
Lecture Notes on Math for Electrical Engineers

Eleftherios Gkioulekas

Copyright c©2009 Eleftherios Gkioulekas. All rights reserved.
This document is the intellectual property of Dr. Eleftherios Gkioulekas and is made available
under the Creative Commons License CC BY-SA 4.0:
https://creativecommons.org/licenses/by-sa/4.0/
This is a human-readable summary of (and not a substitute for) the license:
https://creativecommons.org/licenses/by-sa/4.0/legalcode
You are free to:

• Share – copy and redistribute the material in any medium or format
• Adapt – remix, transform, and build upon the material for any purpose, even commer-

cially.

The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:

• Attribution – You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not in
any way that suggests the licensor endorses you or your use.

• ShareAlike – If you remix, transform, or build upon the material, you must distribute
your contributions under the same license as the original.

No additional restrictions – You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits.
Notices:

• You do not have to comply with the license for elements of the material in the public
domain or where your use is permitted by an applicable exception or limitation.

• No warranties are given. The license may not give you all of the permissions necessary
for your intended use. For example, other rights such as publicity, privacy, or moral
rights may limit how you use the material.

These notes are constantly updated by the author. If you have not obtained this file from the
author’s website, it may be out of date. This notice includes the date of latest update to this
file. If you are using these notes for a course, I would be very pleased to hear from you, in
order to document for my University the impact of this work.
The main online lecture notes website is: https://faculty.utrgv.edu/eleftherios.gkioulekas/
You may contact the author at: drlf@hushmail.com
Last updated: March 22, 2021

1

Contents

1 MEE1: Brief introduction to Logic and Sets 2
2 MEE2: Basic Linear Algebra 13
3 MEE3: Determinants and Linear Systems 40
4 MEE4: Graph Theory. Part 1 81
5 MEE5: Eigenvalues and eigenvectors 140
6 MEE6: Graph Theory. Part 2 171
7 MEE7: Applications of linear systems 237
8 Programming with Matlab 259
9 Algorithms with Matlab 280
10More on linear ODE systems 297

2

MEE1: Brief introduction to Logic and Sets

3

4

5

6

7

8

9

10

11

12

13

MEE2: Basic Linear Algebra

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

MEE3: Determinants and Linear Systems

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

MEE4: Graph Theory. Part 1

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

MEE5: Eigenvalues and eigenvectors

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

MEE6: Graph Theory. Part 2

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

MEE7: Applications of linear systems

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

Appendices

Programming with Matlab

Programming with Matlab

Eleftherios Gkioulekas
Mathematical Sciences Computing Center

University of Washington

December, 1996

1 Starting Matlab

Matlab is an interactive tool that includes facilities for dealing with numerical analysis, matrix
computation, signal processing and graphics. It is meant to be used to understand and test math-
ematical concepts interactively before coding in a real programming language.

Throughout this tutorial, we will give you an overview of various things and refer you to
Matlab’s on-line help for more information. The best way to learn is by experimentation, and the
best way this tutorial can help you is by telling you the basics and giving you directions towards
which you can take off exploring on your own.

To start Matlab type matlab on the shell prompt. You get a greeting on your screen, then
a window pops up and goes away 1 and finally you get a >> prompt. At this point you can start
typing in commands on interactive mode or you can quit by typing quit at the prompt. You can
also navigate around the filesystem, execute the Matlab programs you have written, and get online
help. If you want to log your what you do throughout your matlab session type

>> diary filename

where in filename you put the filename you want to use for your log. To stop logging type

>> diary off

Moreover you can get on-line help by typing

>> help

on the prompt. A list of topics appears. You can then type help again followed with the name of
the topic and get more information about what you want to know. For example suppose you type:

>> help

[..lots of stuff..]

Matlab/matfun - Matrix functions - numerical linear algebra.

[..lots of other stuff..]

1The reason this happens is because Matlab tries to see if you have an X display. It can do that without popping
up a window, but then you wouldn’t be as impressed

1

260

There you go! Say you want to learn more about the matrix stuff. You type

>> help matfun

Matrix functions - numerical linear algebra.

Matrix analysis.

cond - Matrix condition number.

norm - Matrix or vector norm.

[etc...etc...]

and you are given a list of commands that are available to you for working with matrices. Then,
to learn about the cond command you type

>> help cond

and you will be told how to use it to compute condition numbers. For more information about
getting help try:

>> help help

Another way of getting help is with the lookfor command. Suppose you want to see what
Matlab can do with “eigenvalues”. Typing:

>> lookfor eigenvalue

will return to you a list of commands in which the word “eigenvalue” occurs. Note that this
command is not very artificially intelligent. If you are looking for your son, typing

>> lookfor son

will not give you what you want
If you are on a machine that can run a web browser, try also:

>> doc

Finally, if Matlab ever does something you don’t understand type:

>> why

for a succinct explanation.
Like we said, at the prompt you can also execute your programs. So, let’s do that!. Bring up

an editor 2 and type in the following Matlab program:

2On a Unix system you can use the following editors: emacs, vi and if available pico. On DOS there is edit.
Other systems have (or are supposed to have) a text editor. Warning: You can NOT use a word-processor to type
in Matlab programs, unless the word processor allows you to save your document as pure text.

2

261

%

% These are comments. In Matlab you can add comments with a % character

% This is the standard hello world program

disp(’Hello world!’);

Save the program with the filename hello.m. You want all your Matlab programs to be saved with
the extension .m at the end. Then start Matlab under the same directory where you saved the file
and type hello at the Matlab prompt. Then you should see the following:

>> hello

Hello world!

>>

When you terminate a Matlab command with a semicolon, the command will execute silently.
When you don’t, the command will print back a response. In a matlab program, the former
behaviour is desirable. When using Matlab interactively you may want to see these responses.
As a general rule of thumb, when you write Matlab programs terminate every statement with a
semi-colon and produce the output of interest by invoking the commands whose job is to print
things. Such a command would be disp for example, which will print hello even though it is
being “silenced” with a semicolon. We will learn about another printing command later on.

Notice that within the Matlab environment you don’t have to type any funny commands to
load your program. When you start Matlab from your shell, Matlab will load all the *.m files that
happen to be under the present working directory at startup time. So, all you have to do when the
prompt shows up is to type the name of the program (without the *.m extension) and it will get
executed. Note that Matlab will only look for files with the *.m extension, so you are forced to use
it. There are no work-arounds for this. Still, Matlab has a provision for the situation where your
files are scattered in more than one directory. You can use the Unix cd, ls, pwd commands to
navigate in the file system and change your current working directory. Also, if you want to be able
to have access at the files on two or more seperate directories simultaneously type

>> help path

for more information.

2 Matlab variables

Matlab has three basic data types: strings, scalars and matrices. Arrays are just matrices that
have only one row. Matlab has also lots of built-in functions to work with these things. You have
already seen the disp function in our hello-world program.

Starting with strings, you can assign a string to a variable like this:

name = ’Indiana Jones’;

Note that it is a syntax error to quote the string with anything other than the forward quote marks.
So, the following are wrong!

3

262

name = "Indiana Jones"; wrong!

name = ‘Indiana Jones‘; wrong!

In a Matlab program you can prompt the user and ask him to enter in a string with the input

command:

% This is a rather more social program

%

yourname = input(’Hello! Who are you? ’,’s’);

dadname = input(’What’s your daddy name? ’,’s’);

fprintf(1,’Hail oh %s son of %s the Great! \n’,yourname,dadname);

The input command takes two arguments. The first argument is the string that you want the user
to be prompted with. You could stick in a variable instead of a fixed string if you wanted to. The
second argument tells Matlab to expect the user to enter a string. If you omit the second argument,
then Matlab will be expecting a number, and upon you entering your name, Matlab will complain.
Finally, it returns the value that the user enters, and that value is passed on through assignment
to the variable yourname.

The fprintf command gives you more flexibility in producing output than the disp command.
There is a lot to learn about fprintf so please type help fprintf to learn all you need to know.
Briefly, fprintf takes two or three or more arguments. The first argument is a file descriptor. File
descriptors are integers that reference places where you can send output and receive input from.
In Matlab, file descriptor 1 is what you use when you want to send things to the screen. The
terminology you may hear is that file descriptor 1 sends things to the standard output.

The rest of the arguments depend on what you want to print. If all you want to print is a
fixed string, then you just put that in as your second argument. For example:

fprintf(1,’Hello world!\n’);

The \n sequence will switch you over to the next line. disp will do this automatically, in fprintf

you must explicitly state that you wish to go to a new line. This is a feature, since there may be
situations where you do not want to go to a new line.

If you want to print the values of variables interspersed with your string then you need to
put appropriate markers like %s to indicate where you want your variables to go. Then, in the
subsequent arguments you list the variables in the appropriate order, making sure to match the
markers. There are many markers and the Matlab online help will refer you to a C manual. The
most commonly used markers are the following:

%s Strings
%d Integers (otherwise you get things like 5.0000)
%g Real numbers in scientific notation.

In our example above, we just used %s. You will see further examples later on.
Note that if you merely want to print a variable, it is better to use disp since it will format it

for you. fprintf is more useful for those occasions where you want to do the formatting yourself
as well as for sending things to a file.

Scalars can be assigned, inputed and printed in a similar fashion. Here is an example:

4

263

% yet another one of these happy programs

age = input(’Pardon for asking but how old are you?’);

if (age < 75)

life_left = 365.25*24*(75 - age);

fprintf(1,’You have %g hours left of average life expectancy.\n’,life_left);

else

fprintf(1,’Geez! You are that old?!\n’);

end

fprintf(1,’Live long and prosper!\n’);

Note the following:

• String and numeric variables look the same. You don’t have to declare the type of the variable
anywhere. Matlab will make sure to do the right thing (tm).

• When we use input to get the value of a numeric variable we omit the second ’s’ argument.
This way, Matlab will do error-checking and complain if you entered something that’s not a
number.

• You can use fprintf to print numeric variables in a similar fashion, but you got to use the
%g marker. If you are printing an integer you must use the %d marker, otherwise Matlab will
stick in a few zeroes as decimal places to your integer. It is obvious that you can mix strings
and numbers in an fprintf command, so long as you don’t mix up the order of the variables
listed afterwards.

• On line

life_left = 365.25*24*(75 - age);

we see how you can do simple computations in Matlab. It’s very similar to C and Fortran
and to learn more about the operators you have available type

>> help ops

>> help relops

• Finally, we have an example of an if statement. We will talk of that more later. The meaning
should be intuitively obvious.

In addition to ordinary numbers, you may also have complex numbers. The symbols i and j

are reserved for such use. For example you can say:

z = 3 + 4*i;

or

z = 3 + 4*j;

5

264

where i and j represent
√
−1. If you are already using the symbols i and j as variables, then you

can get a new complex unit and use it in the usual way by saying:

ii = sqrt(-1);

z = 3 + 4*ii;

3 Arrays in Matlab

Next we talk about arrays. In Matlab arrays are dynamic and they are indexed from 1. You can
assign them element by element with commands like:

a(1) = 23;

a(2) = input(’Enter a(2)’);

a(3) = a(1)+a(2);

It is a syntax error to assign or refer to a(0). This is unfortunate since in some cases the 0-indexing
is more convenient. Note that you don’t have to initialize the array or state it’s size at any point.
The array will make sure to grow itself as you index higher and higher indices.

