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Locality and stability of the cascades of two-dimensional turbulence
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We investigate and clarify the notion of locality as it pertains to the cascades of two-dimensional turbulence.
The mathematical framework underlying our analysis is the infinite system of balance equations that govern the
generalized unfused structure functions, first introduced by L’vov and Procaccia. As a point of departure we use
a revised version of the system of hypotheses that was proposed by Frisch for three-dimensional turbulence. We
show that both the enstrophy cascade and the inverse energy cascade are local in the sense of non-perturbative
statistical locality. We also investigate the stability conditions for both cascades. We have shown that statisti-
cal stability with respect to forcing applies unconditionally for the inverse energy cascade. For the enstrophy
cascade, statistical stability requires large-scale dissipation and a vanishing downscale energy dissipation. A
careful discussion of the subtle notion of locality is given at the end of the paper.

PACS numbers: 47.27.Ak, 47.27.eb,47.27.ef,47.27.Gs
Keywords: two-dimensional turbulence, fusion rules, locality, enstrophy cascade, inverse energy cascade

I. INTRODUCTION

The physical notion of locality goes back to the
Kolmogorov-Batchelor idea [1–3] of an eddy cascade in three-
dimensional turbulence where most of the energy is passed on
from large eddies to smaller eddies by cascading through the
intermediate scales. The dimensional analysis argument be-
hind the theory of two-dimensional turbulence proposed by
Kraichnan [4] , Leith [5] and Batchelor [6] (KLB) is based in
part on the conjecture that a similar physical principle gov-
erns the upscale transfer of energy and the downscale trans-
fer of enstrophy. In spite of the importance of the concept of
locality to the foundations of the theory of hydrodynamic tur-
bulence, there is no consensus on how to handle the concept
rigorously. The need for a more rigorous understanding of lo-
cality becomes more pressing in light of some paradoxical as-
pects of the theory of two-dimensional turbulence which will
be briefly reviewed below. Because quasi-geostrophic mod-
els of geophysical flows [7–11] relevant both to meteorology
and oceonography, and two-dimensional models of magneti-
cally confined plasma turbulence [12–14] have a similar math-
ematical structure with two-dimensional turbulence, we can-
not simply disregard the paradoxes of two-dimensional turbu-
lence as irrelevant on the grounds that it is a fictitious fluid.

For example, recent numerical simulations [15–18] have
validated the KLB prediction k−3 for the energy spectrum of
the downscale enstrophy cascade. It remains unclear, how-
ever, whether the enstrophy cascade is a local cascade or non-
local cascade. One side of the argument is that it cannot be
a local cascade because the slope of the energy spectrum is
too steep. On the other hand, if it is not a local cascade, then
one has to explain why the prediction of dimensional analysis
agrees with numerical simulations. Furthermore, it is worth
remembering that prior to the groundbreaking paper by Lind-
borg and Alvelius [15], every attempt to simulate an enstro-
phy cascade failed. It is now understood that the presence of
a dissipation sink at large scales is necessary for a successful
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simulation of the enstrophy cascade [19–21]. Nonetheless, we
do not have a good grasp on why the presence of such a dis-
sipation sink is sufficient. A recent theory by Falkovich and
Lebedev [22, 23] predicts the scaling of the logarithmic cor-
rections to the energy spectrum as well as the higher order
structure functions of the vorticity for the enstrophy cascade.
However, locality, and the existence of the enstrophy cascade
itself are assumptions that are being entered into the theory.
The relevant question is to understand theoretically the condi-
tions needed for the existence of the enstrophy cascade.

Ironically, the inverse energy cascade presents with an even
more confusing situation. From a theoretical standpoint one
would not expect the inverse energy cascade to be anything
but local. From the standpoint of numerical simulations, there
are many positive reports of the predicted k−5/3 energy spec-
trum [24–29]. The most convincing simulation of the inverse
energy cascade has been reported in the paper by Boffetta et
al.[29], where in addition to the k−5/3 prediction, the 3/2 law
has also been confirmed. On the other hand, the locality of the
inverse energy cascade has been challenged on the grounds of
numerical simulations giving conflicting results [30–33]. The
current understanding is that under certain conditions there are
coherent structures that spontaneously form while the inverse
energy cascade converges to stationarity. Apparently, the in-
verse energy cascade, as a physical process, continues to take
place but it is hidden by the coherent structures which give the
dominant contribution to the energy spectrum. Removing the
coherent structures artificially by postprocessing simulation
data recovers the k−5/3 energy spectrum [30, 32, 34]. This
aspect of the inverse energy cascade is not well understood.
Furthermore, this phenomenon of the spontaneous generation
of coherent structures is of considerable interest to oceonog-
raphers.

In both cases reviewed above the issue at hand is the break-
down of locality. The theoretical challenge is to understand
how and why it happens. It should be noted that recent theo-
retical work [22, 23, 35–40] that expands on the KLB theory
takes locality as well as the existence of the enstrophy cascade
and the inverse energy cascade as assumptions. As a result, al-
though various aspects of these cascades have been explained,
the more fundamental question of the conditions needed for
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the existence of the cascades remains elusive.
In the present paper we analyze the locality of the cascades

of two-dimensional turbulence by adapting and generalizing
the non-perturbative theory of L’vov et al. [41–46]. The
mathematical framework is an infinite system of equations
that govern the generalized unfused structure functions, the
so-called balance equations. We also employ a scaling as-
sumption, the fusion rules, which we conjecture to be valid
in the enstrophy cascade and the inverse energy cascade. The
fusion rules govern the scaling of the generalized structure
functions when a subgroup of coordinates of velocity differ-
ences approach each other. In previous work [39, 40], we used
the balance equations to predict a linear superposition princi-
ple between the downscale enstrophy cascade and the hidden
downscale energy cascade which exists for finite Reynolds
number. In that argument we did not use the fusion rules but
we did assume the existence of the cascades. In the present
paper we will consider more carefully the implications of the
fusion rules on the existence question.

The physical intuition behind our argument is as follows.
Let Fn be the generalized structure function and let ζn be its
scaling exponent. These structure functions satisfy a system
of equations of the form

OnFn+1 + In = DnFn +Qn. (1)

Here, OnFn+1 is the nonlinear term that includes the effects
of pressure and advection, In is a term associated with the
sweeping interactions, Qn is the forcing term, and Dn is the
dissipation operator. From the fusion rules it can be shown
that the integrals in OnFn+1 are local under the following con-
ditions: for the downscale cascade UV locality requires ζ2 > 0
and IR locality requires ζn+1 ≤ ζ2 +ζn−1; for the upscale cas-
cade UV locality requires ζn − ζn−2 > 0 and IR locality re-
quires ζn+1 ≥ ζ2 +ζn−1. These conditions can be shown to be
satisfied by the Hölder inequalities. It follows that the inter-
actions represented by OnFn+1 are local and also self-similar
with scaling exponent ζn+1 −1.

The implication of this argument is that the nonlinear in-
teractions accounted for by the term OnFn+1 are local both for
the enstrophy cascade and for the inverse energy cascade. This
notion of locality is called statistical non-perturbative locality
[43]. However, non-locality, in a different stronger sense, can
arise from the forcing term Qn. Although we may demand
that the forcing spectrum be confined to a narrow interval of
length scales, it does not follow that the forcing term Qn will
force the balance equations only at those length scales. For the
case of gaussian forcing, we show that the scaling exponent of
Qn is qn = ζn−2 +q2 with q2 = 2 for the downscale enstrophy
cascade and q2 < 0 for the inverse energy cascade. It follows
that to have true locality we need qn − (ζn+1 − 1) > 0 in the
downscale enstrophy cascade and qn − (ζn+1 − 1) < 0 in the
upscale energy cascade. These conditions are needed for the
statistical stability of the cascades with respect to forcing per-
turbations.

It should be noted that nonlocality via the forcing term Q n
is only one of a number of possible scenarios for losing local-
ity. The sweeping term In and the dissipation term DnFn can
also destroy locality under certain conditions. A preliminary

discussion of the sweeping term In was given in a previous pa-
per [47], and the dissipation term will be discussed in a future
publication. Finally, it is also possible to lose locality through
violation of the fusion rules. In that case, the term OnFn+1
itself would not be local. In the present paper we will show
that the UV locality of the term OnFn+1 is very robust, even
under violation of the fusion rules. However the same cannot
be said for the IR locality. Our viewpoint then is to consider
first the problems that can arise in the favorable case where
the fusion rules are valid, before examining the validity of the
fusion rules themselves in more depth.

The argument of the present paper supports the conjecture
of strong universality [48] for the direct energy cascade of
three-dimensional turbulence and the inverse energy cascade
of two-dimensional turbulence. However, it definitely rules
out strong universality for the downscale enstrophy cascade.
Because the argument relies on the hypothesis that the fusion
rules hold for the downscale enstrophy cascade and the in-
verse energy cascade, it is not completely rigorous. On the
other hand, the hypothesis can be investigated by numerical
simulation. The p = 2 fusion rule, which is the essential one
with respect to the locality argument, has been proven [49–52]
for the direct energy cascade of three-dimensional turbulence,
and there is further support by experiments [53–58]. For the
related problem of the passive scalar [59], the fusion rules
have been proved for all p [60] and have also been confirmed
experimentally [61, 62]. The problem of two-dimensional tur-
bulence is similar enough to both problems to make the hy-
pothesis plausible.

From a more philosophical point of view, one can say that
the scaling relations implied by the fusion rules are in fact
a generalized definition of the physical concept of a “cas-
cade”. As has been pointed out previously [43], from a phys-
ical standpoint, the fusion rules mean that the large scales are
correlated with the small scales in a very particular way where
the self-similarity characteristics of the flow at the small scales
“forget” the ongoing physical processes at the large scales
(and vice versa for the inverse cascade) which leads to univer-
sal scaling. The present argument then establishes the consis-
tency between locality and the scale correlations needed for
universality. The conditions needed for this consistency are
necessary conditions for the existence of the cascades them-
selves.

The paper is organized as follows. Section 2 reviews the
generalized balance equations of the generalized unfused cor-
relation tensors, the emphasis being on distinguishing the
sweeping interactions from the local interactions. Section 3
introduces and motivates our revisions of the Frisch frame-
work of hypotheses as the first step towards a theory of
two-dimensional turbulence. The main idea is replacing the
anomalous sink hypothesis with a universality hypothesis,
which implies the fusion rules hypothesis. In section 4, we
extend and generalize the locality proof of L’vov and Procac-
cia [43] to the cascades of two-dimensional turbulence. In
section 5, we then turn to the question of cascade stability,
with respect to random gaussian forcing. We find that the
inverse energy cascade is stable, but that the enstrophy cas-
cade is only borderline stable, with stability improving as the
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downscale energy flux is taken to zero. Section 6 discusses
various subtleties that arise from our investigation regarding
the concept of locality. Some technical matters are relegated
to the appendices.

II. THE GENERALIZED BALANCE EQUATIONS

We now begin by reviewing the theory of the generalized
balance equations. These equations were first derived by
L’vov and Procaccia [43] and they are the foundation of pre-
vious work [39, 40, 47] as well as this paper. The two features
of the balance equations that we would like to stress in this pa-
per are the separation of the interaction term into local interac-
tions and sweeping interactions, and the fact that the forcing
term can be written in closed form for the case of Gaussian
forcing. We also derive the balance equations that govern the
generalized structure functions of the vorticity.

A. Preliminaries

The governing equations of two-dimensional turbulence
are:

∂uα
∂ t

+uβ ∂β uα = −∂α p+Duα + fα , (2)

∂αuα = 0, (3)

where fα is the forcing term, and D is the dissipation operator
given by

D ≡ (−1)κ+1νκ ∇2κ +(−1)m+1β ∇−2m. (4)

Here the integers κ and m describe the order of the dissipation
mechanisms, and the numerical coefficients νκ and β are the
corresponding viscosities. D is the overall dissipation oper-
ator. The case κ = 1 corresponds to standard molecular vis-
cosity. The term fα represents stochastic forcing that injects
energy into the system at a range of length scales in the neigh-
borhood of the integral length scale �0. The term β ∇−2muα
describes a dissipation mechanism that operates on large-scale
motions. The operator ∇−2m represents applying the inverse
Laplacian ∇−2 repeatedly m times. In Fourier space this op-
erator is diagonalized, and its definition may therefore be ex-
tended to fractional values for m. The same holds for the pa-
rameter κ .

