2-D Turbulence for Forcing in all Scales
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1. Dissipation cut-off estimates via finite time averages
2. Cascades of pseudo fluxes
3. Dissipation law

4. Inertial range
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Navier-Stokes eqns w/ per BCs on Q = [0, L|?

A=-PA, B(u,v)=P((u-V)v),

:’LL(t)EH, t > 1o, U(to)

P = Helmholtz-Leray proj.

U = E : ’LL ’Llioki T Upe ! = E : ,&kezmok-x

kcZ2 r<kolk|<r'
2T
A Ak _ A
KO_fa uO_Oa E— U—L
Pr = Ugkg,k dr — Ugk,00 ;
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Pseudo-flux of Enstrophy

(NSE, Agi), |-[=|lp2 |-II=14"2-]...

1d

5l + V149 = 58, = ~(B(ww), Ag,) + (£, Agy

net rate of exchange of enstrophy from low to high modes
§.=¢€, — & + K/g(f, Aqy)

¢ (u) = —ro(B(PrsPr)y Ade) € (u) = —r5(B(4x, i), ADs)
enstrophy cascade:  (§x) ~ const for k, < Kk < R;
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Original dissipation cut-off estimate for time indep. force

1 \1/6 f
= Ry = (5)" . =L

2,27
3 V2K
(‘Yoo = “infinite time” average (via generalized, H-B limit)

ensemble average over global attractor

Theorem. [Foias-Manley-Temam ’93]

Gl/6 < i < G (both acheived)
R0
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Framework for time dep force

f € L>=(ty, 00; H)

f € L% (ty,00; D(A/?)  and either {(f}I -0
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Two forms of diss cut-off estimates:

a\"® x
hll <M < (OFGHY/3
(C*) ko ( )

1/3 , =\ 1/6 5 11/3
el () ke[ )T ey

K K. Ko KrKg

()" ()

Ave enstrophy lower bound:

where
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As in [Foias-J.-Manley-Rosa '02] for &, = ¢~ — &
Theorem. Under conditions on | such that
1/6

G\ _ ok
C* _/ﬁ)()7

2C.G
OVKE

1(i)25§<3"”“>§1+5.

Ko n

we have for to —1t1 >

and any 0 >0,

Suff cond for direct enstr cascade: kKo <K Ky —>

<$,i> ~n for kg <k <KEKg
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Pseudo-flux of Energy

net rate of exchange of energy from low to high modes

fro = _(B(uau)aqfi) + K’g(fa q/@) — 2: — 2: + K’g(fa in)

net rate of exchange of energy from high to low modes

Ok = —(B(U,U),pﬁ) + R%(fapli) — —[2: o e:] + H:(%(fvpli)

where

e, (u) = —K3(B(Prs i)y @), and e (u) = —k5(B(qs, Gs)s i) -
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Theorem. Under the conditions on f such that {||u|?) > C(vky)*G

2G
we have for to —1t1 > Covn? and any 6 >0,
2
1—(f> iR g1y
Kor €

and

1—(3Q2—5§<%>§1+5.

K €

direct cascade of pseudo energy flux: (f,) ~¢ for ko <K <k,

inverse cascade of pseudo energy flux: (g.) ~e¢ for kr, <k
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Effect of forcing terms on the pseudo fluxes

For time-indep f = f, %, nonlin fluxes €, =&~ — €, ¢, =¢

H H
K

o — €

>0 if Kk >k
t. f eli XD K/ OO - ’ .
satisfy (€)oo, (€) {SO, i<
Yet SKJ — Qzﬁ;"i_ (f?Aqli)i f/’i = €5 + (f7QI£) and I = —e + (f?pli)
satisfy (§.) >0 for k < ks, and (fc) > 0 for Kk < Kk,

(gx) > 0 for k > Kk,
For general force conclude: |{e.)| < ((f,px)) for k > Kk,
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Rationale for forcing terms in the pseudo-fluxes

net rate of energy exchange into low modes : g, = —e¢x + (f, px)

injection of energy into p, from sources external to p,

minus loss of energy from p,. to q.

> = —(B(u,u), ¢x) = (B(u,u), px)

= (B(x»qx): Px) + (B(Drs @), Pis) + &B(Qmagm)apml T &B(pmgm)apmz

— (B(QHH Qm)apm) - (B(pmp/i)a in)
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Rationale for forcing terms in the psedo-fluxes

‘ g
%\PKP -+ M = —(B(u,u)),px) + (f,px) = ;;
net cvhange internal source externglrsource 0

e viscous term has same sign for all

e { may have mixing effect similar to nonlinear term
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2-D dissipation law 7 ~ xjU? where U = ro(|u|*)"/?