Suppose that you do this:

a(1) = 10;

a(3) = 20;

At this point, a has grown to size 3. But a(2) hasn’t been assigned a value yet. In such situations,
during growth any unset elements are set to zero. It is good programming practice however not to
depend on this and always initialize all the elements to their proper values.

Notice that for the sake of efficiency you might not like the idea of growing arrays. This
is because every time the array is grown, a new chunk of memory must be allocated for it, and
contents have to be copied. In that case, you can set the size of the array by initializing it with the
zeros command:

a = zeros(100);

This will set a(1),a(2),...,a(100) all equal to zero. Then, so long as you respect these bound-
aries, the array will not have to be grown at any point.

Here are some other ways to make assignments to arrays:

x = [3 4 5 6];

will set x equal to an array of 4 values. You can recursively add elements to your array x in various
ways if you include x on the right hand side. For example, you can make assignments like

x = [x 1 2] % append two elements at end of the array

x = [1 2 x 3] % append two elements at front, one at back

How about making deletions? Well, first of all notice that we can access parts of the array with
the following indexing scheme:

6

265

y = x(2:4);

will return the an array of x(2), x(3), x(4). So, if you want to delete the last element of the
array, you just have to find the size of the array, which you can do with the size command.

Yet another way to setup arrays is like this:

x = 3 : 1 : 6;

This will set x equal to an array of equidistant values that begin at 3, end at 6 and are separated
from each other by steps of 1. You can even make backwards steps if you provide a negative
stepsize, like this:

x = 6 : -1 : 3;

It is common to set up arrays like these when you want to plot a function whose values are known
at equidistant points.

Finally, to conclude, you may want to know how to load arrays from files. Suppose you have
a file that contains a list of numbers separated with carriage returns. These numbers could be the
values of a function you want to plot on known values of x (presumably equidistant). You want to
load all of these numbers on a vector so you can do things to them. Here is a demo program for
doing this:

filename = input(’Please enter filename:’,’s’);

fd = fopen(filename);

vector = fscanf(fd,’%g’,inf);

fclose(fd);

disp(vector);

Here is how this works:

• The first line, prompts the user for a filename.

• The fopen command will open the file for reading and return a file descriptor which we store
at variable fd.

• The fscanf command will read in the data. You really need to read the help page for fscanf
as it is a very useful command. In principle it is a little similar to fprintf. The first argument
is the file descriptor from which data is being read. The second argument tells Matlab, what
kind of data is being read. The %g marker stands for real numbers in scientific notation.
Finally the third argument tells Matlab to read in the entire file in one scoop. Alternatively
you can stick in an integer there and tell Matlab to load only so many numbers from the file.

• The fclose command will close the file descriptor that was opened.

• Finally the disp command will show you what has been loaded. At this point you could
substitute with somewhat more interesting code if you will.

7

266

Another common situation is data files that contain pairs of numbers separated by carriage
returns. Suppose you want to load the first numbers onto one array, and the second numbers to
another array. Here is how that is done:

filename = input(’Please enter filename: ’,’s’);

fd = fopen(filename);

A = fscanf(fd,’%g %g\n’,[2,inf]);

x = A(1,:);

y = A(2,:);

fclose(fd);

disp(’Here comes x:’); disp(x);

disp(’Here comes y:’); disp(y);

Again, you need to read the help page for fscanf to understand this example better. You can use
it in your programs as a canned box until then. What we do in this code snippet essentially is to
load the file into a two-column matrix, and then extract the columns into vectors. Of course, this
example now leads us to the next item on the agenda: matrices.

4 Matrices in Matlab

In Matlab, arrays are matrices that have only one row. Like arrays, matrices can be defined element
by element like this:

a(1,1) = 1; a(1,2) = 0;

a(2,1) = 0; a(2,2) = 1;

Like arrays, matrices grow themselves dynamically as needed when you add elements in this fashion.
Upon growth, any unset elements default to zero just like they do in arrays. If you don’t want that,
you can use the zeros command to initialize the matrix to a specific size and set it equal to zero,
and then take it from there. For instance, the following example will create a zero matrix with 4
rows and 5 columns:

A = zeros(4,5);

To get the size of a matrix, we use the size command like this:

[rows,columns] = size(A);

When this command executes, the variable rows is set equal to the number of rows and columns

is set equal to the number of columns. If you are only interested in the number of rows, or the
number of columns then you can use the following variants of size to obtain them:

rows = size(A,1);

columns = size(A,2);

Since arrays are just matrices with one row, you can use the size(array,2) construct to get hold
of the size of the array. Unfortunately, if you were to say:

8

267

s = size(array); % wrong!

it would be wrong, because this returns both the number of rows and columns and since you only
care to pick up one of the two numbers, you pick up the number of rows, which for arrays is always
equal to 1. Not what you want!

Naturally, there are a few other ways to assign values to a matrix. One way is like this:

A = [1 0 0 ; 0 1 0 ; 0 0 1]

This will set A equal to the 3 by 3 identity matrix. In this notation you list the rows and separate
them with semicolons.

In addition to that you can extract pieces of the matrix, just like earlier we showed you how
to extract pieces of the arrays. Here are some examples of what you can do:

a = A(:,2); % this is the 2nd column of A

b = A(3,:); % this is the 3rd row of A

c = A(1:4,3); % this is a 4 by 1 submatrix of A

d = A(:,[2 4 10]); % this is the 2nd, 4th and 10th columns of A stacked

In general, if v and w are arrays with integer components, then A(v,w) is the matrix obtained by
taking the elements of A with row subscripts from v and column subscripts from w. So:

n = size(A,2);

A = A(:,n:-1:1);

will reverse the columns of A. Moreover, you can have all of these constructs appear on the left
hand side of an assignment and Matlab will do the right thing. For instance

A(:,[3 5 10]) = B(:,1:3)

replaces the third, fifth and tenth columns of A with the first three columns of B.
In addition to getting submatrices of matrices, Matlab will allow you to put together block

matrices from smaller matrices. For example if A,B,C,D are a square matrices of the same size,
then you can put together a block matrix like this:

M = [A B ; C D]

Finally, you can get the transpose of matrix by putting a ’ mark next to it. For example:

A = [2 4 1 ; 2 1 5 ; 4 2 6];

Atrans = A’;

Matlab provides functions that return many special matrices. These functions are listed in
Figure 1 and we urge you to look these up with the help command and experiment.

To display the contents of matrices you can simply use the disp command. For example, to
display the 5 by 5 Hilbert matrix you want to say:

9

268

zeros Returns the zero matrix
ones Returns a matrix in which all entries are set equal to one
rand A matrix with uniformly distributed random elements
randn A matrix with normally distributed random elements
eye The identity matrix

compan Computes the companion matrix
diag Extract one of the diagonals of a matrix
gallery Returns a couple of small test matrices. See help page.
hadamard Returns a Hadamard matrix of any order where N, N/12 or N/20 is a power of 2
hilb Returns the Hilbert matrices
invhilb Returns the inverse of Hilbert matrices
pascal Returns Pascal’s triangle
toeplitz Returns Toeplitz matrices
vander Returns Vandermonde matrices.

Figure 1: Matrix commands

>> disp(hilb(5))

1.0000 0.5000 0.3333 0.2500 0.2000

0.5000 0.3333 0.2500 0.2000 0.1667

0.3333 0.2500 0.2000 0.1667 0.1429

0.2500 0.2000 0.1667 0.1429 0.1250

0.2000 0.1667 0.1429 0.1250 0.1111

The Hilbert matrix is a famous example of a badly conditioned matrix. It is also famous because
the exact inverse of it is known analytically and can be computed with the invhilb command:

>> disp(invhilb(5))

25 -300 1050 -1400 630

-300 4800 -18900 26880 -12600

1050 -18900 79380 -117600 56700

-1400 26880 -117600 179200 -88200

630 -12600 56700 -88200 44100

This way you can interactively use these famous matrices to study concepts such as ill-conditioning.

5 Matrix/Array Operations

• Matrix addition/subtraction: Matrices can be added and subtracted like this:

A = B + C;

A = B - C;

It is necessary for both matrices B and C to have the same size. The exception to this rule is
when adding with a scalar:

10

269

A = B + 4;

In this example, all the elements of B are increased by 4 and the resulting matrix is stored in
A.

• Matrix multiplication: Matrices B and C can be multiplied if they have sizes n × p and
p×m correspondingly. The product then is evaluated by the well-known formula

Aij =
p∑

k=1

BikCkj , ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m}

In Matlab, to do this you say:

A = B*C;

You can also multiply all elements of a matrix by a scalar like this:

A = 4*B;

A = B*4; % both are equivalent

Since vectors are matrices that are 1×n, you can use this mechanism to take the dot product
of two vectors by transposing one of the vectors. For example:

x = [2 4 1 5 3];

y = [5 3 5 2 9];

p = x’*y;

This way, x’ is now a n× 1 “matrix” and y is 1× n and the two can be multiplied, which is
the same as taking their dot product.

Another common application of this is to apply n × n matrices to vectors. There is a catch
though: In Matlab, vectors are defined as matrices with one row, i.e. as 1×n. If you are used
to writing the matrix product as Ax, then you have to transpose the vector. For example:

A = [1 3 2; 3 2 5; 4 6 2]; % define a matrix

x = [2 5 1]; % define a vector

y = A*x; % This is WRONG!

y = A*x’; % This is correct :)

• Array multiplication: This is an alternative way to multiply arrays:

Cij = AijBij , ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m}

This is not the traditional matrix multiplication but it’s something that shows up in many
applications. You can do it in Matlab like this:

11

270

C = A.*B;

• Array division: Likewise you can divide arrays in matlab according to the formula:

Cij =
Aij
Bij

, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m}

by using the ./ operator like this:

C = A./B;

• Matrix division: There are two matrix division operators in Matlab: / and \. In general

X = A\B is a solution to A*X = B

X = A/B is a solution to X*A = B

This means that A\B is defined whenever B has as many rows as A. Likewise A/B is defined
whenever B has as many columns as A. If A is a square matrix then it is factored using Gaussian
elimination. Then the equations A*X(:,j) = B(:,j) are being solved for every column of B.
The result is a matrix with the same dimensions as B. If A is not square, it is factored using
the Householder orthogonalization with column pivoting. Then the corresponding equations
will be solved in the least squares fit sense. Right division A/B in Matlab is computed in
terms of left division by A/B = (A’\B’)’. For more information type

>> help slash

• Matrix inverse: Usually we are not interested in matrix inverses as much as applying them
directly on vectors. In these cases, it’s best to use the matrix division operators. Nevertheless,
you can obtain the inverse of a matrix if you need it by using the inv function. If A is a matrix
then inv(A) will return it’s inverse. If the matrix is singular or close to singular a warning
will be printed.

