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K41 theory. I.

In three-dimensional turbulence there is an energy cascade from large scales to small
scales driven by the nonlinear term of the Navier-Stokes equations

Kolmogorov (1941) predicts that the structure functions Sn(x, re) of longitudinal
velocity differences, defined as

Sn(x, re) = 〈{[u(x + re, t) − u(x, t)] · e}n〉 (1)

are governed by self-similar scaling Sn(x, λre) = λζnλSn(x, re) for scales r in the
inertial range η � r � �0 (intermediate asymptotics) with

�0 = forcing length scale

η = (ν3/ε)1/4 = dissipation scale. (Kolmogorov microscale)

ε = rate of energy injection

Kolmogorov (1941) predicts that ζn = n/3 and thus Sn(x, re) ∼ Cn(εr)n/3 in the
inertial range.
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K41 theory. II.

Oboukhov (1941) argued that the energy spectrum E(k) will scale as E(k) ∼ k−1−ζ2 ,
and will thus be given by

E(k) ∼ Cε2/3k−5/3 (2)

1962: First experimental confirmation of the Kolmogorov-Oboukhov prediction by
measurement of oceanic currents.

1962: Kolmogorov predicts intermittency corrections to ζn:

ζn =
n

3
− µn(n− 3)

18
(3)

Not self-consistent statistically, because ζn should not decrease.

The existence of intermittency corrections confirmed by experimental measurements

The problem of calculating ζn rigorously is still open.
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Governing equations for 2D

In 2D turbulence, the scalar vorticity ζ(x, y, t) is governed by

∂ζ

∂t
+ J(ψ, ζ) = −[ν(−∆)κ + β(−∆)−m]ζ + F, (4)

where ψ(x, y, t) is the streamfunction and ζ(x, y, t) = −∇2ψ(x, y, t).

The Jacobian term J(ψ, ζ) describes the advection of ζ by ψ, and is defined as

J(ψ, ζ) =
∂ψ

∂x

∂ζ

∂y
− ∂ζ

∂x

∂ψ

∂y
. (5)

Two conserved quadratic invariants: energy E and enstrophy G defined as

E(t) = −1

2

∫
ψ(x, y, t)ζ(x, y, t) dxdy G(t) =

1

2

∫
ζ2(x, y, t) dxdy. (6)
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KLB theory

lnE(k)

ln k
× × ×

�

Cirε
2/3k−5/3

Cuvη2/3k−3[χ+ ln(k�0)]−1/3

kir k0 kuv

k0 = forcing wavenumber

kir = IR dissipation wavenumber

kuv = UV dissipation wavenumber

ε = upscale energy flux

η = downscale enstrophy flux
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The generalized balance equations. I

We employ the balance equations introduced by L’vov and Procaccia (1996).

Define the fully unfused correlation tensors for velocity uα and vorticity ζ:

Fα1α2...αn
n ({xk,x

′
k}n

k=1, t) =

〈
n∏

k=1

[
uαk (xk, t) − uαk (x′

k, t)
]〉

, (7)

Vn({xk,x
′
k}n

k=1, t) =

〈
n∏

k=1

[
ζ(xk, t) − ζ(x′

k, t)
]〉

(8)

The relation between Fn and Vn is Vn = TnFn or:

Vn({xk,x
′
k}n

k=1, t) =
n∏

k=1

[εαkβk
(∂αk,xk + ∂αk,x′

k
)]Fα1···αn

n ({xk,x
′
k}n

k=1, t) (9)
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The generalized balance equations. II

Fn and Vn satisfy the balance equations:

∂Fn

∂t
+ OnFn+1 + In = DnFn +Qn (10)

∂Vn

∂t
+ TnOnFn+1 + In = DnVn + Qn (11)

Here Qn,Qn are forcing terms and In, In are sweeping terms, On local interactions,
and Dn the dissipation operator.

Belinicher, L’vov, Pomyalov and Procaccia (1998) argue that in 3D turbulence, the
scaling of the downscale energy cascade originates from the solvability condition on
the homogeneous equation

OnFn+1 = 0 (12)

This argument leads to a scheme for computing the scaling exponents ζn of Fn.
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The generalized balance equations. III

In two-dimensional turbulence, homogeneous solutions originate from

OnFn+1 = 0 =⇒ 1 solution: energy cascade (13)

TnOnFn+1 = 0 =⇒ 2 solutions: energy and enstrophy cascade (14)

We conjecture that the balance equations essentially have two homogeneous
solutions (energy/enstrophy cascade) from TnOnFn+1 = 0, and a particular solution
(coherent structures) which is caused by Qn and In.

The realistic solutions for each cascade include a dissipation range. These solutions
originate from the modified equation

TnOnFn+1 − TnDnFn = 0. (15)

The dissipative terms modify the linear operator On thus truncating the inertial range
with the dissipation range.
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Requirements for universal inertial ranges. I

The existence of an inverse energy cascade or an enstrophy cascade requires:

A region An ⊆ R
2n where the corresponding leading homogeneous solution

dominates the particular solution.

