GRAPH THEORY

\section*{Preliminaries}

Let A be a finite set. We define the following notation:

a) $|A|$ is the number of elements of the set A.

b) $\mathcal{P}(A)$ is the set of all subsets of A, i.e.
$$X \in \mathcal{P}(A) \iff X \subseteq A$$

c) $\mathcal{P}_a(A)$ is the set of all subsets of A with a elements, i.e.
$$X \in \mathcal{P}_a(A) \iff (X \subseteq A \land |X| = a)$$

\section*{Example}

For $A = \{a, b, c\}$, we have:

$|A| = |\{a, b, c\}| = 3$

$\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$

$\mathcal{P}_0(A) = \{\emptyset\}$

$\mathcal{P}_1(A) = \{\{a\}, \{b\}, \{c\}\}$

$\mathcal{P}_2(A) = \{\{a, b\}, \{a, c\}, \{b, c\}\}$

$\mathcal{P}_3(A) = \{\{a, b, c\}\}$

\textbf{Def:} Let $f: A \to B$ be a mapping from a set A to a set B. We say that f one-to-one $\iff \forall x_1, x_2 \in A : (f(x_1) = f(x_2) \Rightarrow x_1 = x_2)$
interpretation: A mapping $f: A \rightarrow B$ is one-to-one if and only if each element of A is mapped to a distinct element of B.

\textbf{Graphs - Basic definitions}

\textbf{Def}: A graph G is a triplet $G = (V(G), E(G), \psi_G)$ that consists of:

a) a set of vertices $V(G)$

b) a set of edges $E(G)$

c) an incidence mapping $\psi_G: E(G) \rightarrow \mathcal{P}_1(V(G)) \cup \mathcal{P}_2(V(G))$ that maps every edge to one or two vertices.

\textbf{EXAMPLE}

$G:$

\begin{align*}
&\begin{array}{c}
\text{V}(G) = \{1, 2, 3, 4\} \\
\text{E}(G) = \{e_1, e_2, e_3, e_4\} \\
\psi_G(e_1) = \{1, 2\} \\
\psi_G(e_2) = \{1, 2\} \\
\psi_G(e_3) = \{2, 3\} \\
\psi_G(e_4) = \{3, 3\} \quad \text{--- a loop}
\end{array}
\end{align*}

Equivalently, ψ_G can be rewritten as:

$\psi_G = \{\{e_1, \{1, 2\}\}, \{e_2, \{1, 2\}\}, \{e_3, \{2, 3\}\}, \{e_4, \{3, 3\}\}\}$
Elementary definitions about graphs

Def: Let G be a graph. We say that

1. The vertex $u \in V(G)$ is **incident** to the edge $e \in E(G)$ if and only if the edge e connects u with itself or with another vertex:
 \[
 \forall u \in V(G), \forall e \in E(G): u \text{ incident to } e \iff u \in \psi_G(e)
 \]

2. The edge $e \in E(G)$ is a **loop** if and only if it connects a vertex with itself:
 \[
 \forall e \in E(G): (e \text{ loop} \iff |\psi_G(e)| = 1)
 \]

Def: Let G be a graph and let $u \in V(G)$ be a vertex of G. The **degree** $d(u)$ of u is given by

\[
 d(u) = |\{e \in E(G) | u \in \psi_G(e)\}| + |\{e \in E(G) | u \in \psi_G(e) \land e \text{ loop}\}|
\]

The degree $d(u)$ is the number of edges $e \in E(G)$ to which u is incident, with the loops being counted twice. In the previous example:

\[
 d(1) = 2 \land d(2) = 3 \land d(3) = 3
\]

Def: Let G be a graph. We define:

1. The **minimum degree** $\delta(G) = \min_{u \in V(G)} d(u)$

2. The **maximum degree** $\Delta(G) = \max_{u \in V(G)} d(u)$
Remark: It follows from this definition that \[\forall v \in V(G): 0 \leq d(v) \leq \Delta(G) \]

Lemma: (The Handshaking Lemma)

Let \(G \) be a graph. Then:

\[\sum_{v \in V(G)} d(v) = 2 |E(G)| \]

Although this is not a formal proof, a simple explanation of the handshaking lemma is that every edge is usually shared by two vertices. As a result, adding up the degrees of all vertices counts the edges twice. Although loops attach to only one vertex, the loop, by definition, adds 2 to the degree of that vertex, so loops are also counted twice.
a) Show that it is not possible to define a graph with
3 vertices of degree 2 and 5 vertices of degree 3.

Solution

Assume a graph \(G \) exists with \(V(G) = \{ u_1, u_2, u_3, V_4, V_5, V_6, V_7 \} \)
such that

\[\forall a \in [3]: \ d(u_a) = 2 \]

\[\forall a \in [5]: \ d(v_a) = 3 \]

It follows that

\[2|E(G)| = \sum_{u \in V(G)} d(u) = \sum_{a \in [3]} d(u_a) + \sum_{b \in [5]} d(v_b) = \]

\[= 3 \cdot 2 + 5 \cdot 3 = 6 + 15 = 21 \Rightarrow \]

\[\Rightarrow |E(G)| = 21/2 \] — contradiction since \(|E(G)| \) is a natural number. It follows that \(G \) cannot be constructed.

b) A graph has twice as many edges as vertices. Show that there is at least one vertex with degree less than 2.

Solution

Let \(G \) be the graph with \(2|E(G)| = |V(G)| \). Then:

\[2|E(G)| = \sum_{u \in V(G)} d(u) \Rightarrow \sum_{u \in V(G)} \delta(G) = \delta(G) |V(G)| = \]

\[= \delta(G) 2|E(G)| \Rightarrow 2|E(G)| \geq \delta(G) 2|E(G)| \Rightarrow \]

\[\Rightarrow \delta(G) \leq 1 \Rightarrow \delta(G) = 0 \vee \delta(G) = 1 \Rightarrow \]
\[\Rightarrow \exists u \in V(G) : (d(u) = 0 \lor d(u) = 1) \]
\[\Rightarrow \exists u \in V(G) : d(u) \leq 2. \]

c) Let \(G \) be a graph with \(\Delta(G) = 2 \). Show that the graph cannot have more edges than vertices.