• Matrix determinants: Matrix determinants are defined by

det(A) =
∑

σ∈Sn

{
sign(σ)

n∏

i=1

Aiσ(i)

}

where Sn is the set of permutations of the ordered set (1, 2, . . . , n), and sign(σ) is equal to
+1 if the permutation is even and −1 if the permutation is odd. Determinants make sense
only for square matrices and can be computed with the det function:

a = det(A);

12

271

• Matrix exponential function: These are some very fascinating functions. The matrix
exponential function is defined by

exp(A) =
+∞∑

k=0

Ak

k!

where the power Ak is to be evaluated in the matrix product sense. Recall that your ordinary
exponential function is defined by

ex =
+∞∑

k=0

xk

k!

which converges for all x (even when they are complex). It is not obvious from this that
the corresponding matrix expression also converges. But it does, and the result is the matrix
exponential. The matrix exponential can be computed in Matlab with the expm function. It’s
usage is as simple as:

Y = expm(X);

Matrix exponentials show up in the solution of systems of differential equations.

Matlab has a plethora of commands that do almost anything that you would ever want to
do to a matrix. And we have only discussed a subset of the operations that are permitted with
matrices. The following help calls should be helpful in exploring what Matlab offers:

>> help elmat

>> help matfun

>> help sparfun

We will go into a detailed discussion about matrices and linear algebra in Matlab, on a separate
tutorial.

6 Flow control in Matlab

So far, we have spent most of our time discussing the data structures available in Matlab, and how
they can be manipulated, as well as inputted and outputed. Now we continue this discussion by
discussing how Matlab deals with flow control.

• For loops: In Matlab, a for-loop has the following syntax:

for v = matrix

statement1;

statement2;

....

end

13

272

The columns of the matrix are stored one at a time in the variable, and then the statements
up to the end statement are executed. If you wish to loop over the rows of the matrix then
you simply transpose it and plug it in. It is recommended that the commands between the
for statement and the end statement are indented by one space so that the reader of your
code can visually see that these statements are enclosed in a loop.

In many cases, we use arrays for matrices, and then the for-loop reduces to the usual for-loop
we know in languages like Fortran and C. In particular using expressions of the form X:Y will
effectively make the loop variable be a scalar that goes from X to Y. Using an expression of
the form start:step:stop will allow you to loop a scalar from value start all the way to
value stop with stepsize step. For instance the Hilbert matrix is defined by the equation:

Aij =
1

i+ j + 1

If we didn’t have the hilb command, then we would use for-loops to initialize it, like this:

N = 10;

A = zeros(N,N);

for i = 1:N

for j = 1:N

A(i,j) = 1/(i+j-1);

end

end

The same code can be rewritten more consisely like this:

N = 10; A = zeros(N,N);

for i = 1:N , for j = 1:N , A(i,j) = 1/(i+j-1); , end, end

Note that the for and end statements in the long-winded version of the example are being
separated by newlines and not semicolons. To obtain the consise version, we merely substitute
those newlines with commas.

• While loops: In Matlab while loops follow the following format:

while variable

statement1;

statement2;

....

statementn;

end

where variable is almost always a boolean expression of some sort. In Matlab you can
compose boolean expressions as shown in Figure 2.

Here is an example of a Matlab program that uses the while loop:

14

273

a == b True when a equals b

a > b True when a is greater than b

a < b True when a is smaller than b

a <= b True when a is smaller or equal to b

a >= b True when a is greater or equal to b

a = b True when a is not equal to b

a & b True when both boolean expressions a and b are true
a | b True when at least one of a or b is true.
a xor b True only when only one of a or b is true.
a True when a is false.

Figure 2: Some boolean expressions in Matlab

n = 1;

while prod(1:n) < 1.e100

n = n + 1;

end

disp(n);

This program will display the first integer for which n! is a 100-digit number. The prod

function takes an array (or matrix) as argument and returns the product of it’s elements. In
this case, prod(1:n) is the factorial n!.

• If and Break statements: The simplest way to set-up an if branch is like this:

if variable

statement1;

....

statementn;

end

The statements are executed only if the real part of the variable has all non-zero elements. 3

Otherwise, the program continues with executing the statements right after the end statement.
The variable is usually the result of a boolean expression. The most general way to do if-
branching is like this:

if variable

statement1;

......

3Note that in the most general case, variable could be a complex number. The if statement will only look into
its real part

15

274

statementn;

elseif variable2

statement1;

......

statementn;

[....as many elseifs as you want...]

else

statement1;

......

statementn;

end

In this case, if variable is true, then the statements right after it will execute until the first
else or elseif (whichever comes first), and then control will be passed over to the statements
after the end. If variable is not true, then we check variable2. Now, if that one is true, we
do the statements following thereafter until the next else or elseif and when we get there
again we jump to end. Recursively, upon consecutive failures we check the next elseif. If
all the elseif variables turn out to be false, then we execute the statements after the else.
Note that the elseifs and/or the else can be omitted all together.

Here is a general example that illustrates the last two methods of flow control.

% Classic 3n+1 problem from number theory

while 1

n = input(’Enter n, negative quits. ’);

if n <= 0, break, end

while n > 1

if rem(n,2) == 0 , n = n/2;

else, n = 3*n+1;

end

end

end

This example involves a fascinating problem from number theory. Take any positive integer.
If it is even, divide it by 2; if it is odd, multiply it by 3 and add 1. Repeat this process until
your integer becomes a 1. The fascinating unsolved problem is: Is there any integer for which
the process does not terminate? The conjecture is that such integers do not exist. However
nobody has managed to prove it yet.

The rem command returns the remainder of a Euclidean division of two integers. (in this case
n and 2)

16

275

7 Functions in Matlab

Matlab has been written so that it can be extended by the users. The simplest way to do that is
to write functions in Matlab code. We will illustrate this with an example: suppose you want to
create a function called stat which will take an array and return it’s mean and standard deviation.
To do that you must create a file called stat.m. The file has to have the same name as the function
you are defining, and the function definition is the only thing you can put in that file!. Then in
that file, say the following:

function [mean, stdev] = stat(x)

% stat -- mean and standard deviation of an array

% The stat command returns the mean and standard deviation of the

% elements of an array. Typical syntax is like this:

% [mean,dev] = stat(x);

%

% See also: foo, gleep, bork

[m,n] = size(x);

if m == 1

m = n;

end

mean = sum(x)/m;

stdev = sqrt(sum(x.^2)/m - mean.^2);

The first line of the file should have the keyword function and then the syntax of the function
that is being implemented. Notice the following things about the function syntax:

• Functions can have an arbitrary number of arguments. In this case there is only one such
argument: x. The arguments are being passed by value: The variable that the calling code
passes to the function is copied and the copy is being given to the function. This means that
if the function internally changes the value of x, the change will not reflect on the variable
that you use as argument on your main calling code. Only the copy will be changed, and that
copy will be discarded as soon as the function completes it’s call.

• Of course it is not desirable to only pass things by value. The function has to communicate
some information back to the calling code. In Matlab, the variables on the right hand side,
listed in brackets, are also being passed to the function, but this is done by reference: The
function is not given a copy of the variables but it is actually given the variables themselves.
This means that that any changes made to those variables while inside the function will reflect
on the corresponding variables on the calling code. So, if one were to call the function with:

a = 1:20;

m = 0;

s = 0;

[m,s] = stat(a);

17

276

then the values of the variables m and s would change after the call to stat.

• The lines afterwords are comments. However, these comments are what will be spit out if
you type

>> help stat

on your prompt. You usually want to make the first comment line be a summary of what
the function does because in some instances only the first line will get to be displayed, so it
should be complete. Then in the lines afterwords, you can explain how the function is meant
to be used.

• After you are done with documentation you type in your usual Matlab code that will imple-
ment the function.

The main problem with Matlab function definitions is that you are forced to put every function
in a separate file, and are even restricted in what you can call that file. Another thing that could
cause you problems is name collision: What if the name you choose for one of your functions
happens to be the name of an obscure built-in Matlab function? Then, your function will be
completely ignored and Matlab will call up the built-in version instead. To find out if this is the
case use the which command to see what Matlab has to say about your function.

Many of the examples we saw earlier would be very useful if they were to implemented as
functions. For instance, if you commonly use Matlab to manipulate data that come out in (x, y)
pairs you can make our earlier example into a function like this:

function [x,y] = load_xy(filename)

% load_xy -- Will allow you to load data stored in (x,y) format

% Usage:

% Load your data by saying

% [x,y] = load_xy(filename)

% where ’filename’ is the name of the file where the data is stored

% and ’x’ and ’y’ are the vectors where you want the data loaded into

fd = fopen(filename);

A = fscanf(fd,’%g %g\n’,[2,inf]);

x = A(1,:);

y = A(2,:);

fclose(fd);

You would have to put this in a file called load xy.m of course. Suppose that after making some
manipulations you want Matlab to save your data on file again. One way to do it is like this:

function save_xy(filename,x,y)

% save_xy -- Will let your save data in (x,y) format.

% Usage:

% If x and y are vectors of equal length, then save them in (x,y)

18

277

% format in a file called ’filename’ by saying

% save_xy(filename,x,y)

fd = fopen(filename,’w’);

A(1,:) = x;

A(2,:) = y;

fprintf(fd,’%g %g\n’,A);

fclose(fd);

Notice that it is not necessary to use a for loop to fprintf or fscanf the data one by one. This is
explained in detail in the on-line help pages for these two commands. In many other cases Matlab
provides ways to eliminate the use of for-loops and when you make use of them, your programs
will generally run faster. A typical example is array promotion. Take a very simple function

function y = f(x)

which takes a number x and returns another number y. Typical such functions are sin, cos, tan

and you can always write your own. Now, if instead of a number you plug in an array or a matrix,
then the function will be applied on every element of your array or matrix and an array of the same
size will be returned. This is the reason why you don’t have to specify in the function definition
whether x and y are simple numbers, or arrays in the first place! To Matlab everything is a matrix
as far as functions are concerned. Ordinary numbers are seen as 1x1 matrices rather than numbers.
You should keep that in mind when writing functions: sometimes you may want to multiply your
x and y with the .* operator instead of the * to handle array promotion properly. Likewise with
division. Expect to be surprised and be careful with array promotion.

Let’s look at an example more closely. Suppose you write a function like this:

function x = foo(y,z)

x = y+z;

Then, you can do the following on the Matlab prompt:

>> disp(foo(2,3))

5

>> a = 1:1:10;

>> b = 1:2:20;

>> disp(foo(a,b))

2 5 8 11 14 17 20 23 26 29

What you will not be allowed to do is this:

>> a = 1:1:10

>> b = 1:1:20

>> disp(foo(a,b))

??? Error using ==> +

Matrix dimensions must agree.

19

278

Error in ==> /home/lf/mscc/matlab/notes/foo.m

On line 2 ==> x = y+z;

The arguments a and b can not be added because they don’t have the same size. Notice by the
way that we used addition as our example on purpose. We challenge you to try * versus .* and
see the effects!

One use of functions is to build complex algorithms progressively from simpler ones. Another
use is to automate certain commonly-used tasks as we did in the example of loading and saving
(x, y) pairs. Functions do not solve all of the worlds problems, but they can help you a lot and
you should use them when you have the feeling that your Matlab program is getting too long and
complicated and needs to be broken down to simpler components.

