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Preface

There are very few good Calculus books, written in Englisajlable to the American reader. Onlidi], [Kla], [Apa],
[Olm], and [Sp]] come to mind.

The situation in Precalculus is even worse, perhaps bedagsalculus is a peculiar American animal: it is a review
course of all that which should have been learned in High 8ldhat was not. A distinctive American slang is thus called to
describe the situation with available Precalculus textisothey stink!

| have decided to write these notes with the purpose to, at leaally, for my own students, | could ameliorate this
situation and provide a semi-rigorous introduction to ptealus.

I try to follow a more or less historical approach. My goaldgiot only present a coherent view of Precalculus, but also
to instill appreciation for some elementary results froradatculus. Thus | do not consider a student (or for that matte
instructon to be educated in Precalculus if he cannot demonstrate fBas irrational; that the equation of a non-vertical
line on the plane is of the form= mx+ k, and conversely; that lings= myx+ k; andy = mpx+ k, are perpendicular if and
only if mymp = —1; that the curve with equation= x? is a parabola, etc.

I do not claim a 100% rate of success, or that | stick to the g@madigms each semestdrut a great number of students
seem genuinely appreciative what | am trying to do.

| start with sets of real numbers, in particular, intervalsy to make patent the distinction between rational anational
numbers, and their decimal representations. Usually tiiestts reaching this level have been told fairy tales ak@iandrr
being irrational. | prove the irrationality of the formering Hipassus of Metapontum'’s proof.

After sets on the line, | concentrate on distance on the Aisolute values are a good place (in my opinion) to introduce
sign diagrams, which are a technique that will be exploitesther instances, as for example, in solving rational aisdlaite-
value inequalities.

The above programme is then raised to the plane. | deriveigtende formula from the Pythagorean Theorem. It is
crucial, in my opinion, to make the students understandttteste formulae do not appear by fiat, but that are obtained from
previous concepts.

Depending on my mood, | either move to the definition of fuoies, or | continue to various curves. Let us say for the
sake of argument that | have chosen to continue with curves.

Once the distance formula is derived, it is trivial to talkoabcircles and semi-circles. The graphyof v1—x2 is
obtained. This is the first instance of the translaB®ometry-to-AlgebrandAlgebra-to-Geometrihat the students see, that
is, they are able to tell what the equation of a given circtk®like, and vice-versa, to produce a circle from an equatio

Now, using similar triangles and the distance formula orgagrg | move on to lines, proving that the canonical equation
of a non-vertical line is of the forg = mx+ k and conversely. | also talk about parallel and normal lipegying® that two
non-vertical lines are perpendicular if and only if the protof their slopes is-1. In particular, the graph of =X, y = —X,
andy = |x| are obtained.

The next curve we study is the parabola. First, | give thedatefinition of a parabola. We use a T-square and a string in
order to illustrate the curve produced by the locus definitith turns out to be a sort-of “U”-shaped curve. Then, ushng t
distance formula again, we prove that one special case & fharabolas has equatipa: x°. The graph ok = y? is obtained,
and from this the graph of= /x.

Generally, after all this | give my first exam.

We now start with functions. Aunctionis defined by means of the following five characteristics:

Iplato’s dictum comes to mind: “He does not deserve the agijaimanwho does not know that the diagonal of a square is inconmahkuwith its
side.

2| don't, in fact, | try to change emphases from year to year.

3| wonder how many of my colleagues know how to prove thas irrational? Transcendental? Same épfog2, cos1, etc. How many tales are the
students told for which the instructor does not know the f#oo

4The Pythagorean Theorem once again!
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a set of inputs, called trdomainof the function;
a set of alpossibleoutputs, called th&arget setf the function;

a name for a typical input (colloquially referred to as thenmy variablg

A w0 PR

a name for the function;
5. an assignment rule or formula that assigns to every eleafi¢he domain a unique element of the target set.
All these features are collapsed into the notation

- Dom(f) — Target(f)
' X — f(x)

Defining functions in such a careful manner is necessaryt Migrican books focus only on the assignment rule (formula)

but this makes a mess later on in abstract algebra, lineabegcomputer programming etc. For example, even though th

following four functions have the same formula, they araiferent:

. R —- R | . [O54e — R
a: > b: 5 ;
X = X X — X
. R — [0 . (0540 —  [05+0o]
C: 2 X d: 2 X
X = X X — X

for ais neither injective nor surjectivd,is injective but not surjectives is surjective but not injective, ardlis a bijection.

| first focus on the domain of the function. We study which flolsssets of real numbers can be allowed so that the output
be a real number.

| then continue to graphs of functions and functions definedraphs: At this point, of course, there are very functional
curves of which the students know the graphs: ondy x, X — |X|, X — X2, X — /X, X — /1 — x2, piecewise combinations of
them, etc., but they certainly can graph a function with adi(@nd extremely small domain). The repertoire is thenrelad
by considering the following transformations of a functibnx — —f(x), x — f(—x), x— V f(Hx+h) +v, x — |f(X)],
x— f(|x|), x— f(—|x|). These last two transformations lead a discussion aboutave odd functions. The floor, ceiling,
and the decimal part functions are also now introduced.

The focus now turns to the assignment rule of the functiod,iamere where the algebra of functions (sum, difference,
product, quotient, composition) is presented. Studemgaarght the relationship between the various domains ofitren
functions and the domains of the new functions obtained bytrerations.

Composition leads to iteration, and iteration leads to lisegunctions. The student now becomes familiar with the
concepts of injective, surjective, and bijective functoifihe relationship between the graphs of a function andvtrse are
explored. It is now time for the second exam.

The distance formulais now powerless to produce the graptooé complicated functions. The conceptsmfnotonicity
andconvexityof a function are now introduced. Power functions (withcslyi positive integral exponents are now studied.
The global and local behaviour of them is studied, obtaimirgtalogue of curves= x",ne N.

After studying power functions, we now study polynomial$ieTstudy is strictly limited to polynomials whose splitting
field isR.

We now study power functions whose exponent is a stricthatieg integer. In particular, the graph of the curye= 1 is
deduced from the locus definition of the hyperbola. Studyfregmonotonicity and concavity of these functions, we abéai
catalogue of curveg=x"",ne N.

5This last means, given a pictureli? that passes the vertical line test, we derive its domain mwagjé by looking at its shadow on tk@ndy axes.

6] used to make a brief incursion into some ancillary topicshef theory of equations, but this makes me digress too math fny plan ofAlgebra-
Geometry-Geometry-Algehrand nowadays | am avoiding it. | have heard colleagues aauRuffini's Theorem, solely to be used in one example of
Calculus |, the factorisation of a cubic or quartic polynahiin optimisation problems, but it seems hardly worth thei@é@n for only such an example.
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Rational functions are now introduced, but only those whmsaerators and denominators are polynomials splittirig.in
The problem of graphing them is reduced to examining the latdhe zeroes and poles, and their global behaviour.

I now introduce formulee of the type— x2/", n € Z\ {0}, whose graphs | derived by means of inverse functions-ofx",
n € Z. This concludes the story of Precalculus | as | envisiomid| iais time for the third exam, usually during the last week
of classes. A comprehensive final exam is given during firakeweek.

These notes are in constant state of revision. | would gre@ibreciate comments, additions, exercises, figures,ietc.
order to help me enhance them.

David A. Santos




To the Student

These notes are provided for your benefit as an attempt toisgthe salient points of the course. They anery terse
account of the main ideas of the course, and are to be usetyrmstfer to central definitions and theorems. The number of
examples is minimal. Theotivationor informal ideas of looking at a certain topic, the ideakilig a topic with another, the
worked-out examples, etc., are given in class. Hence thetes are not a substitute to lecturgeu must always attend to
lectures The order of the notes may not necessarily be the ordemietidn the class.

There is a certain algebraic fluency that is necessary foueseaat this level. These algebraic prerequisites would be
difficult to codify here, as they vary depending on class oasp and the topic lectured. If at any stage you stumble in
Algebra, seek help! I am here to help you!

Tutoring can sometimes help, but bear in mind that whoeverslyou may not be familiar with my conventions. Again, |
am here to help! On the same vein, other books may help, batgbeach presented here is at times unorthodox and finding
alternative sources might be difficult.

Here are more recommendations:
e Read a section before class discussion, in particular,theadefinitions.

e Class provides the informal discussion, and you will prafitni the comments of your classmates, as well as gain
confidence by providing your insights and interpretatioia topic. Don’t be absent!

¢ | encourage you to form study groups and to discuss the amsigis. Discuss among yourselves and help each other
but don'’t beparasites!Plagiarising your classmates’ answers will only lead yodisaster!

e Once the lecture of a particular topic has been given, takeskflook at the notes of the lecture topic.
e Try to understand a single example well, rather than illedignultiple examples.

e Start working on the distributed homework ahead of time.

e Ask questions during the lecture.There are two main types of questions that you are likely ko as

1. Questions of Correction: Is that a minus sign therd¥ou think that, for example, | have missed out a minus
sign or wroteP where it should have bedp,’ then by all means, ask. No one likes to carry an error till K&/
because the audience failed to point out an error on line h'tdeaait till the end of the class to point out an error.
Do it when there is still time to correct it!

2. Questions of Understanding: | don’t get iRdmitting that you do not understand something is an actirggu
utmost courage. But if you don't, it is likely that many oteén the audience also don’t. On the same vein, if you
feel you can explain a point to an inquiring classmate, | alitbw you time in the lecture to do so. The best way
to ask a question is something like: “How did you get from themd step to the third step?” or “What does it
mean to complete the square?” Asseverations like “I dordenstand” do not help me answer your queries. If |
consider that you are asking the same questions too mang,tinmay be that you need extra help, in which case
we will settle what to do outside the lecture.

e Don't fall behind! The sequence of topics is closely int&ated, with one topic leading to another.
e You will need square-grid paper, a ruler (preferably a Tesgly some needle thread, and a compass.

e The use of calculators is allowed, especially in the oceadiengthy calculations. However, when graphing, you will
need to provide algebraic/analytic/geometric supportfmarguments. The questions on assignments and exams will
be posed in such a way that it will be of no advantage to havephing calculator.

e Presentation is critical. Clearly outline your ideas. Wheiting solutions, outline major steps and write in complet
sentences. As a guide, you may try to emulate the style pesénthe scant examples furnished in these notes.

"My doctoral adviser used to say “I saq | wrote B, | meantC and it should have bedb!

viii
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Belongs to.

Does not belong to.

For all (Universal Quantifier).

There exists (Existential Quantifier).
Empty set.

PimpliesQ.

Pif and only if Q.