Solution

Since \(\Delta(G) = 2 \Rightarrow \forall u \in V(G) : d(u) \leq 2 \)

\[\Rightarrow 2 |E(G)| = \sum_{u \in V(G)} d(u) \leq \sum_{u \in V(G)} \Delta(G) = \Delta(G) |V(G)| \]

\[= 2 |V(G)| \Rightarrow 2 |E(G)| \leq 2 |V(G)| \Rightarrow \]

\[\Rightarrow |E(G)| \leq |V(G)|. \]
EXERCISES

(1) For the following graphs, list \(V(G) \), \(E(G) \), and the values of the incidence mapping \(p_e \):

a) ![Graph a](image)

b) ![Graph b](image)

c) ![Graph c](image)

d) ![Graph d](image)

(2) For the graphs of the previous exercise, list the degrees of each vertex and write \(\delta(G) \) and \(\Delta(G) \).

(3) Show that it is not possible to create a graph with 9 vertices such that the degree of every vertex is 3.
4) Show that it is not possible to create a graph with 7 vertices of degree 3 and 2 vertices of degree 2.

5) Let G be a graph with 10 vertices such that
\[\delta(G) = \Delta(G) = 2 \]
How many edges does G have?

6) Let G be a graph with $|V(G)| = 8$ such that $\Delta(G) = 4$. Show that $|E(G)| < 36$.

7) Let G be a graph such that $|V(G)| = |E(G)|$. Show that $\delta(G) < 3$

8) Let G be a graph with $\Delta(G) = 4$. Show that $|E(G)| \leq 2|V(G)|$

9) A graph with 4 edges has a vertex with degree 4, a vertex with degree 1, and one more vertex. What is the degree of the third vertex?
Types of graphs

1. Simple graphs

Def.: A graph G is simple if and only if it has no loops and no multiple edges, i.e.

- G simple $\iff \forall e \in E(G): |\psi_G(e)| = 2$
- ψ_G is one-to-one

Example

G_1:
- Nodes: 1, 2, 3, 4
- Edges: e_1, e_2, e_3, e_4

G_2:
- Nodes: 1, 2
- Edges: e_1, e_2

G_3:
- Nodes: 1, 2, 3
- Edges: e_1, e_2, e_3

G_4:
- Nodes: 1, 2
- Edges: e_1, e_2, e_3

G_1 is simple.
G_2, G_3, G_4 are NOT simple.
(2) **Regular graphs**

Def. Let G be a graph. We say that

a) G is **regular** if and only if all vertices have the same degree, i.e.

$$G \text{ regular} \iff \forall u_1, u_2 \in V(G): d(u_1) = d(u_2)$$

$$\iff \exists a \in \mathbb{N}: \forall u \in V(G): d(u) = a$$

b) G is **a-regular** if and only if all vertices have degree equal to a, i.e.

$$G \text{ } a\text{-regular} \iff \forall u \in V(G): d(u) = a$$

Remark: Note the negation of this definition:

G not regular $\iff \exists u_1, u_2 \in V(G): d(u_1) \neq d(u_2)$

EXAMPLE

$$G:$$

```
      1
     /|
    / | 3
    /  |
   4
    |
    2
```

$$d(1) = d(2) = d(3) = d(4) = 3 \Rightarrow$$

$$\Rightarrow \forall u \in V(G): d(u) = 3$$

$$\Rightarrow G \text{ 3-regular}$$

Also: G is regular.
Complete graphs

A complete graph is a simple graph such that any two distinct vertices are connected by an edge. The formal definition reads:

\[
\text{Def: Let } G \text{ be a graph. We say that } G \text{ complete } \iff \forall u_1, u_2 \in V(G): (u_1 \neq u_2 \Rightarrow \exists e \in E(G): u_1 e u_2)
\]

Given the number of vertices \(n \), there is a unique graph such that

\[
\begin{align*}
&\{ G \text{ complete} \\
&|V(G)| = n
\end{align*}
\]

which we denote as \(K_n \).

EXAMPLES

\(K_1: \) \hspace{1cm} \(K_2: \) \hspace{1cm} \(K_3: \)

\(K_4: \) \hspace{1cm} \(K_5: \)
4. Null graphs

A null graph is a graph with no edges. The formal definition is:

Def: Let G be a graph. We say that G is a null graph $\iff E(G) = \emptyset$

The null graph with n vertices is unique and denoted as N_n.

5. The path graph P_n

Def: We distinguish between the following cases.

- **Case 1:** For $n = 1$, we define
 \[V(P_1) = \{ u_1 \} \land E(P_1) = \emptyset \land \psi_{P_1} = \emptyset \]

- **Case 2:** For $n \geq 2$, we define
 \[
 \begin{align*}
 V(P_n) &= \{ u_1, u_2, \ldots, u_n \} \\
 E(P_n) &= \{ e_1, e_2, \ldots, e_{n-1} \} \\
 \forall k \in [n-1] : \psi_{P_n}(e_k) &= \{ u_k, u_{k+1} \}
 \end{align*}
 \]

Examples

- P_1: \[
 \begin{array}{c}
 u_1
 \end{array}
 \]
- P_2: \[
 \begin{array}{c}
 u_1 \quad u_2
 \end{array}
 \]
- P_3: \[
 \begin{array}{c}
 u_1 \quad u_2 \quad u_3
 \end{array}
 \]
- P_4: \[
 \begin{array}{c}
 u_1 \quad u_2 \quad u_3 \quad u_4
 \end{array}
 \]
- P_5: \[
 \begin{array}{c}
 u_1 \quad u_2 \quad u_3 \quad u_4 \quad u_5
 \end{array}
 \]
The cycle graph C_n

Def: We distinguish between the following cases:

Case 1: For $n=1$, we have
- $V(C_1) = \{u_1\}$
- $E(C_1) = \{e_1\}$
- $\psi_{C_1}(e_1) = \{u_1\}$

Case 2: For $n \geq 2$, we have
- $V(C_n) = \{u_1, u_2, \ldots, u_n\}$
- $E(C_n) = \{e_1, e_2, \ldots, e_n\}$
- $\forall k \in [n]: \psi_{C_n}(e_k) = \{u_k, u_{k+1}\}$
- $\psi_{C_n}(e_n) = \{u_n, u_1\}$

EXAMPLES

- C_1:

- C_2:

- C_3:

- C_4:

- C_5:
Bipartite graphs

A graph G is called bipartite if and only if its vertex $V(G)$ can be partitioned to two sets V_1 and V_2 such that every edge of G connects a vertex in V_1 with a vertex in V_2. The formal definition is:

Def: Let G be a graph. We say that

1) G bipartite with vertex partition V_1, V_2 \iff

\[
\begin{align*}
V_1 \cup V_2 &= V(G) \\
V_1 \cap V_2 &= \emptyset \\
\forall e \in E(G): \begin{cases}
\left|V_1 \cap V_2\right| = 0 \\
\left|\psi_G(e) \cap V_1\right| = 1
\end{cases}
\end{align*}
\]

2) G bipartite $\iff \exists V_1, V_2 \in \mathcal{P}(V(G)): G$ bipartite with vertex partition V_1, V_2.