20

279

280

Algorithms with Matlab

Algorithms with Matlab

Eleftherios Gkioulekas
Mathematical Sciences Computing Center

University of Washington

December, 1996

1 Introduction

Numerical analysis is the branch of mathematics whose goal is to figure out how computers can
solve problems in a way that’s fast, efficient and accurate. Linear algebra is a large part of numerical
analysis, because many problems eventually reduce to one of the following linear algebra problems:
• We want to solve a system of linear equations.
• We want to solve an eigenvalue problem.
For this reason, researchers think of these problems as “elementary” the way you would think of
addition and multiplication elementary enough to use a calculator. Likewise, researchers will use a
“calculator” in some sense of the word. Matlab can serve as such a calculator. Beyond Matlab you
have the option of using software libraries. Such libraries exist for most commonly used languages
like C++ (e.g. LAPACK++) and FORTRAN (e.g. LINPACK, EISPACK). For more information about the
latter visit the Netlib repository at http://www.netlib.org/ or send email to netlib@ornl.gov

with one line that says send index.
In this tutorial we are assuming that you have read and understood the “Programming with

Matlab” tutorial. The purpose of this tutorial is to review the mathematical concepts of linear
algebra to give you a feel for the “big picture” and at the same time show you how you can
experiment with these concepts using Matlab. As you will see, these problems are not quite
“elementary”

2 Basic concepts

A complex matrix A of size n×m is a mapping

A : {1, . . . , n} × {1, . . . ,m} 7→ C

where C is the set of complex numbers. In other words, a matrix will take two integers i and j such
that 1 ≤ i ≤ n and 1 ≤ j ≤ m and return back a complex number. That number we denote with
aij (we use the lowercase letter). The set of all n×m complex matrices is denoted as Cn×m. If we
restrict ourselves to real values only, then we are dealing with real matrices and the set of these is

1

281

denoted as Rn×m. Finally, for the sake of notation, we will denote the set of all integers from 1 to
n with the symbol:

[n] = {1, . . . , n}
In Matlab all data structures are matrices. In particular ordinary numbers are 1 × 1 matrices,
vectors (or “arrays” in general) are 1 × n matrices. The Programming with Matlab tutorial has
covered the basics of how all these data structures are setup in Matlab.

There exist various operations defined for matrices:

Definition 1 (a) Let A,B ∈ Cn×m be two matrices. The sum and difference of these matrices is:

C = A + B ⇐⇒ cij = aij + bij , ∀(i, j) ∈ [n]× [m]

C = A−B ⇐⇒ cij = aij − bij , ∀(i, j) ∈ [n]× [m]

(b) Let A ∈ Cn×m and B ∈ Cm×p. The product of these matrices is

C = AB⇐⇒ cij =
m∑

k=1

aikbkj , ∀(i, j) ∈ [n]× [p]

(c) The transpose of a matrix A ∈ Cn×m is:

B = AT ⇐⇒ bij = aji, ∀(i, j) ∈ [n]× [m]

(d) The hermitian or complex conjugate transpose is:

B = AH ⇐⇒ bij = a∗ji, ∀(i, j) ∈ [n]× [m]

Moreover, there are the following important classes of matrices that we will see mentioned later on:

Definition 2 A matrix A ∈ Cn×n is:
(a) symmetric ⇐⇒ A = AT

(b) hermitian ⇐⇒ A = AH

(c) orthogonal ⇐⇒ AAT = ATA = I
(d) unitary ⇐⇒ AAH = AHA = I
(e) normal ⇐⇒ AAH = AAH

For real matrices, hermitian means the same as symmetric, unitary means the same as orthogonal,
and both of these distinct classes are normal.

In Matlab matrices that are stored in A and B can be added or multiplied quite simply by
saying:

C = A + B;

C = A - B;

C = A * B;

2

282

The transpose and the hermitian of a matrix can be obtained by

B = A.’; % transpose

B = A’; % hermitian

The usual rules apply to these operations except for the following:

• Multiplication is not commutative for all matrices. That is there exist matrices such that

AB 6= BA

• Square matrices don’t always have a multiplicative inverse. A multiplicative inverse is defined
by:

B = A−1 ⇐⇒ AB = BA = I

The first exception is not very interesting, but the second one is related to one of the two “Big
Questions” in linear algebra: Solving linear systems of equations.

3 Matrix inversion is not easy

Suppose that A ∈ Cn×n is a square matrix and x,b ∈ Cn×1 are vectors (actually, column matrices).
If A and b are known, then we want to find an x such that

Ax = b

If A has an inverse then x is unique and given by:

x = A−1b

otherwise x will either not exist, or will not be unique.
In order for a matrix to have an inverse, the matrix has to be square. Given that, the existence

of matrix inverses is determined by a quantity called determinant. The determinant is defined in
terms of permutations so we must explain what these are first. A permutation σ ∈ Sn of order n is
a bijection that maps:

σ : [n] 7→ [n]

The set of permutations of order n is written as Sn and it has n! elements. In simple terms, take
an ordered set of integers say (1, 2, 3, 4, 5) and reorder it to (4, 1, 3, 2, 5). Our concept of how we
reordered an ordered set of things is what is being modeled by permutations. There are as many
permutations as there are ways in which we can reorder things. One way to represent permutations
is by showing reorderings of (1, 2, . . . , n). For example the permutations of order 3 are:

S3 = {(1, 2, 3), (2, 3, 1), (3, 1, 2), (1, 3, 2), (3, 2, 1), (2, 1, 3)}

3

283

Permutations have an important property called parity. If σ ∈ Sn is a permutation then we define
the parity to be equal to:

s(σ) = sign
n−1∏

j=1

n∏

i=j+1

(σ(i)− σ(j))

When the parity is +1 we talk of even permutations. When it is -1 we talk of odd permutations.
You can verify that the even permutations in S3 are

{(1, 2, 3), (2, 3, 1), (3, 1, 2)}

and the odd ones are
{(1, 3, 2), (3, 2, 1), (2, 1, 3)}.

Given these definitions, the determinant of a matrix A ∈ Cn×n is defined by:

det(A) =
∑

σ∈Sn
s(σ)

n∏

i=1

ai,σ(i)

Unfortunately, this is not the most useful definition in terms of numerics. There are n! terms
to add, and every one of these terms involves n multiplications. This will overwhelm any computer
soon enough, not to mention round-off errors. You have probably seen many recursive definitions
of the determinant in other courses. Those are not helpful either because they also involve work
that increases by n!.

Most computations of determinants are based on the following theorem:

Theorem 1 Let A,B ∈ Cn×n be two square matrices. Then,

det(AB) = det(A) det(B)

We write our matrix as a product of matrices whose determinants are easy to compute and apply
the theorem. More on this later.

Now the reason why determinants are important is because of this theorem:

Theorem 2 Let A ∈ Cn×n be a square matrix.

A−1exists⇐⇒ det(A) 6= 0

Notice by the definition that the determinant varies continuously as you vary one of the elements of
the matrix. This means that determinants are quite reasonable functions of n2 variables which has
the following implication: Most of the time, the determinant will be quite nonzero and an inverse
will exist. Sometimes, the determinant will be very close to zero and an inverse will exist but will
be so sensitive to the original matrix that it will be hard to compute. In this case we say we have
an ill-conditioned matrix. Finally, on very rare matrices the determinant will be exactly zero and
then the inverse just doesn’t exist. In this case we have a singular matrix. These last two cases
cause trouble from a numerical point of view. To make matters worse, deciding numerically which
case is which is not trivial either.

In Matlab computing determinants and inverses may appear innocuously simple. If A is your
matrix then

4

284

x = det(A);

will compute the determinant and

B = inv(A);

will return the inverse. However, for ill-conditioned matrices, inv will not give you the correct
inverse. Sometimes Matlab will detect this, but not always.

There exists a class of square matrices H(n) called the Hilbert matrices that are defined by:

hij =
1

i+ j − 1

The matlab command hilb will return a Hilbert matrix of any size. That is:

A = hilb(10);

will return a Hilbert matrix of size 10. These matrices have two properties: Inverting them is very
sensitive to floating point error but there is an analytic equation that gives their exact inverse! The
inverse is given by

h̃ij = h̃ji =
rij

i+ j − 1
,∀ 1 ≤ i ≤ j ≤ n

where rij is defined for j > i by the following recurrences:




ri,i = p2

i

rij = −(n− j + 1)(n+ j − 1)

(j − 1)2
ri,j−1, j > i




p0 = n

pi =
(n− i+ 1)(n− i− 1)

(i− 1)2
pi−1, 1 ≤ i ≤ n

This computation is being done by the invhilb command. For example, for n = 10 you would say:

A = invhilb(10);

We can use these matrices to show you the limitations of the inv command. Try the following
program:

for i = 1:20

x = max(max(abs(invhilb(i)-inv(hilb(i)))));

fprintf(1,’For size i = %d deviation is x = %g \n’,i,x);

end

This program will progressively increase the matrix size and attempt to invert the matrix.
Then it will compare it with the exact known inverse and report the worst value of the element by
element difference. The output of the program is:

For size i = 1 deviation is x = 0

For size i = 2 deviation is x = 3.55271e-15

For size i = 3 deviation is x = 6.82121e-13

For size i = 4 deviation is x = 5.96629e-10

5

285

For size i = 5 deviation is x = 1.43918e-08

For size i = 6 deviation is x = 0.000447804

For size i = 7 deviation is x = 0.436005

For size i = 8 deviation is x = 35.4408

For size i = 9 deviation is x = 395134

For size i = 10 deviation is x = 3.657e+08

For size i = 11 deviation is x = 3.17671e+11

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 3.659249e-17

For size i = 12 deviation is x = 2.81767e+14

[....etc....]

Notice that the deviation managed to increase all the way to 3.657e+08 before Matlab started
giving out warnings. Not good! There are two or three sets of errors involved here:
• The errors caused by representing hilb(n)

• The errors caused in the matrix inversion process
• The errors, if any, in representing invhilb(n)

It turns out that the first of these, which involves representing fractions like 1/3 and 1/5 in floating-
point, is the most significant. This error is propagated throughout the matrix inversion and is
significantly amplified.

The moral of the story: Sometimes computers don’t answer the question you think you are
asking them. You think you are asking the computer to find the inverse. When you use the inv

function, you are asking it to apply an algorithm which you believe will give you the inverse.

Exercise 1 Write a Matlab function that implements the recurrence formula for the inverse Hilbert
matrix. Compare your results with the invhilb command.

Exercise 2 Can we trust the det function in evaluating the determinant for the Hilbert matrix?
Look at the errors in computing: det(hilb(n))*det(invhilb(n)) and det(hilb(n)*invhilb(n))

Which is more accurate? Why?

4 Algorithms related to solving linear systems

After spending all this time talking about inverses, we need to tell you a little secret: we rarely
ever compute inverses explicitly, because even if we did, multiplying them with other vectors or
with the original matrix itself is susceptible to many floating point errors. In most problems our
main goal is to solve the system

Ax = b

and we can do this without computing the inverse. The purpose of our earlier discussion was to
alert you that there are difficulties we have to overcome: it’s hard to compute determinants, so

6

286

Cramer rule is out of the question; matrices can be nasty and matrix inversion can be error-prone.
Now we come to the techniques that help us deal with these difficulties.