To eliminate pressure we multiply both sides of the Navier-
Stokes equation with the operator Pαβ ≡ δαβ −∂α ∂β ∇−2 and
we employ Pαβ uβ = uβ and Pαβ ∂β = 0 to obtain

∂uα
∂ t

+Pαβ ∂γ (uβ uγ) = Duα +Pαβ fβ . (5)

The operator Pαβ can be expressed in terms of a kernel Pαβ (x)
as

Pαβ vβ (x) =
∫

dyPαβ (x−y)vβ (y) (6)

=
∫

dyPαβ (y)vβ (x−y). (7)

For two-dimensional turbulence Pαβ (x) is given by

Pαβ (x) = δαβ δ (x)− 1
2π

[δαβ

r2 −2
xαxβ

r4

]
. (8)

The scalar vorticity ζ is given by ζ = εαβ ∂αuβ with εαβ
the Levi-Civita tensor in two dimensions. From the incom-
pressibility condition ∂αuα = 0 it follows that there is a func-
tion ψ , called the streamfunction, such that uα = εαβ ∂β ψ .
Using the identity εαβ εβ γ = δαγ one then shows that ζ =
εαβ εβ γ∂α ∂γψ = ∇2ψ from which we get ψ = ∇−2ζ and
uα = εαβ ∂β ∇−2ζ .

The vorticity equation is obtained by differentiating ζ with
respect to time and employing the Navier-Stokes equations:

∂ζ
∂ t

+ J(ψ ,ζ ) = Dζ +g, (9)

where J(ψ ,ζ ) is the Jacobian defined as

J(A,B) = εαβ (∂β A)(∂αB), (10)

and g = εαβ ∂α fβ is the forcing term. The nonlinear term
J ≡ J(ψ ,ζ ) has been obtained by employing the following
argument

J = εαβ ∂αPβ γ∂δ (uγuδ ) = εαβ ∂α [uγ∂γ uβ ] (11)

= uγ∂γ ζ +(εαβ ∂αuγ)(∂γ uβ ) (12)

= uγ∂γ ζ = J(ψ ,ζ ). (13)

The term (εαβ ∂αuγ)(∂γ uβ ) represents vortex stretching, but
in two dimensions it can be shown that

(εαβ ∂αuγ)(∂γ uβ ) = 0, (14)

by direct substitution of the vector components.

B. The balance equations

To write equations concisely, we introduce the following
notation to represent aggregates of position vectors

X = (x,x′), (15)

{X}n = {X1,X2, . . . ,Xn}, (16)

{X}k
n = {X1, . . . ,Xk−1,Xk+1, . . . ,Xn}. (17)

We use the notation {X}n + ∆x as a shorthand to represent
shifting all the constituent vectors of {X}n by the same dis-
placement ∆x. Similarly, λ{X}n represents taking the scalar
product of λ with every vector in {X}n. Finally, the notation
‖{X}n‖ ∼ R means that all point to point distances in the ge-
ometry of velocity differences {X}n have the same order of
magnitude R. And, the notation ‖{X}n‖ � ‖{Y}n‖ means
that all the point to point distances in {Y}n are much larger
than all the point to point distances in {X}n.

Let wα (x,x′, t) be the Eulerian velocity differences

wα(x,x′, t) = uα(x,t)−uα(x′, t). (18)
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The eulerian one-time fully unfused correlation tensors are
formed by multiplying n velocity differences wα(x,x′,t) eval-
uated at 2n distinct points

Fn({X}n,t) =

〈[
n

∏
k=1

wαk (Xk,t)

]〉
. (19)

When all velocity differences share one point in common, that
is x′k = x0, we say that the correlation Fn is partially fused.

The generalized balance equations can be derived by dif-
ferentiating Fn with respect to t and substituting the Navier-
Stokes equations (see appendix A for details). This yields the

equations

∂Fn

∂ t
+OnFn+1 + In = DnFn +Qn. (20)

Here Dn is the differential operator representing dissipation,
given by

Dn =
n

∑
k=1

[ν(∇2κ
xk

+ ∇2κ
x′k)+ β (∇−2m

xk
+ ∇−2m

x′k )], (21)

and On is the linear integrodifferential operator such that

(OnFn+1)({x,x′}n,t) =
∫

On({X}n,{Y}n+1)Fn+1({Y}n+1, t) d{Y}n+1 (22)

=
n

∑
k=1

Dkn({x,x′}n, t) = Dn({x,x′}n, t), (23)

where Dkn is given by

Dα1α2···αn
kn ({x,x′}n,t) =

1
2n

n

∑
l=1

∫
dyPαkβ (y)Dα1α2···αk−1β ···αn

knl ({x,x′}n,y, t), (24)

with Dknl = Dknl1 +Dknl2 +Dknl3 +Dknl4, and

D
α1···αk−1β αk+1···αn
knl1 ({x,x′}n,y,t) = ∂αn+1,xkF

α1···αk−1β αk+1···αn+1
n+1 ({Xm}k−1

m=1,xk −y,x′k −y,{Xm}n
m=k+1,xk −y,xl), (25)

D
α1···αk−1β αk+1···αn
knl2 ({x,x′}n,y,t) = ∂αn+1,xkF

α1···αk−1β αk+1···αn+1
n+1 ({Xm}k−1

m=1,xk −y,x′k −y,{Xm}n
m=k+1,xk −y,x′l), (26)

Dα1···αk−1β αk+1···αn
knl3 ({x,x′}n,y,t) = ∂αn+1,x′kF

α1···αk−1β αk+1···αn+1
n+1 ({Xm}k−1

m=1,xk −y,x′k −y,{Xm}n
m=k+1,x

′
k −y,xl), (27)

D
α1···αk−1β αk+1···αn
knl4 ({x,x′}n,y,t) = ∂αn+1,x′kF

α1···αk−1β αk+1···αn+1
n+1 ({Xm}k−1

m=1,xk −y,x′k −y,{Xm}n
m=k+1,x

′
k −y,x′l). (28)

The term In represents the sweeping interactions, and it is given by

Iα1α2···αn
n ({x,x′}n,t) =

n

∑
k=1

(∂γ,xk + ∂γ,x′k)

〈
Uγ ({xk,x

′
k}n, t)

[
n

∏
l=1

wαl (xl,x
′
l, t)

]〉
. (29)

where Uγ({xk,x′k}n,t) is the generalized mean velocity:

Uα({z,z′}n, t) =
1
2n

n

∑
k=1

(uα(zk,t)+uα(z′k,t)), (30)

The term Qn represents the forcing term fα and it reads

Qn({X}n,t) =
n

∑
k=1

Qkn({X}k
n,Xk,t), (31)

where Qkn reads

Qα1α2···αn−1β
kn ({X}n−1,Y,t) (32)

=

〈[
n−1

∏
k=1

wαk(Xk,t)

]
ϕβ (Y,t)

〉
, (33)

with ϕα(X, t) = fα (x,t)− fα(x′,t).

C. Balance equations for the vorticity

A similar set of equations can be derived for the general-
ized structure functions of the vorticity. Let q(x,x ′,t) be the
vorticity difference defined as

q(x,x′, t) = ζ (x, t)− ζ (x′, t) (34)

= εαβ (∂α ,x + ∂α ,x′)wβ (x,x′,t), (35)

and let Vn({X}n, t) be the generalized structure function of the
vorticity defined as

Vn({X}n, t) =

〈[
n

∏
k=1

q(Xk, t)

]〉
. (36)

It is easy to see that the vorticity generalized structure func-
tions are related to the velocity generalized structure functions
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by

Vn({X}n, t) (37)

=
n

∏
k=1

[εαkβk
(∂αk,xk + ∂αk,x′k )]F

β1···βn
n ({X}n,t). (38)

Let Tn be an abbreviation for the differential operator that
transforms Fn to Vn such that Vn = TnFn.

The balance equations for Vn and be derived easily by ap-
plying the operator Tn on the balance equations for Fn. The
result is

∂Vn

∂ t
+TnOnT

−1
n+1Vn+1 + In = DnVn +Qn. (39)

Here Qn is the forcing term and In is the sweeping term. The
forcing term reads.

Qn({X}n, t) =
n

∑
k=1

Qkn({X}k
n,Xk, t), (40)

Qkn({X}k
n,Y, t) =

〈[
n−1

∏
k=1

q(Xk, t)

]
g(Y, t)

〉
. (41)

To calculate the sweeping term we use (14) to cancel the
vortex tilting contributions. With a little bit of algebra we find
that

In({X}n,t) =
n

∏
j=1

[εα jβ j
(∂α j ,x j + ∂α j ,x′ j )]

n

∑
k=1

(∂γ,xk + ∂γ,x′k )

〈
Uγ ({xk,x

′
k}n, t)

[
n

∏
l=1

wβl
(xl,x

′
l , t)

]〉
(42)

=
n

∑
k=1

(∂γ,xk + ∂γ,x′k )

〈
Uγ ({xk,x

′
k}n, t)

[
n

∏
l=1

q(xl,x
′
l, t)

]〉
. (43)

The trick is to apply the operators εα jβ j
(∂α j ,x j + ∂α j ,x′ j )

one by one onto the ensemble average in eq. (42), wherein
n− 1 of the wβl

factors are constant for j 	= l with respect to
xl,x′l , and use the identity εαβ ∂α ∂γ [uβ uγ ] = uγ∂γζ on the
wβ j

and Uγ factors that are both x j,x′ j dependent. Each ap-
plication of these operators effectively converts each wβl

fac-
tor into a corresponding q(x l,x′l,t) factor. The exact mathe-
matical form of the term TnOnT

−1
n+1Vn+1 is not required. It is

only sufficient to note that once it is shown that the expression
OnT

−1
n+1Vn+1 = OnFn+1 is local, then it easily follows that the

term TnOnT
−1
n+1Vn+1 is also local since Tn is a linear differen-

tial operator.

III. THE THEORETICAL FRAMEWORK

Both the K41 theory for three-dimensional turbulence, and
the KLB theory for two-dimensional turbulence are based on
a dimensional analysis argument. However, Frisch [63, 64]
has suggested that Kolmogorov’s second paper [2] leads to
the following more rigorous reformulation of the dimensional
analysis argument, based on the following three hypotheses:
(H1): At small scales and away from any boundaries, the
velocity field is incrementally homogeneous and incremen-
tally isotropic; (H2): Under the same conditions, the veloc-
ity field is self-similar at small scales, thereby possessing a
unique scaling exponent h ; (H3): the turbulent flow has a
non-vanishing mean dissipation rate in the limit of infinite
Reynolds number (i.e., an anomalous energy sink). Then, one
uses (H1) and (H3) to derive the 4/5 law which implies that
h = 1/3, and from (H2) the scaling for all structure functions
and the energy spectrum is deduced.

In a recent paper, Frisch [65] questioned the self-
consistency of the assumption of local and incremental ho-
mogeneity. The argument essentially is that it is not obvious
whether the nonlinearity of the Navier-Stokes equations will
preserve incremental homogeneity unless the initial condition
is globally homogeneous. In a previous paper [47] I have ar-
gued that incremental homogeneity will be preserved in the
upscale and downscale inertial ranges only if the sweeping in-
teractions, represented by the In term of the balance equations,
can be neglected in the inertial range. As I have emphasized
in that paper, this condition on the In term is necessary for the
very existence of an inertial range! Here we will simply take it
for granted in order to focus our attention on the other needed
conditions.

Within the Frisch framework, many theoretical approaches
to three-dimensional turbulence that try to predict the inter-
mittency corrections to the scaling exponents of the structure
functions, can be interpreted as extensions of the Frisch theory
where the self-similarity assumption (H2) is weakened while
the other two assumptions (H1) and (H3) are tolerated. It is
an easy exercise to reformulate the dimensional analysis ar-
gument of the KLB theory in a similar manner. However, a
theory along these lines would already take for granted the lo-
cality and universality of the two cascades. Contrary to the
situation in three-dimensional turbulence, what we must un-
derstand are the conditions needed to satisfy universality and
locality. In previous work [39, 40] we have proposed that the
questions of locality and universality can be probed more rig-
orously by adapting the theoretical work of L’vov and Pro-
caccia et al. [41–46, 52] to two-dimensional turbulence. We
will now expand further on this idea on the remainder of the
present paper.
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A. Revisions to the Frisch framework

We propose that the Frich framework of hypotheses should
be revised as follows:

First, we adopt Frisch’s (H1) to our formulation. We have
shown previously [47] that a stronger homogeneity hypothesis
is needed to eliminate the sweeping interactions before deriv-
ing the 4/5 law. Though we may circumvent this problem by
postulating that stronger assumption of homogeneity for our
framework, we believe that it is desirable to be able to estab-
lish the stronger hypothesis from first principles (see section
5 of Ref.[47]).

Second, to allow for intermittency corrections, it is neces-
sary to relax the self-similarity hypothesis (H2). One pos-
sibility is the space-time self-similarity assumption, used in
the early papers of the quasi-Lagrangian diagrammatic the-

ory [66, 67]. It was shown later that this assumption is false,
because it axiomatically implies Kolmogorov scaling and for-
bids intermittency corrections [44, 68], thus leading to a self-
inconsistent theory. The successful proposal is space one-time
self-similarity, defined below, and we shall adopt it in this pa-
per.