The Natural Number$0,1,2,3,...}.

The Integerq...,—3,-2,—-1,0,1,2,3,...}.
The Rational Numbers.

The Real Numbers.

The Complex Numbers.

The set ofn-tuples{(as,ay,...,an)|ax € A}.
The open finite interva{x € R : a < x < b}.
The closed interva{x e R:a< x<b}.
The semi-open intervglx € R: a < x < b}.
The semi-closed intervdk € R :a < x < b}.
The infinite open interva{x € R : x > a}.
The infinite closed intervglx € R : x < a}.
The suma; +ax+---+an_1+ an.




||% The Line

This chapter introduces essential notation and termiryaiogt will be used throughout these notes. The focus of thisse
will be the real numbers, of which we assume the reader hasngaimmiliarity. We will review some of the properties ofite
numbers as a way of having a handy vocabulary that will be temedture reference.

1.1 Sets and Notation

1 Definition We will mean by aseta collection of well defined members elements A subseis a sub-collection of a set.
We denote thaB is a subset of by the notatiorB € A or sometime® c A.*

Some sets of numbers will be referred to so often that theyamaspecial notation. Here are some of the most common ones.
Empty set.

The Natural Number$0,1,2,3,...}.

The Integerq...,—3,-2,-1,0,1,2,3,...}.

The Rational Numbers.

The Real Numbers.

The Complex Numbers.

QOFONZQ

ObservethaNCZCQCR CC.

From time to time we will also use the following notation, bmwed from set theory and logic.

€ Isin. Belongs to. Is an element of.

o4 Is not in. Does not belong to. Is not an element of.
v For all (Universal Quantifier).

3 There exists (Existential Quantifier).

P—=—= Q PimpliesQ.
P& Q Pif and only if Q.

2 Example —1€ Zbut} ¢ Z.

3 Definition Let A be a set. Ifa belongs to the se4, then we writea € A, read ‘ais an element of.” If a does not belong
to the sefA, we writea ¢ A, read ‘ais not an element oA.” The set that has no elements, thagiapty setwill be denoted by
.

There are various ways of alluding to a set. We may use a géscrj or we may list its elements individually.

4 Example The sets
A={xcZ:x¥* <9}, B={xeZ:|x<3}, C={-3-2,-10,123}
are identical. The first set is the set of all integers whosaglies between 1 and 9 inclusive, which is precisely tcerse
set, which again is the third set.
5 Example Consider the set
A={2916,...,716},

where the elements are in arithmetic progression. How miemyents does it have? Is 481A? Is 514 A? What is the sum
of the elements oA?

1There is no agreement relating the choice. Somecusedenote strict containment, that &< B but A # B. In the case when we want to denote strict
containment we will simply writeA & B.



2 Chapter 1

Solution: » Observe that the elements have the form
2=2+7-0, 9=2+7-1, 16=2+47-2, ...,
thus the general element term has the f@&m7n. Now,
2+7n=716 = n=102

This means that there at3elements, since we started with=rD.

If 24+ 7k = 401, then k=57, so401< A. On the other hand+ 7a=514 — a= 5712 which is not integral,
and hencé14¢ A.

To find the sum of the arithmetic progression we will use &tduae to the great German mathematician K. F.
Gaul? who presumably discovered it when he was in first grawladd the elements of A, put

S=2+9+16+---+716
Observe that the sum does not change if we sum it backwards, so
S=716+709+702+---+16+9+2.
Adding both sums and grouping corresponding terms,

2S = (2+716)+ (9+709) + (16+702) +-- -+ (702+ 16) + (709+9) + (716+ 2)
— 718+718+718+--+718+718+718
= 718103

since there ard 03terms. We deduce that

S 718 103: 36977
2
<
A B A B A B
Figure 1.1:AUB Figure 1.2:ANB Figure 1.3:A\ B

We now define some operations with sets.

6 Definition Theunionof two setsA andB, is the set
AUB={x:(xeA)or(xeB)}.
This is read A unionB.” See figure
Theintersectionof two setsA andB, is

AnNB={x:(xe A)and(xe B)}.
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This is read A intersectiorB.” See figurel.2.
Thedifferenceof two setsA andB, is
A\B={x:(xeA)and(x ¢ B)}.

This is read A set minusB.” See figurel.3.

Interval Notation  Set Notation Graphical Representation
[a; b] {xeR:a<x<b}* 4 °
a b
la;b| {xeR:a<x<b} 4 °
a b
[a; b {xeR:a<x<b} , °
a b
la; b {xeR:a<x<b} o °
a b
|a; +oo] {xeR:x> a} o
a —+o00
(a5 oo {xeR:x>a} o
a —+o00
]—o0; b[ {xeR:x<b} °
—00 b
]—o0; o] {xeR:x<b} o
— o0 b
| o0} oo R
—00 —‘,—00

Table 1.1: Intervals.

7 Example LetA={1,2,3,4,5,6}, andB = {1,3,5,7,9}. Then

AUB={1,2,3,4,56,7,9}, ANB={1,3,5}), A\B={246}, B\A={7,9}.

8 Example Consider the sets of arithmetic progressions
A={3,9,15,...,681}, B={9,14,19,...,564}.

How many elements do they share, that is, how many elemepts?doB have?

Solution: » The members of A have common differe@@nd the members of B have common differehice
Since the least common multiple®and5 is 30, and9 is the smallest element that A and B have in common,
every element in AB has the forn®+ 30k. We then need the largestkN satisfying the inequality

9+30k <564 — k<185,

and since k is integral, the largest value it can achievEdsThus A0 B has18+ 1 = 19 elements, where we have
addedl because we start withx 0. In fact,

ANB={9,39,69,...,549}.
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9 Definition Aninterval | is a subset of the real numbers with the following propeftg:d | andt €1, and ifs< x < t, then

x € |. In other words, intervals are those subsets of real numtitirshe property that every number between two elements is
also contained in the set. Since there are infinitely manintlds between two different real numbers, intervals wittidct
endpoints contain infinitely many members. Tableshews the various types of intervals.

Observe that we indicate that the endpoints are includeddgnsof shading the dots at the endpoints and that the enslpoin
are excluded by not shading the dots at the endpoints.

10 Example If A=[-10;2, B=]—0; 1], then
ANB=[-10;1, AUB=]-»;2], A\B=[1;2, B\A=]—0;-10[.

11 Example LetA = [1— V314 \/E} B= [’—27 n[. By approximating the endpoints to three decimal placesfimtel —
V3~ —0.7321+2~ 2414 3~ 1571 m~3.142. Thus

ANB=[7:14v2|, AUB=[1-VEn|, A\B=[1-V3J[ B\A=|1+VZn]|.

We conclude this section by defining some terms for futureresfce.

12 Definition Leta € R. We say that the set; € R is aneighbourhooaf a if there exists an open intervhkentred ata
such that € .43. In other words, 43 is a neighbourhood d if there exists @ > 0 such thata— d;a+ 8] € A4. This last
condition may be written in the form

{xeR:|x—a] <9} & Sa.

If 44 is a neighbourhood dd, then we say that#; \ {a} is adeleted neighbourhood of a

This means that#; is a neighbourhood d if a has neighbours left and right.

13 Example The intervall0; 1] is neighbourhood of all of its points. The intery8} 1], on the contrary, is a neighbourhood
of all of its points, with the exception of its endpoints 0 dndince 0 does not have left neighbours in the interval anoes d
not have right neighbours on the interval.

1 —_— — |
}Z{)J]*)*[l)

a—-d% a a+od

Figure 1.5: Sinistral neighbourhood Figure 1.6: Dextral neighbourhood
Figure 1.4: Neighbourhood @t ofga g ofga g
We may now extend the definition of neighbourhood.

14 Definition Leta € R. We say that the s& € R is adextral neighbourhoodbr right-hand neighbourhoodf a if there
exists ad > 0 such thafa;a+ [ S V. We say that the s&t’ C R is asinistral neighbourhoodor left-hand neighbourhood
of aif there exists @’ > 0 such thafa— &";a] S V'.

The following result will be used later.

3jt may seem like a silly analogy, but think that[ag b] the brackets are “arms” “huggingtandb, but in]a; b] the “arms” are repulsed. “Hugging” is thus
equivalent to including the endpoint, and “repulsing” isigglent to excluding the endpoint.
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15 Lemma Let (a,b) € R?,a < b. Then every number of the fora+ (1—A)b, A € [0;1] belongs to the intervdh; b).
Conversely, ifx € [a;b] then we can find & € [0;1] such thak=Aa+ (1—A)b.

Proof: ClearlyAa+ (1—A)b=b+A(a—Db)andsince a-b <0,
b=b+0(a—b)>b+A(a—b)>b+1(a—b)=a,

whence the first assertion follows.

Assume now that& [a;b]. Solve the equationx Aa+ (1— A)b for A obtainingA = g%g. All what remains to
prove is thatd < A <1, but this is evident, a8 < x — b < b—a. This concludes the proof]

Homework

1.1.1 Problem List all the elements of the set 1. 2 belongs t&;
(xeZ:1< 2 < 100 xis divisible by 3. 2. ifnisinSthenn+5is also inS;
3. ifnisin Sthen 3is also inS.

1.1.2 Problem Determine the set Find the largest integer in the set
{xeN:x*—x=6} {1,2,3,...,2008

explicitly. that does not belong t&

1.1.3 Problem Determine all the fractions lying strictly between| 2L-1.8 Problem Use the trick of Gaul3 to prove that
and 3 that have denominator 6, that is, determine the set n(n+1)

14243+ +n=—"0—.

{xeN:2<)—g<3}

1.1.9 Problem LetC =]-5;5], D =]—1;+[. FindCND, CuUD,

explicitly.
C\D, andD\C.

1.1.4 Problem Let A= {a,b,c,d,e, f} andB = {a,ei,o,u}. Find )

AUB, ANB, A\ B andB\A. 1.1.10 Problem LetC = }—5;3[, D= [4;4—00[. FindCnD, CUD,
C\D, andD\C.

1.1.5 Problem Describe the following sets explicitly by either prp
viding a list of their elements or an interval. 1.1.11 ProblemLet C = [-1;—-2++/3[, D = [—0.5;\/2— 1].

FindCND,CUD,C\D, andD\C.