The techniques are quite involved, and Matlab wants to hide the complexity for the user.
Therefore, Matlab uses the backslash operator to do the job

x = A\b;

This will work provided that the matrix A is well-behaved. However, in order for Matlab to be
flexible, they provide you with further access to particular techniques that you may want to use to
do matrix inversions by yourself.

4.1 LU decomposition

One technique is with the LU decomposition. The idea here is that we write A as the product of
a lower triangular matrix L with 1 in the diagonal, and an upper triangular matrix U. Then we
reduce our problem to the following two systems of equations:

Ax = b⇐⇒ LUx = b⇐⇒
{

Ly = b
Ux = y

These systems can be solved directly without having to find the inverse. As a matter of fact, given
the LU decomposition of a matrix you can find the inverse of A by rewritting the equation

AA−1 = I

as n linear systems involving the unknown columns of A−1. Also, since the diagonal elements of L
are 1 and since U is upper triangular, the determinant of A can be determined by:

det(A) = det(L) det(U) = det(U) =
n∏

i=1

uii

The work involved in computing the LU decomposition increases by O(n3) which is a vast improve-
ment over O(n!). In Matlab, the LU decomposition can be computed with the command:

[L,U] = lu(A);

Unfortunately, there is a wrinkle with this method as well as with the matrix L returned by Matlab
that has to do with the LU decomposition existance theorem. That theorem states:

Theorem 3 Let A ∈ Cn×n be a square matrix and Ak ∈ Ck×k be the k × k submatrix of A
containing the upper left part. Then,

A has an LU decomposition⇐⇒ ∀k ∈ [n] : det(Ak) 6= 0

There are many cases where the condition of this theorem will almost fail: one of the submatrix
determinants will be close to zero. The workaround is to permute the rows and columns of A in

7

287

such a way so that these determinants turn out okey. When you do that you essentially find the
LU decomposition of a new matrix PA where P is a permutation matrix. Permutation matrices
have one 1 located in each row and column and when they are applied to another matrix, they
permute the other matrix’s rows or columns. Since permutations are easy to undo, P is yet-another-
matrix that’s easy to invert: It’s inverse is P−1 = PT . When you run the matlab function lu as
quoted above, it will not really return an actual lower triangular matrix in L. Instead it will do the
decomposition PA = LU and return back P−1L and U!. If you don’t like that, you can call lu like
this:

[L,U,P] = lu(A);

Now, L will be an actual lower triangular matrix and P will be a permutation matrix, and the
actual decomposition will be

A = PTLU

The solution to our system of linear equations then is:

x = U−1L−1Pb

Now we have a problem: Matlab doesn’t have documented facilities for applying L−1 and
U−1 with the well-known back/forward-substitution algorithms. Typically, if you want to solve a
system of equations with this method , the backslash operator will do it all in one scoop. However,
suppose that you want to solve many systems of linear equations in which A is the same and only
b vary. Then, you can have a more efficient program going if do the LU decomposition once and
use the L,U,P arrays on each different vector b. You can write your own function to do that. Then
again, if efficiency is such a concern, then perhaps it’s time to switch to a programming language.

4.2 QR decomposition

Another technique is the QR decomposition. This method will decompose A to an orthogonal
matrix Q and a right-triangular matrix R. That Q is orthogonal means that:

Q−1 = QT

which makes it easy to invert. Also R can be easily inverted being a right-triangular matrix, so by
rewriting a linear-systems problem as

Rx = QTb

we can solve it, following the footsteps of the LU technique. You can also compute determinants.
It turns out that

det(Q) = 1

so

det(A) = det(R) =
n∏

i=1

rii

8

288

The QR method requires twice as many operations as LU, so LU is more commonly used. However,
as you will learn in your numerical methods course, there are many other instances where QR
decompositions can come in handy. One application of QR decompositions is in obtaining an
orthonormal basis to a vector space. If you think of the columns of A and the columns of Q as
vectors, then both sets of vectors span the same space. The difference is that the vectors obtained
through matrix Q are orthogonal with one another.

To do a QR decomposition in Matlab call:

[Q,R] = qr(A);

This will produce two matrices Q and R such that A = QR. Matlab provides a few variations to
this call:

[Q,R,P] = qr(A);

will produce a permutation matrix P, and return in Q and R the QR decomposition of AP. The
permutation matrix is chosen so that the absolute values of the diagonal elements |rii| is decreasing
as i increases.

4.3 Cholesky decomposition

When a matrix A ∈ Rn×n is symmetric and positive definite it has a more efficient triangular
decomposition. Symmetric means that

aij = aji,∀ i, j ∈ [n]

and positive definite means that
xTAx > 0∀x ∈ Rn×1

If both conditions are true, then A can be decomposed to

A = RTR

where R is an upper triangular matrix and RT is the transpose. In complex matrices, you must use
the complex conjugate transpose instead. The Cholesky algorithm will attempt to compute this
decomposition. The algorithm can self-detect when it fails, and in practice this ability is used to
establish whether symmetric matrices are positive definite. In Matlab, you can invoke the Cholesky
algorithm with the chol command:

R = chol(A);

If the algorithm fails, Matlab will issue a warning. You can suppress the warning by calling chol

like this:

[R,p] = chol(A)

If p is non-zero, then this means that the cholesky algorithm failed and the original matrix is not
positive definite. Positive definiteness is an important property. Many theorems in linear algebra
are known for positive definite matrices, and many times it is useful to be able to decide numerically
whether a symmetric matrix is positive definite. Also, when we know that the matrix A in a system
Ax = b is positive definite, we can use this method to solve the system; it would be faster than
LU.

9

289

4.4 SVD decomposition

To conclude, another very useful decomposition is the SVD decomposition. The theorem behind
SVD decompositions states:

Theorem 4 If A ∈ Rm×n then there exist two orthogonal matrices U ∈ Rm×m and V ∈ Rn×n
such that

UTAV = diag(σ1, σ2, . . . , σp) ∈ Rm×n

where p = min{m,n} and σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0.

To compute the SVD decomposition of a matrix A in matlab you use the svd function as follows:

[U,S,V] = svd(A);

where S will be a diagonal matrix containing the σi. If you only want to look at the σi, then do

s = svd(A);

This call will return an array containing just the σi. Given the SVD decomposition, the inverse of
a square nonsingular matrix A can be computed with:

A−1 = V · [diag(1/σj)] ·UT

and the solution to a linear system Ax = b becomes:

x = V · [diag(1/σj)] ·UTb

The reason why SVD is important is because it can diagnose two pathologies: ill-conditioning and
singularity. That you can tell from the condition number which is defined by:

cond(A) =
max{σi}
min{σi}

When the condition number is too large, i.e. close to 1/ε where ε is the floating point accuracy, then
we say that the matrix is ill-conditioned. When this happens, merely computing the equation above
for the inverse is very susceptible to floating point errors. One remedy is to increase the floating
point accuracy to that needed. However, there is a theorem that suggests a better approach. That
theorem says that if you take those 1/σi that are really bad and replace them with zero and then
do the equation above as if nothing is wrong, then you can get a much more accurate answer than
both the SVD solution and a direct method; accurate in the sense that the residual:

r = |Ax− b|

will be much smaller than the numerical result yielded by a direct method or the ordinary SVD
method. It takes some discretion to decide which 1/σi to kill, and whether you get the desirable
accuracy in the residual. A recommended tolerance is to eliminate those σi such that

σi < ε ·max{m,n} ·max{σi}

10

290

where m and n are the size of A, and ε the floating point precision. The matrix A−1 obtained by
the expression above in which the small σi have been eliminated is called the pseudoinverse matrix.
You can use the pinv command to compute the pseudoinverse using the SVD method. One way
to invoke this command is by saying:

B = pinv(A);

in which case the tolerance mentioned above is used. Alternatively, you can specify your own
tolerance tol by invoking the pinv command like this:

B = pinv(A,tol);

It is important to understand that the pseudoinverse matrix is not really the same as the
inverse matrix. The point is that in an ill-conditioned problem, we are going to get a more accurate
answer if we use the pseudoinverse, rather than if we attempt to compute the inverse and use that
instead.If, in the worst case scenario, the residual we get by this method is still not good enough
then your other option is to increase your floating point precision. To do this, assign the variable
eps in matlab to your desired precision. For example, to get quad precision set:

eps = 1e-32;

When the condition number is infinite, that is when some σi = 0 exactly, the matrix has
no inverse. Unfortunately, numerics being what it is, if you have an actual singular matrix, you
probably won’t see exact zeroes because of round-off error. So, it takes some discretion to decide
whether you are dealing with a singular matrix or an ill-conditioned matrix as well.

Matlab has a special command for estimating condition numbers:

c = cond(A);

The cond will compute the condition number. There are two other algorithms for condition esti-
mation that can be invoked by the commands condest and rcond. See the help pages for more
information.

The orthogonal matrices U and V can also give us their share of information. If the n
columns of A are vectors spanning a vector space of interest, then the columns of U will contain
an orthogonal set of vectors spanning the same space. Nothing special so far, since you can do
this with the QR decomposition too. The bonus is that with SVD you can detect whether the
dimensionality of the vector space is the same as the amount of vectors that you use to span the
space. If any zeroes (or nearly zeroes) occur in one of the σi then this means that the vector space
was not in fact n-dimensional. To deal with that case, you just eliminate the columns in U that
correspond to the ill-behaved σi. The vectors in U that remain will be an orthogonal basis for the
vector space.

An equivalent way of stating the previous paragraph is to say that SVD can be used to
determine the rank of the matrix A. Rank is the dimensionality of the vector space spanned by
the columns of a matrix. 1 We say that a square matrix A ∈ Rn×n is full rank if it has rank n.

1it doesn’t actually make a difference if you pick the rows of the matrix. A theorem tells you that you will get the
same number, always

11

291

Many theorems in linear algebra apply only on matrices that are full-rank, so from the numerical
perspective we want to have a way to diagnose matrices that are not full rank. SVD provides us
with a method to do that.

In addition to rank, we can also determine the null space of a matrix A ∈ Cn×m. The null
space is defined to be

null(A) = {x ∈ Cm×1 : Ax = 0}
that is, the set of vectors x for which Ax is zero. For non-singular matrices, the null-space consists
only of x = 0. For matrices of rank(A) = r < m the last m− r columns of V give an orthonormal
basis for the nullspace. Finally for matrices of rank(A) = r > m the null space is null(A) = {0}

These concepts become useful when you are trying to solve linear systems

Ax = b

in which A ∈ Cn×m is no-longer a square matrix. In such cases, if A actually has a null space,
to find the set of x that satisfy the linear system, we find one particular solution x0. Then full
solution set becomes:

{x ∈ Rm×1 : Ax = b} = {x + x0 : x ∈ null(A)}

In practice, we don’t care to know the full solution space. Instead we want to find the unique x
that minimizes the residual

r(x) = |Ax− b|
The backslash operator will solve this problem. To find the x that minimizes the residual do:

x = A\b;

Exercise 3 Write a matlab function which will accept a set of vectors spanning a linear space
in the form of a matrix, and optionally a threshold for the σi. Your function should return an
orthogonal set of vectors that span the same space, but take care to remove the vectors whose σi
falls bellow the threshold.

