THE UNIVERSITY OF TEXAS-PAN AMERICAN **Department of Mathematics**

Math 2346.01: Math for EE and CE Spring 2013

ENGR 1.274 MW 13:10-14:25

Contact information

Instructor: Dr. Eleftherios Gkioulekas, Department of Mathematics E-mail: drlf@hushmail.com Web: http://faculty.utpa.edu/gkioulekase/index.html Office hours: MW 14:45-17:00 F 09:45-10:45 **Office location:** MAGC 3.214

Course information

Prerequisites: CSCI 1380 or CMPE 1370 or CSCI 1370 with a grade of C or better, and MATH 1460 with a grade of C or better.

Corequisites: None.

Course Description: This course covers the essentials of matrix theory, graph theory, numerical methods, and introduction to proofs needed for majors in Electrical and Computer Engineering. Topics include Gauss-Jordan elimination, matrix algebra, determinants, graphs, trees, root finding algorithms, numerical differentiation, numerical integration, numerical matrix methods, propositional and predicate logic, and formal logic proofs.

References

E. Gkioulekas (2009): "Lecture Notes on Mathematics for Electrical Engineers", 268 pp. (textbook)

See course website for hyperlinks.

Outline of Topics

- Brief introduction to logic and sets Propositions and sets Predicates and quantified statements
- Linear Algebra Matrices Basic operations with matrices Matrix multiplication Matrix inverses Matrix transpose Determinants Cofactor expansion of determinants Simplification of determinants $n \times n$ linear systems of equations Matrix inverse Cramer's rule Gaussian elimination
- Brief introduction to proof

Negation and contrapositive of statements Methodology for writing proofs

• Graph theory Graphs – Basic terminology Types of graphs Relations between graphs **Subgraphs** Graph operations Connected graphs The Laplacian matrix Graph connectivity Eulerian graphs Hamiltonian graphs Adjacency matrix Shortest path problem Trees

Minimum	spanning	tree	problem
(Kruskal's algorithm)			
Planar graphs			
Applications of linear systems			

DC Circuits Superposition principle of circuits

Student Learning Outcomes

After completing this course students will be able to

- (1) Perform the basic operations of matrix algebra.
- (2) Solve a system of linear equations using Gauss-Jordan elimination, including augmented matrices and elementary row operations.
- (3) Compute matrix inverses when they exist and solve linear systems using matrix inverses where applicable.
- (4) Compute determinants of square matrices using the definition, elementary row operations, and cofactor expansion, know the basic properties of determinants, and solve linear systems using Cramer's rule where applicable.
- (5) Compute eigenvalues and eigenvectors of a square matrix and apply them to problems in engineering, mathematics, and science.
- (6) Know graph terminology, graph connectivity, Euler and Hamilton paths, planar graphs, and some of the major problems of graph theory, such as shortest path problems (solved by Dijkstra's algorithm).
- (7) Understand trees, traversals of trees, sorting, and minimal spanning trees (Prim's and Kruskal's algorithms).
- (8) Find roots of functions using the bisection, fixed-point, secant, and Newton's methods.
- (9) Approximate derivatives of functions using finite differences.
- (10) Approximate integrals using midpoint, trapezoid, and Simpson's rules.
- (11) Apply formal methods of symbolic propositional and predicate logic.
- (12) Know how to use formal logic proofs and logical reasoning to solve problems.
- (13) Understand various proof techniques and determine which type of proof is best for a given problem.

Least squares fit
Misc topics
Root finding algorithms
Finite differences
Integral approximations