A complete bipartite graph is bipartite with some vertex partition V_1, V_2, simple, and every vertex of V_1 is connected with every vertex of V_2 with exactly one edge. The formal definition is:

Def: Let G be a graph. We say that:

G complete bipartite with vertex partition V_1, V_2 \iff

\[
\begin{cases}
G$ bipartite with vertex partition V_1, V_2 \\
G$ simple \\
\forall u_1 \in V_1: \forall u_2 \in V_2: \exists e \in E(G): \psi_G(e) = \{u_1, u_2\}
\end{cases}
\]
There is a unique graph G such that
\[G \text{ complete bipartite with vertex partition } V_1, V_2 \]
\[|V_1| = n \land |V_2| = m \]
with $n, m \in \mathbb{N}$, and it is denoted as $K_{n,m}$.

EXAMPLES

$K_{1,1}: \quad \begin{array}{c}
\end{array}$

$K_{1,2}: \quad \begin{array}{c}
\end{array}$

$K_{2,2}: \quad \begin{array}{c}
\end{array}$

$K_{2,4}: \quad \begin{array}{c}
\end{array}$
EXAMPLES

a) Evaluate $S(k, a, b)$, $\Delta(k, a, b)$, and $|E(k, a, b)|$ for the complete bipartite graph $K_{k,a,b}$.

Solution

Let $V(k, a, b) = V_1 \cup V_2$ with $|V_1| = a$ and $|V_2| = b$.

Each vertex of V_1 connects to all vertices of V_2, therefore

$\forall u \in V_1 : d(u) = |V_2| = b$. \hspace{1cm} (1)

Similarly, each vertex of V_2 connects to all vertices of V_1, and therefore:

$\forall u \in V_2 : d(u) = |V_1| = a$. \hspace{1cm} (2)

It follows that

$S(k, a, b) = \min_{u \in V(k, a, b)} d(u) = \min \{ a, b \}$

$\Delta(k, a, b) = \max_{u \in V(k, a, b)} d(u) = \max \{ a, b \}$

$2|E(k, a, b)| = \sum_{u \in V(k, a, b)} d(u) = \sum_{u \in V_1} d(u) + \sum_{u \in V_2} d(u) = |V_1|b + |V_2|a = ab + ba = 2ab \Rightarrow$

$|E(k, a, b)| = ab$.

b) Show that P_{10} is not regular.

Solution

Let $V(P_{10}) = \{v_1, v_2, \ldots, v_{10}\}$ with v_1, v_{10} the endpoint vertices and v_2, v_3, \ldots, v_9 the interior vertices. We note that $d(v_1) = 1$ and $d(v_{10}) = 9$. It follows that

$\exists u, v \in V(P_{10}) : d(u) \neq d(v)$

$\Rightarrow \forall u, v \in V(P_{10}) : d(u) = d(v)$

$\Rightarrow P_{10}$ is not regular.

c) Show that if G is regular, then

$$|E(G)| = \frac{\delta(G)|V(G)|}{2}$$

Solution

Assume G is regular. Then

G regular $\Rightarrow \forall u, v \in V(G) : d(u) = d(v)$

$\Rightarrow \exists \alpha \in \mathbb{N} : \forall u \in V(G) : d(u) = \alpha$

It follows that

$\delta(G) = \min_{u \in V(G)} d(u) = \min_{u \in V(G)} \alpha = \alpha$

and therefore:

$$|E(G)| = \frac{1}{2} \sum_{u \in V(G)} d(u) = \frac{1}{2} \sum_{u \in V(G)} \alpha = \frac{\alpha |V(G)|}{2} = \frac{\delta(G)|V(G)|}{2}$$
EXERCISES

10. Draw the following graphs:

a) K_4
 b) K_5
 c) K_6
 d) $K_{4,3}$
 e) $K_{2,2}$
 f) $K_{3,3}$
 g) P_4
 h) C_3
 i) C_4

11. Which of the graphs in the previous exercise are regular?

12. For a, b integers $a > 0$ and $b > 0$ evaluate the following:

a) $\delta(K_a)$
 b) $\delta(K_a,b)$
 c) $\delta(P_a)$
 d) $\delta(C_a)$
 e) $\Delta(K_a)$
 f) $\Delta(K_a,b)$
 g) $\Delta(P_a)$
 h) $\Delta(C_a)$
 i) $|E(K_a)|$
 j) $|E(K_a,b)|$
 k) $|E(P_a)|$
 l) $|E(C_a)|$

[You can check your general answers by testing them when $a=2, b=3$ or $a=4, b=3$]

13. Show that $K_{a,b}$ regular $\iff a=b$
14. Show that $K_{5,7}$ is not regular.

15. Show that
$\Delta(G) = k(G)$.

16. Let G be a bipartite graph with bipartition $V(G) = V_1 \cup V_2$.
If $|V_1| = a$ and $|V_2| = a+2$
show that
$|E(G)| \leq a^2 + 2a$

17. Show that we cannot build a bipartite graph with bipartition $V(G) = V_1 \cup V_2$ such that $|V_1| = 4$ and $|V_2| = 3$ and $|E(G)| > 14$.
Graph operations

We define the following graph operations.

1. Induced subgraph

Def: Let G be a graph and let $V_0 \subseteq V(G)$. We define the vertex induced subgraph $G[V_0]$ such that

- $V(G[V_0]) = V_0$
- $E(G[V_0]) = \{ e \in E(G) \mid \psi_G(e) \subseteq V_0 \}$
- $\forall e \in E(G[V_0]) : \psi_{G[V_0]}(e) = \psi_G(e)$

Intuitively, the vertex induced subgraph $G[V_0]$ consists of the vertices V_0, the edges that are incident only to vertices in V_0, connected similarly as in G.