5 Eigenvalue Problems

A completely different type of problem that shows up in many forms is the eigenvalue problem. Let
A ∈ Cn×n be a square matrix, x ∈ Cn×1 be a vector and λ ∈ C be a complex number. We want to
find the pairs (λ,x) that satisfy the linear equation:

Ax = λx

The set of λ for which corresponding x exist are the eigenvalues of the matrix. The x that
correspond to each eigenvalue form the corresponding eigenvector space. Individual members of
that space are called eigenvectors. Finding the eigenvalues, and then from these the eigenvectors
is the problem at hand.

One approach to solving this problem is to find the eigenvalues first, and then from them, find
the eigenvectors. To find the eigenvalues we use this theorem:

12

292

Theorem 5 Let A ∈ Cn×n and λ ∈ C.

λis an eigenvalue of A⇐⇒ det(λI−A) = 0

It turns out that if you expand that determinant, you obtain a polynomial

p(λ) = det(λI−A) =
n∑

k=1

akx
k

which is called the characteristic polynomial, so to find the eigenvalues we need find the roots of
that polynomial. For matrices up to size n = 4 there are direct methods that will give you the
solution. So for such matrices, the eigenvalue problem is trivial. For larger polynomials there are
no direct methods, and in many cases there is no simpler way to solve polynomial equations except
by reducing them to eigenvalue problems! In fact, it is quite common to solve even 3rd order and
4th order polynomials this way.

In Matlab we usually solve eigenvalue problems with the eig function. The call:

e = eig(A);

will return a vector containing the eigenvalues of A. The call:

[V,D] = eig(A);

produces a diagonal matrix D of eigenvalues and a full matrix V whose columns are the corresponding
eigenvectors.

The grand strategy of all eigenvalue algorithms is based on the fact that the matrix Z−1AZ
has the same eigenvalues as A for all non-singular Z. What we want to do then is to apply
the appropriate sequence of Z matrices that will diagonalize our matrix A. Then, the diagonal
elements of the diagonal matrix will also be it’s eigenvalues. Of course, this is easier said than
done. In what follows, we will sketch out how this is done, and introduce you to all the related
nifty Matlab functions. You can use these functions to operate on a lower level, and experiment
with the eigenvalue algorithms more directly.

5.1 Hessenberg Forms

The first thing we want to do to our matrix A is bring it to the so-called Hessenberg Form. The
Hessenberg form of a matrix is zero bellow the first lower subdiagonal and non-zero everywhere
else. The existence theorem for Hessenberg forms says that:

Theorem 6 If A ∈ Cn×n then there exists a unitary P ∈ Cn×n such that

PHAP = H

where H is such that
hij = 0,∀(i, j) : i > j + 1

13

293

The theoretical emphasis here is that we can bring our A to this funky form by applying a sequence
of unitary Z matrices. In your numerical analysis course you will learn that this guarantees the
numerical stability of these repeatitive transformations.

In Matlab, you can get this far by applying the hess function:

H = hess(A);

will return the matrix H. If you also want to look at P, call:

[P,H] = hess(A);

5.2 Schur Decompositions

The next step is to converge to the Schur decomposition. Here are the relevant existence theorems:

Theorem 7 If A ∈ Cn×n then there exists a unitary Q ∈ Cn×n such that

QHAQ = T = D + N

where D = diag(λ1, λ2, . . . , λn) and N ∈ Cn×n is strictly upper triangular. Furthermore, Q can be
chosen so that the eigenvalues λi appear in any order along the diagonal.

This decomposition is called the Complex Schur Form. There is another one for real matrices:

Theorem 8 If A ∈ Rn×n then there exists an orthogonal Q ∈ Rn×n such that

QTAQ =




T11 T12 · · · T1m

0 T22 · · · T2m
...

...
. . .

...
0 0 · · · Tmm




where each Tii is either a 1 × 1 matrix which is an eigenvalue of A or a 2 × 2 matrix whose
eigenvalues are also eigenvalues of A.

This one is called the Real Schur Form.
Matlab provides with a function called schur. The call

[Q,T] = schur(A)

will return the real schur form if the matrix is real, and the complex schur form if the matrix is
complex. If you don’t want the real schur form, then the function rsf2csf will convert the inputted
real schur form to complex:

[Q,T] = rsf2csf(Q,T);

How do we get to Schur from Hessenberg form? The simplest way to do it is with the so called
QR algorithm:

14

294

1. First of all, we get the Hessenberg form of A:

H0 = PT
0 AP0

2. Then we apply the following recurrence:

{
Hk = QkRk QR decomposition
Hk+1 = RkQk

It can be proven that these repetive iterations are actually equivalent to applying unitary matrices
for Z and that they will take the Hessenberg form all the way to Real Schur form! In your
numerical analysis course you will learn more details about the various algorithms that take you
from Hessenberg to Schur. With Matlab you can actually experiment with many of these algorithms
and see how they perform.

5.3 Balancing

Before applying the QR algorithm it is a good idea to balance the matrix. By balancing we
rescale the matrix by transforming it to D−1AD where D is a diagonal matrix so that it it has
approximately equal row and column norms. In matlab, you can balance a matrix with the balance
function:

B = balance(A);

While experimenting with variations of the QR algorithm, you can see what happens as you include
or not include balancing.

5.4 Miscellaneous

With symmetric matrices, the following miracles happen: the eigenvalues are real, the Hessenberg
form is a tridiagonal matrix, and the QR algorithm doesn’t merely take us to a real Schur decom-
position, but it completely diagonalizes our matrix! An even more exciting development is that
for square symmetric matrices the Schur decomposition and the SVD decomposition are the same
thing! From this fact, plus a few theoretical results, one can obtain an algorithm for computing
the SVD by reducing it to a symmetric eigenvalue problem. The details of this are described in
“Matrix Computations” by Gene Golub.

Another application of eigenvalue problems is solving polynomial equations. As you may
know, direct methods for finding polynomial roots, exist only for polynomials up to 4th degree. Let

P (x) =
n−1∑

k=1

akx
k + xn

15

295

be your polynomial. Form the matrix:

C =




0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1




The eigenvalues of C are the roots of P (x). C is called the companion matrix of the polynomial.
In matlab, if an array P holds the coefficients of a polynomial with p(1) being the highest order
coefficient, the companion matrix can be retrieved by the compan function.

A = compan(p);

Of course Matlab, in it’s never-ending efforts to make this all easier for the user, provides you with
a function called roots that you can use to do all this automatically. So, if you describe your
polynomial with an array p such that

y = p(1)*x^d + p(2)*x^(d-1) + ... + p(d)*x + p(d+1)

then the roots can be obtained by simply saying:

r = roots(p);

You will obtain an array of roots in r. To verify your roots, you can use the polyval function to
evaluate the polynomial. Just call:

y = polyval(p,x);

where p is the array with the polynomial and x is a scalar.
Finally, Matlab has commands that allow the user to solve more generalized eigenvalue prob-

lems. One such problem is the following. Given two square matrices A,B ∈ Cn×n find λ ∈ C and
x ∈ Cn×1 such that

Ax = λBx.

To solve this problem call:

[V,L] = eig(A,B); % eigenvectors -> V, eigenvalues -> L

l = eig(A,B); % eigenvalues -> l

In the first version the eigenvectors are returned as columns of V and the eigenvalues as diagonals
of L. In the second version an array of the eigenvalues is returned.

16

296

297

More on linear ODE systems

���������
	 �
��������� ������	
��������	�� ����������	��������������! �"������#���$�
%
&'%)(+*-,.%
/-02143�546402187.&'%)64983

:�;=<
>=?A@B>DCFEB<
CHG�IJ;+KLEM;)NHO+P+CF?+IQKLERIJCSEB?+T�T�NU@JKWVX<YIZ;+<
IJ;+<�CF@B[\CHG�IJ;+<�T�NHIB@JK^]_<�]'>DCU`O+<XOaIJKbNHcedgfhCF?ST�NX[iO+CHIJ<MIJ;=NHIjIJ;=KWEgKWEkN�P+K^lD<�@J<�OmIkNU>+>+@JCmNHnZ;oGp@JCFT�IJ;+<QCFO=<!>=@JCH>DCFEB<�PoKWO[FCF?+@jIJ<�]'IBqDCrCHs
d�:t;+<!TYNHKWO�T�CHIJKvuHNUIJKWCaO
GpCH@j>+@J<�G2<�@B@ZKWO+wQIJ;+<!T�NUIB@ZK^]�<x]'>DCFO=<�OaIZKLNHcDKWEtIJ;=NUIKvI�>+@JCyurKWP+<�EtNY?+O+KWz=<�P�IZ;+<�CH@B[�IJ;=NHIjnXNHOoEBCFcvuF<
{H|p|4>+@JCFq=cW<�T�E�}=KWO+n�cL?+P+KWO+w�NFcWcA~��H�B�Z�J��>=@JCHqA`cW<XT�E�d��)CH@k<x]+NHTR>=cW<XE�}DEB<�<R��@JCFO+EJCFO��^����dM��P+<�IZNHKLcW<�P�<�]'>DCFEBKWIJKWCFOoCHG�IJ;+<MIJ;=<�CH@B[�KLE�waKvuF<�Oq'[��t>DCFE�IZCFc����y��d� <k��NHOmItIZCREBCFcvuF<�N�cWKWO+<XNH@�EB['E�IZ<�T�CHG4CH@JP=KWO=NU@B[YP+K^lD<�@J<�OmIJKLNHc
<��'?=NUIJKLCFO+E�CHG�IJ;+<�G2CH@JT
� �#� �F����a��� ¡ ¢ £�¤+¥ �

¢ � ¢.¦¨§U¢ ©�t;=<�@J< §U¢ KLE�NYsrO+CX�jO�G2CH@Jn�KLO+w�G2?+O+n�IZKWCFOD})NFO+P � � � ¥ �
¢ �4KWEgN�T�NHIB@JK^]�CHG�nXCFO+E�IZNFOaI�n�Cr<�GL`z=nXKW<�OmIJE�dh:�;=<k<�EBEB<XOaIJKbNHc
@J<�EB?+cWI�CHG8IJ;+<kT�NHIB@JK^]
<x]'>DCFO=<�OaIZKLNHcWEªIJ;+<�CF@B[�KLE«IJ;=NUItIJ;+<�EBCFcL?AIJKWCFOKWEtwFKvuF<�O�q'[� �a� ¬ � � � � <�]'> � � � �­¬ ��® � ¦ <x]r> � � � �=¯�°± <x]r> ��²�³ � �µ´ �¶³ � ©�t;=<�@J<Q¬ ��® �jKWEgIZ;+<QKWO+KvIJKbNHc-n�CaO+P+KvIJKLCFOD}
�t;+KWn·;���<QsrO+Cy�kdM:t;+<Qz+@JE�I�IZ<�@JT¸@J<�>+@Z<�EB<�OmIJE�IJ;+<;+CaT�CFwF<�O=<�CF?+E�EBCFcW?+IJKWCFOD}'�t;+<�@J<XNHE�IJ;+<gEB<Xn�CFO+P�IJ<�@ZT¹@J<�>+@J<XEB<�OmIJE�IJ;+<�>)NU@BIZKWn�?+cLNH@ªEBCFcL?AIJKWCFO�d:�;=<kT�NUIB@ZK^]�<x]r>DCFO+<�OmIJKLNFc)KWEtwFKvuF<�O�q'[

