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e When v =0 and f = 0:
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dynamics, in addition to the quadratic (energy and enstrophy)
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Casimir Invariants

e Inviscid unforced two dimensional turbulence has uncountably
many other Casimir invariants.

e Any continuously differentiable function of the (scalar) vorticity
is conserved by the nonlinearity:

/f dz = /f —dw— /f’(w)u-dea:

/u Vf(w)dw:/f(w)v-uda::().

e Do these invariants also play a fundamental role in the turbulent
dynamics, in addition to the quadratic (energy and enstrophy)
invariants? Do they exhibit cascades?”

e Polyakov [1992| has suggested that the higher-order Casimir
invariants cascade to large scales, while Eyink [1996| suggests
that they might cascade to small scales.



High-Wavenumber Truncation

e Only the quadratic invariants survive high-wavenumber
truncation (Montgomery calls them rugged invariants).
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High-Wavenumber Truncation

e Only the quadratic invariants survive high-wavenumber
truncation (Montgomery calls them rugged invariants).
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where €gpg = (Z:pXq)d(k+p+q).
e Einstrophy evolution:
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e [nvariance of 73 = f w? dx follows from:
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0= Z [Z %w; Wawywy + 2 other similar terms| .
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e The absence of an explicit wg in the first term means that
setting we = 0 for £ > K breaks the symmetry in the
summations!

e This means that high-wavenumber truncation destroys the
invariance of Zs.

e However, since the missing terms involve wy, and wq for p and ¢
higher than the truncation wavenumber K, one might expect
almost exact invariance of Zs for a well-resolved simulation.

e We will show that this is indeed the case.



Enstrophy Balance

% + vk*wg, = Sk + [,

e Multiply by w; and integrate over wavenumber angle =
enstrophy spectrum Z (k) evolves as:

%Z (k) +2vk*Z(k) = 2T (k) + G(k).

where T'(k) and G(k) are the corresponding angular averages of

Re (Skwi) and Re (frwy).
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Nonlinear Enstrophy Transfer Function

O 2(k) + WK Z(K) = 2T(k) + C(k)

o [ct

1 =2 [ 1) dp

represent the nonlinear transfer of enstrophy into |k, 0o).

e Integrate from k to oo:

—/ p)dp = T1(k) — e(k),

where ez(k) = QV/ p*Z(p)dp — /OOG(p)dp is the

k k
total enstrophy transfer, via dissipation and forcing, out of

wavenumbers higher than k.
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e A positive (negative) value for II(k) represents a flow of
enstrophy to wavenumbers higher (lower) than k.

e When v =0 and fr = 0:

d o0

0=—
dt J,

Z(p)dp = Z/OOOT(p) dp,
so that
00 k
(k) = /k T(p)dp = —2/0 T(p)dp.

e Note that I1(0) = I1(co0) = 0.
e In a steady state, [I(k) = ez(k).

e This provides an excellent numerical diagnostic for when a
steady state has been reached.



Forcing at k = 2. friction for k < 3, viscosity for
k > ky =300 (1023 x 1023 dealiased modes)

10~1
103
10~°




logarithmic slope of E(k)

10



0.0

|

—
2
n
-
<
£ 0.1H
>}_.
a0
—
D)
-
D) |
D)
N
<+
<
= —0.2
=
=
O
10°

10t 102
k

Cutoff viscosity (k > kg = 300)

____EE

11



=
o
|

Enstrophy transfer rates

-

10t 102
k

Cutoff viscosity (k > kg = 300)

____EZ

12



=
ot
|

____EZ

Enstrophy transfer rates

-

] ] 1 1111 II ] ] 1 1 111 II ] ] I .
10° 10! 107
k

Molecular viscosity (k > kg = 0)

13



Vorticity Field with Molecular Viscosity
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Vorticity Field with Viscosity Cutoft

15



Vorticity Surtace Plot with Molecular Viscosity
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e Fourier decompose the fourth-order Casimir invariant

Nonlinear Casimir Transfer

7, = N°® Z w*(z;) in terms of N spatial collocation points z;:
J

— Z Sk Z Wp Wq W—k—p—q + Wk Z Sp Wq W—k—p—q
k

A= E Wk Wp Wq W—k—p—q-

Pq

Sk Zw

Here Sy is the nonlinear source term in =

k.p

p.q

IR 430 S ()

J
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Dealiasing: 2/4 Zero Padding Rule

e Computing 7, requires computing a double convolution: the
Fourier transform of the cubic quantity w?.
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Dealiasing: 2/4 Zero Padding Rule

e Computing 7, requires computing a double convolution: the
Fourier transform of the cubic quantity w?.

e Correctly dealiasing therefore requires a 2/4 zero padding rule
(instead of the usual 2/3 rule for a quadratic convolution).

= even though a 2048 x 2048 pseudospectral simulation was used,
the maximum physical wavenumber retained in each direction

was Hl12.
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Downscale Transter of Z,
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Transter vs. Flux

e Distinguish between transfer and flux.
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Transter vs. Flux

e Distinguish between transfer and flux.

e The mean rate of enstrophy transfer to |k, 0o) is given by

(k) = /koo T(k) dk = —/OkT(lc) dk.

e In a steady state, I1(k) will trivially be constant within a true
inertial range.

e In contrast, the enstrophy flux through a wavenumber £ is
the amount of enstrophy transferred to small scales via triad
interactions involving mode k.
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Flux Decomposition for a Single (k, p, q) Triad

S=0 ——T,

Si=T)

e Note that energy is conserved: L+ .S =1 = —=1,—T,. Thus

— X *
Ly = Re g My, p wp wi—pwy, — Re g Mp g—p Wi Wi —p Wy

|k|=Fk |k|=k
lp|<k |p|<k
|k—p|<k |k—p|>Fk
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Conclusions

e Even though higher-order Casimir invariants do not survive
wavenumber truncation, it is possible, with sufficiently well
resolved simulations, to check whether they cascade to large
or small scales.
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Conclusions

e Even though higher-order Casimir invariants do not survive
wavenumber truncation, it is possible, with sufficiently well
resolved simulations, to check whether they cascade to large
or small scales.

e We computed the transter function of the globally integrated

w? inviscid invariant.

e Numerical evidence suggests that in the enstrophy inertial range
there 1s a direct cascade of this invariant to small scales.

e However, for the globally integrated w? inviscid invariant, we
found no systematic cascade: it appears to slosh back and forth
between the large and small scales. This is expected since w?
does not have a definite sign.

e One should distinguish between nonlocal transfer and flux. To
compute this decomposition efficiently, one needs to develop a
restricted Fast Fourier transform.
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Asymptote: 2D & 3D Vector Graphics Language

Andy Hammerlindl, John C. Bowman, Tom Prince

http://asymptote.sf.net

(freely available under the GNU public license)
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Asymptote Lifts TEX to 3D

—+ 00 ,
e dr =

http://asymptote.sf.net
Acknowledgements: Orest Shardt (U. Alberta)
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Kraichnan—Leith—Batchelor Theory

e In an infinite domain

'Kraichnan 1967|, [Leith 1968||, |Batchelor 1969|:

— large-scale k=3 energy cascade;

— small-scale k=3 enstrophy cascade.



Kraichnan—Leith—Batchelor Theory

e In an infinite domain

'Kraichnan 1967|, [Leith 1968||, |Batchelor 1969|:

— large-scale k=3 energy cascade;

— small-scale k=3 enstrophy cascade.

e In a bounded domain, the situation may be quite different. . .
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Long-Time Behaviour in a Bounded Domain
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Tran and Bowman, PRE 69, 036303, 1-7 (2004).
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