BRIEF INTRODUCTION TO LOGIC AND SETS

Basic concepts

The basic concepts we wish to introduce informally are
a) Propositions
b) Sets
c) Predicates - Quantified statements.

Propositions

- A proposition \(p \) is any statement which is true or false.
- Given two propositions \(p, q \) we define the following composite propositions.
 1) Conjunction \(p \land q : \text{"p is true and q is true"} \)
 - True if both \(p \) and \(q \) are true, otherwise false.
 2) Disjunction: \(p \lor q : \text{"p is true or q is true (or both)"} \)
 - True if at least one of the two statements \(p \) or \(q \) is true, otherwise false.
 3) Negation \(\overline{p} : \text{"p is not true"} \)
 - True if \(p \) is false. False if \(p \) is true.
 4) Exclusive Disjunction \(p \lor q : \text{"either p or q is true (not both)"} \)
 - True if either \(p \) or \(q \) but not both is true.
 - Otherwise false.
5) Implication $p \Rightarrow q$: "If p is true then q is true"
 True if the truth of p implies the truth of q. Note that if p is false, then we presume that $p \Rightarrow q$ is true regardless of whether q is true or false. If p is true and q is false then $p \Rightarrow q$ is false.

6) Equivalence $p \iff q$: "p is true if and only if q is true"
 True if p and q always have the same truth value.
 False if p and q have opposite truth values.

\Rightarrow Sets

• A set A is an unordered collection of elements. An element can be a number, a derived object (i.e. vectors, matrices, etc.) or another set.

• A set with a finite number of elements can be defined by listing the elements.
 e.g.: $A = \{2, 3, 6, 9, 123\}$.

• Notation: Let A, B be sets and let x be an element.
 1) $x \in A$: x belongs to A
 2) $x \notin A$: x does not belong to A
 3) $A = B$: A and B have the same elements.
 4) $A \subseteq B$: All the elements of A belong to B
- We note that: \(A = B \iff (A \subseteq B \land B \subseteq A) \)

- **Special sets**
 1) \(\emptyset = \{ \} \). The empty set.

 The empty set is the set that has no elements.

 2) \(\mathbb{C} \) = the set of all complex numbers.

 3) \(\mathbb{R} \) = the set of all real numbers.

 4) \(\mathbb{Q} \) = the set of all rational numbers.

 5) \(\mathbb{Z} = \{ 0, 1, -1, 2, -2, \ldots \} \) = the set of all integers.

 6) \(\mathbb{N} = \{ 0, 1, 2, 3, \ldots \} \) = the set of all natural numbers.

 7) For \(n \in \mathbb{N} : [n] = \{ 1, 2, 3, \ldots, n \} \).

- We note that: \(\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C} \)

- **Set operations**

 Let \(A, B \) be two sets. We define the following set operations:

 1) Intersection: \(A \cap B \)

 \[x \in A \cap B \iff x \in A \land x \in B \]

 2) Union: \(A \cup B \)

 \[x \in A \cup B \iff x \in A \lor x \in B \]

 3) Difference: \(A - B \)

 \[x \in A - B \iff x \in A \land x \notin B \]

- We represent these operations with Venn Diagrams as follows:
• Predicates and quantified statements

• A predicate $p(x)$ is a statement about x which is true or false depending on the value of x.

• Note that x can also be an ordered collection of elements $x = (x_1, x_2, \ldots, x_n)$. Then we write $p(x)$ as $p(x_1, x_2, \ldots, x_n)$.

• Given a predicate $p(x)$ and a set A, we define the following quantified statements:
 1) $\forall x \in A : p(x)$
 \[\text{For all } x \in A, \ p(x) \text{ is satisfied.}\]
 2) $\exists x \in A : p(x)$
 \[\text{There is at least one } x \in A \text{ such that } p(x) \text{ is satisfied.}\]
 3) $\exists! x \in A : p(x)$
 \[\text{There is a unique } x \in A \text{ such that } p(x) \text{ is satisfied.}\]

• If A is a finite set, then the above quantified statements are abbreviations for conjunction, disjunction, and exclusive disjunction: For example:
 \[(\forall x \in \{a, b, c\} : p(x)) \iff (p(a) \land p(b) \land p(c))\]
 \[(\exists x \in \{a, b, c\} : p(x)) \iff (p(a) \lor p(b) \lor p(c))\]
 \[(\exists! x \in \{a, b, c\} : p(x)) \iff (p(a) \lor p(b) \lor p(c))\]

• Quantifiers can be nested to give compound quantified statements. For example:
 1) $\forall x \in A : \exists y \in B : p(x, y)$
 \[\text{For all } x \in A, \text{ there is a } y \in B, \text{ such that } p(x, y) \text{ is satisfied.}\]
2) \(\exists x \in A : \forall y \in B : p(x, y) \)

There is an \(x \in A \) such that for all \(y \in B \), \(p(x, y) \) is satisfied.