��º � »X¼ � <x]r> � � � �¾½-¿¡ £ ± � À4Á�ÂÃ CHIJ<
IJ;)NUI!IZ;+KWEQKWERNiwF<�O+<�@ZNHcWKWVyNUIJKWCFOiCHGjIJ;+<�:�NX[rcWCH@�EB<�@ZKW<�EM<x]'>
NHO+EBKWCaO_CHGjIJ;+<
E�IZNFO+P=NU@JP<x]r>DCFO+<�OmIJKLNFc�Gp?+O=n�IJKWCFO�d Ã NUIJ?A@·NHcWcv[H}
» ¼ KWEjN À\Ä�À T�NUIB@ZK^]
d«:�;=<�>+@ZCHq=cW<�TÅNUIj;=NFO+P�KWEtIJC<�uHNHcW?)NUIJ<�IJ;+<�T�NHIB@JK^]
<x]'>DCFO=<�OaIZKLNHc+�jKvIJ;+CF?+I�;)N�urKWO+wQIJC�<�uUNFcW?=NUIJ<gNHO�KLOAz=O+KvIZ<jEB?=T�}+�t;+KLnZ;KWEtO+CHI�>+@·NHn�IJKWnyNHced �HdgÆtÇ2È�É+Ê�ËrÌ-ÍaÎ�É)ÏMÌ-Ê�ÐÑÉ=ÇpÈ�É+Ê�Ë�É=Ò
Ó�Ô.Õ�Ï:�;=<�<�uUNHcL?=NUIJKWCaOkCHG=IZ;+<ªTYNUIB@JK^]�<�]'>DCFO+<XOaIJKbNHcH@J<��'?+Kv@Z<�E-IZ;+<�?+EB<�CHG+IJ;=<�nXCFO+n�<�>=I.CHG=<XKWwF<�Or`uHNHcW?+<XEªNHO+P�<�KWwa<�OauF<Xn�IJCH@JE�d � <�EJNX[�IJ;=NUI�N�TYNUIB@JK^] � ;=NHEh<XKWwF<�OmuUNFcW?+<jÖY�tKWIJ;�<�KLwF<�OmuF<�n�IJCH@× }�KWGtIJ;+<�<��m?)NUIJKWCFO � × � Ö × KWE�EJNUIZKWE�z=<�P�dØ:�C$z)O+PØIJ;+<�<XKWwF<�OmuUNFcW?+<�E�}4[FCa?ÑEBCFcWuF<�IJ;+<G2CFcWcWCy�tKWO=wM<X�m?=NHIJKWCFO�eÙ � P+<�I � � ² Ö � � � ® Â:�;=<�OD}r[FCF?
EB?Aq=EBIJKvIJ?AIZ<�IJ;+<�O'?+T�qD<�@ZEªIZ;=NUI�[FCF?�z=O+P�IJC � × � Ö × NHO+P
EBCacvuF<�IJ;=NUI�IJC!z=O+PIJ;=<kn�CH@B@Z<�E�>DCFO+P+KLO+w�<�KLwF<�OmuF<�n�IJCH@Xd:�;=<�wF<�CaT�<�IB@JKLn�KLOaIJ<�@B>+@J<�I·NUIJKWCFO�KWE«IZ;=NUI�IJ;=<k<�KWwF<XOauF<�n�IJCH@«@J<�>=@J<�EB<�OmIJE�N�P+Kv@J<�n�IJKWCFO
EB?+n·;IJ;)NUIQNFOa[$uF<Xn�IJCH@MIJ;=NUIM>DCFKWOmIJEkIZCX�«NU@JP+E!IJ;=NHIMP+KW@J<�n�IJKLCFO � CH@QKWO�IJ;+<�CH>+>DCFEBKWIJ<�P+Kv@Z<�n�IJKWCaO)��tKLcWc�O+CHI«qD<M���aÚ�{FÚ¶�J���t;+<XOY[FCa?�NU>+>=cW[�IJ;+<gT�NHIB@JK^]
CFO�KvI�d8Û­I��tKWcWc
CFO+cW[YE�IB@Z<�IJn·;�CF@�EB;A@JKWO+s)}NHO=P
IJ;+<gn�CH@B@Z<�E�>DCFO+P+KLO+w�<�KLwF<�OmuUNHcL?+<��tKLcWc
IJ<�cWc)[FCF?�;+Cy�ÜTM?+nZ;�d�ÛÝG4NHcWc
IJ;=<�<XKWwF<�OmuUNFcW?+<�E�NU@J<¤

298

� �����������	��

���������������	���������P+KLE�IJKWO+n�I�}-IJ;=<�O$[FCF?�� @J<YP=<XNHcWKWO=w��tKvIJ;�N�uF<�@B[\O+KWnX<�T�NUIJ@JK^]�}.qD<�nXNF?+EB<R[FCF?��tKLcWchNHcWEJC�;=NXuF<n�CF@B@J<�E�>DCFO=P+KWO+wi<�KWwa<�OauF<Xn�IJCH@JEQIZ;=NUI�NH@J<�CH@BIZ;+CFwFCFO)NHc�IJC\<yNHnZ;¨CHIJ;+<�@�d :t;+KWE�T�<XNHO+E�IJ;=NUI<�uF<�@B[�CHIJ;+<�@«uF<Xn�IJCH@�nXNFO
q�<�P+<�n�CFT�>�CaEB<�P
NHE
��� � ¬ � ¡� £8¤ � � × � ©�t;=<�@J<jIJ;+<tO'?+T!qD<�@JE � � NU@J<tIJ;+<�n�CrCH@JP+KLO=NUIJ<�E4CFGDIJ;+<�uF<Xn�IJCH@�¬�?=EBKWO+w�IJ;+<�<�KWwF<�OmuF<�n�IZCH@JE × �CHG-IJ;+<gT�NUIB@ZK^] � NFE�N!Gp@ZNHT�<gCHG-@J<�G2<�@J<�O+nX<Hd-Û­I�GpCFcLcWCX�jEhIJ;)NUIª�j;+<�O�[FCF?�NU>+>=cW[RIJ;+<gT�NUIB@ZK^]IJC�NFOiNH@Bq=KvIB@·NU@B[�uF<�n�IZCH@�}�NHcWc�IJ;=NHI�;=NH>+>D<�O+E�KWEgIJ;=NUIg[FCF?�� @J<RT!?=cvIJKv>=cW['KWO=w�KvIJE�n�CrCH@ZP+KWO=NUIZ<�E�tKWIJ;�n�<�@JIZNHKWOQn�CFO=E�IZNHOmI�Om?=T�qD<�@JE�}FIJ;+<�<XKWwF<�OmuUNFcW?+<�E�Ö � }a@J<�wmNU@JP+cW<XEBE8CHG)�j;+CkIJ;=KWE8uF<�n�IJCF@hKWE�d:�;=KWEhCFO=cv[M;=CFcWP+E�;=CX��<�uF<�@�� ~��F�� ! �"���Ú$#A�k�%�'&'�)(+*H�B��Ú��F�,"�Ú��R�m�.-/(
�gÚ$#+���J�y�H�B�0�$(){aÚ¶��"1�2"·Ú¶�%3Rd�)?A@BIJ;+<�@JT�CH@J<F}'IZ;+KWE«T�NX[
G2NHKLcDKvG-[FCF?o;=NXuF<k@J<�>D<XNHIJ<�P�<�KWwF<�OmuHNHcW?+<�E�d

�rd54�Ì+Ó�ÕDÇ�6 É76�8=Ô-Ê-É+Ê�Ó�ÇLÌ.Í:�;=<�T�CFE�IYn�CFOmuF<�O+KW<�OmIQIJ<�n·;+O+KW�'?+<�G2CH@�<�uHNHcW?=NHIJKWO+woIJ;+<�T�NHIB@JK^] <x]r>�CaO+<�OmIJKLNHch��NHEYKWOr`uF<�OmIJ<�P�qm[:9ª?AIJV�<�@�dªÛ­IjKLE�q)NHEJ<�P�CFO�IJ;+<kG2CFcWcLCX�tKLO+wQIÝ��C�nXcLNHKWT�E�d��4Kv@ZE�I�}AIJ;+<�@J<��tKWcLc-NHcv�«N�[rE<x]AKWE�IMOm?=T�qD<�@JE<;>=�EB?+n·;\IZ;=NUIkIJ;=<�T�NUIJ@JK^]S<x]'>DCFO=<�OaIZKLNHch» ¼ nXNHO\qD<���@JKWIBIJ<�O$NHEQN�z=O+KvIJ<EB?=T wFKvuF<XO
qm[
�@? � »X¼ � �A ¤¡

= £ ± ;�= � = Â:�;=<�EB<�O'?+T!qD<�@JEMnXNHOSqD<�nyNHcWn�?+cbNUIJ<�P�q'[\?+EBKWO=w�IJ;+<�GpCFcLcWCX�jKWO+w�n�cLNFKWTCBEDA?A>+>DCFEB<RIZ;=NUI���<P+<�z=O+<kNQ>DCFcv[rO+CFT�KLNHc�wFKvuF<�O
q'[
��F � G � � � � �A ¤¡