Third, following L’vov and Procaccia [41–43], we adopt an
hypothesis of universality. Its purpose is to replace the ad hoc
assumption of anomalous sinks. The universality hypothesis
itself claims that statistical symmetries are recovered at length
scales away from the forcing range even when the ensemble is
constrained by a symmetry-breaking condition at scales closer
to the forcing scale.

Taking the ideas above into consideration, we postulate the
following hypotheses for both the enstrophy and energy iner-
tial ranges:

Hypothesis 1: The velocity field is incrementally stationary, incrementally homogeneous, and incrementally isotropic, defined
as

∂Fn({X}n, t)
∂ t

= 0,∀t ∈ R, (44)

n

∑
k=1

(∂αk ,xk + ∂αk,x′k)Fn({X}n, t) = 0, (45)

Fn({X}n,t) = Fn(r0 +A({X}n− r0), t), ∀A ∈ SO(2). (46)

as long as the evaluations {X}n, {X}n + ∆r, r0 +A({X}n− r0), lie within an inertial range.
Hypothesis 2: The velocity field is self-similar in the sense that for every evaluation {X}n within an inertial range

∃ε > 0 : Fn(λ{X}n, t) = λ ζnFn({X}n, t), ∀λ ∈ (1− ε,1+ ε). (47)

For the hypothesis of universality, we define the conditional correlations

Φn({X}n,{Y}m,{wk}m
k=1, t) =

〈[
n

∏
k=1

wαk (Xk, t)

]∣∣∣∣∣w(xk,x
′
k, t) = wk)

〉
, (48)

and use them to formulate the additional hypothesis that in the inertial range, the conditional correlations Φ n essentially honor
the same symmetries as the unconditional correlations Fn, in the asymptotic limit where ‖{Y}m‖ are situated between ‖{X}n‖
and the forcing scale �0:

Hypothesis 3: Let {X}n and {Y}m represent the geometries of velocity differences and let W = W({Y}m,{wk}m
k=1). Then,

if in the direct cascade they satisfy ‖{X}n‖ � ‖{Y}m‖ � �0, or alternatively if in the inverse cascade they satisfy ‖{X}n‖ 
‖{Y}m‖ �0, then the conditional correlations Φn preserve incremental stationarity, incremental homogeneity, and incremental
isotropy, with respect to {X}n, defined as

∂Φn

∂ t
= 0, (49)

n

∑
k=1

(∂αk,xk + ∂αk,x′k)Φn({X}n,{Y}m,{wk}m
k=1, t) = 0 (50)

Φn({X}n,{Y}m,{wk}m
k=1,t) = Φn(r0 +A({X}n− r0),{Y}m,{wk}m

k=1, t), ∀A ∈ SO(2), (51)

and also self-similarity, with the same scaling exponents ζn, defined as

∃ε > 0 : Φn(λ{X}n,{Y}m,{wk}m
k=1, t) = λ ζnΦn({X}n,{Y}m,{wk}m

k=1, t), ∀λ ∈ (1− ε,1+ ε). (52)

Hypothesis 1 is essentially the first hypothesis in the Frisch formulation. Hypothesis 2 is the space one-time self-
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similarity principle introduced by L’vov and Procaccia [43]
in the context of three-dimensional turbulence. The scaling
exponents ζn represent the scaling structure of each inertial
range. If 0 < ζ2 < 2, then the energy spectrum follows a
power law given by E(k) ∼ k−1−ζ2 [64]. If there is a loga-
rithmic correction, then the result also holds for ζ2 = 2. Hy-
pothesis 3 states that the statistics of the velocity field at a
certain scale still maintain the symmetries stated in hypothe-
ses 1 and 2 even when a symmetry-violating constraint is im-
posed via a conditional average at scales closer to the forc-
ing scale. The constituent statements of hypothesis 3 shall
be referred to as universal incremental homogeneity, univer-
sal incremental isotropy, and universal self-similarity. Note
that it is essentially a more careful reformulation of the as-
sumption of “weak universality” that was proposed previously
by L’vov and Procaccia [41, 43]. The underlying idea is that
the condition w(xk,x′k,t) = wk in the definition of the con-
ditional correlations Φn partitions the ensemble of all possi-
ble forcing histories consistent with the overall forcing spec-
trum and the stationarity assumption into subensembles de-
fined by the parameters {wk}m

k=1. Each choice of {Y}m repre-
sents a distinct partition of the entire ensemble into subensem-
bles. The assumption for the statistical behavior of the veloc-
ity field is that it remains invariant accross each subensem-
ble of forcing histories for all subensemble partitions {Y}m
(with ‖{X}n‖� ‖{Y}m‖� �0 if it is a downscale cascade or
‖{X}n‖ ‖{Y}m‖ �0 if it is an upscale cascade), and thus
dependent only on the overall forcing spectrum.

B. The fusion rules hypothesis

The immediate consequence of the universality hypothesis
is the fusion rules, whose physical interpretation is that differ-
ent length scales are correlated (a hint of the cascade process)
and that the governing interactions, as we shall show in the
next section, are local (a consequence of the fusion rules and
the structure of the Navier-Stokes equations). In a forthcom-
ing paper, we will show that the fusion rules also govern the
location of the dissipation length scales and that, in doing so,

they provide anomalous energy and enstrophy sinks!
Consider a geometry of velocity differences {X}n such that

all point to point distances have order of magnitude 1, and
define

F (p)
n (r,R) = Fn(r{Xk}p

k=1,R{Xk}n
k=p+1). (53)

The function F (p)
n (r,R) reflects the case where p velocity dif-

ferences have separations with order of magnitude r, and
n − p velocity differences have separations with order of
magnitude R. The case of interest is when the evaluation
(r{Xk}p

k=1,R{Xk}n
k=p+1) is within the inertial range Jn ⊆

(R2)2n and r � R. The fusion rules give the scaling properties

of F(p)
n in terms of the following general form:

F(p)
n (λ1r,λ2R) = λ ξnp

1 λ ζn−ξnp
2 F (p)

n (r,R). (54)

Since Fn is defined as the product of velocity differences we
expect the limits λ1 → 0 and λ2 → 0 to converge. This implies
that ξnp > 0 and ζn − ξnp > 0 . A concise statement of the
fusion rules hypothesis is that for the direct enstrophy cascade
ξnp = ζp , and for the inverse energy cascade ξnp = ζn −ζn−p
for 1 < p < n−1 . The cases p = 1 and p = n−1 require some
additional considerations, and can be deduced, as it turns out,
from the p = 2 fusion rule (see section IV A). We will also
consider the case of “regular” violations to the fusion rules
where the scaling exponents ξnp satisfy 0 < ξnp < ζn, so that
the exponents on λ1 and λ2 are both positive.

We will now briefly review the argument of L’vov and Pro-
caccia [43] that that the fusion rules hypothesis is an imme-
diate consequence of the universality hypothesis. Let us con-
sider first the case of the direct enstrophy cascade. For the
case 2 ≤ p ≤ n− 2 we will show that for ‖{X}n‖ � ‖{Y}n‖
the fusion scaling is

Fn(λ{X}p,µ{Y}n−p) = λ ζp µζn−ζpFn({X}p,{Y}n−p). (55)

Let P({X}n,{wk}n
k=1) be the probability for the event

w(xk,x′k, t) = wk. It follows that

Fn(λ{X}p,µ{Y}n−p) =
∫ [

n−p

∏
k=1

wk

]
P(µ{Y}n−p,{wk}n−p

k=1 )Φp(λ{X}p,µ{Y}n−p,{wk}n−p
k=1 )

n−p

∏
k=1

dwk (56)

= λ ζp

∫ [
n−p

∏
k=1

wk

]
P(µ{Y}n−p,{wk}n−p

k=1 )Φp({X}p,µ{Y}n−p,{wk}n−p
k=1 )

n−p

∏
k=1

dwk (57)

= λ ζpFn({X}p,µ{Y}n−p). (58)

The factor Fn({X}p,µ{Y}n−p) is now independent of λ and has to scale as µ ζn−ζp .
For the case of the inverse energy cascade, again for 2 ≤ p ≤ n− 2 and under the same limit ‖{X} n‖ � ‖{Y}n‖ the fusion

scaling is

Fn(λ{X}p,µ{Y}n−p) = λ ζn−ζn−p µζn−pFn({X}p,{Y}n−p). (59)
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We show this with a similar argument as follows:

Fn(λ{X}p,µ{Y}n−p) =
∫ [

p

∏
k=1

wk

]
P(λ{X}p,{wk}p

k=1)Φn−p(µ{Y}n−p,λ{X}p,{wk}p
k=1)

p

∏
k=1

dwk (60)

= µζn−p

∫ [
p

∏
k=1

wk

]
P(λ{X}p,{wk}p

k=1)Φn−p({Y}n−p,λ{X}p,{wk}p
k=1)

p

∏
k=1

dwk (61)

= µζn−pFn(λ{X}p,{Y}n−p). (62)

The factor Fn(λ{X}p,{Y}n−p) is now independent of µ and
has to scale as λ ζn−ζn−p .

We would like now to briefly discuss the motivation behind
our conjecture that the enstrophy cascade and the inverse en-
ergy cascade satisfy the fusion rules. First, it should be noted
that for the locality proof given in section IV we only need
the fusion rule for the cases p = 2 and p = n−2, from which
one then derives the scaling for the cases defined in Fig. 1 and
Fig. 2. For the energy cascade of three-dimensional turbu-
lence the p = 2 fusion rule has been demonstrated by Feynman
diagram analysis [49–52]. The proof indicates that the fusion
rule essentially follows from the assumption that the scaling
exponent ζ2 is universal and does not change in response to
perturbations to the forcing statistics. This assumption rests
on less solid ground for the enstrophy cascade, however we
can expect it to be true at least in the experimental situations
where the cascade actually exists. It is also worth noting that
this assumption is weaker than our hypothesis of universality,
which in some regard is a stronger assumption than what is
really needed.

There is another consideration that strongly motivates our
conjecture: the p = 2 fusion rule controls the positioning of
the dissipation length scale [42, 43, 54]. In a forthcoming pa-
per we will show that if this fusion rule is violated, then the
dissipation length scale would not be correctly positioned to
dissipate the injected energy or enstrophy. Consequently, it is
not easy to reconcile the numerical observation of both cas-
cades with a violation of the fusion rule p = 2. Furthermore,
a situation where the p = 2 rule is satisfied and the other rules
are violated is unlikely. Finally, in two-dimensional turbu-
lence, due to the smaller dimensionality of the problem, we
are afforded the opportunity to test of validity of the fusion
rules directly with a numerical simulation.

C. Symmetries and the balance equations

The assumptions that we have put forth are not self-evident
axioms but hypotheses. Thus, the goal of theory is not only
to derive conclusions from these assumptions but to also work
in the opposite direction and give reasons that justify the as-
sumptions themselves.

The argument that was given by Frisch [63, 64] begins with
the observation that the unforced Navier-Stokes equations are

invariant with respect to space and time shifts and rotations:

(t,x,u) → (t,x+ ∆x,u), ∀x ∈ R
d , (63)

(t,x,u) → (t,Ax,Au), ∀A ∈ SO(d), (64)

(t,x,u) → (t + ∆t,x,u), ∀∆t ∈ R. (65)

Furthermore, if we ignore the dissipation terms, then the
Navier-Stokes equations are also invariant with respect to the
following self-similar transformation

(t,x,u) → (λ 1−ht,λx,λ hu),∀λ ∈ R
+,h ∈ R. (66)

In hydrodynamic turbulence these symmetries are obviously
broken by the forcing term, the boundary conditions, and
the self-similarity symmetry by the dissipation terms. Frisch
[63, 64] hypothesized that these symmetries will be statisti-
cally reinstated in the inertial range when the flow is governed
by a strange attractor. The big question is: how do we prove
this? We believe that the generalized balance equations, de-
rived in the previous section, are the proper theoretical frame-
work within which this question can be addressed.

We begin by accepting the assumption of local stationarity
for the reasons given by Frisch [63, 64]. Then, the balance
equations read

OnFn+1 + In = DnFn +Qn. (67)

As was pointed out previously [44, 69], the advantage of us-
ing generalized structure functions where every velocity dif-
ference is associated with two distinct coordinates that are dif-
ferent from any other velocity difference, is that in the limits
ν → 0 and β → 0 the dissipation terms can be dropped. This
is not possible for the standard structure functions where ev-
ery velocity difference is associated with the same two coor-
dinates. We show this by using the mean-value theorem to
bound DnFn as follows

|DnFn| ≤
(

C1ν
R2κ

min

+C2βR2m
max

)
|Fn|. (68)

Here, C1 and C2 are constants independent of ν and β , and

Rmin ≡ min{xk,x
′
k : k ∈ N,1 ≤ k ≤ n}, (69)

Rmax ≡ max{xk,x
′
k : k ∈ N,1 ≤ k ≤ n}. (70)

It is easy to see that because all the differentiations can be
performed without invoking the product rule, the viscosities
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ν and β multiply on a factor that remains finite in the limits
ν → 0+ and β → 0+. Thus, |DnFn| → 0 in the inertial range.