1. {xeR:x*=8} 5. {xeZ:|x <4}
2. {xeR:|x3=8} 6. {xeR:|x <1} 1.1.12 Problem Consider 101 different pointgy, o, ..., X101 be-
3. {xeR:|x =-8} 7. {xeZ:|x <1} longing to the intervalO; 1. Shew that there are at least two say
i andx;j,i # j, such that
4. {xeR:|x <4} 8. {xeZ:x2002 0} X andxj,i 7 ], su
. - % —Xj| < ==
1.1.6 Problem Describe explicitly the set 100
. 2
{xeZ:x<0,1000< x* < 2003 1.1.13 Problem (Dirichlet's Approximation Theorem) Shew that

vxeR, VN € N,N> 1, 3(he N, ke N) with 0 < k< N such that
‘

by listing its elements.
1
< —.

X NK

k

1.1.7 Problem The setSis formed according to the following rules:

1.2 Rational Numbers and Irrational Numbers

Let us start by considering the strictly positive naturaimoers. Primitive societies needed to count objects, sair, tbws
or sheep. Though some societies, like the Yanomame indiaBeazil or members of the CCP English and Social Sciences
Departmeritcannot count above 3, the need for counting is indisputdbfact, many of these societies were able to make the

4Among these, many are Philosophers, who, though unsuctésgihding their Philosopher’s Stone, have found renatitl
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following abstraction: add to a pile one pebble (or stonekgf@ry sheep, in other words, they were able to make onedo-0
correspondences. In fact, the wdaEdlculuscomes from the Latin for “stone.”

Breaking an object into almost equal parts (thafriactioningit) justifies the creation of the positive rational numbers.
In fact, most ancient societies did very well with just thecsly positive rational numbers. The problems of countamgl of
counting broken pieces were solved completely with thesebaus.

As societies became more and more sophisticated, the needonumbers arose. For example, it is believed that the
introduction of negative quantities arose as an accoumginglem in Ancient India. Fair enough, writel if you have a
rupee—or whatever unit that ancient accountant used—in fayour. Write—1 if you owe one rupee. Write O if you are
rupeeless.

Thus we have construct®l Z and@Q. In Q we have, so far, a very elegant system of numbers which allevis perform
four arithmetic operations (addition, subtraction, nplitiation, and division)and that has the notion of “order”, which we
will discuss in a latter section. A formal definition of theiceal numbers is the following.

16 Definition The set of rational numbe€3is the set of quotients of integers where a denominator Otialtawed. In other
words:

Q:{g:anbeZ,b;«éO}.

Notice also tha€) has the wonderful property efosure meaning that if we add, subtract, multiply or divide any tational
numbers (with the exclusion of division by 0), we obtain assuit a rational number, that is, we stay within the same set.

. a . . . . , - . .
Sincea= 1 every integer is also a rational number, in other woFds, Q. Notice that every finite decimal can be written
as a fraction, for example, we can write the decimal3as

What about non-finite decimals? Can we write them as a fra2tidhe next example shews how to convert an infinitely
repeating decimal to fraction from.

17 Example Write the infinitely repeating decimal 845 = 0.345454545. . as the quotient of two natural numbers.

Solution: » The trick is to obtain multiples of x 0.345454545. . so that they have the same infinite tail, and
then subtract these tails, cancelling them o180 observe that

10x = 3.45454545..;1000k = 345454545 .. — 100X — 10x= 342 —= x= g%(z) = ;—2

<

By mimicking the above examples, the following should beclelecimals whose decimal expansions terminate or repeat a
rational numbers. Since we are too cowardly to prove the stak¢ment, we prefer to call it a

18 Fact Every rational number has a terminating or a repeating diaixpansion. Conversely, a real number with a ter-
minating or repeating decimal expansion must be a ratiomalber. Moreover, a rational number has a terminating ddcima
expansion if and only if its denominator is of the forfi3®, wherem andn are natural numbers.

. . L 1 1 o
From the above fact we can tell, without actually carrying the long division, that saym: 210 has a terminating

. . 1
decimal expansion, but that, sag/;does not.

5 “Reeling and Writhing, of course, to begin with, "the Mockla replied, “and the different branches of Arithmetic—Bition, Distraction, Uglification,
and Derision.”

6That this cancellation is meaningful depends on the commiepinvergenceof which we may talk more later.

"The curious reader may find a proof in many a good number tHewok, for examplel] 1
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Is every real number a rational number? Enter the Pythagdeaiety in the picture, whose founder, Pythagoras lived
582 to 500 BC. This loony sect of Greeks forbade their memtoezat beans. But their lunacy went even farther. Rather than
studying numbers to solve everyday “real world problemss-same misguided pedagogues insist—they tried to understan
the very essence of numbers, to study numbers in the abstathe beginning it seems that they thought that the “only
numbers” were rational numbers. But one of them, Hipassdéatpontum, was able to prove that the length of hypotenuse
of a right triangle whose leg$ad unit length could not be expressed as the ratio of twgéngeand hence, it wasational.

19 Theorem [Hipassos of Metapontumy]2 is irrational.

. - m .
Proof: Assume there iss Q such that $= 2. We can find integers m # 0 such that s= —. The crucial part

of the argument is that we can choosennsuch that this fraction be in least terms, and hencg nannot be
both even. Now, 38 = n¥, that is2n® = n?. This means that fris even. But then m itself must be even, since
the product of two odd numbers is odd. Thus-rBa for some non-zero integer a (sinceA0). This means that
2n? = (2a)? = 4a> = n? = 2a°. This means once again that n is even. But then we have a dicttca, since

m and n were not both even.

V2
-2 -1 0 1 2

Figure 1.7: Theorem9.

The above theorem says that the RetQ of irrational numbers is non-empty. This is one of the veist fir
theorems ever proved. It befits you, dear reader, if you wabetcalled mathematically literate, to know its proof.

Suppose that we knew that every strictly positive naturatiper has ainiquefactorisation into primes. Thenifis not a
perfect square we may deduce that, in gengralis irrational. For, if,/n were rational, there would exist two strictly positive

natural numbera, b such that,/n = o This implies thana? = b?. The dextral side of this equality has an even number of

prime factors, but the sinistral side does not, sinég not a perfect square. This contradicts unique facteoisaand so,/n
must be irrational.

From now on we will accept the result thaf is irrational whenever n is a positive non-square integer.

The shock caused to the other Pythagoreans by Hipasso#f wesuso great (remember the Pythagoreans were a cult),
that they drowned him. Fortunately, mathematicians havieired since then and the task of burning people at the stake or
flying planes into skyscrapers has fallen into other hands.

20 Example Give examples, if at all possible, of the following.
. the sum of two rational numbers giving an irrational numbe

. the sum of two irrationals giving an irrational number.

. the sum of two irrationals giving a rational number.

. the product of a rational and an irrational giving a ragéilomumber.

1
2
3
4. the product of a rational and an irrational giving an imaal number.
5
6. the product of two irrationals giving an irrational numbe

7

. the product of two irrationals giving a rational number.

Solution: »

8The appropriate word here is “cathetus.”
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This is impossible. The rational numbers are closed uadelition and multiplication.
Take both numbers to R€2. Their sum i2y/2 which is also irrational.

Take one number to B¢2 and the other-+/2. Their sum i, which is rational.

take the rational number to Heand the irrational to be\/2. Their productisl- v2 = /2.
Take the rational number to ifeand the irrational to be/2. Their product i0- /2 = 0.
Take one irrational number to bg2 and the other to be/3. Their product isy2- v/3 = /6.

R A I

_— 1 . . 1
Take one irrational number to bg2 and the other to be—=. Their product isy2- — = 1.

V2 V2

<

After the discovery that/2 was irrational, suspicion arose that there were othetioral numbers. In fact, Archimedes
suspected that was irrational, a fact that wasn’t proved till the XIX-th Qary by Lambert. The “irrationalities” of/2 and
rrare of two entirely “different flavours,” but we will need sal more years of mathematical studyg even comprehend the
meaning of that assertion.

Irrational numbers, that is, the sit\ Q, are those then having infinite non-repeating decimal esipas. Of course,
by simply “looking” at the decimal expansion of a number wa’t&ell whether it is irrational or rational without having
more information. Your calculator probably gives about @il places when you try to computé2, say, it says,/2 ~
1.414213562. What happens after the final 2 is the interestiegtipn. Do we have a pattern or do we not?

21 Example We expect a number like
0.100100001000000001,

where there are, 2,8 16,... zeroes between consecutive ones, to be irrational, sicgaps between successive 1's keep
getting longer, and so the decimal does not repeat. For the ssason, the number

0.123456789101112.,

which consists of enumerating all strictly positive natumambers after the decimal point, is irrational. This numbé&nown
as theChampernowne-Mahlerumber.

22 Example Prove thaty'2 is irrational.

Solution: » If v/2 were rational, then there would be two non-zero natural narapa b such that
-2 o= 2
b b2

a a

a . . : . -
2Z-b'h must also be rational. This says tha® is rational, contradicting Theorerm?. <«

. a. .
SmceB is rational,
Homework

1.2.1 Problem Write the infinitely repeating decimal .T23 = | say, 12345. Can you find amational number whose first five deci-

0.123123123.. as the quotient of two positive integers. mal digits after the decimal point are 12345?

1.2.2 Problem Prove that/8 is irrational. 1.2.5 Problem Find a rational number between the irrational num-
bersyv/2 andy/3.

1.2.3 Problem Assuming that/6 is irrational, prove tha/2 + /3

must be irrational. 1.2.6 Problem Find an irrational number between the irrational
numbersy/2 andy/3.

1.2.4 Problem Suppose that you are given a finite string of integérs,

90r in the case of people in the English and the Social ScieBegsirtments, as many lifetimes as a cat.
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1.2.7 Problem Find an irrational number between the rational nl.lnbersl% andg.

1.3 Operations with Real Numbers

The set of real numbers is furnished with two operatior@ddition) and (multiplication) that satisfy the following axioms.

23 Axiom (Closure)
xeR and yeR = x+yeR and xyeR.

This axiom tells us that if we add or multiply two real numhehen we stay within the realm of real numbers. Notice that
this is not true of division, for, say,-40 is the division of two real numbers, but10 is not a real number. This is also not
true of taking square roots, for, sayl is a real number buf—1 is not.

24 Axiom (Commutativity)

xeR and yeR = x+y=y+x and Xxy=yx

This axiom tells us that order is immaterial when we add ortiplyltwo real numbers. Observe that this axiom does not hold
for division, because, for example;:12 # 2+ 1.

25 Axiom (Associativity)

xeRyeR and zeR = x+(y+2) =(x+y)+z and (xy)z=Xx(y2).

This axiom tells us that in a string of successive additiansoltiplications, it is immaterial where we put the paresgbs.
Observe that subtraction is not associative, since, fomgda, (1—1) —141—(1-1).