Example

G:

```
  b
 / \   \  
  a   c  d
```

$G[\{a,b,c\}]$:

```
  a
```

Note that the removal of the vertex d removes the two edges that are incident to it.
2. **Vertex subtraction**

Def: Let G be a graph and let $V_0 \subseteq V(G)$. We define the graph $G-V_0$ such that $G-V_0 = G[V(G)-V_0]$.

Intuitively, $G-V_0$ is the graph obtained by deleting from G, the vertices in V_0 and all edges to which these vertices are incident.

3. **Edge-induced subgraph**

Def: Let G be a graph and let $E_0 \subseteq E(G)$. We define the graph $G[E_0]$ such that

\[
\begin{align*}
V(G[E_0]) &= V(G) \\
E(G[E_0]) &= E_0 \\
\forall e \in E_0 : \psi_{G[E_0]}(e) &= \psi_G(e)
\end{align*}
\]

Intuitively, $G[E_0]$ consists of all the vertices of the original graph G but only the edges that belong to E_0.
Edge Subtraction

Def: Let G be a graph and let $E_0 \subseteq E(G)$. We define the graph $G - E_0$ as:

$$G - E_0 = G \setminus (E(G) - E_0)$$

- Note that, unlike vertex subtraction, subtracting edges does not remove vertices under any circumstances.

Example

![Graph Diagram]

G: b -- e_2 -- c -- e_3 -- e_5 -- d -- e_1 -- a

$G - e_2, e_3$: b -- e_1 -- a

$G - e_2, e_3, e_4$: b -- e_1 -- a

$G - e_2, e_3, e_4$: b -- e_1 -- a
A necessary condition for defining the graph union $G_1 \cup G_2$ of two graphs G_1, G_2 is that G_1, G_2 should not share any edges, though they may share vertices. The formal definition is:

\[
\text{Def: Let } G_1, G_2 \text{ be two graphs such that } E(G_1) \cap E(G_2) = \emptyset. \text{ We define the graph union } G = G_1 \cup G_2 \text{ such that:} \\
V(G) = V(G_1) \cup V(G_2) \\
E(G) = E(G_1) \cup E(G_2) \\
\forall e \in E(G): \psi_G(e) = \begin{cases}
\psi_{G_1}(e), & \text{if } e \in E(G_1) \\
\psi_{G_2}(e), & \text{if } e \in E(G_2)
\end{cases}
\]

Example

G_1: \begin{align*}
&\begin{array}{ccc}
& \text{b} & \text{e2} & \text{c} \\
e_1 & \bullet & \bullet & \bullet \\
& a & e_3 & d
\end{array} \\
\end{align*}$

G_2: \begin{align*}
&\begin{array}{ccc}
& \text{a} & \text{e4} & \text{c} \\
e_5 & \bullet & \bullet & \bullet \\
& e_6 & e & d
\end{array} \\
\end{align*}$

$G_1 \cup G_2$: \begin{align*}
&\begin{array}{ccc}
& \text{b} & \text{e2} & \text{c} \\
e_1 & \bullet & \bullet & \bullet \\
& e_4 & e & e_3 \\
& a & e_5 & d \\
e_6 & \bullet & \bullet
\end{array} \\
\end{align*}$
This definition generalizes to the union of n graphs as follows:

Def: Let $G_1, G_2, ..., G_n$ be graphs such that

\[\forall k, m \in [n]: (k \neq m \implies E(G_k) \cap E(G_m) = \emptyset) \]

We define the graph $G = G_1 \cup G_2 \cup ... \cup G_n$ such that:

\[
\begin{align*}
V(G) &= U_{a \in [n]} V(G_a) = V(G_1) \cup V(G_2) \cup ... \cup V(G_n) \\
E(G) &= U_{a \in [n]} E(G_a) = E(G_1) \cup E(G_2) \cup ... \cup E(G_n) \\
\forall e \in E(G) : (\forall k \in [n] : e \in E(G_k) \implies \psi_e(e) = \psi_{G_k}(e))
\end{align*}
\]
EXERCISES

(18) Show that the following graphs are isomorphic

(Tip: Look at the "cycles")

(19) Consider the graph $K_3 \times K_3 = G$

Draw the following:

a) $G \{a, b, d, f\}$

f) $G - \{a, d, f\}$

b) $G \{a, d, e, f\}$

g) $G - \{a, d, e, f\}$

c) $G \{a, b, d, e\}$

h) $G - \{d, e, f\}$

d) $G - \{a\}$

i) $G - \{a, c, e, f\}$

e) $G - \{a, b, d\}$
(20) In the previous exercise, let
\[G_1 = G - \{a, c, e, f\} \]
\[G_2 = G[\{a, b, e\}] \]
Draw \(G_1 \cup G_2 \).
[Hint: List \(V(G_1), E(G_1), V(G_2), E(G_2) \) first].

(21) In the previous exercise, show that
\[G[\{a, d, f\}] \cup G[\{b, e\}] \neq G[\{a, d, b, e\}] \]
Connected graphs

Walks, trails, paths

- Let G be a graph. A walk w is a sequence of alternating vertices and edges of the form
 \[w = (v_0, e_1, v_1, e_2, v_2, \ldots, v_{n-1}, e_n, v_n) \]
 such that
 \[\forall k \in [n]: \psi_G(e_k) = \{v_{k-1}, v_k\}. \]

- Features of a walk:
 a) Starting point: $s(w) = v_0$
 b) Terminal point: $t(w) = v_n$
 c) $v_k(w) = v_k$
 $e_k(w) = e_k$
 d) Vertex set: $V(w) = \{v_0, v_1, \ldots, v_n\}$
 e) Edge set: $E(w) = \{e_1, e_2, \ldots, e_n\}$
 f) Length: $l(w) = |E(w)| = n$

- The set of all walks in G is denoted $W(G)$.

