THE UNIVERSITY OF TEXAS-PAN AMERICAN Department of Mathematics

Math 2346.01: Math for EE and CE Spring 2013
ENGR 1.274 MW 13:10-14:25

Contact information

Instructor: Dr. Eleftherios Gkioulekas, Department of Mathematics
E-mail: drlf@hushmail.com
Web: http://faculty.utpa.edu/gkioulekase/index.html
Office hours: MW 14:45-17:00 F 09:45-10:45
Office location: MAGC 3.214

Course information

Prerequisites: CSCI 1380 or CMPE 1370 or CSCI 1370 with a grade of C or better, and MATH 1460 with a grade of C or better.
Corequisites: None.
Course Description: This course covers the essentials of matrix theory, graph theory, numerical methods, and introduction to proofs needed for majors in Electrical and Computer Engineering. Topics include Gauss-Jordan elimination, matrix algebra, determinants, graphs, trees, root finding algorithms, numerical differentiation, numerical integration, numerical matrix methods, propositional and predicate logic, and formal logic proofs.

References

E. Gkioulekas (2009): "Lecture Notes on Mathematics for Electrical Engineers", 268 pp. (textbook)
See course website for hyperlinks.

Outline of Topics

- Brief introduction to logic and sets

Propositions and sets
Predicates and quantified statements

- Linear Algebra

Matrices
Basic operations with matrices
Matrix multiplication
Matrix inverses
Matrix transpose
Determinants
Cofactor expansion of determinants
Simplification of determinants
$n \times n$ linear systems of equations
Matrix inverse
Cramer's rule
Gaussian elimination

- Brief introduction to proof

Negation and contrapositive of statements
Methodology for writing proofs

- Graph theory

Graphs - Basic terminology
Types of graphs
Relations between graphs
Subgraphs
Graph operations
Connected graphs
The Laplacian matrix
Graph connectivity
Eulerian graphs
Hamiltonian graphs
Adjacency matrix
Shortest path problem
Trees

Minimum spanning tree problem Least squares fit
(Kruskal's algorithm)
Planar graphs

- Applications of linear systems DC Circuits
Superposition principle of circuits
- Misc topics

Root finding algorithms
Finite differences
Integral approximations

Student Learning Outcomes

After completing this course students will be able to
(1) Perform the basic operations of matrix algebra.
(2) Solve a system of linear equations using Gauss-Jordan elimination, including augmented matrices and elementary row operations.
(3) Compute matrix inverses when they exist and solve linear systems using matrix inverses where applicable.
(4) Compute determinants of square matrices using the definition, elementary row operations, and cofactor expansion, know the basic properties of determinants, and solve linear systems using Cramer's rule where applicable.
(5) Compute eigenvalues and eigenvectors of a square matrix and apply them to problems in engineering, mathematics, and science.
(6) Know graph terminology, graph connectivity, Euler and Hamilton paths, planar graphs, and some of the major problems of graph theory, such as shortest path problems (solved by Dijkstra's algorithm).
(7) Understand trees, traversals of trees, sorting, and minimal spanning trees (Prim's and Kruskal's algorithms).
(8) Find roots of functions using the bisection, fixed-point, secant, and Newton's methods.
(9) Approximate derivatives of functions using finite differences.
(10) Approximate integrals using midpoint, trapezoid, and Simpson's rules.
(11) Apply formal methods of symbolic propositional and predicate logic.
(12) Know how to use formal logic proofs and logical reasoning to solve problems.
(13) Understand various proof techniques and determine which type of proof is best for a given problem.