- Important quantified statements from algebra
 \(\forall a, b \in \mathbb{R} : (ab = 0 \iff a = 0 \lor b = 0) \)
 \(\forall a, b \in \mathbb{R} : (a^2 + b^2 = 0 \iff a = 0 \land b = 0) \)
 \(\forall a, b \in \mathbb{R} : (|a| + |b| = 0 \iff a = 0 \land b = 0) \)

- Definitions of sets

 There are 3 methods for defining sets:

 1) **By listing**: For finite sets we can simply list the elements.

 e.g.: \(A = \{3, 7, 10, 12\} \)

 2) **By predicate**: \(A = \{x \in U : p(x)\} \)

 with \(U \) a predefined set and \(p(x) \) a predicate.

 Belonging condition: \(x \in A \iff (x \in U \land p(x)) \)

 e.g.: We can use definition by predicate to define intervals:

 \([a, b] = \{x \in \mathbb{R} : a \leq x \leq b\} \)

 \((a, b) = \{x \in \mathbb{R} : a < x < b\} \)

 \([n] = \{x \in \mathbb{N} : 1 \leq x \leq n\} = \{1, 2, \ldots, n\} \)

 3) **By mapping**: \(A = \{\varphi(x) \mid x \in U \land p(x)\} \)

 with \(p(x) \) some expression of \(x \), \(U \) a predefined set, and \(p(x) \) a predicate.

 Belonging condition: \(y \in A \iff \exists x \in U : (\varphi(x) = y \land p(x)) \)
EXAMPLES

a) The set of complex numbers:
\[C = \{ a + bi \mid a, b \in \mathbb{R} \} \]
\[x \in C \iff \exists a, b \in \mathbb{R} : x = a + bi \]

b) The set of rational numbers:
\[\mathbb{Q} = \{ \frac{a}{b} \mid a \in \mathbb{Z} \land b \in \mathbb{N} \backslash \{0\} \} \]
\[x \in \mathbb{Q} \iff \exists a \in \mathbb{Z} : \exists b \in \mathbb{N} \backslash \{0\} : x = \frac{a}{b} \]

c) The set of even integers
\[A = \{ 2k \mid k \in \mathbb{Z} \} \]
\[x \in A \iff \exists k \in \mathbb{Z} : x = 2k \]

d) The set of odd integers
\[A = \{ 2k + 1 \mid k \in \mathbb{Z} \} \]
\[x \in A \iff \exists k \in \mathbb{Z} : x = 2k + 1 \]

e) \[A = \{ a^2 + b^2 \mid a, b \in \mathbb{R} \land a + 3b < 1 \} \]
\[x \in A \iff \exists a, b \in \mathbb{R} : (x = a^2 + b^2 \land a + 3b < 1) \]

- Cartesian product
We use definition by mapping to define the cartesian product between sets.

- An ordered pair \((a, b)\) is an ordered collection of two elements \(a\) and \(b\). We call \(a\) and \(b\) the components of \((a, b)\).
- We note that:\((a, b) = (c, d) \iff (a = c \land b = d)\).
• Let \(A, B\) be two sets. We define the Cartesian product
\[A \times B = \{(a, b) \mid a \in A \land b \in B\}.
\]
We also define:
\[A^2 = A \times A = \{(a, b) \mid a \in A \land b \in A\}.
\]

Example

For \(A = \{1, 2, 3\}\) and \(B = \{5, 6, 3\}\). Calculate \(A \times B, A^2, B^2\).

Solution

\[A \times B = \{1, 2, 3\} \times \{5, 6, 3\} = \{(1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6)\}\]

\[A^2 = A \times A = \{1, 2, 3\} \times \{1, 2, 3\} = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}\]

\[B^2 = B \times B = \{5, 6, 3\} \times \{5, 6, 3\} = \{(5, 5), (5, 6), (5, 3), (6, 5), (6, 6), (6, 3)\}\]

\[\uparrow\text{ The above can be generalized as follows}\]

• An ordered \(n\)-tuple \((x_1, x_2, \ldots, x_n)\) is an ordered collection of \(n\) elements \(x_1, x_2, \ldots, x_n\).