- A trail is a walk in which all the edges are different. A path is a walk in which all the edges and vertices are different.
Thus, for $w \in W(G)$

1) w trail \iff
 $\forall m, n \in [l(w)]: (m \neq n \Rightarrow e_m(w) \neq e_n(w))$

2) w path \iff
 $\exists w$ trail
 $\forall m, n \in [l(w)]: (m \neq n \Rightarrow e_m(w) \neq e_n(w))$

• We define
 $T(G) = \{ w \in W(G) | w$ is a trail $\}$
 $P(G) = \{ w \in W(G) | w$ is a path $\}$

• Let $u, v \in V(G)$ be two vertices of G with $u \neq v$. Then we define
 a) Set of all trails that connect u to v
 $T(G, u \rightarrow v) = \{ w \in T(G) | s(w) = u \land t(w) = v \}$
 b) Set of all paths that connect u to v
 $P(G, u \rightarrow v) = \{ w \in P(G) | s(w) = u \land t(w) = v \}$

• Note that $W(G)$ is an infinite set
 (i.e. you can go back and forth between two vertices indefinitely)
 but $T(G)$ and $P(G)$ are both finite sets.
 (i.e. you will run out of combinations of distinct edges and/or vertices).
Connected graphs

- A graph G is connected if for any two not-equal vertices $u, v \in V(G)$, there is at least one path from u to v.

\[G \text{ connected } \iff \forall u, v \in V(G): (u \neq v \Rightarrow |P(G, u \rightarrow v)| > 1) \]

- The following graphs are connected:
 a) Complete graph K_n
 b) Path graph P_n
 c) Cycle graph C_n
 d) The bipartite graph $K_{m,n}$

Graph components

Thm: Let G be a graph which is not connected. Then the vertex set $V(G)$ can be partitioned into w pieces V_1, V_2, \ldots, V_w such that

a) $\forall m, n \in [w]: m \neq n \Rightarrow V_m \cap V_n = \emptyset$

b) $V_1 \cup V_2 \cup \ldots \cup V_w = V(G)$
c) $G[V_n]$ connected, $\forall u \neq e \exists \omega$

d) $G[V_1] \cup G[V_2] \cup \cdots \cup G[V_n] = G$

The subgraphs $G[V_1], \ldots, G[V_n]$ are called components of G.

- $w(G) =$ the number of components of G.
- Obviously:

 G connected $\iff w(G) = 1$
 G not connected $\iff w(G) > 1$.

Bridges.

Thm: For any graph G:

$\forall e \in E(G)$: $w(G) \leq w(G - e \in E) \leq w(G) + 1$

i.e. removing an edge may or may not increase the number of components by 1.

Remark: This theorem cannot be generalized to the deletion of vertices.

- Let G be a graph. An edge $e \in E(G)$ is called a bridge if the deletion of e increases the number of components in the resulting graph.
\[e \in E(G) \text{ bridge} \iff w(G - e) > w(G) \]

Example

\[G: \begin{array}{cccc}
 a & b & c & d \\
 \hspace{1cm} & \hspace{1cm} & \hspace{1cm} & \\
 w & z & y & x \\
\end{array} \]

The edges \(ab \) and \(bc \) are bridges.

- Let \(G \) be a connected graph. We say that:
 a) \(G \) is **weakly-linked** if it has at least one bridge
 b) \(G \) is **strongly-linked** if it has no bridges.

- Thus:
 a) \(G \) strongly-linked \(\iff \forall e \in E(G): G - e \text{ connected} \)
 b) \(G \) weakly-linked \(\iff \exists e \in E(G): G - e \text{ not connected} \).
27. Consider the following graph

a) List the components of the following graphs:
 \[G_1 = G - \{ c \} \quad G_4 = G - \{ e \} \]
 \[G_2 = G - \{ d \} \quad G_5 = G - \{ he, gf \} \]
 \[G_3 = G - \{ i \} \quad G_6 = G - \{ d, f \} \]

b) What are the bridges of the graph \(G \)?

29. Consider the following graph
a) List the components of the following graphs:
\[G_1 = G - \{ b, f, 3 \} \]
\[G_2 = G - \{ g, 3 \} \]
\[G_3 = G - \{ b, g, 3 \} \]
\[G_4 = G - \{ a, h, b, g, 3 \} \]
\[G_5 = G - \{ h, 3 \} \]
\[G_6 = G - \{ f, 3 \} \]

b) What are the bridges of the graph \(G \)?

24) Let \(G \) be a connected graph and let \(e \in E(G) \). Show that
\[\omega(G - \{ e \}) \leq 2 \]
The Laplacian matrix

- Let G be a graph with $n = |V(G)|$ vertices:
 \[V(G) = \{ v_1, v_2, \ldots, v_n \} \]

 The Laplacian matrix L_G is defined as
 \[
 (L_G)_{ab} = \begin{cases}
 d(v_a), & \text{if } a = b \\
 -1, & \text{if } a \neq b \text{ and } v_a \leftrightarrow v_b \\
 0, & \text{otherwise.}
 \end{cases}
 \]

- If $w(G)$ is the number of components of G, then the characteristic polynomial of L_G has a common factor of $w(G)$ (i.e., 0 is a root with multiplicity $w(G)$).
 Thus
 \[
 \det(L_G - \lambda I) = w(G) f(\lambda)
 \]
 with $f(0) \neq 0$.

\textbf{Graph connectivity}

\textbf{Edge connectivity} \(A(G) \)

Def: Let \(G \) be a graph and let \(E_0 \subseteq E(G) \). We say that \(E_0 \) is an edge cutset of \(G \) if:

\[
\begin{align*}
&\iff \{ G - E_0 \text{ not connected} \\
&\quad \forall E_1 \in \mathcal{P}(E_0) : (E_1 \neq E_0 \Rightarrow G - E_1 \text{ connected})
\end{align*}
\]

\(\bullet \) The smallest number of edges needed to construct a cutset \(E_0 \) of \(G \) is the \underline{edge-connectivity} \(A(G) \) of \(G \). More formally,

\[
A(G) = \min \{ |E_0| \mid E_0 \in \mathcal{P}(E(G)) \land E_0 \text{ edge cut-set of } G \}
\]

\textbf{Vertex connectivity} \(k(G) \)

Def: Let \(G \) be a graph and let \(V_0 \subseteq V(G) \). We say that \(V_0 \) is a vertex cutset of \(G \) if:

\[
\begin{align*}
&\iff \{ G - V_0 \text{ not connected} \\
&\quad \forall V_1 \in \mathcal{P}(V_0) : (V_1 \neq V_0 \Rightarrow G - V_1 \text{ connected})
\end{align*}
\]

\(\bullet \) The smallest number of vertices needed to construct a vertex cutset \(V_0 \) of \(G \) is the \underline{vertex connectivity} \(k(G) \) of \(G \).
$K(G) = \min \{ \text{Vol}(V_0 \in V(G)) : V_0 \text{ is a vertex cutset of } G \}$