Theorem. [Foias-J.-Manley-Rosa '02] f = f, 7, time indep

_\4
nﬁ(i) koU® ,  where (1) = ()0
Ro
Theorem. [If
1/3 , =~ 1/6 5 ~11/3
KK G K K —
) (k) seslon] @
then

n < C*K*RSU?) ,  where ()= <>€f
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(| Aul?) Ko 0 KKy | 2 0*G | N 4 o 1
| k5 | K. T vK.| KE | (ful")
1 (JAu|?)?
TR ([uP)

v(|Aul?) < C* KrigJul?)*?
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2-D dissipation law equiv to K.k, ~ Koky

Theorem. [If
n < C’*K*ﬁ;gUS :
then
Frky < (C'*K*)1/3/4,0/@,7 .
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Proof: The (one-sided) dissipation law can be rewritten as
v(|Auf®) < C* Karg(Jul?)*? = C* Korgr 7 (Ju )2
which is equivalent to
(Au)>/ < (C KPP0k (Jul)
which is equivalent to

ko (| Aul?)

12

1/3
< (C'K >2/30( ) — (C KRR
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Inertial range

1. A significant amount of enstrophy should be in the inertial range.
2. This range should be wide, in particular K, K< K; ~ Ky,
3. The enstrophy cascade should hold over this range.

4. The power law
2/3

€k, 2k 7
/§)2

should hold for all x € [k;, R;].
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Logarithmic correction

As in [Rose-Sulem'78], [Ohkitani‘89]

2/3 2/3
Ui Ui
= eli,2/i = )

K2 K2
where

a<b when a<C(log(sG))* for some a € R, and large enough G

and where C' and s are shape factors, with a similar convention for >.
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Theorem. For any k such that

2/3
Ui
— = €k,2k

K2

we have k < Ky, and consequently

Ri < Ky .
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Theorem. [If

Kn < Ko
then
/3
€k.2k = — 5 for all kK > Kg .
K
Moreover, for any k such that
2/3 2/3
n Ui
W2 T
we have k. < k, and consequently
Kr < K; , Kr = Ko
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Theorem. [If
n2/3
eli,2/€ = 9
K

holds for

(mw) (
kKi=1[1-— o Kr <K< Ky=1|1-—
log G

then for all G large enough,

Kn < Ko

and ,
<||QI€1H2> > 1_ .
([prill?) — log G
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1/2
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Theorem. [fto —t; > Topin and G > Goyin, then

. 1/6
G K 1
— < (C*G)M3
(C*) Ko (c°6)
force Torin Grin c, | C*
fif € L>(to, 00; H) V2T c(Ti+1) | 2| ¢
f € L=(to,00; H), (/)| >0 | —5m 2 2| o
00 0 0
. 1/2
(f17) ALY ()]
I'y =sup [' =inf ——= ['g = inf ——=
1 <v2ff%<f|2> /] /]

sup, inf are over all t1,t5 s.t. to —t1 > 1/(vk3).
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Theorem. If f € L>®(ty,00;X), ta —t1 > Tiin and G > Gin, then
1/3 , — 1/6 1/3
R+Rg / G < @ '%?) / (C*G)l/S
K2 K, T Ky | KKy
force Torin Guin K, C*
: =YY= (D22 o logl/2 T
X = D(A), f € L=(to,00; H) || S05=C | 2T | ct2lee € ey
e | PN L
X = D(A%2), [(f)| >0 C,ig 69629 /2 FOQQ P2
0 FO [logQ_QS}
s AR TAPR i)
wj — SUp —5> 5 ©j 25T 71 j = SUP 7
ko (If]2) ko | f] kol ()|
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Sharpening in diss cut-off est that results if K.k, ~ Kok,

Corollary. [Ifty —t1 > Toin, G > Guin, and

S ——

then
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Summary

1/3 1/3
o (222) T S mmo s (RE) @

Ko RrKo
e Tme dep forcing in all scales. Shape factors fixed as G — oo
e Lower bound on k,/ky = direct enstrophy cascade if K, > kg
e Energy power law = Kk, ~ K, (up to log)

e 2-D diss law 1 ~ k3U? equiv to Krks ~ Kok

—1/4
® K:Ks ~ Kok, = sharp bound ¢ /. Kn/Ko
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