26 Axiom (Additive and Multiplicative Identity) There exist two unique elements, 0 and 1, wit @, such that'x € R,

O+x=x+0=x, and 1x=x-1=x

27 Axiom (Existence of Opposites and Inverseslror allx € R 3—x € R, called theoppositeof x, such that
X+ (=x) = (—=x) +x=0.

Forallyc R\ {0} 3y~ € R\ {0}, called themultiplicative inversef y, such that
yyt=yty=1

In the axiom above, notice that 0 does not have a multiplieativerse, that is, division by 0 is not allowed. Why? Letois f
a moment suppose that 0 had a multiplicative inverse, say\We will obtain a contradiction as follows. First, if we miply
any real number by 0 we get 0, so, in particularD0® = 0. Also, if we multiply a number by its multiplicative invexsve
should get 1, and hence; 01 = 1. This gives

0=0-01=1,

in contradiction to the assumption tha$01.
28 Axiom (Distributive Law) For all real numberg,y, z, there holds the equality
X-(Yy+2)=X-y+X-Z
It is customary in Mathematics to express a product like By juxtaposition, that is, by writing together the
letters, as in xy, omitting the product symbolFrom now on we will follow this custom.

The above axioms allow us to obtain various algebraic itiesfiof which we will demonstrate a few.
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29 Theorem (Difference of Squares Identity)For all real numbera, b, there holds the identity

a’?—b?=(a—b)(a+b).

Proof: Using the distributive law twice,
(a—b)(a+b)=a(a+b) —b(a+b)=a’+ab—ba—b?>=a’+ab—ab—b?>=a?—b?.
O

Here is an application of the above identity.

30 Example Given that 32— 1 has exactly two divisora andb satisfying the inequalities
50<a< b< 100,
find the producab.

Solution: » We have
2%2_1 = (2%6_1)(2%6+1)
= (28-1)(28+1)(2%+1)
= (22-1)(2*+1)(8+1)(2%8+1)
= (22-1)(22+1)(2*+1)(28+1)(2*+1)
= (2-1)(2+1)(22+1)(2*+1)(28+1)(2%+1).
Since28 + 1 = 257, a and b must be part of the product

(2—-1)(2+1)(22+1)(2*+1)=255=3-5-17.
The only divisors o255 in the desired range ar8-17 = 51 and5- 17 = 85, whence the desired product is
51-85=4335 «
31 Theorem (Difference and Sum of Cubes}or all real numbera, b, there holds the identity

a®—b*=(a—b)(@+ab+b? and a+bd=(a+b)(a®—ab+b?).

Proof: Using the distributive law twice,
(a—b)(a®+ab+ b?) = a(a® + ab+ b?) — b(a®+ ab+b%) = a®+ a’b+ ab’ — ba® —ab? —b*=a> - b>.
Also, replacing b by-b in the difference of cubes identity,
a4+ b*=a’—(—b)®= (a—(—b))(a®+a(-b) + (—b)?) = (a+b)(a®— ab+b?).
d
Theorems29 and31 can be generalised as follows. lret- 0 be an integer. Then for all real numbearg
X'y = (X—y) (X Xy X YTy 2y, (1.1)
For example,
=y = (X=Y) (Y +xP YY), Y = (X Y) (Y = xyP ).

See problem
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32 Theorem (Perfect Squares ldentity)For all real numbera, b, there hold the identities

(a+b)?=a’42ab+b?> and (a—b)?=a’—2ab+b?

Proof: Expanding using the distributive law twice,
(a+b)%>= (a+b)(a+b)=a(a+b)+b(a+b)=a®+ab+ ba+ b= a®+ 2ab+ b
To obtain the second identity, replace b-bk in the just obtained identity:
(a—b)2 = (a+ (—b))?=a?+2a(—b) + (—b)?> = a® — 2ab+ b%.
O

33 Example The sum of two numbers is 7 and their product is 3. Find the siuimeir squares and the sum of their cubes.

Solution: » Let the two humbers bela. Then a+ b= 7 and ab= 3. Then
49= (a+b)>=a’+2ab+b’=a’+b’+6 — a’+b>=49-6=143

Also,
a®+b® = (a+b)(a®+ b? —ab) = (7)(43—3) = 280

Thus the sum of their squares48 and the sum of their cubes280. «

X
X
+ = 4+ =
a1 E N
Figure 1.8: Completing the squané+ ax= (x+ g)z - (g)z.

The following method, calleGophie Germain’s trick is useful to convert some expressions into differences wéss.

34 Example We have

XA+l = X422 +1-x2
= (R+1)32%2-x2
= (R4+1-XC+1+Xx).
35 Example We have
X*+4 = XAHaC+4-ax2
= (X+2)2-4ax2

= (+2-2X)(+2+2x).

1050phie Germain (1776-1831) was an important French matieamaof the French Revolution. She pretended to be a manderdo study Math-

ematics. At the time, women were not allowed to matriculdtthaEcole Polytechnique, but she posed as a M. Leblanc in ordebttmin lessons from
Lagrange.
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Sophie Germain’s trick is often used in factoring quadratitomials, where it is often referred to as the techniquearh-
pleting the squarewhich has the geometric interpretation given in figiré We will give some examples of factorisations
that we may also obtain with the trial an error method commtauight in elementary algebra.

36 Example We have

x> -8x—9 = x°—8x+16-9-16
= (x—4)2-25
= (x—4)°-5°
= (x—4-5)(x—4+5)
= (x=9)(x+1).

Here to complete the square, we looked at the coefficientdlilear term, which is-8, we divided by 2, obtaining-4, and
then squared, obtaining 16.

37 Example We have

X+ ax—117 = XP4+4x+4-117-4

(x+2)2-112

(X+2—11)(x+2+11)

= (x—9)(x+13).

Here to complete the square, we looked at the coefficientdiriiear term, which is 4, we divided by 2, obtaining 2, ancthe
squared, obtaining 4.

38 Example We have

b2 b2 b2  3b2 b\? 3n2
2 2 .2 v 2 _ 2 i = -
a“+ab+b“=a“+ab+ 772 +b“=a"+ab+ 7 + 7 <a+2) + i

Here to complete the square, we looked at the coefficientelitiear term (ina), which isb, we divided by 2, obtainin%),

2
and then squared, obtaini%.

39 Example Factor &%+ 3x— 8 into linear factors by completing squares.

Solution: » First, we force al as coefficient of the square term:

2x2+3x—8_2(x2+§x—4>.
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- : . 3. L .3 .
Then we look at the coefficient of the linear term, WhICfEJSWe divide it by2, obtamlngZ, and square it,

.. 9
obta|n|ngE. Hence

2% +3x—8 = 2<x2+—x—4)
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40 Theorem (Perfect Cubes Identity) For all real numbera, b, there hold the identities
(a+b®=a’+3a’b+3aP+b®> and (a—b)®=a®—3a%b+3ak’— b3

Proof: Expanding, using Theorefi?,

(a+b)3 (a+b)(a+b)?

= (a+b)(a®+2ab+b?)
= a(a’+2ab+b?) +b(a?+ 2ab+ b?)
= a+2a’b+ab?+ ba? + 2ab? + b3

= a+3a’h+3ab?+ b3
The second identity is obtained by replacing b with:
(a—b)® = (a+ (—h))® = a?+3a%(—b) + 3a(—b)?+ (—b)® = a> — 3ab + 3ab? — b3.
d
It is often convenient to rewrite the above identities as
(a+b)P=a’+b3+3aba+b), (a—b)*=a®>—Db*—3ab(a—bh).

41 Example Redo examplé3 using TheoremiO.

Solution: » Again, let the two numbers the two numbeyk aatisfy a+ b= 7 and ab= 3. Then
343=73= (a+b)}=a+b®+3ab(a+b)=a3+b3+3(3)(7) = a3+ b =343-63=280,
as before «

The results of Theorenis? and40 generalise in various ways. In Appendixwe present the binomial theorem, which
provides the general expansion(af+ b)" whenn is a positive integer.

Homework
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1.3.1 Problem Expand and collect like terms:

2, X\’
X 2)

1.3.2 Problem Find all the real solutions to the system of equati

2

)

X

X+y=1, Xy=—2.

1.3.3 Problem Find all the real solutions to the system of equati

C+yi=7  x+y=L1

1.3.4 Problem Compute
1222432 42 4... 1 99 — 1007

1.3.5 Problem Let n € N. Find all prime numbers of the forrn
3
n°>—8.

1.3.6 Problem Compute 1234567880- 12345678891234567891
mentally

1.3.7 Problem The sum of two numbers is 3 and their product is
What is the sum of their reciprocals?

1.3.8 Problem Given that
1, 000 002 000, 001

has a prime factor greater than 9000, find it.

1.3.9 Problem Let a, b, c be arbitrary real numbers. Prove that

(a+b+c)? =a+b?+c?+2(ab+ be+ca).

1.3.10 Problem Let a, b, ¢ be arbitrary real numbers. Prove that

a3+ b3+ —3abc= (a+b+c)(a® 4+ b? +c? —ab—bc—ca).

1.3.11 Problem The numbers, b, ¢ satisfy

a+b+c=-6, abtbctca=2  a+b>+cc=6.

Findabc

1.4 Order on the Line

1.3.12 Problem Compute

+/(1000000(1000003(1000002(1000003 + 1

without a calculator.

n13.3.13 Problem Find two positive integera, b such that

\/5+2vV6=a+vh.
ns

1.3.14 Problem If a,b, c,d, are real numbers such that
a®+b?+c?+d?=ab+bc+cd+da,

prove tha=b=c=d.

1.3.15 Problem Find all real solutions to the equation

h (x+y)% = (x—1)(y+1).

1.3.16 Problem Leta, b, c be real numbers wita+b+c=0. Prove
3

that
a2+b? b2+ 2+a2 ad bd ¢
+ =4+ 4.
a+b b+c c+a bc ca ab

9.3.17 Problem Prove that ifa € R, a# 1 andn e N\ {0}, then

g 1-a"
l-a’

l1+a+a’+---a" (1.2)

Then deduce that ifiis a strictly positive integer, it follows
XM=y = (=) (XY xRy,
1.3.18 Problem Prove that the product of two sums of squares is a

sum of squares. That is, lath, c,d be integers. Prove that you can
find integersA, B such that

(a®+b?) (P +d?) =A*+ B
1.3.19 Problem Prove that ifa, b, c are real numbers, then

(a+b+c)®>—3(a+b)(b+c)(c+a) =a>+b3+c3.

1.3.20 Problem If a,b,c are real numbers, prove that + b° + c®
equals

(a+b+c)® —5(a+b)(b+c)(c+a)(a® +b?+c® +ab+ bc+ca).