To reinstate the statistical symmetries we need a region of
length scales where Qn and In can also be ignored. Then, one
has the homogeneous equation OnFn+1 = 0, which remains
invariant both under local homogeneity and local isotropy. In
fact, it is also known [44, 45] that the homogeneous equation
is invariant under the following similarity transformation:

{X}n → λ{X}n, Fn → λ nh+Z(h)Fn. (71)

consequently, it is expected to have solutions in the general
form

Fn =
∫

dµ(h)Fn,h, (72)

where Fn,h are the zero-modes of the operator On which scale
as

Fn,h(λ{X}n,t) = λ nh+Z(h)Fn,h({X}n,t). (73)

Note that the same result can also be obtained from the multi-
fractal hypothesis [64]. On a large inertial range, the leading
contribution to Fn is asymptotically self-similar with the scal-
ing exponent ζn given by

ζn = min
h

(nh+Z(h)). (74)

For the case of a multifractal stochastic velocity field with
D(h) defined as the fractal dimension of the set of points that
support a local Hölder exponent h, the relationship between
Z(h) and D(h) is Z(h) = d−D(h) where d is the dimension of
the velocity field, and d = 2 for two-dimensional turbulence.

It has been suggested, for the case of three-dimensional
turbulence, that the scaling exponents ζn can be calculated
from the solvability condition of the homogeneous equation
OnFn+1 = 0 [44, 45, 70]. Although, from a practical stand-
point, perturbative methods have been more effective [71, 72],
the solvability condition analysis reveals the underlying prin-
ciple governing the origin of the scaling exponents ζ n. From
a physical standpoint, the condition OnFn+1 = 0 includes (for
n = 2) and extends (for n > 2) the requirement of a “constant”
(in the asymptotic sense) energy flux in the inertial range.
The extension makes the condition powerful enough to lock
down all the scaling exponents ζn, as was demonstrated by
Belinicher et al. [70]. As we have shown in a previous pa-
per [39], the problem with extending this argument to two-
dimensional turbulence is that the scaling exponents ζn of the
enstrophy cascade are not non-trivial solutions to the equation
OnFn+1 = 0. This should not surprise us, that we cannot obtain
the scaling exponents of the enstrophy cascade from an “ex-
tended” constant energy flux condition! What must be done
instead is to use the equation

TnOnFn+1 = 0, (75)

obtained by the generalized balance equations for the vor-
ticity structure functions derived previously in section II C.
This equation represents an “extended” constant enstrophy

flux condition, and it yields two solutions for the scaling
exponents, instead of just one: an energy cascade solution
that transfers energy but not enstrophy (the non-trivial solu-
tion of OnFn+1 = 0 and it also satisfies TnOnFn+1 = 0 triv-
ially because it does not transfer enstrophy), and an enstro-
phy cascade solution that transfers enstrophy but not energy
(the non-trivial solution of TnOnFn+1 = 0 and it also satisfies
OnFn+1 = 0 trivially because it transfers no energy). It also
follows from the mathematical structure of the equation (75)
that these two solutions can be superimposed linearly to obtain
a composite solution that transfers both energy and enstrophy.
The possibility and implications of such a composite solution
has been discussed in previous papers [39, 40, 73, 74], and
will not concern us further in this paper.

These observations show that a constructive point of view
is to see our hypotheses 1,2, and 3 as an efficient definition of
the concept of an “inertial range”, in a generalized sense. Ob-
viously, the hypotheses are valid only on a multidimensional
domain of velocity differences geometries {X}n ∈ Jn. The ex-
tent of this domain Jn is the extent of the inertial range itself.
A one-dimensional interval of length scales where the struc-
ture functions exhibit power law scaling, is a reduction of the
domain Jn in which information is lost. For the case of dual
cascade, we have an upscale range and a downscale range, and
a different set of scaling exponents ζn and region Jn is associ-
ated with each range. To determine the extent of the region J n
for the energy and enstrophy ranges we employ the theory of
the generalized balance equations, combined with the fusion
rules hypothesis. More rigorously, the domain J n is the range
of length scales where the terms Qn, In, and DnFn in the gen-
eralized balance equation are negligible relative to the terms
contributing to OnFn+1. The first step towards determining the
extent of the domain Jn is to calculate, from our hypotheses,
the scaling exponents of the terms of the balance equations.
Then these terms can be compared against each other. We ini-
tiate this study in the next two sections of this paper. Note
that it is sufficient to study in this manner only the balance
equations for the velocity field. Since the operator T n is a
strictly differential operator, it is also local, therefore the scal-
ing exponents of the terms of the vorticity balance equations
are equal to the the scaling exponents of the terms of the ve-
locity balance equations minus 1. So, the scaling exponents
for pairwise ratios of the terns against each other are the same
for both balance equations.

IV. LOCALITY OF THE INTERACTION TERM

We will now show that the p = 2 fusion rule and p = n−2
fusion rule combined with local homogeneity and incom-
pressibility, implies that the nonlinear interactions in the in-
ertial range are local. From the viewpoint of the generalized
balance equations, the nonlinear interactions are accounted for
by the integral in the term OnFn+1, and the sweeping inter-
actions by the term In, which we assume, for now, that it is
negligible in the inertial range (see Ref. 47 for further dis-
cussion). We say that the integral is local if it is convergent
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x1 = x2

x′
1

x′
2

r
R

FIG. 1: The p = 1 fusion rule geometry with a type B fusion. Here
we take the limit r � R with r and R both in the inertial range. In a
type B fusion, the small velicity difference shares an endpoint with
one of the large ones, i.e. x1 = x2.

r

R

�

FIG. 2: The p = n− 1 fusion rule geometry with a type B fusion.
This is a composite rule where we take the limits � � R and r � R.
The velocity difference associated with � shares an endpoint with the
velocity difference associated with R.

and furthermore if the dominant contribution to the integrals
in OFn+1 comes from the region in which the separation of the

integral variable y from all other points has the same order of
magnitude as {X}n ∼ R. Locality implies that the contribu-
tions Dkn to OFn+1 are also self-similar with scaling exponent
δn and satisfy

Dkn(λ{X}n, t) = λ δnDkn({X}n, t), (76)

where δn is given by δn = ζn+1−1. We propose that the local-
ity of the interaction integral in Dkn is the mathematical defi-
nition that corresponds most closely to the kind of locality that
is required to enable an eddy cascade with universal scaling.
In the sense of our proposed definition, we will show that both
the energy and enstrophy cascade of two-dimensional turbu-
lence are local.

The proof given in this section is based on a previous proof
by L’vov and Procaccia given in section IV-C of Ref. 43. The
same argument is also presented in the appendix of Ref. 69.
We have generalized their proof in two directions: first, we
derive the explicit conditions needed for locality even for the
case where the fusion rules do not hold; second, we extend the
proof to the case of the inverse energy cascade.

A. Preliminaries

It can be seen from the equations (24), (25), (26), (27), (28)
that the general form of the terms that contribute to Dkn in-
volves an integral of the form

I =
∫

dy Pαkβ (y)∂γ,xk

〈[
n

∏
l=1,l 	=k

wαl (Xl)

]
wβ (xk −y,x′k −y)wγ(xk −y,s)

〉
, (77)

where s can be any point among x1, . . . ,xn or x′1, . . . ,x′n. The
locality proof requires the scaling of Fn in the limits y → 0,
xk−y→ xl or x′l , x′k−y→ xl or x′l , and ρ = ‖y‖→ ∞. Con-
sequently, we need the fusion rules for the geometries shown
in Fig. 1 (case p = 1) and Fig. 2 (case p = n− 1). Both
can be derived from the fusion rules for the cases p = 2 and
p = n−2.

(a) For the case p = 1 where we also assume a type 1B
fusion (i,e. x1 = x2, and see Fig. 1) the governing fusion rule
is

Fn ∼ (r/R)ζ2Rζn (downscale), (78)

Fn ∼ (r/R)ζn−ζn−2Rζn (upscale). (79)

To show this, we note that

w(x2,x
′
2) = w(x2,x

′
1)+w(x′1,x′2) (80)

= w(x1,x′1)+w(x′1,x′2). (81)

For the last step, we used x1 = x2. Let Y = (x′1,x′2). Then

Fn({X}n) = Fn(X1,X2,{X}n
k=3) (82)

= Fn(X1,X1,{X}n
k=3)+Fn(X1,Y,{X}n

k=3). (83)

The third term is the same fusion problem as the first term
because X1 and Y share the point x′

1, and from the universal
isotropy hypothesis we can rotate the legs r and R in Fig. 1
with respect to each other so that the three points form an
isosceles triangle. Then one problem can be obtained from
the other problem by reflection around the triangle’s axis of
symmetry. Consequently, both problems scale according to
the second term, which is a p = 2 fusion. In the proof below,
we will use the generalized scaling

Fn ∼ (r/R)ξn,2Rζn , (84)

which is applicable both upscale and downscale.
(b) For p = n−1 with type B fusion, we have n−2 veloc-

ity differences of order r, one velocity difference of order �
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with one endpoint attached to a velocity difference of order R,
where � � R and r � R. Note that this fusion can be com-
posed as follows. Begin with all velocity differences at order
R. Then take the following limits: (�1) Shrink one velocity dif-
ference to order � � R with one endpoint attached to another
velocity difference (this is the previous case); (�2) Shrink all
other n− 2 velocity differences down to order r � R. Thus,
we have, for the downscale case,

Fn ∼
(

�

R

)ζ2 ( r
R

)ζn−2
Rζn (85)

∼ �ζ2rζn−2Rζn−ζn−2−ζ2 . (86)

The first limit (�1) gives the first factor (�/R)ζ2 , and the sec-
ond limit (�2) the second factor (r/R)ζn−2 . Similarly, for the
upscale case, using the exact same limits (�1) and (�2) , we
find

Fn ∼
(

�

R

)ζn−ζn−2 ( r
R

)ζn−ζ2
Rζn (87)

∼ �ζn−ζn−2rζn−ζ2Rζ2+ζn−2−ζn . (88)

In the proof below, we will use the generalized scaling

Fn ∼
(

�

R

)ξn,2 ( r
R

)ξn,n−2
Rζn . (89)

B. UV locality

UV locality requires convergence in the limits y → 0,
xk −y → xl or x′l , and x′k −y → xl or x′l . The only limit that
requires serious consideration is the first where Pαβ (y) is sin-
gular. For this case we distinguish the following two subcases.

(a) Assume that xk 	= s. The derivative of the ensemble
average in (77) is analytic in y → 0, so we Taylor expand it
around y = 0.

I =
∫

dy Pαkβ (y)[Aβ +Bβ γyγ +Cβ γδ yγyδ + · · · ]. (90)

The first term vanishes by incompressibility. The second term
vanishes because the integral is odd with respect to y, from the
local isotropy hypothesis, whereas Pαkβ (y) is even. The third
integral is local. Use dy = ρ dρ dΩ(A) with ρ = ‖y‖, A ∈
SO(2), and dΩ(A) the measure of two-dimensional spherical
integration. The third integral then reads

I3 =
∫

dρ
∫

dΩ(A)ρPαkβ (y)Cβ γδ yγyδ (91)

∼
∫

0+
dρ ρρ−2ρ2 ∼

∫
0+

dρ ρ ∼ ρ2, (92)

and it is unconditionally local
(b) Assume xk = s. Then the integral reads

I =
∫

dy Pαkβ (y)∂γ,xk

〈[
n

∏
l=1,l 	=k

wαl (Xl)

]
wβ (xk −y,x′k −y)wγ(xk −y,xk)

〉
, (93)

and in the limit y → 0 we have the velocity difference ge-
ometry shown in Fig. 3. From the p = 1 fusion rule with
type 1B fusion, the ensemble average in the integral scales
as Fn+1 ∼ (ρ/R)ξn+1,2Rζn+1 . The integral then scales as

I ∼
∫

0+
dρ ρρ−2ρ−1ρξn+1,2 ∼

∫
0+

dρ ρξn+1,2−2. (94)

Here, the spherical integral contributes the factor ρ , the pro-
jection operator Pαkβ (y) contributes ρ−2, the derivative ∂γ,xk

contributes ρ−1 (because the x dependent factor depends only
on the smallest in separation of the two velocity differences
in Fig. 3, which makes that factor dependent only on ρ), and
the fusion rule contributes ρ ξn+1,2 . The resulting integral is
marginally local for ξn+1,2 = ζ2 = 2 (enstrophy cascade) and
non-local for ξn+1,2 = ζ2 = 2/3 (downscale energy cascade in
3D). However, note that the type 1B fusion rule for the case
p = 1, which we have used here, is written in more detail as:

Fn+1 ∼
〈
wβ (xk −y,xk)wγ (xk −y,xk)

〉
Φn−1 (95)

∼ Φ2(xk −y,xk,xk −y,xk)Φn−1, (96)

which allows the integral I to be rewritten as

I ∼ Φn−1

∫
dy Pαkβ (y)∂γ,xk Φ2(xk −y,xk,xk −y,xk). (97)

Here we have used the fact that Φn−1 is independent of both
(xk − y,xk) and (xk − y,x′k − y), thus independent of xk, and
therefore it can be pulled out of the ∂γ,xk operator. It is easy
to see that the leading term of the Φ2 factor vanishes when
differentiated by ∂γ,xk by universal incremental homogeneity.
Thus, we get a cancellation that kills the leading contribution
and the integral then scales according to the next-order term:

I ∼
∫

0+
dρ ρξn+1,2−1 ∼ ρξn+1,2 . (98)

This integral is local if ξn+1,2 > 0 (i.e. for locality we need
I → 0 as ρ → 0). The result holds unconditionally, even un-
der a regular violation of the p = 2 fusion rule, e.g. Fn+1 ∼
(ρ/R)ξn+1,2Rζn+1 as long as ξn+1,2 > 0 and some factorization
Fn+1 ∼ Φ2Φn−1 is still possible (that would be true for higher-
order terms, if the leading term should happen to vanish) . Un-
der the fusion rules hypothesis this condition is ζ2 > 0 for a
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downscale cascade and ζn+1 − ζn−1 > 0,∀n ∈ N−{0,1} for
an upscale cascade.