1. Note that:
 - G not connected \iff $\chi(G) = K(G) = 0$
 - G weakly linked \iff $\chi(G) = 1$
 - G strongly linked \iff $\chi(G) > 1$

2. A property of connectivity

Recall that $\delta(G)$ is the minimum degree of G:

$\delta(G) = \min \{ \delta(u) : u \in V(G) \}$

It can be shown that:

Theorem: Let G be a graph. Then:

G connected $\implies K(G) \leq \chi(G) \leq \delta(G) \leq \frac{2 |E(G)|}{|V(G)|}$
EXAMPLE

Calculate the vertex connectivity \(k(G) \) and edge connectivity \(\lambda(G) \) for the following graph \(G \):

\[
\begin{align*}
g &\quad a \\
\quad &\quad \quad \downarrow \\
\quad &\quad b \\
\quad &\quad \quad \downarrow \\
\quad &\quad c \\
\quad &\quad \quad \downarrow \\
\quad &\quad d \\
\end{align*}
\]

Solution

First we note that
\[
\begin{align*}
d(a) &= d(b) = d(c) = d(d) = d(e) = d(f) = 3 \
\Rightarrow \delta(G) &= \min_{v \in V(G)} \delta(G) = 3 \Rightarrow k(G) \leq \delta(G) = 3 \Rightarrow k(G) \leq 3
\end{align*}
\]

\[
\Rightarrow k(G) = 0 \lor k(G) = 1 \lor k(G) = 2 \lor k(G) = 3.
\]

Since \(G \) connected \(\Rightarrow k(G) > 0 \).

• Try deleting one vertex

a) For \(G - a \) we have:

\[
\begin{align*}
h &\quad d \\
\quad &\quad \quad \downarrow \\
\quad &\quad e \\
\quad &\quad \quad \downarrow \\
\quad &\quad c \\
\quad &\quad \quad \downarrow \\
\quad &\quad b
\end{align*}
\]

which is connected. \(G - b \), \(G - c \) are similarly connected.
b) For $G-td_3$ we have:

which is connected, and by symmetry, $G-\tau e_3$ and $G-\tau f_3$
are also connected.

It follows from (a) and (b) that $\kappa(G) \geq 1$.

- Try deleting two vertices

 a) For $G-\tau a, b_3$ we have:

 which is still connected. By symmetry, $G-\tau b, c_3$ and $G-\tau c, a_3$ are also connected.

b) For $G-\tau a, d_3$ we have:

 which is still connected. By symmetry, $G-\tau b, e_3$ and $G-\tau c, e_3$ are also connected.

c) For $G-\tau a, e_3$ we have:

 which is still connected. By symmetry, $G-\tau a, f_3$, $G-\tau b, d_3$, $G-\tau b, f_3$, $G-\tau c, d_3$, $G-\tau c, e_3$
are also connected.
d) For $G = \mathbb{Z}_3 \times \mathbb{Z}_3$ we have:

From (a), (b), (c), (d) it follows that $K(G) \geq 2$. Since $2 < K(G) \leq \delta(G) = 3 \Rightarrow K(G) = 3$

and since $K(G) \leq \Delta(G) < \delta(G) \Rightarrow 3 \leq \Delta(G) \leq 3$

$\Rightarrow \Delta(G) = 3$
EXERCISES

9.5 Consider the complete graph K_a
Let $u \in V(K_a)$. Show
a) Show that $K_a - w u = K_{a-1}$

b) Show that
$k(K_a) = \Delta(K_a) = \delta(K_a) = a - 1$

9.6 Similarly, for the complete bipartite graph $K_{a,b}$ show that
$k(K_{a,b}) = \Delta(K_{a,b}) = \delta(K_{a,b}) = \min \{a, b\}$

9.7 Show that
a) $K(P_4) = \Delta(P_4) = \delta(P_4) = 1$

b) $K(C_4) = \Delta(C_4) = \delta(C_4) = 2$

9.8 Calculate $k(G)$ and $\Delta(G)$ for the following graphs:

a)

```
 o--h--g--b
 |    |    |
|    |    |
h----e
```

b)

```
 a
|
|---
|   |
|   |
|   |
|
```

```tex
\end{align*}
```
Eulerian graphs

The Eulerian problem: Given a connected graph G, is there a walk that can visit every edge of the graph once and only once and return to the starting vertex at the end? If the answer is yes, we say that G is an Eulerian graph and the corresponding walk is an Eulerian trail.

Def: Let G be a connected graph. We say that G Eulerian $\iff \exists w \in T(G): E(w) = E(G) \land s(w) = t(w)$

Example

The graph $K_{2,2}$:

```
        a
         ↖  ↘
         b   c
         |   |
         d   |
```

is Eulerian with Eulerian trail:

$w = \langle a, ac, c, cb, b, bd, d, da, a \rangle$

Euler solved the Eulerian problem by introducing the definitions for graph, vertex degree, and proving the following theorem:

Thm: Let G be a connected graph. Then:

G Eulerian $\iff \forall v \in V(G): \exists e \in N^*(v): d(v) = 2k$
EXAMPLE

Consider the graph

\[G: \begin{array}{ccc}
& a & \\
& \text{e} & b \\
& C & \text{d} \\
& \text{d} & c
\end{array} \]

\[d(c) = |\{ bc, cd, ce \}| = 3 \Rightarrow G \text{ not Eulerian.} \]

EXAMPLE

A connected graph with 5 vertices and 4 edges has two vertices with degree 2. Show that the graph G is not Eulerian.

