq\left(C^{*} K_{*}\right)^{2 / 3} \kappa_{0}^{2}\left(\frac{\left.\left.\kappa_{0}^{2}\langle | A u\right|^{2}\right\rangle}{\nu^{2}}\right)^{1 / 3}=\left(C^{*} K_{*}\right)^{2 / 3} \kappa_{0}^{2} \kappa_{\eta}^{2} .
$$

Inertial range

1. A significant amount of enstrophy should be in the inertial range.
2. This range should be wide, in particular $\underline{\kappa}_{i} \ll \bar{\kappa}_{i} \sim \kappa_{\eta}$.
3. The enstrophy cascade should hold over this range.
4. The power law

$$
\mathrm{e}_{\kappa, 2 \kappa} \sim \frac{\eta^{2 / 3}}{\kappa^{2}}
$$

should hold for all $\kappa \in\left[\underline{\kappa}_{i}, \bar{\kappa}_{i}\right]$.

Logarithmic correction

As in [Rose-Sulem '78], [Ohkitani'89]

$$
\frac{\eta^{2 / 3}}{\kappa^{2}} \prec \mathrm{e}_{\kappa, 2 \kappa} \prec \frac{\eta^{2 / 3}}{\kappa^{2}}
$$

where
$a \prec b \quad$ when $\quad a \leq C(\log (s \bar{G}))^{\alpha} b \quad$ for some $\alpha \in \mathbb{R}$, and large enough \bar{G} and where C and s are shape factors, with a similar convention for \succ.

Theorem. For any κ such that

$$
\frac{\eta^{2 / 3}}{\kappa^{2}} \prec \mathrm{e}_{\kappa, 2 \kappa}
$$

we have $\kappa \prec \kappa_{\eta}$, and consequently

$$
\bar{\kappa}_{i} \prec \kappa_{\eta} .
$$

Theorem. If

$$
\kappa_{\eta} \prec \kappa_{\sigma}
$$

then

$$
\mathrm{e}_{\kappa, 2 \kappa} \prec \frac{\eta^{2 / 3}}{\kappa^{2}}, \quad \text { for all } \kappa \geq \kappa_{0}
$$

Moreover, for any κ such that

$$
\frac{\eta^{2 / 3}}{\kappa^{2}} \prec \mathrm{e}_{\kappa, 2 \kappa} \prec \frac{\eta^{2 / 3}}{\kappa^{2}}
$$

we have $\kappa_{\tau} \prec \kappa$, and consequently

$$
\kappa_{\tau} \prec \underline{\kappa}_{i}, \quad \kappa_{\tau} \prec \kappa_{0}
$$

Theorem. If

$$
\mathrm{e}_{\kappa, 2 \kappa} \prec \frac{\eta^{2 / 3}}{\kappa^{2}}
$$

holds for

$$
\kappa_{1}=\left(1-\frac{C}{\log \bar{G}}\right)^{-1 / 2} \kappa_{\tau} \leq \kappa \leq \kappa_{2}=\left(1-\frac{C}{\log \bar{G}}\right)^{1 / 2} \kappa_{\eta}
$$

then for all \bar{G} large enough,

$$
\kappa_{\eta} \prec \kappa_{\sigma}
$$

and

$$
\frac{\left\langle\left\|q_{\kappa_{1}}\right\|^{2}\right\rangle}{\left\langle\left\|p_{\kappa_{1}}\right\|^{2}\right\rangle} \geq \frac{1}{\log \bar{G}}
$$

Theorem. If $t_{2}-t_{1} \geq T_{\text {min }}$ and $\bar{G} \geq \bar{G}_{\text {min }}$, then

$$
\left(\frac{\bar{G}}{C_{*}}\right)^{1 / 6} \leq \frac{\kappa_{\eta}}{\kappa_{0}} \leq\left(C^{*} \bar{G}\right)^{1 / 3}
$$

force	$T_{\min }$	$\bar{G}_{\min }$	C_{*}	C^{*}
$f, \dot{f} \in L^{\infty}\left(t_{0}, \infty ; H\right)$	$\frac{c}{\nu \kappa_{0}^{2} \Gamma^{2}}$	$c\left(\Gamma_{1}^{2}+1\right)$	$\frac{c}{\Gamma^{2}}$	c
$f \in L^{\infty}\left(t_{0}, \infty ; H\right),\|\langle f\rangle\|>0$	$\frac{c}{\nu \kappa_{0}^{2} \Gamma_{0}^{2}}$	$\frac{c}{\Gamma_{0}^{2}}$	$\frac{c}{\Gamma_{0}^{2}}$	c

$$
\Gamma_{1}=\sup \left(\frac{\left.\left.\langle | \dot{f}\right|^{2}\right\rangle}{\left.\left.\nu^{2} \kappa_{0}^{4}\langle | f\right|^{2}\right\rangle}\right)^{1 / 2} \quad \Gamma=\inf \frac{\left.\left.\langle | f\right|^{2}\right\rangle^{1 / 2}}{\overline{|f|}} \quad \Gamma_{0}=\inf \frac{|\langle f\rangle|}{\overline{|f|}}
$$

sup, inf are over all t_{1}, t_{2} s.t. $t_{2}-t_{1} \geq 1 /\left(\nu \kappa_{0}^{2}\right)$.