Consider finally the cases xk −y → xl or x′l , and x′k −y →
xl or x′l . We perform the integral spherically around the value
of y where one of these coincidences take place. Let ρ be the
distance between the two approaching points. Assume any
regular fusion rule of the form Fn+1 ∼ (ρ/R)ξn+1,2Rζn+1 . Now,
the function Pαkβ (y) is no longer singular so we gain a fac-
tor of ρ2. Otherwise, the computation is the same as in the
previous case, and the integral scales as

I ∼
∫

0+
dρ ρξn+1,2+1 ∼ ρξn+1,2+2, (99)

which is local even under a regular violation of the p = 2 fu-
sion rule.

C. IR locality

Consider the limit ρ = ‖y‖→ ∞. The corresponding geom-
etry of velocity differences is shown in Fig. 4. For the down-
scale cascade we use the fusion rule for the case p = n− 1,
defined in Fig. 2:

Fn+1 ∼
(

�

ρ

)ξn+1,2
(

R
ρ

)ξn+1,n−1

ρζn+1 . (100)

Expanding around the point at infinity ρ → ∞, we get the
asymptotic expansion

Fn+1 ∼ ρζn+1−ξn+1,2−ξn+1,n−1(c0 + c1ρ−1 + c2ρ−2 + · · ·).
(101)

The integral then scales as

I ∼
∫ ∞

dρ ρρ−2ρζn+1−ξn+1,2−ξn+1,n−1(c0 + c1ρ−1 + · · ·).
(102)

Here, the spherical integral contributes the factor ρ , and the
projection operator contributes ρ −2. In this limit, the deriva-
tive ∂γ,xk does not contribute a factor of ρ −1, because the only
factor that can be xk dependent is the factor that gives (�)ξn+1,2 .
This factor is dependent on � and independent of ρ , again be-
cause � is the smallest distance. On the other hand, the effect
of the derivative ∂γ,xk is to vanish the Φ2 factor altogether via
an incompressibility cancellation. To see this, note that the
fusion rule corresponding to the geometry of Fig. 4 gives

Fn+1 ∼
〈
wβ (xk −y,x′k −y)wγ(xk −y,x′k −y)

〉
Φn−1 (103)

∼ Φ2(xk −y,x′k −y,xk −y,x′k −y)Φn−1, (104)

and from the incompressibility condition we get the tensor
structure of Φ2 which is

Φ2 ∼
[
(2+ ξn+1,2)δβ γ − ξn+1,2

�α�β

�2

]
�ξn+1,2 , (105)

with � = ‖xk −x′k‖. The integral I can be rewritten as

I∼ Φn−1

∫
dy Pαkβ (y)∂γ,xk Φ2(xk −y,x′k −y,xk−y,x′k −y).

(106)

xk − y

xk

x′
k − y

γ
β

FIG. 3: UV limit for the case xk = s. We employ the fusion rule
shown in Fig. 1

R

∼ ρ = ‖y‖

�

xk − y

x′
k − y

s γ β

FIG. 4: IR limit ‖y‖→ ∞. We employ the fusion rule shown in Fig. 2

Again, Φn−1 is independent of xk and can be pulled out of the
derivative ∂γ,xk . However, differentiating with respect to xk
wiggles only one of two points (that is xk −y, but not x′

k −y),
which makes it, by chain rule, a derivative with respect to �,
which in turn vanishes due to the tensor structure of Φ2 above.
As a result, we pick the factor c1ρ−1 from the next order term,
and the integral scales as:

I ∼
∫ ∞

dρ ρζn+1−ξn+1,2−ξn+1,n−1−1c1ρ−1 (107)

∼ ρζn+1−ξn+1,2−ξn+1,n−1−1. (108)

The locality condition for this integral is ζn+1 − ξn+1,2 −
ξn+1,n−1 ≤ 0 and thus ζn+1 ≤ ξn+1,2 + ξn+1,n−1. For a down-
scale cascade, the fusion rules hypothesis gives the condition
ζn+1 ≤ ζ2 + ζn−1. For an upscale cascade, the fusion rules
hypothesis reads ξnp = ζn−ζn−p, therefore the condition now
reads ζn+1 ≥ ζ2 +ζn−1. The condition for locality is the same
as in the downscale cascade, but the direction of the inequality
is reversed.

D. Summary

Let us now summarize what has been proved. We have
shown that for either a downscale or an upscale cascade the
locality conditions are

(UV): ξn+1,2 > 0, ∀n ∈ N,n > 1 (109)

(IR): ζn+1 ≤ ξn+1,2 + ξn+1,n−1, ∀n ∈ N,n > 1. (110)

for UV locality and IR locality correspondingly. For a down-
scale cascade, the IR locality condition is satisfied under the
fusion rules hypothesis

ξnp = ζp, ∀p,n ∈ N,n > 1,2 ≤ p ≤ n−2, (111)
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due to the Hölder inequality ζn+1 ≤ ζ2 + ζn−1 for the scal-
ing exponents ζn. For an upscale cascade, the fusion rules
hypothesis gives

ξnp = ζn − ζn−p, ∀p,n ∈ N,n > 1,2 ≤ p ≤ n−2, (112)

and the IR locality condition is reduced to ζn ≥ ζ2 + ζn−2
which is still satisfied, because the Hölder inequality reverses
its direction when the cascade is upscale (see appendix D).
The UV locality condition is also satisfied, but does not re-
quire the fusion rules hypothesis. All that is required is that
the scaling exponent ξn,2 be positive. For a downscale cas-
cade this gives the condition ζ2 > 0 and for an upscale cas-
cade, the condition ζn+1 − ζn−1 > 0. The assumption of the
regular fusion scaling is sufficient for that, for both upscale
and downscale cascades.

Let us now consider the case where the fusion rules are vi-
olated according to

ξnp = ζp + ∆ξnp (downscale), (113)

ξnp = ζn − ζn−p + ∆ξnp (upscale). (114)

As we have argued above, as long as the violation is regular,
UV localiy is still maintained. For IR locality, the sufficient
condition becomes

∆ξn+1,2 + ∆ξn+1,n−1 ≥ 0 (downscale), (115)

∆ξn+1,2 + ∆ξn+1,n−1 ≤ 0 (upscale). (116)

We see that locality survives even the violation of the fu-
sion rule hypothesis if ∆ξn+1,2 and ∆ξn+1,n−1 are both positive
downscale and negative upscale.

V. STABILITY OF THE UPSCALE AND DOWNSCALE
CASCADE

We now turn to the question of statistical stability with re-
spect to forcing perturbations. Statistical stability is defined
as the requirement that there should be a region Jn such that
Qn({X}n) is negligible relative to contributions to Dkn({X}n)
for all {X}n ∈ Jn in that region. Even when the forcing
spectrum is confined to a narrow range of scales, it is not
self-evident that this requirement is satisfied, due to feedback
loops of Fn onto Qn (see below).

The first explicit proof that the inertial range of three-
dimensional turbulence is statistically stable was given by
L’vov and Procaccia in section II-C-3 of [52]. The proof used
the balance equations of the standard structure functions (not
the generalized structure functions used in this paper), and it
covers the case of stability with respect to gaussian forcing
when the scaling exponents ζn take Kolmogorov scaling val-
ues ζn = n/3. The value of this proof has gone by unnoticed
because experiments and numerical simulations have estab-
lished the statistical stability of the three-dimensional energy
range beyond all doubt. For the problem of two-dimensional
turbulence however, where the lack of robustness of the up-
scale and downscale cascades is the unresolved problem, the

method used by L’vov and Procaccia in that proof is very il-
luminating. The main idea is to estimate the scaling exponent
of the ratio Qn/Dkn and require the appropriate constraint on
that exponent such that the ratio vanishes asymptotically in
the inertial range, in the limit of extending the range.

Consider a geometry of velocity differences {x} n such that
all point to point distances have order of magnitude 1, and
define the scaling exponent qn by

Qn(R) ≡ Qn(R{x}n) ∼
(

R
�0

)qn

. (117)

with R a scale in the inertial range. From locality (proved in
the previous section) we also know that,

Dkn(R) ≡ Dkn(R{x}n) ∼
(

R
�0

)ζn+1−1

. (118)

It follows that the ratio Qn/Dkn scales as

Qn(R)
Dkn(R)

∼
(

R
�0

)qn−(ζn+1−1)

. (119)

In a direct cascade, such as the energy cascade of three-
dimensional turbulence and the enstrophy cascade of two-
dimensional turbulence, this ratio must vanish in the limit
�0 → +∞. It follows that the condition for the statistical sta-
bility of a downscale cascade reads

∆qn ≡ qn − (ζn+1−1) > 0, ∀n ∈ N,n > 1. (120)

In an upscale cascade, such as the inverse energy cascade of
two-dimensional turbulence, the same ratio must vanish in the
limit �0 → 0. This leads to the same condition with the in-
equality reversed:

∆qn ≡ qn − (ζn+1−1) < 0, ∀n ∈ N,n > 1. (121)

A. The case of gaussian forcing

For the simplest case of Gaussian delta-correlated in time
forcing, the exponents qn can be calculated in terms of ζn.
This makes it possible to investigate statistical stability rigor-
ously.

We begin with the assumption that fα is a delta-correlated
stationary gaussian field with 〈 fα (x)〉 = 0, and〈

fα(x1, t1) fβ (x2, t2)
〉

= 2εCαβ (x1,x2)δ (t1 − t2), (122)

where ε is constant, and Cαβ is normalized such that
Cαα(x,x) = 1. Without loss of generality we may assume
that ∂α fα = 0, and therefore Pαβ fβ = fβ . Thus, we have the
identity

∫
dy Pβ γ(x2 −y)Cαγ(x1,y) = Cαβ (x1,x2), (123)

which will be used below.
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We define the forcing scale �0 from the Taylor expansion

Cαβ (x+y,x) =
δαβ

d
−A(2)

αβ

(‖y‖
�0

)2

+O(�−4
0 ), (124)

valid in the limit ‖y‖ � �0. Note that the odd-order terms
vanish by incremental isotropy. In the limit ‖y‖ �0, on the
other hand, we have the asymptotic expansion

Cαβ (x+y,x)∼
(

�0

‖y‖
)a [

A(0)
αβ +A(1)

αβ

(
�0

‖y‖
)

+O(�2
0)

]
.

(125)
Note that a, which is an unspecified scaling exponent depen-
dent on our choice of stochastic forcing, must satisfy a > 0,

since the correlation must vanish at ‖y‖ → +∞. Also note
that ε is the total rate of energy injection. In general, the work
done on the fluid is εin(x) = fα(x)uα(x). For delta-correlated
forcing, it is easy to show that 〈εin(x)〉 = εCαα(x,x) (see
proof in appendix C).