Solution

We assume that \(|V(G)| = 5 \) and \(|E(G)| = 4 \) with

\[V(G) = \{ u_1, u_2, u_3, u_4, u_5 \} \]

and \(d(u_1) = d(u_2) = 2 \). Define \(a = d(u_3) \land b = d(u_4) \land c = d(u_5) \). From the handshaking lemma:

\[
\sum_{u \in V(G)} d(u) = 2|E(G)| \Rightarrow d(u_1) + d(u_2) + d(u_3) + d(u_4) + d(u_5) = 9 + 4 \\
\Rightarrow 2 + a + b + c = 8 \\
\Rightarrow a + b + c = 4.
\]
G connected $\Rightarrow\ \forall v \in V(G) : d(v) > 0$
$\Rightarrow a > 0 \land b > 0 \land c > 0.$
$\Rightarrow a > 1 \land b > 1 \land c > 1.$

It follows that

$\alpha + b + c = 5 \iff$

$(\alpha, b, c) \in \{ (1,1,2),(1,2,1),(2,1,1) \}$

and therefore:

a odd $\lor b$ odd $\lor c$ odd \Rightarrow

$\Rightarrow G$ not Eulerian.
EXERCISES

29. Which of the following graphs is Eulerian?

(a) \[\begin{array}{ccc}
 & b & \\
 a & \rightarrow & c \\
 & d & \\
\end{array} \]

(b) \[\begin{array}{ccc}
 & b & c \\
 a & \rightarrow & d \\
 e & \rightarrow & f \\
\end{array} \]

(c) \[\begin{array}{ccc}
 & a & b \\
 \rightarrow & \rightarrow & \rightarrow \\
 c & d & e \\
\end{array} \]

(d) \[\begin{array}{ccc}
 a & b \\
 \rightarrow & \rightarrow \\
 d & c \\
\end{array} \]

(e) \[\begin{array}{ccc}
 a & b \\
 \rightarrow & \rightarrow \\
 \rightarrow & \rightarrow \\
\end{array} \]

(f) \[\begin{array}{ccc}
 a & b \\
 \rightarrow & \rightarrow \\
 d & c \\
\end{array} \]

\[k_{2,2} \]

\[k_{3,3} \]

(g) \[\begin{array}{ccc}
 a & b & c \\
 d & \rightarrow & \\
\end{array} \]

(h) \[\begin{array}{ccc}
 a & b & c \\
 d & \rightarrow & e \\
 f & \rightarrow & \\
\end{array} \]
30. Show that
 a) K_a Eulerian \iff a is odd
 b) $K_a \& b$ Eulerian \iff a even $\land b$ even
 c) $\forall a \in \mathbb{N}: (a \geq 2 \implies Pa$ not Eulerian$)$
 d) $\forall a \in \mathbb{N}: (a \geq 3 \implies Ga$ Eulerian$)$

31. A connected Eulerian graph has 3 vertices and 5 edges. Show that if one vertex has degree 4, then another vertex must have degree 2.

32. A connected graph with 4 edges and 4 vertices has 2 vertices of degree 2. Show that
 a) G not Eulerian $\implies \exists u \in V(G): d(u) = 3.$
 b) G Eulerian $\implies G$ regular.

33. Show that a connected regular graph with an odd number of vertices is always Eulerian.

34. Show that a connected regular graph with odd number of edges and whose number of vertices is a multiple of 4 is never Eulerian.
Hamiltonian graphs

Hamilton's Problem: Let G be a connected graph. Can we construct a walk that visits every vertex of the graph once and only once, without using any edge more than once, and then close the walk with a direct edge from its terminal point back to its initial point? If yes, then we say that the graph is a Hamiltonian graph, the walk is a Hamiltonian path, and the walk together with the closing edge is a Hamiltonian circuit.

![Diagram showing a Hamiltonian path and closing edge]

Recall that any walk where no edges or vertices are repeated is a path. The Hamiltonian circuit as a whole is not a path since the initial vertex is repeated once, as a terminal vertex. Thus, the reason for the distinction between the Hamiltonian path and the Hamiltonian circuit. Based on the above, we give the following definition:
Def: Let G be a connected graph. We say that

G Hamiltonian \iff

$$\exists u_1, u_2 \in V(G) : \exists e \in E(G) :$$

$$\begin{cases} u_1 \neq u_2 \land \forall w \in V(G) : \exists e \in E(G) : \Psi(e) = \sum_{i} u_i, u_{i+1} \end{cases}$$

Here, w is the Hamiltonian path, u_1 the initial vertex, u_2 the terminal vertex and e the closing edge.

- Note that it is not necessary for the Hamiltonian circuit to visit all the edges.

Criteria for the Hamiltonian property:

No one has successfully solved the Hamiltonian problem by proving a practical necessary and sufficient condition. We have however the following partial results:

A necessary condition:

Thm: Let G be a connected graph. Then:

G Hamiltonian $\Rightarrow \forall V_0 \subseteq V(G) : (V_0 \neq V(G) \Rightarrow \omega(G - V_0) < |V_0|)$

Intuitively, if the graph G is Hamiltonian, then if we subtract the vertices in $V_0 \subseteq V(G)$, then the resulting
graph $G - V_0$ cannot have more components than the number of vertices in V_0.

- The contrapositive statement of this theorem can be used to show that a graph is not Hamiltonian.

Corollary: Let G be a connected graph. Then $(\exists V_0 \in \mathcal{P}(V(G)) : (V_0 \neq V(G) \land \omega(G - V_0) > |V_0|)) \Rightarrow G$ not Hamiltonian

In general, proving a statement of the form $p \Rightarrow q$ also proves the contrapositive statement $\neg q \Rightarrow \neg p$. Negations can be calculated according to the following rules of Boolean logic:

<table>
<thead>
<tr>
<th>Statement</th>
<th>It's negation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall x \in A : p(x)$</td>
<td>$\exists x \in A : \neg p(x)$</td>
</tr>
<tr>
<td>$\exists x \in A : p(x)$</td>
<td>$\forall x \in A : \neg p(x)$</td>
</tr>
<tr>
<td>$p \land q$</td>
<td>$\neg p \lor \neg q$</td>
</tr>
<tr>
<td>$p \lor q$</td>
<td>$\neg p \land \neg q$</td>
</tr>
<tr>
<td>$p \Rightarrow q$</td>
<td>$p \land \neg q$</td>
</tr>
<tr>
<td>$p \Leftrightarrow q$</td>
<td>$p \lor \neg q$</td>
</tr>
<tr>
<td>$p \Leftrightarrow q$</td>
<td>$p \Leftrightarrow q$</td>
</tr>
</tbody>
</table>
EXAMPLE

Show that the graph

\[G: \]

\[a \quad b \quad c \quad d \quad e \quad f \]

is not Hamiltonian.