The set of real numbeiR® is also endowed with a relatian which satisfies the following axioms.
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42 Axiom (Trichotomy Law) For all real numbers,y exactly one of the following holds:

X>Y, X=Yy, Oor y>X

43 Axiom (Transitivity of Order) For all real numbers,y, z,

if x>y and y>z then x>z

44 Axiom (Preservation of Inequalities by Addition) For all real numbers,y,z,

if x>y then x+z>y+z

45 Axiom (Preservation of Inequalities by Positive Factork For all real numbers,y, z,

if x>y and z>0 then xz>yz

46 Axiom (Inversion of Inequalities by Negative Factors)For all real numbers,y, z,

if x>y and z<0 then xz<yz

X <y means that y X. X<y means that either y x or y= x, etc.

The above axioms allow us to solve several inequality proble

47 Example Solve the inequality
2x—3< -13

Solution: » We have
2X—3< —-13 — 2x< —-13+3 = 2x< -10.

The next step would be to divide both side2b8ince2 > 0, the sense of the inequality is preserved, whence

X< -10 = x<_T10 — X< —b.

<

48 Example Solve the inequality
—2x—3< -13.

Solution: » We have

—2Xx—3<-13 = —-2x<-1343 = —-2x<-10.

The next step would be to divide both sides{2y Since—2 < 0, the sense of the inequality is inverted, and so
—-10
—2X< -10 = x> — = X> -5

<

The method above can be generalised for the case of a prodiuctar factors. To investigate the set on the line where
the inequality
(auX+bg)--- (anx+bn) > 0, (1.3)

holds, we examine each individual factor. By trichotomy,daeryk, the real line will be split into the three distinct zones
{XeR:agx+bx>0}U{xeR: :ax+by=0}U{xeR:ax+bx<0}.

We will call the real line with punctures at= —% and indicating where each factor changes signstge diagramcorre-
k
sponding to the inequalityl(3).
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49 Example Consider the inequality
x>+ 2x—35<0.

1. Form a sign diagram for this inequality.
2. Write the se{x € R : x2 4 2x— 35< 0} as an interval or as a union of intervals.
3. Write the set{x €ER:X2+2x—35> 0} as an interval or as a union of intervals.

. X+7 . . .
4. Write the sel{x eR: % > O} as an interval or as a union of intervals.

. X+7 . . .
5. Write the se{x eR: Xi5 < —2} as an interval or as a union of intervals.

Solution: »

1. Observe that3+ 2x—35= (x— 5)(x+ 7), which vanishes when= —7 or when x= 5. In neighbourhoods
of x=—7 and of x= 5, we find:

X € J=eoi =7[ | =7:5] | ]5;+00]
X+7 - + +
x—5 - — +
(x+7)(x=5) | + — +

On the last row, the sign of the produet+ 7)(x— 5) is determined by the sign of each of the facto#s&
and x—5.

2. From the sign diagram above we see that
{XeR: X2 +2x—35<0} =]-7;5[.
3. From the sign diagram above we see that
{xeR:x2+2x—35> 0} = |—00; —7]U [5; +00[.
Notice that we include both=x —7 and x= 5in the set, agx+ 7)(x— 5) vanishes there.

4. From the sign diagram above we see that

{XG R: g > 0} =]—00; —7]U]5; 4.

. . . X+7 . . . .
Notice that we includex —7 smce% vanishes there, but we do notinclude % since there the fraction

X+ 7 vould be undefined.
X—5

5. We must add fractions:

ES—Z = E+2§0 S i7—1—2)(_10§0 = 3X_3§0.
X—5 X—5 Xx—5  x-5 X—5
We must now construct a sign diagram puncturing the line-atixand x= 5:
X€e |—o0;1[ | ]1;5] | ]5; 40|
X—-3 | — + +
X=5 | — - +
3x—3 n n
X=5
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We deduce that ;
X+

R:——<-23=11:5.

{xe X—57~ } [1:9]

Notice that we include x 1 since vanishes there, but we exclude=x since there the fraction

-3 is undefined.

<
50 Example Determine the following set explicitly{x € R : —x? 4+ 2x—2 > 0}.

Solution: » The equation-x? 4 2x— 2 = 0 does not have rational roots. To find its roots we either use th
quadratic formula, or we may complete squares. We will usdatier method:

X4 2xX—2=—( =2 —2=—(R—2x+1)—2+1=—(x—1)>— 1.

Therefore,
—X242x—2>0 = —(x—1)2-1>0 «— —((x—1)2+1)>0.

This last inequality is impossible for real numbers, as thression—((x— 1)2+ 1) is strictly negative. Hence,
{(XER: X2 +2x—2>0} = .

Aliter: The discriminant of-x?+2x— 2is 2% — 4(—1)(—2) = —4 < 0, which means that the equation has complex
roots. Hence the quadratic polynomial keeps the sign oédsling coefficient;-1, and so it is always negative.
<

51 Example Determine explicitly the sefix € R : 32x? — 40x+ 9 > 0}.

Solution: » The equatior82x?> — 40x+ 9 = 0 does not have rational roots. To find its roots we will complet

sguares:
5 9
2_ < =

32 (x 4x+ 32)

52 9 52>

32 —40x+9

5
2_ < T2
32( x 4X+82+32 7

I
w
N
7 N
=
|
ol Ul
N———
N
|
o
[~

We may now form a sign diagram, puncturing the line ahg — ?7 and at x= g—i— g:
(x_g g) - + +
x_g_@ - - +
5] ) O N

We deduce that

{XER:32><2—40X+9>0}_]—m,g_glu §+§;+w
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Care must be taken when transforming an inequality, as agi@asformation may introduce spurious solutions.

52 Example Solve the inequality

2V1—X—VX+1> /X
Solution: » For the square roots to make sense, we must have
X € ]—00; 1] N [—1;400[N[0;+0o[ = x€[0;]].
Squaring both sides of the inequality, transposing, and #wuaring again,
A1—X)—4V1— R+ X+1>X = 5—4x> 4y/1—x2 = 25— 40+ 16x%> 16— 16x%2 = 322 —40x+9 > 0.

This last inequality has already been solved in exarapleThus we want the intersection

5 V7 5 V7 5 V7
st[fs‘L)[][ss
|
Homework
1.4.1 Problem Consider the set 1.4.7 Problem Solve the inequality
{xeR:x®—x—-6<0}. V2x+14vV2x-5>v5-2x.
1. Draw a sign diagram for this set. . e e .
] g .g ] ) ) 1.4.8 Problem Find the least positive integer satisfying the in-
2. Using the obtained sign diagram, write the set equality
{xeR:x®—x—-6<0} Vntl \f<7
as an interval or as a union of intervals.
3. Using the obtained sign diagram, write the set 1.4.9 Problem Determine the values of the real parametesuch
that the set
X e R L?) O . 2 t
s> At:{xe]R.(t—l)x +tx+Z:O}
as an interval or as a union of intervals. 1. be empty;
2. have exactly one element;
1.4.2 Problem Write the set 3. have exactly two elements.
2
Xs+X—6 .
{x eR: 2+7x76 > 0} 1.4.10 Problem List the elements of the set
. . . {er m|n<x+24—7>>1}
as an interval or as a union of intervals. 3
1.4.3 Problem Give an explicit description of the set 1.4..;1 Problem Demonstrate that for all real numbexs> 0 it is
verified that 1
{XeR: X —x—4>0}. 2x3—6x2+7x+1>0.
1.4.4 Problem Write the set 1.4.12 Problem Demonstrate that for all real numberti is verified
R:x2—x—6<0 R: 17Xy that
{xe X —x—6< }m X € X132 & 38 132 _x+1>0.
in interval notation.
1.4.13 Problem The values ofa,b,c, andd are 12,3 and 4 but
not necessarily in that order. What is the largest possibaleevof
1.4.5 Problem Solve the inequality/x2 — 4x+3 > —x+2. ab-bc+cd+ ga? g P
1 —ax2 .
1.4.6 Problem Solve the inequalityl# - % 1.4.14 Problem Prove that ifr > s>t then

r2—L4+t2> (r—s+t)2
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1.5 Absolute Value

We start with a definition.

53 Definition Letx € R. Theabsolute value ofx-denoted byx|—is defined by

—x if x<0,
x| =

X if x>0.

The absolute value of a real number is thus the distance bféeabnumber to 0, and henge—y| is the distance between
andy on the real line. The absolute value of a quantity is eithemhantity itself or its opposite.

54 Example Write without absolute value signs:
1. |vV3-2],
2. |V7-5
3. (V75— V32|

Solution: » We have
1. since2 > 1.74> /3, we havegy/3—2| =2 /3.
2. sincey/7 > /5, we havey/7 — /5| = V/7— /5.
3. by virtue of the above calculations,
V7 —V5|— |vV3-2||= |V7T-V5—(2-V3)| = |VT+V3-v5-2.
The question we must now answer is wheti@ér- v/3 > v/5+ 2. Butv/7++/3 > 4.38> v/5+2and hence
V7+vV3—v6—2|=V7+V3-V5-2.

<

55 Example Letx > 10. Write|3 — |5 — x|| without absolute values.

Solution: » We know that5 — x| =5—xif 5—x> 0 or that|5— x| = —(5—X) if 5—x < 0. As x> 10, we have
then|5— x| = x— 5. Therefore
3—I5-x|=[3— (x—5)| = [8—x.

In the same manner , eithé8— x| =8—xif8—x>0o0r|8—x = —(8—x) if 8—x< 0. As x> 10, we have then
|8 — x| = x— 8. We conclude that x 10,
[3—]5—x||=x-8.

<

The method of sign diagrams from the preceding section &g udeful when considering expressions involving absolute
values.

56 Example Find all real solutions t¢x+ 1| + [x+ 2| — |[x— 3| =5.

Solution: » The vanishing points for the absolute value terms arex1, x= —2 and x= 3. Notice that these
are the points where the absolute value terms change signdedempos® into (overlapping) intervals with
endpoints at the places where each of the expressions inbs@lues vanish. Thus we have

R=]—00;-2] U [-2;—-1] U[-1;3] U[3;+0a].
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We examine the sign diagram

Xe ]—o0;=2] | [-2;-1] | [-1;3] | [3;+00[
IX+2|= —X—2 X+2 X+2 | x+2
X+1| = —x—1 —x—1 | x+1 |x+1
[x—3| = —X+3 —x+3 | —x+3|x-3
[X+2|+|x+1—|x—3|=| —x—6 X—2 3x X+6

Thus on| — «0; —2] we need-x— 6 =5 from where x= —11. On[—2;—1] we need x 2 = 5 meaning that x= 7.