Recall that the total forcing term Qn is given by

Qn({X}n, t) =
n

∑
k=1

Qkn({X}k
n,Xk, t), (126)

where Qkn reads

Qα1α2···αn−1β
kn ({X}n−1,Y, t) =

〈[
n−1

∏
k=1

wαk(Xk, t)

]
ϕβ (Y, t)

〉
, (127)

with ϕα(X, t) = fα (x,t)− fα(x′,t). For Gaussian forcing, it can be shown (see appendix B) that the forcing contributions Q kn
to the generalized balance equations read

Qα1···αn−1β
kn ({X}n−1,Y,t) =

n−1

∑
l=1

F
α1···αl−1αl+1···αn−1
n−2 ({X}l

n−1)Qαlβ (Xl,Y), (128)

with Qαβ (X,Y) given by

Qαβ (X,Y) =
〈
wα (X,t)ϕβ (Y,t)

〉
= 2ε

∫
dz [Pαγ(x− z)−Pαγ(x′ − z)][Cβ γ(y,z)−Cβ γ(y

′,z)] (129)

= 2ε[Cαβ (y,x)−Cαβ (y′,x)−Cαβ (y,x′)+Cαβ (y′,x′)]. (130)

The physical intuition is that there is a feedback loop between
forcing, whose spectrum is defined by Qαβ (X,Y), and the re-
sulting behavior of turbulence which is captured by the struc-
ture functions Fn. More specifically, we see that Fn−2 provides
feedback to Qn, when the forcing is gaussian. For statistical
stability we need this feedback to be negligible in the inertial
range.

The immediate implication of eq. (128) is that qn = ζn−2 +
q2 with q2 the scaling exponent of Qαβ . It follows that

∆qn = (ζn−2 +q2)− (ζn+1−1). (131)

The remaining challenge is to calculate q2. We will see that

q2 depends on whether the cascade is upscale or downscale.
In the rest of this section, we will derive the separate stability
conditions for a downscale cascade and for an upscale cas-
cade.

B. Stability conditions for downscale cascades

For the case of a downscale cascade, using the Taylor ex-
pansion of Qαβ (X,Y) in the limit ‖X−Y‖ → 0, the scaling
of Qαβ can be estimated as

Qαβ (X,Y) = 2ε[Cαβ (y,x)−Cαβ (y′,x)−Cαβ (y,x′)+Cαβ (y′,x′)] (132)

= 2ε[(Cαβ (y,x)−Cαβ (x,x))− (Cαβ (y′,x)−Cαβ (x,x))− (Cαβ (y,x′)−Cαβ (x′,x′)) (133)

+(Cαβ (y′,x′)−Cαβ (x′,x′))] (134)

∼ (2ε/�2
0)[‖y−x‖2−‖y′ −x‖2−‖y−x′‖2 +‖y′ −x′‖2] ∼ ε(R/�0)2, (135)

which suggests that for a downscale cascade, q2 = 2. It is easy
to see that for a monofractal velocity field with ζn = nh, the

stability condition reads

∆qn = (ζn−2 +2)− (ζn+1−1) (136)

= 3−3h > 0,∀n ∈ N : n > 1, (137)
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which requires h < 1. In a multifractal case one has a linear
combination of independent monofractal contributions, and it
can be shown that the constraint 0 < ζ3 < 3 is a sufficient con-
dition for statistical stability. This follows from the inequality
ζn+1 ≤ ζ3 + ζn−2 (see appendix D):

∆qn = ζn−2 − ζn+1 +3 (138)

≥ ζn−2 − ζn−2− ζ3 +3 (139)

= 3− ζ3 > 0,∀n ∈ N : n > 2. (140)

For n = 2, we get ∆q2 = q2−(ζ3−1) = 3−ζ3, which implies,
from the stability condition ∆q2 > 0, that 0 < ζ3 < 3 is also a
necessary condition.

For the case of the downscale energy cascade of three-
dimensional turbulence we have ζ3 = 1 , which can be derived
from the solvability condition for the homogeneous equation
O2F3 = 0 [42, 43, 47]. This satisfies the sufficient condition
0 < ζ3 < 3 for statistical stability very generously, so it is
hardly a surprise that the energy cascade is so robust. Also
worth noting is that for a hypothetical downscale helicity cas-
cade we have ζ3 = 2 , which also satisfies the stability condi-
tion.

The story changes for the case of the downscale enstrophy
cascade. We know, from combining the Eyink and Falkovich-
Lebedev theories of the two-dimensional enstrophy cascade
[22, 23, 74, 75], that when it exists with constant enstrophy
flux, the enstrophy cascade has no intermittency corrections.
Thus, the scaling exponents ζn all satisfy the monofractal scal-
ing ζn = n , which implies that

∆qn = ζn−2 − ζn+1 +3 = 0. (141)

So, we have a borderline situation where the stability condi-
tion is neither satisfied nor broken! Consequently, the actual
stability of the downscale enstrophy cascade is not decided by
scaling exponents but by the numerical coefficients in front of
Qn and Dkn . This is where it gets interesting.

The leading contribution to Qn is proportional to the to-
tal rate of energy injection ε . However, one should bear in
mind that the downscale enstrophy cascade is forced by the
combined effect of both the forcing term f α and the large-
scale dissipation term (−1)m+1β ∇−2muα . As a result of this
combined forcing, the enstrophy cascade is injected with a
smaller enstrophy rate ηuv and a very small energy rate εuv

with ηuv < η and εuv � ε . If we assume that this combined
effect itself can be modelled as gaussian forcing, then the
leading contribution to the effective forcing on the enstrophy
cascade is proportional only to the rate εuv of the sublead-
ing downscale energy flux. Because εuv vanishes rapidly as
the separation of scales in the enstrophy cascade is increased
[36, 40], this leading contribution can be made as small as
desired simply by taking the limit ν → 0+. For small enough
downscale energy flux εuv, the next order term with q2 ≥ 3 be-
comes dominant, and combined with ζn = n it is easy to show
that the stability condition is now ∆qn > 0.

The conclusion from this analysis is that the stability of the
downscale enstrophy cascade requires that the accompanying
downscale energy flux should be very small. For that to hap-
pen, we need two things: First, it is necessary to have a dis-
sipation sink at large scales to absorb most of the injected en-
ergy at the forcing scale or at larger scales. Second, we must
have a large separation of scales between the forcing scale
and the dissipation scale at small scales, which means that a
significant amount of numerical resolution is required. These
two requirements, we believe, are the reason why it has been
so difficult to reproduce the enstrophy cascade in numerical
simulations. It is worth noting that Tran and Bowman [21]
came to a similar conclusion by a different argument, that the
robustness of the downscale enstrophy cascade requires a van-
ishing downscale energy flux.

C. Stability conditions for upscale cascades

The fundamental difference between an upscale cascade
and a downscale cascade with respect to stability is that in the
upscale cascade the Hölder inequalities now take the form
ζn+k ≥ ζn +ζk, and the condition for statistical stability reads
∆qn < 0, ∀n ≥ 1. We will now prove that inverse cascades
are always statistically stable with respect to variations in the
forcing statistics, provided that ζ3 ≥ 1. This is consistent
with the numerical evidence that the inverse energy cascade
is much easier to obtain in simulations than the direct enstro-
phy cascade.

Again, using Taylor expansion in the limit ‖X−Y‖ → ∞,
we see that Qαβ scales as

Qαβ (X,Y) = 2ε[Cαβ (y,x)−Cαβ (y′,x)−Cαβ (y,x′)+Cαβ (y′,x′)] (142)

∼ 2ε
[(

�0

‖y−x‖
)a

−
(

�0

‖y′ −x‖
)a

−
(

�0

‖y−x′‖
)a

+
(

�0

‖y′ −x′‖
)a]

, (143)

which gives q2 = −a < 0. For a monofractal velocity field with ζn = nh, the stability condition reads

∆qn = qn − (ζn+1−1) (144)

= q2 + ζn−2− (ζn+1−1) (145)

= q2 +1−3h < 0,∀n ∈ N : n > 1. (146)
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Since q2 < 0, the condition h ≥ 1/3 is sufficient. For the
more general multifractal case, using the inequality ζn+1 ≥
ζ3 + ζn−2, we can upper-bound ∆qn as follows:

∆qn = q2 + ζn−2− (ζn+1−1) (147)

≤ q2 +1− (ζn−2 + ζ3)+ ζn−2 (148)

= q2 +1− ζ3,∀n ∈ N : n > 2. (149)

For n = 2, we get an equality: ∆q2 = q2 − (ζ3 − 1). Thus,
the stability condition ∆qn < 0 is satisfied when ζ3 > q2 +
1, which is indeed satisfied when q2 < 0 and ζ3 ≥ 1. For
the inverse energy cascade of two-dimensional turbulence, we
have ζ3 = 1 which satisfies the requirements for stability.

There is however another effect that can destabilize the in-
verse energy cascade. We have shown in a previous paper [47]
that the loss of asymptotic homogeneity by the effect of the
boundary conditions on the flow amplifies the sweeping term
In at the large scales. As a result, at sufficiently large length
scales, the ratio In/Dkn becomes significant, and excites a par-
ticular solution superimposed on top of the homogeneous so-
lution associated with the inverse cascade. The particular so-
lution corresponds to the coherent structures associated with
the “energy condensation effect”. The formation of these co-
herent structures is very likely to further intensify the ratio
In/Dkn. As we have explained in the introduction, it has been
shown that if these coherent vortices are removed before the
evaluation of the energy spectrum, the usual inverse energy
cascade spectrum is recovered [30, 32, 34]. This result is con-
sistent with our theory, and it confirms that the homogeneous
solution, corresponding to the inverse energy cascade, exists
side by side with the particular solution, corresponding to the
coherent structures, even when the particular solution is dom-
inant. The possible role of the sweeping term on the stability
of the enstrophy cascade is currently not well-understood.

VI. CONCLUSION AND DISCUSSION

We have shown that the non-perturbative locality of the in-
ertial ranges of two-dimensional turbulence is an immediate
consequence of the fusion rules hypothesis. The physical in-
terpretation of what we have done is to prove, strictly in the
context of the incompressible Navier-Stokes equation, that
universality implies locality. A proof of the fusion rules by
diagrammatic theory is essentially the converse and more in-
teresting claim: that locality implies universality. This result
leads to an apparently curious paradox: the usual understand-
ing of locality, in terms of triad interactions in Fourier space,
suggests that a necessary condition for locality is that the en-
ergy spectrum E(k) must have slope between k−3 and k−1.
This corresponds to the inequality 0 < ζ2 < 2. The paradox
is that this constraint does not appear anywhere in our local-
ity proof! In recent work, Eyink [76] investigated the locality
of the downscale enstrophy cascade and the inverse energy
cascade using a filtering method [77–79]. His argument also
leads to the inequality 0 < ζ2 < 2 as a sufficient locality con-
dition. It follows that whereas the inverse energy cascade is
local the direct enstrophy cascade is IR marginally-nonlocal.

Unlike the argument in this paper, Eyink’s argument has only
considered the kinematic locality of the flux term and not the
statistical locality associated with unfused higher-order struc-
ture functions. On the other hand, our argument is less rigor-
ous in its present form, as it assumes the fusion rules without
proof.

A fundamental problem with establishing locality in
Fourier space is that the Fourier transform involves an inte-
gral that ranges over every length scale, including the forcing
length scales and the dissipation length scales. To preserve
locality, the main contribution to the integral must come from
the inertial range. The inequality 0 < ζ2 < 2 comes in as a nec-
essary condition for the survival of locality under the Fourier
integral [64]. The same issue arises when locality is charac-
terized with a filtering transform (i.e. forward Fourier, trun-
cation, backward Fourier), as was done by Eyink [76], albeit
with a broader definition of filtering. Beyond that, the under-
lying argument based on diagrammatic theory [50–52] that
justifies the fusion rules hypothesis itself can impose further
constraints on ζ2, which still need to be investigated carefully.
For example, one other way the constraint 0 < ζ2 < 2 can
come in is if we require perturbative locality for each Feyn-
man diagram [50]. Perturbative locality may be a necessary
condition for the fusion rules hypothesis. If that is true, then
perhaps 0 < ζ2 < 2 is implicitly assumed when we postulate
the fusion rules hypothesis. We have also shown in this paper
that the related condition 0 < ζ3 < 3 is required for stability
under Gaussian forcing, which is as essential as locality for
the existence of a universal inertial range.

It should be stressed that any constraints on scaling ex-
ponents needed only to prove the fusion rules hypothesis by
Feynman diagrams , are needed only to establish the univer-
sality of the scaling exponents ζn of the inertial range. We
should expect to find that the conditions for locality itself are
weaker. For example, we have shown in this paper that local-
ity is possible even when the fusion rules fail, provided that
the fusion exponents ξnp deviate in the correct direction. In
fact, it is possible to have local interactions, as per our def-
inition, even when the underlying diagrammatic theory does
not yield local Feynman diagrams! This scenario is not en-
tirely hypothetical; in the case studied by Ref.80 of an en-
strophy range under strong Ekman dissipation, this may be
precisely what happens, with the slope being steeper than k−3

and non-universal, but still allowing an appearently local en-
strophy cascade to exist.