Solution

Subtracting the vertex \(d \) gives

\[G - \{d\} : \]

\[a \quad b \quad c \quad e \quad f \]

It follows that

\[G - \{d\} = G[\{a,b,c\}] \cup G[\{e,f,g\}] \Rightarrow \]

\[w(G - \{d\}) = 2 > 1 = |\{d\}| \Rightarrow \]

\[w(G - \{d\}) > |\{d\}| \Rightarrow \]

\[\Rightarrow G \text{ not Hamiltonian.} \]
Ore's Theorem

Theorem: Let G be a graph. Then:

- G simple and connected
- $|V(G)| \geq 3$
- $\forall u, v \in V(G): (u, v$ not adjacent $\Rightarrow d(u) + d(v) \geq |V(G)|$

$\Rightarrow G$ is Hamiltonian

Example

Use Ore's Theorem to show that G is Hamiltonian.

Solution

We note that

- G is simple and connected.
- $|V(G)| = |\{a, b, c, d, e\}| = 5 \geq 3$
- $d(a) + d(d) = 2 + 3 = 5 \geq |V(G)|$
- $d(a) + d(e) = 2 + 3 = 5 \geq |V(G)|$
- $d(b) + d(c) = 3 + 3 = 6 \geq |V(G)|$

$\Rightarrow G$ is Hamiltonian.
Divac's theorem

Thm: Let G be a graph. Then
\[\begin{align*}
&G \text{ simple and connected} \\
&|V(G)| \geq 3 \implies G \text{ is Hamiltonian} \\
&S(G) \geq (1/2)|V(G)|
\end{align*} \]

Proof

Assume that
\[\begin{align*}
&G \text{ simple and connected} \\
&|V(G)| \geq 3 \\
&S(G) \geq (1/2)|V(G)|
\end{align*} \] (1)

Let $u, v \in V(G)$ be given and assume that u, v not adjacent. Then:
\[d(u) + d(v) \geq S(G) + S(G) = 2S(G) \geq 2[(1/2)|V(G)|] = |V(G)| \implies d(u) + d(v) \geq |V(G)| \]

It follows that
\[\forall u, v \in V(G): (u, v \text{ not adjacent} \implies d(u) + d(v) \geq |V(G)|) \] (4)

From Eq. (1), Eq. (2), Eq. (4), via Ore's theorem, it follows that G is Hamiltonian.

Bipartite graphs

Thm: Let G be a graph. Then
\[\begin{align*}
&G \text{ connected and bipartite} \implies G \text{ not Hamiltonian} \\
&\exists K \in N: |V(G)| = 2K + 1
\end{align*} \]
Proof
Assume that
\{ G \text{ connected and bipartite} \}
\exists k \in \mathbb{N} : |V(G)| = 2k+1
Since, G is bipartite, we choose \(V_1 \subseteq V(G) \) and \(V_2 \subseteq V(G) \) such that
\{ \begin{align*}
V_1 \cap V_2 &= \emptyset \quad \land \quad V_1 \cup V_2 = V(G) \\
\forall e \in E(G) : \{ |\psi_G(e) \cap V_1| = 1 \ \land \ |\psi_G(e) \cap V_2| = 1 \}
\end{align*} \}
To show a contradiction, assume that G is Hamiltonian.
Then, a Hamiltonian circuit must alternate between vertices in \(V_1 \) and vertices in \(V_2 \). Because each vertex can only be visited once, it follows that
\[|V_1| = |V_2| \Rightarrow \]
\[\Rightarrow |V(G)| = |V_1| + |V_2| = |V_1| + |V_1| = 2|V_1| \Rightarrow \]
\[\Rightarrow |V(G)| \text{ is even} \]
\[\Rightarrow |V(G)| \text{ not odd} \]
which contradicts the assumption
\[\exists k \in \mathbb{N} : |V(G)| = 2k+1 \]
It follows that G is not Hamiltonian.
EXAMPLES

Show that the following graph is not Hamiltonian:

\[\begin{array}{c}
\text{G:} \\
\text{a} \quad \text{b} \\
\text{c} \quad \text{d} \quad \text{e}
\end{array} \]

Solution

Note that for \(\mathcal{V}_1 = \{a, b\} \) and \(\mathcal{V}_2 = \{c, d, e\} \):

\[
\forall e \in E(G) : \begin{cases} \\
|\psi_G(e) \cap \mathcal{V}_1| = 1 \Rightarrow G \text{ bipartite} \quad (1) \\
|\psi_G(e) \cap \mathcal{V}_2| = 1
\end{cases}
\]

Furthermore:

\[
|\mathcal{V}(G)| = \|a, b, c, d, e\| = 5 \Rightarrow |\mathcal{V}(G)|\text{ odd} \quad (2)
\]

From (1) and (2): \(G \) is not Hamiltonian.

2nd method

Consider the graph

\[\begin{array}{c}
\text{G - \{b\}}: \\
\text{a} \\
\text{c} \quad \text{d} \quad \text{e}
\end{array} \]

Since \(G - \{b\} = G[\{a, c, d, e\}] \cup G[\{a, d\}] \Rightarrow \)

\[
\omega(G - \{b\}) = 2 > 1 = |\{b\}| \Rightarrow
\]

\[
\omega(G - \{b\}) > |\{b\}|
\]

\(\Rightarrow G \) not Hamiltonian.
EXERCISES

35) Show that the following graphs are Hamiltonian

a) \[\begin{array}{ccc}
 a & b & c \\
 d & e & f
\end{array} \]

b) \[\begin{array}{ccc}
 a & b \\
 c & d
\end{array} \]

c) \[\begin{array}{ccc}
 a & b \\
 c & d
\end{array} \]

d) \[\begin{array}{ccc}
 a & b \\
 c & d
\end{array} \]

36) Show that the following graphs are not Hamiltonian

a) \[\begin{array}{ccc}
 a & l & f \\
 g & e & h
\end{array} \]

b) \[\begin{array}{ccc}
 a & b \\
 e & d
\end{array} \]
37) Show that K_a is Hamiltonian for all $a \geq 3$.

38) Show that
 a) $a = b \Rightarrow K_{a,b}$ Hamiltonian
 b) $a \neq b \Rightarrow K_{a,b}$ not Hamiltonian

\[\rightarrow \text{It follows from this exercise that} \]
\[\text{ } K_{a,b} \text{ Hamiltonian} \Leftrightarrow a = b. \]

39) Let G be a graph with less than 7 vertices and vertex connectivity $\kappa(G) = 4$. Show that G is Hamiltonian.

40) Show that a graph G with vertex connectivity $\kappa(G) = 1$ is not Hamiltonian.

41) Show that a strongly-linked graph with 4 vertices is always Hamiltonian.