A region Bn ⊆ R
2n where dissipative effects on the leading homogeneous

solution are negligible.

An overlap Jn = An ∩ Bn with non-zero measure.

The region Jn is thus a multidimensional representation of the extent of the inertial
range associated with the generalized structure function Fn.

Within the region Jn we expect that Fn will be self-similar according to the following
scaling law:

Fn(λ{X}n, t) = λζnFn({X}n, t). (16)

when {X}n ∈ Jn and λ ∈ (1 − ε, 1 + ε) with ε small.
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Argument outline. I

Recall that within the inertial range E(k) ∼ k−1−ζ2

If we require the cascades to have universal scaling exponents ζn, can the region Jn

have a non-zero measure?

Step 1: Universality =⇒ Fusion rules hypothesis

Define F (p)
n (r,R) = Fn(r{Xk}p

k=1, R{Xk}n
k=p+1).

The fusion rules give the scaling properties of F (p)
n in terms of the following

general form:

F
(p)
n (λ1r, λ2R) = λ

ξnp

1 λ
ζn−ξnp

2 F
(p)
n (r,R) (17)

ξnp = ζp for the direct enstrophy cascade (1 < p < n− 1)

ξnp = ζn − ζn−p for the inverse energy cascade (1 < p < n− 1)
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Argument outline. II

Step 2: Fusion rules hypothesis =⇒ Locality

The integrals in the nonlinear interactions term OnFn+1 are local.

Thus, the scaling exponent of OnFn+1 is ζn+1 − 1.

Step 3: Locality =⇒ Stability

Assume random gaussian forcing.

The scaling exponent of Qn is qn = q2 + ζn−2

Compare Qn with OnFn+1.

Enstrophy cascade marginally stable.

Inverse energy cascade stable.

Details in
E. Gkioulekas (2008), Phys. Rev. E 78, 066302

Step 4: Fusion rules ∧ Locality =⇒ Anomalous sinks

Locate dissipation scales

Establish anomalous sinks
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Enstrophy cascade sink

Assume Fn(R) ∼ (η
1/3
uv R)n[ln(�0/R)]an .

Falkovich and Lebedev theory: an = 2n/3.

Consider F (1)
n (r,R) with r � R � �0.

Calculate dissipative length scale function r = �
(n)
uv (R) whose graph traces out the

dissipative boundary of the enstrophy inertial range in the (r,R) plane.

Observable dissipative length scale: �(n)
uv (λ

(n)
uv ) = λ

(n)
uv

Admissibility condition aλ(n)
uv > �

(n)
uv (aλ

(n)
uv ) ,∀a ∈ (1, �0/λ

(n)
uv ) is satisfied.

This gives the enstrophy dissipation rate ηuv as:

ηuv ∼ ν1−(ζ2−2(κ+1))/(ξ2,1−2(κ+1))[ln(�0/λuv)]a3−1. (18)

Anomalous enstrophy sink when

ξ2,1 = ζ2 (Fusion rules hypothesis)

a3 = 1 (Falkovich and Lebedev theory)
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Inverse energy cascade sink

Assume Fn(r) ∼ (εirr)
n/3(r/�0)ζn−n/3 and F3(r) ∼ εirr.

Consider F (1)
n (r,R) with �0 � R � r �.

Calculate dissipative length scale function R = �
(n)
ir (r) whose graph traces out the

dissipative boundary of the inverse energy cascade range in the (r,R) plane.

Observable dissipative length scale: �(n)
ir (λ

(n)
ir ) = λ

(n)
ir

Admissibility condition aλ(n)
ir < �

(n)
ir (aλ

(n)
ir ) ,∀a ∈ (�0/λ

(n)
ir , 1) requires

ζn+1 − ζn < 2m+ 1, ∀n > 2.

This gives the energy dissipation rate εir as:

εir ∼ β1−(ζ2+2m)/(ζ2−ξ2,1+2m). (19)

Anomalous energy sink when

ξ2,1 = 0 (Fusion rules hypothesis)
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Conclusions

The hypothesis that there may be an anomalous enstrophy sink at small scales and an
anomalous energy sink at large scales emerges as a consequence of the fusion rules
hypothesis.

The logarithmic correction of Kraichnan to the enstrophy cascade energy spectrum
plays an essential role in ensuring that the inertial range of the enstrophy cascade is
not entirely contaminated by dissipation, when κ = 1.

If there are intermittency corrections to the scaling exponents ζn , then the scaling
exponents must satisfy the inequality ζn+1 − ζn < 2m+ 1, ∀n > 2 , with m being the
order of the hypodissipation, in order for all generalized structure functions Fn to have
an inertial range.

A possible small violation of the fusion rules can be compensated for by increasing the
orders κ and m of hyperdiffusion and hypodiffusion correspondingly.
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