: . o : 5
Since7 ¢ [—-2;—1], this solution is spurious. Opf-1;3 we need3x = 5, and so x= 3 On [3;+4[ we need
X+ 6 =15, giving the spurious solutionx —1. Upon assembling all this, the solution set is

(3

We will now demonstrate two useful theorems for dealing vn#iqualities involving absolute values.

<

57 Theorem Lett > 0. Then
X <t <= —t<x<t.

Proof: Either|x| = x, or |x| = —x.
If x| =X,

X <t <= x<t <= —t<0<x<t.
If x| = =X,

X| <t <= —x<t <= —t<x<0<t.
d

58 Example Solve the inequality2x— 1| < 1.
Solution: » From theorent7,

2x—1| <1 = -1<2x—1<1 <<= 0<2x<2 < 0<x<1 <= x€[0;]].

The solution set is the intervid; 1]. «

59 Theorem Lett > 0. Then
X| >t < x>t or x<-—t.

Proof: Either|x| =X, or [x| = —x.
If X =X,
X| >t < x>t.
If x| = —X,
X >t <= —x>t <= x< —t.
O

60 Example Solve the inequality3+ 2x| > 1.
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Solution: » From theorent9,
B+2¢>1 = 3+2x>1 or 3+2X< -1 = x>-1 or X< -2

The solution set is the union of intervadseo; —2] U [—1;+[. <4
61 Example Solve the inequalityl — |1 —x|| > 1.

Solution: » We have
l1-1-x|>1«<= 1-]1-x/>1 or 1-|1-x<-1

Solving the first inequality,
1-1-Xx>1 < —|1-x>0 = x=1,

since the quantity-|1 — x| is always negative.
Solving the second inequality,
1-1-X<-1<= —|1-X<-2«= |1-X>2<=1-x>2 or 1-X<-2 = X€[3;+0[U]—0; 1]

and thus

{XeR:|1-]1-X||>1} =]—00; -1 U{1} U[3;+0[.
<
We conclude this section with a classical inequality inuadvabsolute values.

62 Theorem (Triangle Inequality) Leta,b be real numbers. Then

la+b| <lal+|b]. (1.4)

Proof: Since clearly—|a| < a < |a] and—|b| < b < |b|, from Theoren%7, by addition,
—laj<a<]al

to
—|bl <b <|b]

we obtain
—(la]+|bl) <a+b<(ja]+1b]),

whence the theorem follows.

63 Corollary Leta,bbe real numbers. Then

|la] —[bl| < ]a—b[ | (1.5)

Proof: We have
la = [a—b+b[<[a—b|+]b],

giving
lal - [b] < Ja—h].
Similarly,
bl =[b—a+a| < |b—al+[a = [a—b|+]a,
gives

bl —al < Ja—h].
The stated inequality follows from thiS.

Homework
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1.5.1 Problem Write without absolute values:y/3—y/|2— /15| | | 1.5.16 Problem Find the solution set to the equation

|2X| + |x— 1| — 3|x+ 2| = —T7.
1.5.2 Problem Write without absolute valuesf> 2: |x—|1—2x||.

1.5.17 Problem Find the solution set to the equation

1.5.3 Problem If x < —2 prove thafl —|1+X|| = —2—X.
|2X| + [x— 1] = 3|x+2| = 7.

1.5.4 Problem Let a,b be real numbers. Prove thab| = |a||b].
1.5.18 Problem If x < 0 prove that‘xf \/W‘ =1-2x.
1.5.5 Problem Leta e R. Prove that/a2 = |a|.
1.5.19 Problem Find the real solutions, if any, 11012 -3 =2.
1.5.6 Problem Leta € R. Prove that? = |a|?> = |a?|.
1.5.20 Problem Find the real solutions, if any, & — 2x+1=0.
1.5.7 Problem Solve the inequalityl — 2x| < 3.
1.5.21 Problem Find the real solutions, if any, o — [x| — 6 = 0.
1.5.8 Problem How many real solutions are there to the equatiop
2 1.5.22 Problem Find the real solutions, if any, ¢ = |5x— 6|.
|x—4x| =37

) . 1.5.23 Problem Prove that ifx < —3, then|x+ 3| — |x— 4] is con-
1.5.9 Problem Solve the following absolute value equations:

stant.
1 |x—=3[+[x+2/=3,
2. |x=3|+[x+2| =5, 1.5.24 Problem Solve the equation
3. X=3|+[x+2/=7. 2%
2w
x—1

1.5.10 Problem Find all the real solutions of the equation

2 —2x+1—2=0. 1.5.25 Problem Write the set
{xeR:|x+1—|x-2|=-3}

1.5.11 Problem Find all the real solutions tfbx — 2| = |2x+ 1. . .
in interval notation.

1.5.12 Problem Find all real solutions t¢x — 2| + |[x— 3| = 1. )
1.5.26 Problem Let x,y real numbers. Demonstrate that the maxi-

mum and the minimum of andy are given by
1.5.13 Problem Find the set of solutions to the equation

_ XFy+[x-y
X+ |x—1] =2 max(x.y) = 2
and
1.5.14 Problem Find the solution set to the equation min(x,y) = X+y—[|x-yl
) 2 .

X+ |x—1] =1
1.5.27 Problem Solve the inequalityx — 1||x+ 2| > 4.
1.5.15 Problem Find the solution set to the equation

, 2¢-1 1
|2¢| + |x— 1] - 3|x+2| = 1. 1.5.28 Problem Solve the |nequallt% > 5

1.6 Completeness Axiom

The alert reader may have noticed that the smaller set ofv@thumbers satisfies all the arithmetic axioms and ordenax
of the real numbers given in the preceding sections. Why, tthemve need the larger SR In this section we will present an
axiom that characterises the real numbers.

64 Definition A numberu is anupper boundor a set of numberA if for all a € A we havea < u. The smallest such upper
bound is called theupremunof the setA. Similarly, a numbet is alower boundfor a set of numberB if for all b € B we
havel < b. The largest such lower bound is called thBmumof the setB.




Completeness Axiom 23

The real numbers have the following property, which furttistinguishes them from the rational numbers.

65 Axiom (Completeness oR) Any set of real numbers which is bounded above has a suprednyset of real numbers
which is bounded below has a infimum.

Figure 1.9: The Real Line.

Observe that the rational numbers are not complete. For geathere is no largest rational number in the set
{xeQ:x* <2}
since/2 is irrational and for any good rational approximation,@ we can always find a better one.

Geometrically, each real number can be viewed as a point tnaiglst line. We make the convention that we orient the
real line with O as the origin, the positive numbers incnegdowards the right from 0 and the negative numbers decrgasi
towards the left of 0, as in figure 9. The Completeness Axiom says, essentially, that this lagerfo “holes.”

We append the objeeto, which is larger than any real number, and the objeet which is smaller than any real number.
Letting x € R, we make the following conventions.

(400) + (+00) = 400 (1.6)
(—00) + (—0) = —e (1.7)
X+ (+00) = 400 (1.8)
X+ (—00) = —00 (1.9)
X(+00) = +o0 if x>0 (1.10)
X(+00) = —o0 if X< 0 (1.11)
X(—o) = —o0 if x>0 (1.12)
X(—o) = +o0 if X< 0 (1.13)
i—xoo —0 (1.14)

Observe that we leave the following undefined:

400
E, (+°°) + (_00)7 O(:I:oo)
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2.1 Sets on the Plane
66 Definition Let A, B, be subsets of real numbers. Th@artesian Product A B is defined and denoted by
AxB={(ab):acAbeB},

that is, the set of all ordered pairs whose elements belotitetgiven sets.

In the particular case when A B we write

Ax A=AZ

67 Example If A={-1 -2} andB = {—1,2} then
AxB={(-1-1),(-1,2),(-2,-1),(-2,2))},
BxA={(-1,-1),(-1,-2),(2,—-1),(2,-2)},
A2 ={(-1,-1),(~1,-2),(-2,-1),(-2,-2)},
B>={(-1,-1),(-1,2),(2,-1),(2,2)}.

Notice that these sets are all different, even though soeraeesits are shared.

68 Example (—1,2) € Z2 but (—1,v/2) ¢ Z2.

69 Example (—1,v/2) € Z x Rbut(—1,v2) ZR x Z.

70 Definition R? = R x R—thereal Cartesian Plane—- is the set of all ordered paits,y) of real numbers.

We represent the elements®f graphically as follows. Intersect perpendicularly two iespof the real number line. These
two lines are thexes Their point of intersection—which we lab& = (0,0)— is theorigin. To each poinP on the plane we
associate an ordered p&ir= (x,y) of real numbers. Herris theabscissa, which measures the horizontal distance of our
point to the origin, ang is theordinate which measures the vertical distance of our point to thgiloriThe pointsx andy
are thecoordinatesf P. This manner of dividing the plane and labelling its poistsalled theCartesian coordinate system.
The horizontal axis is called theaxisand the vertical axis is called tlyeaxis It is therefore sufficient to have two numbers
x andy to completely characterise the position of a péint (x,y) on the planéR?.

71 Definition Leta < R be a constant. The set
{(xy) eR?:x=a}

is a vertical line.

72 Definition Letb e R be a constant. The set

{(xy) e R*:y=h}

is a horizontal line.

1From the Latinlinea abscissar line cut-off.

24
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Figures?.1and2.2 give examples of vertical and horizontal lines.

. . 4 1
. . P B 3 +
iR I 1 4 2T
I I Ll Ll L1 11 | I | | | | | | | | | 171
L LI LI L L I I I I I I I I | | | | |
T 4 3 2141 2 3 4 L ‘
:: :: 2 4 4 -3 2 -4 4
34— 4 3 4 2 1
. . . B 3 1+
i
Figure 2.1: Linex = 3. Figure 2.2: Liney = —1. Figure 2.3: ExampléZ. Figure 2.4: Example5

73 Example Draw the Cartesian product of intervals

# =113 x]2;4 ={(xy) €ER?:1<x<3, 2<y<4}.

Solution: » The set is bounded on the left by the vertical line £ and bounded on the right by the vertical
line x= 3, excluding the lines themselves. The set is bounded abdke hgrizontal line y= 4 and below by the
horizontal line y= 2, excluding the lines themselves. The set is thus a squatesrténboundary, as in figure.3,

<

74 Example Sketch the region
Z={(xy)eR?:1<x<3, 2<y<4l.

Solution: » The region is a square, excluding its boundary. The graphés in figure?.3, where we have
dashed the boundary lines in order to represent their exatuse

75 Example The region
Z =13 x [—3;40]

is the infinite half strip on the plane sketched in figiiré The boundary lines are solid, to indicate their inclusidhe upper
boundary line is toothed, to indicate that it continues faity.