• Let \(x = (x_1, x_2, \ldots, x_n)\) and \(y = (y_1, y_2, \ldots, y_n)\). We note that:
\[x = y \iff \forall a \in [n]: x_a = y_a\]

• Let \(A_1, A_2, \ldots, A_n\) be \(n\) sets. We define:
\[A_1 \times A_2 \times \ldots \times A_n = \{(x_1, x_2, \ldots, x_n) \mid \forall a \in [n]: x_a \in A_a\}\]

• Special case:
\[A_1 \times A_2 \times A_3 = \{(x_1, x_2, x_3) \mid x_1 \in A_1 \land x_2 \in A_2 \land x_3 \in A_3\}\]
EXERCISES

1. Let \(A = \{7\} \), \(B = \{x \in A | x > 43\} \), and \(C = \{x - 1 | x \in B\} \).
 List the elements of:
 a) \(B \)
 b) \(C \)
 c) \(B \cap C \)
 d) \(B \cup C \)
 e) \(A - B \)
 f) \(B - C \)
 g) \(C - B \)

2. Write out the following statements in English:
 a) \(\forall a \in A : \exists b \in B : (a, b) \in \emptyset \)
 b) \(\exists a \in A : \forall b \in B : a + b > 3 \)
 c) \(\forall a \in A : \exists b \in B : (ab > 1 \land a + b > 1) \)
 d) \(\forall a, b \in A : \exists c \in B : \forall d \in A : ab + bd < 3 \)
 e) \(\exists a \in A : \forall b \in B : (ab > 3 \Rightarrow b > 2) \)
 f) \(\forall a \in A : \exists b \in B : (3a > b \lor a + b < 0) \)

3. Write the following statements symbolically using quantifiers:
 a) Every real number is equal to itself.
 b) There is a real number \(x \) such that \(3x - 1 = 2(x + 3) \)
 c) For every real number \(x \), there is a natural number \(n \) such that \(n > x \).
 d) For every real number \(x \), there is a complex number \(y \) such that \(y^2 = x \).
 e) There is a real number \(x \) such that for all real numbers \(y \) we have \(x + y = 0 \).
f) For all $\varepsilon > 0$, there is a $\delta > 0$ such that for all real numbers x, if $x_0 - \delta < x < x_0 + \delta$ then $|f(x) - a| < \varepsilon$.

g) There is a real number b such that for all natural numbers n we have $a_n < b$.

h) For all $\varepsilon > 0$, there is a natural number n_0 such that for any two natural numbers n and n_2, if $n > n_0$ and $n_2 > n_0$, then $|a_n - a_{n_2}| < \varepsilon$.

i) For any $M > 0$, there is a natural number n_0, such that for any other natural number n, if $n > n_0$ then $a_n > M$.

4) Write the belonging condition $x \in A$ for the following sets, using quantifiers.

a) $A = \{x \in \mathbb{R} : x^2 + 1 > 3\}$

b) $A = \{x \in \mathbb{Z} : x$ is a prime number$\}$

c) $A = \{x \in \mathbb{R} : x^2 + 3x > 0\}$

d) $A = \{a^2 + b^2 + c^2 : a, b, c \in \mathbb{R}, a + b + c = 0\}$

e) $A = \{x \in \mathbb{R} : x^2 + 2x < 0 \lor 3x + 1 > -4 + x\}$

f) $A = \{x \in \mathbb{R} : x^2 - 6x > 5\}$

g) $A = \{x \in \mathbb{Z} \mid \exists y \in \mathbb{Z} : x = 3y\}$

h) $A = \{ab : a, b \in \mathbb{R} \land (a + b > 2 \lor a - b < -3)\}$

i) $A = \{x \in \mathbb{R} \mid \exists y \in \mathbb{R} : y^2 + y = x\}$

j) $A = \{x \in \mathbb{R} \mid \forall y \in \mathbb{R} : x < y^2 + 1\}$

k) $A = \{ab : a, b \in \mathbb{R} \land (ab > 1 \Rightarrow a^2 + b^2 > 2)\}$

l) $A = \{a^2 + 3b : a, b \in \mathbb{R} \land (a^2 + b^2 > 2 \lor a - b < 3)\}$

m) $A = \{2a + 3b : a, b \in \mathbb{R} \land ab > 1 \land a - b < 0\}$
(5) List the elements for the following Cartesian products

a) $A \times B$ with $A = \{2, 7, 43\}$ and $B = \{7, 83\}$

b) $A \times B$ with $A = \{13\}$ and $B = \{3, 93\}$

c) $A \times B$ with $A = \{33\}$ and $B = \{93\}$

d) $[2] \times [3]$