The key idea that can help us unravel these paradoxes is that
the non-perturbative locality studied in this paper is a weaker
condition than perturbative locality. Non-perturbative locality
requires only the combined effect of all Feynman diagrams to
be local. Perturbative locality, on the other hand, requires that
each diagram individually should be local. This distinction
between perturbative and non-perturbative locality may clar-
ify the paradoxical situation with the enstrophy cascade where
the spectrum of the enstrophy cascade is consistent with a di-
mensional analysis argument based on a locality assumption
even though the slope is too steep to be self-consistent with
that assumption! Adding a logarithmic correction resolves the
situation in a one-loop closure model [81], and the combina-
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tion of more recent results by Falkovich and Lebedev [23] and
Eyink [75] suggest that the same logarithmic correction per-
sists for the exact theory, with no higher-order adjustments.
Nevertheless, a reconcilliation of the spectrum slope and the
locality requirement is still an “uncomfortable” notion, to say
the least. We believe that a possible resolution of this para-
dox is to claim that the enstrophy cascade is local in the non-
perturbative sense, as far as the exact theory is concerned, and
borderline non-local only in the perturbative sense. From a
physical standpoint the relevant locality needed as a precon-
dition for establishing the existence of an inertial range is the
non-perturbative locality. However, some confusion can arise
from the fact that closure models unwittingly exchange non-
perturbative locality with perturbative locality!

The careful reader will note that the non-perturbative lo-
cality is also weaker than the more intuitive (and less rigor-
ous) physical understanding of locality as the notion that the
effect of the forcing range and dissipation range is “forgot-
ten” in the inertial range. We may designate locality, in this
sense, as “strong” locality, so that it can be distinguished from
the weaker non-perturbative statistical locality. The proposed
theory can help make the meaning of this notion of “strong”
locality more rigorous. The key idea is that it is possible
to have local interaction integrals in the contributions to the
OnFn+1 term of the balance equations and still pick up an ef-
fect from the forcing range or the dissipation range into the
multi-dimensional regions Jn that are supposed to be the in-
ertial range, in our generalized sense. It all depends on how
much forcing and dissipation “wish to creep into” the inertial
range. We can find that out by comparing the magnitude of
the Qn , In, and DnFn terms of the generalized balance equa-
tions against the magnitude of the contributions Dkn to the
interaction term. Thus, we find that there are three distinct
conditions that need to hold to have strong locality: first, the
interaction integral itself has to be local; second, we need to
establish the property of statistical stability which will guar-

antee that the forcing effect Qn and the sweeping interactions
In do not creep into the inertial range; third, a calculation of
the shape of the dissipation range can show whether there is
a wide enough region Jn in which the dissipation term DnFn
is negligible. One advantage of the generalized balance equa-
tions framework is that it allows us to account mathematically
for these three distinct effects separately.

In this paper, we examined only the first condition and part
of the second condition. We have shown that statistical sta-
bility with respect to forcing applies unconditionally for the
inverse energy cascade. For the enstrophy cascade, statisti-
cal stability requires large-scale dissipation and a vanishing
downscale energy dissipation. For any downscale cascade in
general, stability constrains the corresponding Hölder expo-
nent as h < 1. For an upscale cascade, the corresponding con-
straint is h ≥ 1/3. We began considering the role of sweeping
in a previous paper [47], and the role of the dissipation term
will be studied in future work.

Acknowledgments

It is a pleasure to thank Ka-Kit Tung for his advice and
encouragement. The research is supported in part by the Na-
tional Science Foundation, under grant DMS-03-27658.

APPENDIX A: DERIVATION OF THE BALANCE
EQUATIONS

In this appendix we give a detailed derivation of the gener-
alized balance equations. Recall that we defined the general-
ized structure function Fn as

Fn({X}n, t) =

〈[
n

∏
k=1

wαk (Xk, t)

]〉
. (A1)

By differentiating Fn with respect to t and substituting the Navier-Stokes equations we obtain:

∂Fn(t)
∂ t

=
n

∑
k=1

〈
∂wαk(xk,x′k,t)

∂ t

[
n

∏
l=1,l 	=k

wαl (xl,x
′
l , t)

]〉
=

n

∑
k=1

[−Nkn +Qkn]+ νJn + βHn. (A2)

Here, the terms νJn and βHn are the contributions of the small-scale and large-scale sinks with

Jα1α2···αn
n ({x,x′}n, t) =

n

∑
k=1

(∇2κ
xk

+ ∇2κ
x′k )Fn({x,x′}n, t), (A3)

Hα1α2···αn
n ({x,x′}n, t) =

n

∑
k=1

(∇−2m
xk

+ ∇−2m
x′k )Fn({x,x′}n, t), (A4)

where ∇2
xk

is the Laplacian with respect to xk; ∇2
x′k is the Laplacian with respect to x′

k. Also, Nkn represents the contributions of
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Pαβ ∂γ (uβ uγ), and Qkn represents the contributions of Pαβ fβ , and they read:

Qα1α2···αn
kn ({x,x′}n,t) =

〈[
n

∏
l=1,l 	=k

wαl (xl,x
′
l, t)

]
Pαkβ ( fβ (xk, t)− fβ (x′k, t))

〉
, (A5)

Nα1α2···αn
kn ({x,x′}n,t) =

〈[
n

∏
l=1,l 	=k

wαl (xl,x
′
l, t)

]
Pαkβ [∂γ,xk (uβ ,xk

uγ,xk)− ∂γ,x′k(uβ ,x′kuγ,x′k)]

〉
(A6)

=

〈[
n

∏
l=1,l 	=k

wαl (xl,x
′
l, t)

]
Pαkβ Nβ (xk,x

′
k, t)

〉
(A7)

=

〈[
n

∏
l=1,l 	=k

wαl (xl,x
′
l, t)

]∫
dyPαkβ (y)Nβ (xk −y,x′k −y, t)

〉
. (A8)

Here we use the abbreviations uα ,xk = uα(xk,t) and uα ,x′k = uα(x′k, t), wα ,k = wα (xk,x′k, t), and ∂α ,xk is the spatial derivative
in the α direction with respect to xk. Also, Nβ (xk,x′k, t) is the non-linear factor defined as:

Nβ (xk,x
′
k,t) = ∂γ,xk(uβ ,xk

uγ,xk)− ∂γ,x′k(uβ ,x′kuγ,x′k ) = uγ,xk ∂γ,xk (uβ ,xk
−uβ ,x′k )+uγ,x′k ∂γ,x′k(uβ ,xk

−uβ ,x′k )

= ∂γ,xk(uγ,xkwβ ,k)+ ∂γ,x′k(uγ,x′kwβ ,k) = uγ,xk ∂γ,xkwβ ,k +uγ,x′k ∂γ,x′kwβ ,k.

It is easy to see that the nonlinear terms Nkn cannot be writ-
ten exclusively in terms of velocity differences. The remark-
able characteristic of the derivation of the balance equations
by L’vov and Procaccia [43] is that the nonlinear term Nkn is
rearranged as the sum of a local term Dkn and a sweeping term
Ikn such that the local term can be expressed as a linear oper-
ator on Fn+1. Although L’vov and Procaccia [43] eliminated
the sweeping term on the grounds of global homogeneity, we

believe it is appropriate to retain it here in its simplified form.
To isolate the sweeping term, we define a generalized mean

velocity Uα({z,z′}n, t) as:

Uα ({z,z′}n, t) =
1
2n

n

∑
k=1

(uα(zk, t)+uα(z′k, t)), (A9)

and the corresponding velocity fluctuation

vα(x,{z,z′}n,t) = uα(x,t)−Uα({z,z′}n, t) =
1
2n

n

∑
k=1

[wα (x,zk)+wα(x,z′k)]. (A10)

We may then decompose Nα(xk,x′k,t), in general, to

Nα(xk,x
′
k,t) = Sα(xk,x

′
k,{z,z′}n, t)+Lα(xk,x

′
k,{z,z′}n, t), (A11)

where Sα and Lα are defined as:

Sα(xk,x
′
k,{z,z′}n,t) = Uβ ({z,z′}n, t)(∂β ,xk

+ ∂β ,x′k )wα(xk,x
′
k, t),

Lα (xk,x
′
k,{z,z′}n,t) = [vβ (xk,{z,z′}n, t)∂β ,xk

+ vβ (x′k,{z,z′}n, t)∂β ,x′k ]wα(xk,x
′
k, t).

(A12)

In general, {z,z′}n can be chosen any way we wish. Here, we specifically use the choice:

Nβ (xk,x
′
k,t) = Lβ (xk,x

′
k,{x,x′}n, t)+Sβ (xk,x

′
k,{x,x′}n, t). (A13)

This gives the decomposition Nkn = Dkn + Ikn with

Dα1α2···αn
kn ({x,x′}n,t) =

〈[
n

∏
l=1,l 	=k

wαl (xl,x
′
l , t)

]∫
dyPαkβ (y)Lβ (xk −y,x′k −y,{x,x′}n, t)

〉
, (A14)

Iα1α2···αn
kn ({x,x′}n,t) =

〈[
n

∏
l=1,l 	=k

wαl (xl,x
′
l , t)

]∫
dyPαkβ (y)Sβ (xk −y,x′k −y,{x,x′}n, t)

〉
. (A15)
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Here Ikn represents the sweeping interactions and Dkn represents the local interactions.

The sweeping term Ikn can be simplified as follows: We use the decomposition Pαβ (x) = δαβ δ (x)−P‖
αβ (x) to split Ikn to

two terms: Ikn = I(1)
kn + I(2)

kn with I(1)
kn corresponding to δαβ δ (x) and I(2)

kn corresponding to P‖
αβ (x). We also use P

‖
αβ uβ = 0. The

integral inside the ensemble average of Ikn splits to two parts: I1 and I2. The first part I1 reads:

I1 =
∫

dy δαkβ δ (y)Sβ (xk −y,x′k −y,{x,x′}n, t) = Sαk(xk,x
′
k,{x,x′}n, t) (A16)

= Uγ ({x,x′}n,t)(∂γ,xk + ∂γ,x′k )wαk(xk,x
′
k, t). (A17)

The second part I2 is shown to be zero by incompressibility:

I2 =
∫

dyP‖
αβ (y)Sβ (xk −y,x′k −y,{x,x′}n, t) (A18)

=
∫

dyP‖
αβ (y)Uγ ({x,x′}n, t)(∂γ,xk + ∂γ,x′k )wβ (xk −y,x′k −y, t) (A19)

= Uγ ({x,x′}n,t)(∂γ,xk + ∂γ,x′k)
∫

dyP‖
αβ (y)wβ (xk −y,x′k −y, t) = 0. (A20)

Because P‖
αβ is the nonlocal part of the projection operator, this result implies that the pressure effect does not contribute to the

sweeping interactions or to the violation of incremental homogeneity. Thus, I kn is determined by I1 and it simplifies to

Iα1α2···αn
kn ({x,x′}n,t) =

〈[
n

∏
l=1,l 	=k

wαl (xl,x
′
l, t)

]
Uγ ({x,x′}n, t)(∂γ,xk + ∂γ,x′k )wαk(xk,x

′
k, t)

〉
(A21)

= (∂γ,xk + ∂γ,x′k)

〈
Uγ({x,x′}n, t)

[
n

∏
l=1

wαl (xl,x
′
l, t)

]〉
. (A22)

This result was given previously by L’vov and Procaccia in section IV-B and appendix B of Ref.43.
We will now show that the local interaction term Dkn can be written as a linear transformation of Fn+1. First, note that

Lα(xk,x
′
k,{x,x′}n,t) = [vβ (xk,{x,x′}n, t)∂β ,xk

+ vβ (x′k,{x,x′}n, t)∂β ,x′k ]wα(xk,x
′
k, t) (A23)

= ∂β ,xk
[vβ (xk,{x,x′}n, t)wα(xk,x

′
k, t)]+ ∂β ,x′k [vβ (x′k,{x,x′}n, t)wα (xk,x

′
k, t)] (A24)

=
1
2n

n

∑
l=1

∂β ,xk
[(wβ (xk,xl, t)+wβ (xk,x

′
l, t))wα (xk,x

′
k, t)] (A25)

+
1
2n

n

∑
l=1

∂β ,x′k [(wβ (x′k,xl, t)+wβ (x′k,x′l, t))wα (xk,x
′
k, t)], (A26)

which gives:

Lα (xk −y,x′k −y,{x,x′}n,t) =
1
2n

n

∑
l=1

∂β ,xk
[(wβ (xk −y,xl, t)+wβ (xk −y,x′l, t))wα (xk −y,x′k −y, t)] (A27)

+
1
2n

n

∑
l=1

∂β ,x′k [(wβ (x′k −y,xl, t)+wβ (x′k −y,x′l, t))wα (xk −y,x′k −y, t)]. (A28)