76 Example A quadrilateral has vertices &t= (5,—9),B= (2,3), C = (0,2), andD = (—8,4). Find the area, in square
units, of quadrilateraABCD.

Solution: » Enclose quadrilateral ABCD in righf AED, and draw lines parallel to the y-axis in order to form
trapezoids AEFB, FBCG, and right GCD, as in figure2.5. The area]ABCD of quadrilateral ABCD is thus
given by

[ABCD = [AED] —|AEFB — [FBCG —[GCD|
= 1(AE)(DE)-1(FE)(FB+AE)—
—3(GF)(GC+FB) — 3(DG)(GC)
= 3(13)(13)- 3(3)(13+ 1) - 3(2(2+1) - 3(8)(2)
= 845-21-3-38
= 525,
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5 6 7 8 9 10 11

Figure 2.5: Exampl&6.

Homework
2.1.1 Problem Sketch the following regions on the plane. 2.1.3 Problem Let A = [-10;5,B = {5,6,11} andC =] — «;6].
1. R ={(xy) eRZ:x< 2} Answer the following true or false.
2. Ro={(xy) eR?:y> -3}
3. Re={(xy) €eR?:|x <3|yl <4}
1. 5eA 5. (0,5,3) eCxBxC.
4 Ra={(xy) B2 (X <3 > 4) Y ocn 053
. Rg= 2:x<3y> ' ' 6. AxBxCCCxBxC.
> Re={(xy) eR":x<3y>4) 3. (0,5,3) € AxBxC. Sttt
6. Re={(xy) eR%:x<3y<4} 4. (0,-5,3) € AxBxC. 7. AxBxCCC3.
2.1.2 Problem Find the area ofAABC where A = (—1,0), B =
(0,4) andC = (1,—-1). 2.1.4 Problem True or falsex(R \ {0})? = R?\ {(0,0)}.

2.2 Distance on the Real Plane

In this section we will deduce some important formulee froralgtic geometry. Our main tool will be the Pythagorean
Theorem from elementary geometry.

B(x2,Y2) B(x2,y2) / B(x2,Y2)

s ly2—yil Ma
: R
A(x1,y1) Xo — X1 Clx,y1)  AlXw,y1) C(x2,y1) A(x,y1)  Q C(x2,y1)
Figure 2.6: Distance be- Figure 2.7: Midpoint of a Figure 2.8: Division of a

tween two points. line segment. segment.
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77 Theorem (Distance Between Two Points on the Planéjhe distance between the poidts= (x1,y1),B = (X2,Y2) in R?
is given by

AB=d((x1,Y1), (X2,¥2)) := v/ (X1 — X2)? + (1 — ¥2)2.

Proof: Consider two points on the plane, as in figure. Constructing the segments CA and BC witk=-C
(x2,y1), we may find the length of the segment AB, that is, the distamweA to B, by utilising the Pythagorean
Theorem:

AB? = AC?+BC? — AB= \/ (Xo—X%1)2+ (Y2 —y1)2.
0

78 Example The point(x,1) is at distance/11 from the poin{1, —x). Find all the possible values &f

Solution: » We have,
d<(X, 1)7 (17_X)> = \/ﬂ

= /(x-1)2+(1+x?2 = Vil

= (x=-12+(1+x? = 11
— 2242 = 11
Hence, x= —3—{2 orx= 3—\{2 <

79 Example Find the point equidistant frod= (—1,3),B= (2,4) andC = (1,1).

Solution: » Let(x,y) be the point sought. Then
d((xy),(~1,3)) =d((x.y),(2,4)) = (x+1)*+(y—3)*= (x=2?+(y—4)?,
d((xy),(=1,3)) = d((x,¥),(1,1)) = (x+1)*+(y—3)?= (x=1)?+ (y— 1)
Expanding, we obtain the following linear equations:
2X+1—6y+9= —4x+4—8y+ 16,

2X+1-6y+9=—-2x+1-2y+1,

or
6x-+ 2y = 10,

4x— 4y = —8.
We easily find thatx,y) = (3, 11). <

80 Example We say that a poinx,y) € R? is alattice pointif x € Z andy € Z. Demonstrate that no equilateral triangle on
the plane may have its three vertices as lattice points.

Solution: » Since a triangle may be translated with altering its angles,may assume, without loss of gener-
ality, that we are consideringsABC with A0,0), B(b,0), C(m,n), with integers k>0, m> 0 and n> 0, as in
figure2.9. If AABC were equilateral , then

AB=BC=CA = b=,/(m-=b)2+n=/m+n2

Squaring and expanding,
b2 = m? — 2bm+ b? + n? = m? + 2.
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From BC= CA we deduce that
—2bm+4b?=0 = b(b—2m) = b=2m,
as we are assuming thath 0. Hence,

2
b2:mz+n2:%+n2 S n:\?b.

Since we are assuming that40, n cannot be an integer, singg3 is irrational. <«

(m,n)

(b,0)

Figure 2.9: Examplé&0.

81 Theorem (Midpoint of a Line Segment) The point <X1 —; XZ, yl—2Fy2

> lies on the line joiningA(x1,y1) andB(x2,Y>2),

and it is equidistant from both points.

Proof: First observe thatitis easy to find the midpoint of a vertimahorizontal line segment. The interval bj
. S b—a a+b
has length b- a. Hence, its midpoint is at-a — =

Let (x,y) be the midpoint of the line segment joiningxfAy1) and B(xy,y2). With C(x2,y1), form the triangle
AABC, right-angled at C. Fronfx,y), consider the projections of this point onto the line segim&C and BC.
Notice that these projections are parallel to the legs of tifiengle and so these projections pass through the
midpoints of the legs. Since AC is a horizontal segment,idpomt is at M = (%,yl). As BC is a horizontal
segment, its midpoint is M= (X2, &23’2). The result is obtained on noting th@¢ y) must have the same abscissa
as Ms and the same ordinate asgviC]

In general, we have the following result.

82 Theorem (Joachimstal's Formula) The pointP which divides the line segmeAB, with A(x1,y1) andB(xz,y2), into two
line segments in the ratim: n has coordinates

nx; -+ Mx Ny; + My
m+n ' m+n '

Proof: The proof proceeds along the lines of Theoréi First we consider the intervdh; b]. Suppose that

X—a m _ . na+mb
a<x<bandthat— = —. This gives x= + .
b-x n m+n

Form nowAABC, right-angled at C. From P, consider the projection Q d @nd the projection R on BC. By
Thales’ Theorem, Q and R divide, respectively, AC and BCearratio m: n. By what was just demonstrated

. . nx +m _ n m -
about intervals, the coordinates of Q e#,w) and the coordinates of R ar(dxz, %) , giving

the result.d]

Homework
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2.2.1 Problem Findd((—2,-5),(4,—3)).

2.2.12 Problem Prove that the diagonals of a parallelogram bisect
each other..

2.2.2 Problem If a andb are real numbers, find the distance pe-

tween the point$a,a) and(b,b).

2.2.3 Problem Find the distance between the poit@d + a, b? 4 b)
and(b+a,b+a).

2.2.4 Problem Demonstrate by direct calculation that

=ai( ).

2.2.5 Problem A car is located at poimh = (—x,0) and an identical
car is located at pointx,0). Starting at time = 0, the car at poin
A travels downwards at constant speed, at a rage>ef0 units per
second and simultaneously, the car at p8itvavels upwards at con
stant speed, at a ratelof> 0 units per second. How many units ap
are these cars after- 0 seconds?

a+c b+d
27 2

a+c b+d

d((a7b),( 55

. . 3 .
2.2.6 Problem Point C is at 5 of the distance fromA(1,5) to
B(4,10) on the segmerAB (and closer td than toA). FindC.

2.2.7 Problem For which value o is the point(x,1) at distance 2
del from the point0,2)?

2.2.8 Problem A bug starts at the poirft-1, —1) and wants to trave|
to the point(2,1). In each quadrant, and on the axes, it moves
unit speed, except in quadrant I, where it moves with haf¢heed.
Which route should the bug take in order to minimise its tifié@
answer isot a straight line from(—1,—1) to (2,1)!

2.2.9 Problem Find the point equidistant froni—1,0), (1,0) and
(0,1/2).

2.2.10 Problem Find the coordinates of the point symmetric
(a,b) with respect to the pointb, a).

2.2.11 Problem Demonstrate that the diagonals of a rectangle

2.2.13 Problem A fly starts at the origin and goes 1 unit ug/2lunit
right, 1/4 unit down, ¥8 unit left, 1/16 unit up, etc.ad infinitum.
In what coordinates does it end up?

2.2.14 Problem Find the coordinates of the point which is a quarter
of the way from(a,b) to (b, a).

2.2.15 Problem Find the coordinates of the point symmetric to
(—a,b) with respect to: (i) thec-axis, (i) they-axis, (iii) the origin.

2.2.16 Problem (Minkowski's Inequality) Prove that if

(a,b),(c,d) € R?, then

v/ (@+¢)2+ (b+d)2 < va2+b2++/c2+d2.

Equality occurs if and only iad = bc.

hrt

2.2.17 Problem Prove the following generalisation of Minkowski's
Inequality. If (ag, by) € (R\ {0})2,1 <k < n, then

{5

Equality occurs if and only if
b b

=}

x
™5

k

Vith
bn

2.2.18 Problem (AIME 1991) LetP = {aj,ay,...,an} be a collec-
tion of points with

O<ayy<ax<---<ap<1v

n
S, = min 2k—1)2+a2,
I k;\/( )% +a

aighere the minimum runs over all such partitidAs Shew that ex-

t@onsider

congruent.

2.3 Circles

actly one 0of$,S;,...,S,,. .. is aninteger, and find which one it is.

The distance formula gives an algebraic way of describingtp@n the plane.

83 Theorem The equation of a circle with radid&> 0 and centréxo, Yo) is

(X—X0)?+ (y—Yo)* = R

(2.1)

This is called theanonical equatiomf the circle with centré (xo,Yo)) and radiusR.
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Proof: The point(x,y) belongs to the circle with radius R 0 if and only if its distance from the centre of the
circle is R. This requires

— d<(X7Y)7(X07YO)> = R
= /(x=x?+{y-¥%? = R
= (Xx=X%0)*+(Y—Y0)? = R

obtaining the result. See figurelQO]
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Figure 2.10: The circle. Figure 2.11: Examplé4. Figure 2.12: Exampl&5.