Theorem. If $f \in L^{\infty}\left(t_{0}, \infty ; X\right), t_{2}-t_{1} \geq T_{\text {min }}$ and $\bar{G} \geq \bar{G}_{\text {min }}$, then

$$
\left[\frac{\kappa_{\tau} \kappa_{\sigma}}{\kappa_{0}^{2}}\right]^{1 / 3}\left(\frac{\bar{G}}{K_{*}}\right)^{1 / 6} \leq \frac{\kappa_{\eta}}{\kappa_{0}} \leq\left[\frac{\kappa_{0}^{2}}{\kappa_{\tau} \kappa_{\sigma}}\right]^{1 / 3}\left(C^{*} \bar{G}\right)^{1 / 3}
$$

force	$T_{\min }$	$\bar{G}_{\min }$	K_{*}	C^{*}
$X=D(A), \dot{f} \in L^{\infty}\left(t_{0}, \infty ; H\right)$	$\frac{\bar{G}^{1 / 2} \log ^{1 / 4} \bar{G}}{\nu \kappa_{0}^{2}}$	$\frac{c\left(\psi_{2}^{2}+\Gamma_{1}^{2}\right)}{\varphi_{2} \log ^{1 / 2} \bar{G}}$	$\frac{c \psi_{2} \log ^{1 / 2} \bar{G}}{\Gamma}$	$c \psi_{2}$
$X=D\left(A^{3 / 2}\right),\|\langle f\rangle\|>0$	$\frac{c \bar{G}^{1 / 2}}{\nu \kappa_{0}^{2}}$	$\frac{c \theta_{2}}{\Gamma_{0}\left[\log \frac{\theta_{3}}{\theta_{2}}\right]^{1 / 2}}$	$\frac{c \theta_{2}\left[\log \frac{e \theta_{3}}{\theta_{2}}\right]^{1 / 2}}{\Gamma_{0}}$	$c \psi_{2}$

$$
\psi_{j}^{2}=\sup \frac{\left.\left.\langle | A^{j / 2} f\right|^{2}\right\rangle}{\left.\left.\kappa_{0}^{2 j}\langle | f\right|^{2}\right\rangle} \quad \varphi_{j}=\frac{\overline{\left|A^{j / 2} f\right|}}{\kappa_{0}^{2 j}|f|} \quad \theta_{j}=\sup \frac{\left|A^{j / 2}\langle f\rangle\right|}{\kappa_{0}^{j}|\langle f\rangle|}
$$

Sharpening in diss cut-off est that results if $\kappa_{\tau} \kappa_{\sigma} \sim \kappa_{0} \kappa_{\eta}$

Corollary. If $t_{2}-t_{1} \geq T_{\text {min }}, \bar{G} \geq \bar{G}_{\text {min }}$, and

$$
\frac{\kappa_{\tau} \kappa_{\sigma}}{\kappa_{0}^{2}} \sim \frac{\kappa_{\eta}}{\kappa_{0}}
$$

then

$$
\left(\frac{\bar{G}}{K_{*}}\right)^{1 / 4} \leq \frac{\kappa_{\eta}}{\kappa_{0}} \leq\left(C^{*} \bar{G}\right)^{1 / 4} .
$$

Summary

- $\left(\frac{\kappa_{\tau} \kappa_{\sigma}}{\kappa_{0}^{2}}\right)^{1 / 3} \bar{G}^{1 / 6} \lesssim \kappa_{\eta} / \kappa_{0} \lesssim\left(\frac{\kappa_{0}^{2}}{\kappa_{\tau} \kappa_{\sigma}}\right)^{1 / 3} \bar{G}^{1 / 3}$
- Tme dep forcing in all scales. Shape factors fixed as $\bar{G} \rightarrow \infty$
- Lower bound on $\kappa_{\eta} / \kappa_{0} \Longrightarrow$ direct enstrophy cascade if $\kappa_{\sigma} \gg \kappa_{0}$
- Energy power law $\Longrightarrow \kappa_{\sigma} \sim \kappa_{\eta}$ (up to log)
- 2-D diss law $\eta \sim \kappa_{0}^{3} U^{3}$ equiv to $\kappa_{\tau} \kappa_{\sigma} \sim \kappa_{0} \kappa_{\eta}$
- $\kappa_{\tau} \kappa_{\sigma} \sim \kappa_{0} \kappa_{\eta} \Longrightarrow \operatorname{sharp}$ bound $\bar{G}^{1 / 4} \sim \kappa_{\eta} / \kappa_{0}$