= £ ± ;�= � = Â:�;=<�OD}�EB?A>+>DCFEB<kIJ;=NUIj[FCF?�s'O+Cy� NHcWc�IZ;+<!<XKWwF<�OmuUNFcW?+<�E«CHG4IZ;+<!TYNUIB@JK^] � dj:t;+<�OD}
GpCF@j<XNHn·;<�KLwF<�OmuUNHcL?+<kÖ�[FCa?�T�NX[
CFq+IZNHKWO
CFO=<k<��'?=NUIJKWCaO
NFE«GpCacWcWCy�tE�dÖ�EBKWTR>)cW<�<�KWwF<XOauHNHcW?+< � H »JI � G � Ö
�Ö�P+CF?Aq)cW<�<�KWwF<XOauHNHcW?+< � H »JI � G � Ö
� � G
K � Ö
�Ö IB@JKW>=cW<g<�KWwF<XOauHNHcW?+< � H » I � G � Ö
� � G K � Ö
� � G KLK � Ö)��@M �
<�IZnHdNDrCFcvurKWO+wMIJ;=<�EB<�<��'?=NUIJKLCFO+E�IJCFwa<�IJ;+<�@«NHEtN�E�[rE�IJ<�T�}A�jKWcWcDwFKvuF<g[FCa?�IJ;+<�O'?+T!qD<�@JEO; = d:�;=KWEjKLEgN�E�IJ@ZNHKWwF;mIBG2CH@B�«NU@JP�nyNHcWn�?+cbNUIJKWCFO
IZ;=NUI�NFcv��NX[rEj��CH@BsrE�dQP�CX��<�uF<�@X}DIJ;=NUI�P+Cr<�EBO�� IT�<yNHOSIJ;=NHIk[FCF?$�jKWcWc�NHcv�«NX['E!;=N�uF<�IJC�P+C�KvI�d�ÛµO\n�<�@BIZNHKWOinXNFEB<�E�}.��<YnXNHOS��CH@BsSKvI�Ca?AIkKWOwF<XO+<�@ZNHc«NHO=P P+<�@JKWuF<�E�>D<�n�KLNHc�@J<XEB?+cvIJEMIJ;)NUIR�tKWcWc�NFcWcWCy� [FCF? IJC$nXKv@Jn�?+T!uF<�OmIRIJ;+<�O+<X<�PØIJCEBCacvuF<�IJ;+<�E�['EBIJ<�T�CHG8cWKWO=<XNU@«<��'?=NUIJKWCaO+E�d�)CH@�<x]ANFTR>=cW<H}
KvG4[FCF?A@�T�NHIB@JK^]�KWEgO+KLn�<�<�O=CF?+wF;�IJC
;=N�uF< À P+KWE�IZKWO+n�It<XKWwF<�OmuUNFcW?+<�E�}=IJ;+<�OIJ;=<kT�NUIB@ZK^]�<x]r>DCFO+<�OmIJKLNFc)nXNFO
q�<�nXNHcWn�?=cLNUIJ<�P�Gb@ZCFT IJ;+<gG2CFcWcLCX�tKLO+wQ<x]'>=@J<�EBEBKLCFO+E�d

<x]r> � � � � � ¡
= £8¤ » I�R ° � =� = � S
TVU�W YXZA\[=2] �Ö^= ² Ö T � � ² Ö T � ��@_ �

:�;=KWE«@J<�EJ?+cvI«q'[�KvIZEB<�cvG�n�CXuF<�@JE�T�CFEBItn�Kv@JnX?+T�E�IZNFO+n�<�E�d

299

�0�����>��
 ���\�,�	��� ���C��
������^��
	�
���Z�>�>��

���
�
�Z��� �����
�>�	�������

� CFE�I.?+EB<�G2?+cFKWE-IJ;+<�� Ä �«nXNFEB<Hd-ÛµOkIZ;+KWE�nXNFEB<H}#��<ªP+KWE�IJKLO+wF?+KWEJ;jqD<�I­��<�<�O�I­��Ct>DCFEBEBKvq)KWcWKvIJKL<�E%BIJ;)NUI�IJ;=<�<�KWwa<�OauHNHcW?=<�EkNU@J<YP+KWE�IJKLO+n�I�}-CF@�IJ;=NHI�IJ;+<�[SNH@J<�<��'?=NHc�d:DA?A>+>DCFEB<RIZ;=NUIk[FCF?�;=NXuF<G2CF?+O+P�IJ;+<�<�KWwa<�OauHNHcW?=<�E�}ANHO+P�IJ;=<�[�NU@Z<!Ö ¤ © Ö � dh:�;+<�O�}+KvG4Ö ¤ � Ö � � Ö�IJ;+<�O� � ® � <x]r> � � � � � » I ° � � ¦ � � � ² Ö � �J�Û­GhÖ ¤��� Ö � IJ;+<�O <x]'> � � � � � � ² Ö � �Ö ¤ ² Ö � » I	� °

¦ � ² Ö ¤ �Ö � ² Ö ¤ » I�� °
� Ö ¤ » I � ° ² Ö � » I � °Ö ¤ ² Ö � � ¦ » I � ° ² » I � °Ö ¤ ² Ö � �� �a�y�

:�;=KWE�@J<�EB?+cWIjKWEgEB?��Yn�KW<�OmItIJC
EBCacvuF<RNHcWc�� Ä �R>=@JCHq=cW<XT�E�d��k<�<�>iKWOiT�KWO+P�})IJ;)NUIj�j;+<�Oo[FCF?srO+Cy�ÜIJ;+<gT�NUIJ@JK^]�<x]r>DCFO+<�OmIJKLNHc�}aIJ;=NHI�NHcLcWCX�jEª[FCa?
IJCM��@JKvIJ<gP+Cy�tO
EBCFcL?AIJKWCFO=EhG2CH@�NHOm[�srKWO+PCHG�G2CH@Jn�KWO=wQGp?+O=n�IJKWCFO=E�d º d�����ÉSÉ+Ç2È�É+Ê�Ë.É=Ò
ÓDÔ.Õ���É+Ó��-Ô.ÐÃ CX� cW<�I�?=Ehn�CFO=EBKWP+<�@4IZ;+<�T�<�IZ;+CrPR?+EB<�PRq'[RIJ;+<�IJ<x]rIBqDC'CFs)d�:�;+KWE�T�<�IJ;+CrPRKWE�<�]'>D<�P+KL<�OaICFO=cv[�t;+<�O NHcWctIJ;+<�<XKWwF<�OmuUNFcW?+<�E�NH@J<�P+KLE�IJKWO+n�I�{0()�¨[FCF? P+C�O+CHIY;)N�uF<�G2CH@Jn�KWO=w$KWO¨[FCF?A@>+@ZCHq=cW<�T�d�Û­ItKWEjNHcWEBC�nXCFO+n�<�>=IJ?=NHcWcW[QKLOaIJ<�@J<�E�IJKLO+wAd
Dr?+>+>DCFEB<�IZ;=NUI × KLE�NHO <�KWwa<�OauF<Xn�IJCH@�CFG�IJ;+<�T�NUIB@JKv] � �tKvIJ; <�KWwa<�OauHNHcW?=<oÖDd � ;=NUI;=NH>+>D<�O+E�KvG�[FCF?ÜNH>+>=cv[IJ;=<�TYNUIB@JK^] » ° ¼ CFO IJ;+<i<�KWwa<�OauF<Xn�IJCH@ × KWO+E�IZ<XNHP��! jEBKLO+wØIJ;+<P+<�z=O+KvIJKLCFOYCFG�IZ;+<�T�NUIB@ZK^]�<x]r>DCFO+<�OmIJKLNFce}a[FCF?oT�NX[
EJ;+CX� IJ;=NUI� �#�F� <x]r> � � � � × � » I ° × ÂDr?+>+>DCFEB<gIJ;=NHI«[FCF?��«NHOaIjIJCREBCFcWuF<�IJ;+<�?+O+GpCH@Zn�<�P
>+@JCFq=cW<�T� � º � �a�
��a��� ¡ ¢ £8¤=¥ �

¢ � ¢ Â:�;=<jsF<�[YKWE�IJCM��@JKWIJ<tIZ;+<jKLO+KvIJKLNFc+n�CFO+P=KvIJKWCFOYNHE«N!cLKWO+<XNU@�n�CFT!q=KWO=NHIJKWCFOYCHG�IJ;+<�<�KWwa<�OauF<Xn�IJCH@JE� � Ù � ¬ ��® � � ¡� £�¤ � � × � Â �EBKWO+w�IJ;+KWE�}A��<kT�NX[�nXNHcWnX?+cLNUIJ<jIJ;+<�EJCFcW?AIJKLCFO�NHE«G2CFcWcWCy�tE%B
¬ � � � � <x]'> � � � �­¬ ��® � � <x]r> � � � � ¡� £�¤ � � × �

� ¡� £�¤ � � <x]r> � � � � × � �
 ¡� £�¤ � � <x]r> � Ö �X� � × �

� � � �
� ;=NUIª[FCF?�wa<�IhKWEhIJ;+<�T�<�IJ;+CrP�CHG�IJ;+<�IJ<x]rIBqDC'CFs)d#"�KWPR[FCF?�EB<�<�;=CX� IJ;+<�TYNUIB@JK^]R<x]r>DCFO+<�Or`IJKbNHc=P+KLEJNU>+>D<XNU@Z<�P��Y:�;+<jKWP+<XN�KWEhIZ;=NUIO� ~
[FCF?
P+CFO�� I�;=NXuF<jG2CH@JnXKWO+wA}mNFO+P � ~
IJ;+<j<�KWwF<�OmuHNHcW?+<�E{F�B�YP+KLE�IJKWO+n�I�})IZ;+<�Oi[FCF?$nyNHOSn�Kv@JnX?+T�uF<XOaIgIJ;+<RnXCFTR>=?AI·NUIJKWCFOoCHG�IJ;+<RT�NUIJ@JK^]o<x]r>DCFO+<�OmIJKLNFcq'[�<�uUNFcW?=NUIJKLO+w�IZ;+<Y�)� &m�%(+*U�J��Ú��F�1"�KLO+E�IJ<XNFPD}r�t;+KWn·;�KWEtNHO�<XNHEBKW<�@�n�CFTR>=?+IZNUIJKWCaODd

"�CFO�� I!G2CH@JwF<�I!IJ;)NUIMKWIMKWEM<XNHEB[$IJC�P+KLNHwFO=CFEB<��j;+<�IJ;+<�@�[FCF?A@�EJCFcW?AIJKLCFO+E�NU@Z<Yn�CF@B@J<�n�I!qm[EB?+q=E�IJKvIZ?AIJKWO+w!IJ;+<XT¹q)NHnZs�IZCQIJ;+<kCH@ZKWwFKWO=NFc)<��'?=NUIZKWCFO+E�d
$ É&%rÉ+ÕDÉ+Ê-Ò
É=Ï

')(+* /-,/.1032547632548,:9<; =#>@?A>@B/CD;DEGFIH�JLK�EMCD;DNMB/O+,H3QPLRTS7UÑ1VS5WAXZY)4Q[�3Q[L0\Y][^6`_aPB5V03[cbedX,`YZX)Xgf�h`[cbji12G0\k	f (LlGlMm ,' n^* *o,/_p,#9`q/2T6rW\2TXg,�s�EGFZtcK�F KQO@,	uM25v�4xwjY)X][cy�z_3525476Lf7h`[cbji12M0\k8f (LlG{Ml ,

300

301

References

The following references were consulted during the preparation of these lecture notes.

(1) A. Pistofides (1992), “Algebra IV”, unpublished lecture notes.
(2) K. Gkatzoulis and M. Karamavrou (1988), “Linear Algebra”, Ekdoseis ZHTH.
(3) T.M. Apostol (1969), “Calculus, Vol. 2”, Wiley.
(4) J. Aldous and R.J. Wilson (2004), “Graphs and Applications”, Springer.
(5) J.A. Bondy and U.S.R. Murty (1976), “Graph Theory with Applications”, Elsevier Science

Publishing.

Lecture notes by Pistofides are available for download at

http://www.math.utpa.edu/lf/OGS/pistofides.html

	MEE1: Brief introduction to Logic and Sets
	MEE2: Basic Linear Algebra
	MEE3: Determinants and Linear Systems
	MEE4: Graph Theory. Part 1
	MEE5: Eigenvalues and eigenvectors
	MEE6: Graph Theory. Part 2
	MEE7: Applications of linear systems
	Programming with Matlab
	Algorithms with Matlab
	More on linear ODE systems