It follows from substituting the above to (A14) that Dkn is given by

Dα1α2···αn
kn ({x,x′}n,t) =

1
2n

n

∑
l=1

∫
dyPαkβ (y)Dα1α2···αk−1β ···αn

knl ({x,x′}n,y, t), (A29)

with Dknl = Dknl1 +Dknl2 +Dknl3 +Dknl4, and

D
α1···αk−1β αk+1···αn
knl1 ({x,x′}n,y,t) = ∂αn+1,xkF

α1···αk−1β αk+1···αn+1
n+1 ({Xm}k−1

m=1,xk −y,x′k −y,{Xm}n
m=k+1,xk −y,xl), (A30)

D
α1···αk−1β αk+1···αn
knl2 ({x,x′}n,y,t) = ∂αn+1,xkF

α1···αk−1β αk+1···αn+1
n+1 ({Xm}k−1

m=1,xk −y,x′k −y,{Xm}n
m=k+1,xk −y,x′l), (A31)

Dα1···αk−1β αk+1···αn
knl3 ({x,x′}n,y,t) = ∂αn+1,x′kF

α1···αk−1β αk+1···αn+1
n+1 ({Xm}k−1

m=1,xk −y,x′k −y,{Xm}n
m=k+1,x

′
k −y,xl), (A32)

D
α1···αk−1β αk+1···αn
knl4 ({x,x′}n,y,t) = ∂αn+1,x′kF

α1···αk−1β αk+1···αn+1
n+1 ({Xm}k−1

m=1,xk −y,x′k −y,{Xm}n
m=k+1,x

′
k −y,x′l). (A33)

APPENDIX B: FORCING CONTRIBUTION FOR GAUSSIAN
FORCING

We give here a proof of equations (128) and (130), closely
following the argument in section II-C-3 of Ref. 52. We

exploit the following mathematical result: if fα (x1,t1) is a
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Gaussian stochastic field, the ensemble averages of the form
〈 fα (x1, t1)R[ f ]〉 can be evaluated for any analytic functional

R[ f ] by the following integral

〈 fα(x1,t1)R[ f ]〉 =
∫

dx2dt2
〈

fα (x1, t1) fβ (x2, t2)
〉〈

δR[ f ]
δ fβ (x2, t2)

〉
. (B1)

We begin the proof by defining the following response functions

Gαβ (X,t1;y, t2) =
〈

δwα (X, t1)
δ fβ (y, t2)

〉
, (B2)

Gα1···αmβ1···βn
mn ({X}m,t,{y,τ}n) =

〈[
n

∏
k=1

δ
δ fβk

(yk,τk)

][
m

∏
l=1

wαl (Xl , t)

]〉
. (B3)

For the case t1 = t2 = t, the response function Gαβ (X, t;y, t) is given by

Gαβ (X,t;y,t) = (1/2)[Pαβ(x−y)−Pαβ(x′ −y)]. (B4)

This is proved in appendix C. Likewise, for the case m = 1 and τ 1 = t, the response function G
α1···αnβ
1n ({X}n, t,y, t) is given by

G
α1···αnβ
1n ({X}n,t,y,t) =

〈
δ

δ fβ (y,t)

[
n

∏
l=1

wαl (Xl, t)

]〉
=

n

∑
k=1

〈[
n

∏
l=1,l 	=k

wαl (Xl , t)

]
δwαk(Xk, t)

δ fβ (y, t)

〉
(B5)

=
n

∑
k=1

F
α1···αk−1αk+1···αn
n−1 ({X}k

n)Gαkβ (Xk, t;y, t). (B6)

Here we exploit the fact, first pointed out in Ref. 52, that the variational derivative (δw αk (Xk, t))/(δ fβ (y, t)) is not correlated
with the velocity differences wαl (Xl ,t) because no time is being allowed for interaction to develop a correlation. Using (B1) the
correlation between wα(X) and fβ (y) is given by

〈
wα (X) fβ (y)

〉
=

∫
dz

∫
dτ

〈
δwα(X)
fγ (z,τ)

〉〈
fβ (y, t) fγ (z,τ)

〉
= 2ε

∫
dzGαγ(X, t;z, t)Cβ γ(y,z), (B7)

and it follows that

Qαβ (X,Y) = 2ε
∫

dzGαγ(X, t;z, t)[Cβ γ (y,z)−Cβ γ(y
′,z)] (B8)

= 2ε
∫

dz[Pαγ(x− z)−Pαγ(x′ − z)][Cβ γ(y,z)−Cβ γ(y
′,z)]. (B9)

Using a similar argument for the more general case, we get〈[
n−1

∏
l=1

wαl (Xl,t)

]
fβ (y,t)

〉
=

∫
dz

∫
dτ

〈
δ

δ fγ (z,τ)

[
n−1

∏
l=1

wαl (Xl, t)

]〉〈
fβ (y, t) fγ (z,τ)

〉
(B10)

= 2ε
∫

dz G
α1···αn−1γ
1,n−1 ({X}n−1,z)Cβ γ(y,z), (B11)

(B12)

and it follows that

Qα1···αn−1β
kn ({X}n−1,Y,t) =

〈[
n−1

∏
l=1

wαl (Xl, t)

]
( fβ (y, t)− fβ (y′, t))

〉
(B13)

= 2ε
∫

dz G
α1···αn−1γ
1,n−1 ({X}n−1,z)[Cβ γ(y,z)−Cβ γ(y

′,z)] (B14)

= 2ε
n−1

∑
l=1

F
α1···αl−1αl+1···αn−1
n−2 ({X}l

n−1)
∫

dz Gαlγ (Xl, t;z, t)[Cβ γ(y,z)−Cβ γ(y
′,z)] (B15)

=
n−1

∑
l=1

F
α1···αl−1αl+1···αn−1
n−2 ({X}l

n−1)Qαlβ (Xl ,Y). (B16)
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This concludes the proof.

APPENDIX C: EVALUATION OF THE ONE-TIME
RESPONSE FUNCTION

We show how to calculate the one-time response function
and use it to show that the ensemble average of the rate of
energy injection εin(x) is given by 〈εin(x)〉= εCαα (x,x). This
argument was given previously by McComb [82].

We begin with the definition of the response function:

Gαβ (x1,t1;x2,t2) =
〈

δuα(x1,t1)
δ fβ (x2,t2)

〉
. (C1)

We first show that at equal times t1 = t2, Gαβ is given by

Gαβ (x1, t1;x2, t1) =
1
2

Pαβ (x1 −x2). (C2)

To show this, note that from linearity with respect to forcing

uα(x,t) = uα(x,0)+
∫ t

0
ds Aα [uα(s)](r)+

∫ t

0
ds

∫
dy Pαβ (x−y) fα(y,s), (C3)

where Aα [uα(s)](r) represents the effect of the advection and pressure term. For convenience, we use the abbreviation g α =
Pαβ fα . It follows that

δuα(x1,t1)
δ fβ (x2,t2)

=
∫ t1

0
ds

δAα [uα(s)](x1)
δ fβ (x2,t2)

+
δ

δ fβ (x2, t2)

∫ t1

0
ds

∫
dy Pαβ (x−y) fβ (y,s) (C4)

=
∫ t1

t2
ds

δAα [uα(s)](r)
δ fβ (x2,t2)

+
δ

δ fβ (x2, t2)

∫
dy

∫ ∞

0
dt[H(t1− t)Pαβ (x1 −y)] fβ (y, t) (C5)

=
∫ t1

t2
ds

δAα [uα(s)](r)
δ fβ (x2,t2)

+H(t1− t2)Pαβ (x1 −x2). (C6)

with H(t) the Heaviside function, defined as the integral of a
delta function:

H(t) =
∫ t

0
δ (τ) dτ =

⎧⎨
⎩

1, if t ∈ (0,+∞)
1/2, if t = 0
0, if t ∈ (−∞,0)

. (C7)

For t1 = t2, the integral of the first term vanishes and H(0) =
1/2, therefore it follows that

Gαβ (x1,t1;x2,t1) =
1
2

Pαβ (x1 −x2). (C8)

Also note that in fact there is a discontinuity in the response
function and

lim
∆t→0+

Gαβ (x1,t + ∆t;x2,t) = Pαβ (x1 −x2). (C9)

From this result, it immediately follows that:

〈εin(x)〉 =
∫

dx0

∫
dt0

〈
fα (x,t) fβ (x0,t0)

〉
(C10)

=
∫

dx0 2εCαβ (x,x0)Gαβ (x,t;x0,t) (C11)

=
∫

dx0 εCαβ (x,x0)Pαβ (x−x0) = εCαα(x,x).

(C12)

APPENDIX D: SCALING EXPONENT INEQUALITIES

We will show here that for an downscale and upscale cas-
cade, correspondingly, the scaling exponents satisfy the in-
equalities

ζn+k ≤ ζn + ζk (downscale), (D1)

ζn+k ≥ ζn + ζk (upscale). (D2)

The first of these inequalities is well-known. The key result
here is the second inequality, corresponding to the case of an
upscale cascade, whose direction reverses, thus giving a con-
vex upward (or flat) dependence of ζn as a function of n. This
should be contrasted with the case of a downscale cascade
where the dependence of ζn on n is convex downward (or flat).
The proof is “folklore” and it uses the Schwarz and Hölder
inequalities. An earlier version of this argument was given by
Frisch [63, 64], who in turn cites Feller [83].

Let p,q ∈ (1,+∞) with 1/p+1/q = 1, and let φ ,ψ be two
random variables with φ > 0 and ψ > 0. The Hölder inequal-
ity for ensemble averages states that 〈φψ〉 ≤ 〈φ p〉1/p 〈ψq〉1/q.
For p = q = 1/2 it reduces to the Schwarz inequality:
〈φψ〉2 ≤ 〈

φ2
〉〈

ψ2
〉
.

We begin by defining w(R) as the absolute value of the lon-
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gitudinal velocity difference:

w(R) = |(u(x+Re,t)−u(x,t)) · e|, (D3)

where x∈R
d is given and e is a unit vector. The proof is based

on the following two assumptions: (a) For a downscale cas-
cade, in the limit �0 →∞, w(R) scales as 〈[w(R)]n〉∼ (R/�0)ζn .
For an upscale cascade, the same scaling law holds for the
limit �0 → 0+. (b) For finite �0 there is a range of scales where
the above scaling law continues to hold as an intermediate
asymptotic

The proof uses two “helper” inequalities that are interest-
ing in themselves. The first “helper” inequality is deduced by
choosing φ = [w(R)](n−1)/2 and ψ = [w(R)](n+1)/2 and em-
ploying the Schwarz inequality. It follows that

〈[w(R)]n〉2 = 〈φψ〉2 ≤ 〈
φ2〉〈

ψ2〉 (D4)

=
〈
[w(R)]n−1〉〈

[w(R)]n+1〉 , (D5)

and therefore

〈[w(R)]n〉2

〈[w(R)]n−1〉〈[w(R)]n+1〉 ∼
(

R
�0

)2ζn−ζn−1−ζn+1

< 1. (D6)

To satisfy this inequality under the limit �0 → ∞ we require
2ζn − ζn−1− ζn+1 ≥ 0. Thus we get for a downscale cascade:

ζn+1 − ζn ≤ ζn − ζn−1 (downscale). (D7)

Likewise, for an upscale cascade, the inequality must be satis-
fied in the limit �0 → 0+, which requires 2ζn−ζn−1−ζn+1 ≤
0. Thus, for an upscale cascade we have

ζn+1 − ζn ≥ ζn − ζn−1 (upscale). (D8)

The second “helper” inequality is deduced by choosing
φ = [w(R)]n and ψ = [w(R)]0 = 1 and employing the Hölder
inequality with p = (n+1)/n and q = n+1. It follows that

〈[w(R)]n〉 ≤
〈

φ (n+1)/n
〉n/(n+1) 〈

ψn+1〉1/(n+1)
(D9)

=
〈
[w(R)]n+1〉n/(n+1)

, (D10)

which implies that

〈[w(R)]n〉
〈[w(R)]n+1〉n/(n+1) ∼

(
R
�0

)ζn−(n/(n+1))ζn+1

< 1. (D11)

By similar reasoning, we find that

ζn+1 ≤ n+1
n

ζn (downscale), (D12)

ζn+1 ≥ n+1
n

ζn (upscale). (D13)

Now let us consider the case of a downscale cascade. We
assume with no loss of generality that n > k (otherwise for the
following step, one may exchange n and k). Combining the
inequalities (D7) and (D12) gives

ζn+k − ζn =
n+k−1

∑
a=n

(ζa+1 − ζa) ≤ k(ζk+1 − ζk) (D14)

≤ k

(
k +1

k
ζk − ζk

)
= ζk, (D15)

Thus we establish that

ζn+k ≤ ζn + ζk (downscale). (D16)

For the case of the upscale cascade, the exact same argument,
with every inequality reversed, gives

ζn+k ≥ ζn + ζk (upscale). (D17)
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