84 Example The equation of the circle with centfe-1,2) and radius 3 i$x+ 1)? 4 (y— 2)? = 9. Observe that the points
(=1+3,2) and(—1,2+ 3) are on the circle. Thus-4,2) is the left-most point on the circl€2, 2) is the right-most(—1, —1)
is the lower-most, an@-1,5) is the upper-most. The circle is shewn in figiré 1.

85 Example Trace the circle of equation
X% 4+ 2x+y?— 6y = —6.
Solution: » Completing squares,
XA+ 2X+yP— By = —6 = X2+ 2x+1+y> —6y+9= —6+1+9 — (x+ 1)+ (y—3)2=4,

from where we deduce that the centre of the circle-i4,3) and the radius i2. The point(—1+2,3) = (1,3)

lies on the circle, two units to the right of the centre. Theénpo—1— 2,3) = (—3,3) lies on the circle, two units

to the left of the centre. The poif#-1,3+2) = (—1,5) lies on the circle, two unidades above the centre. The
point(—1,3—2) = (—1,1) lies on the circle, two unidades below the centre. See figure <

86 Example A diameter of a circle has endpoir(ts2, —1) and(2,3). Find the equation of this circle and graph it.

Solution: » The centre of the circle lies on the midpoint of the diaméhers the centre i<_22+2, _12+ 3) =(0,1).

The equation of the circle is
¥+ (y—1)?=R.
To find the radius, we observe th& 3) lies on the circle, thus

224 (3-12?=R> — R=2V2

The equation of the circle is finally
X+ (y—1)?=8.

Observe that the point®+2v/2, 1), (0,1+2/2), that is, the point$21/2,1), (—2v/2,1), (0,1+2v/2), (0,1 —2V/2),
(—=2,-1), and(2,3) all lie on the circle. The graph appears in figurel3 «
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87 Example Draw the plane region
{(xy) eR?:X2+y* <4, |x>1}.

Solution: » Observe thaix] > 1 <= x> 10 x< —1. The region lies inside the circle with cent{@, 0) and
radius2, to the right of the vertical line x 1 and to the left of the vertical linex —1. See figure?.14

<

88 Example Find the equation of the circle passing throydht), (0,1) and(1,2).

Solution: » Let(h,k) be the centre of the circle. Since the centre is equidistant f1,1) and (0, 1), we have,

(h—1)%+ (ke 12 =2+ (k—1)%, — h2—2h+1=h2 —> h= %
Since he centre is equidistant frath 1) and (1, 2), we have,

(h—1)%+ (k—1)2= (h—1)?+ (k-2)? = K —2k+1=K —4k+4 = k= ;
The centre of the circle is thu$, k) = (%, %’). The radius of the circle is the distance from its centre to point
on the circle, say, t¢0,1):

OREEE
(-2 +0-2) -2

The equation sought is finally

See figure2.15 «

h A b N Bk o kR N W A~ oGO
h A b N Bk o kR N W A~ O

Figure 2.13: Examplé.13 Figure 2.14: Examplé?. Figure 2.15: Examplés.

Homework

2.3.1 Problem Prove that the point&4,2) and (—2,—6) lie on the| andB = (3,4). Find the equation of this circle.
circle with centre af1, —2) and radius 5. Prove, moreover, that th¢se
two points are diametrically opposite.

2.3.3 Problem Find the equation of the circle with centre(atl, 1)
2.3.2 Problem A diameterAB of a circle has endpointa = (1,2) | and passing througti, 2).
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2.3.4 Problem Rewrite the following circle equations in canonidal 1. Ry \ (R:UR3URy).
form and find their centre€ and their radiusR. Draw the circles. 2. Rs\R
Also, find at least four points belonging to each circle. "
3. Ri\Re
1. x2+y?—2y=35, 4. RyUR3URs
2. X2 +4x+y? —2y=120,
2 _
3. X +4x+y*—2y=5, 2.3.6 Problem Find the equation of the circle passing through
4, 22 —8x+2y? =16, (—1,2) and centre atl, 3).
5. &2 +4x+ P +4y2-12y=0
6. X +2xy/3+5+3y?>—6yy/3=0 2.3.7 Problem Find the canonical equation of the circle passing

through(—1,1), (1,-2), and(0,2).
2.3.5 Problem Let
Ry = {(xy) € R2p%+y> <9}, 2.3.8 Problem Let a, b, c be real numbers with? > 4b. Construct

2 2.\ a circle with diameter at the point4,0) and(—a,b). Shew that the
Re={(xy) e R7|(x+2)"+y” <1}, intersection of this circle with the-axis are the roots of the equation
(

Rs={(xy) € R?(x—2)*+y* <1}, X2 +ax+b = 0. Why must we impose? > 4b?
Ri={(xy) € R?pC+(y+1)? <1},
Rs={(xy) e R?[]x <3,]y| <3}, 2.3.9 Problem Draw
Re = {(xy) € R?||x| > 2,|y| > 2}. , , , , ,
Sketch the following regions. (C+y? —100)((x—4)2+y? —4) ((x+4)* +y* —4) (6 + (y+4)2—4) =0.

2.4 Semicircles
Given a circle of centréa, b) and radiuk > 0, its canonical equation is
(x—a)®+(y-b?=R%.

Solving fory we gather
(y-b?=R—(x—a)> = y=b+,/R2— (x—a)2.

i

If we took the+ sign on the square root, then the valuey wfill lie above the liney = b, and hencg = b+ /R? — (x—a)?

is the equation of the upper semicircle with centréaab) and radiusR > 0. Also,y = b— /R2 — (x— a)2 is the equation of
the lower semicircle.

In a similar fashion, solving fox we obtain,

(x—a)?=R>— (y—b)2 = x=a+,/R2— (y—b)2.

Taking the+ sign on the square root, the valuesxafiill lie to the right of the linex = a, and hence= a+ /R2— (y—b)2

is the equation of the right semicircle with centréatb) and radiuR > 0. Similarly,x = a— /R2 — (y — b)Zis the equation
of the left semicircle.

-

4
&n d

N
[ SRR R - e SR
|
1
-
~
w
&
IS
()
N
H A b B e Ry o @
|
1
-
N}
w

<
b
2 4
-3
-4
5

Figure 2.16: Exampl&9. Figure 2.17: Exampl&0. Figure 2.18: Examplél.
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89 Example Figure shews the upper semicirgfe= /1 — x2.
90 Example Draw the semicircle of equation=1— v/—x2 — 6x—5.

Solution: » Since the square root has a minus sign, the semicircle widl lmever semicircle, lying below the
line y= 1. We must find the centre and the radius of the circle . For thtajs complete the equation of the circle
by squaring and rearranging. This leads to

y=1-vV-x—-6x—5 = y—1=—/—X2—6x—5
— (y—12%=-x>-6x-5
— X2 +6x+9+(y—-1)2%=-5+9
= (x+3)2+(y—1)2=4,

whence the semicircle has centrg(at3, 1) and radius2. Its graph appears in figuré.17. «

91 Example Find the equation of the semicircle in figutel g

Solution: » The semicircle has centre &+1,1) and radius3. The full circle would have equation
(x+1)>%+(y-1)%=0.

Since this is a left semicircle, we must solve for x and tagertius— on the square root:

X412+ (y-12=9 = (x+1)?=9—(y—1)? = x+1=—/9—(y—1)2 = x=—-1—4,/9— (y—1)?,

whence the equation sought issx-1—/9— (y—1)2. «

Homework

2.4.1 Problem Sketch the following curves.
1. y=v16-x2

2. x=—/16—y2

3. x= /12 dy_y2

4. x=—-5-/12+4y—y?

2.4.2 Problem Draw

(02 +Yy2—100)(y— \/4— (X+4)2)(y— \/4— (X—4)2)(y+ 4+ /4 —x2) = 0.

2.5 Lines

In the previous sections we saw the lialgebra to Geometrpy giving the equation of a circle and producing its graptd an
conversely, the linkGeometry to Algebréy starting with the graph of a circle and finding its equatidinis section will
continue establishing these links, but our focus now wilbhdines.

We have already seen equations of vertical and horizontliWe give their definition again for the sake of completsne
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92 Definition Letaandb be real number constants.\v&rtical lineon the plane is a set of the form
{(x,y) eR?:x=a}.
Similarly, ahorizontal lineon the plane is a set of the form

{(xy) e R*:y=b}.

(X1,Y1)
=X=X1—
— %X —————
Figure 2.19: A vertical line. Figure 2.20: A horizontal line. Figure 2.21: Theorera3.

93 Theorem The equation of any non-vertical line on the plane can bdevriin the formy = mx+ k, wheremandk are real
number constants. Conversely, any equation of the formax+ b, wherea, b are fixed real numbers has as a line as a graph.

Proof: If the line is parallel to the x-axis, that is, if it is horiztal, then it is of the form y= b, where b is a
constant and so we may take-sD and k= b. Consider now a line non-parallel to any of the axes, as iarég
, and let(x,y), (x1,¥1), (X2,¥2) be three given points on the line. By similar triangles weenav

Ya—Y1_ Y=Y
Xo—X1  X—X1’

which, upon rearrangement, gives
(Y271, Y2—Y1
y= <—X2_X1)X X1 <—x2—xl)+yl’

_Y2—\n o (Y2
M= %’ k=-—x (—xz—x1> +y1.

and so we may take

Conversely, consider real numbersx xz < x3, and let P= (x;,ax +b), Q= (X2, 2% +b), and R= (x3,axs + b)
be on the graph of the equationyax+ b. We will shew that

d(P.Q)+d(Q.R) =d(PR).

Since the points,B®), R are arbitrary, this means that any three points on the grafthe equation y= ax+ b are
collinear, and so this graph is a line. Then

d(PQ) = \/(Xz—X1)2+ (axp —ax;)2 = |%o — X1|V1+a82 = (Xp —X1)V 1+ a2,

d(Q,R) = \/(Xs—X2)2+ (axg — axp)? = |x3 —X2|V/ 14 a2 = (x3— X2) vV 1+ @2,
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d(P,Q) = \/(Xs—X1)2+ (axg —ax1)? = [x3 —x1|V 1+ a? = (x3—x1)V1+a?
from where
d(P,Q)+d(Q,R) =d(P.R)

follows. This means that the pointd® and R lie on a straight line, which finishes the proof of theotken.

Y2—Y1
X2 — X1
(x2,¥2). Sincey = m(0) +k, the point(0,k) is they-intercept of the line joinindxy,y1) and (xz,y»). Figures2.22through
2.25shew how the various inclinations change with the sigmof

94 Definition The quantitym =

in Theorem93 is the slope or gradient of the line passing througky,y;) and

| T
— ——

Figure 2.22m> 0 Figure 2.23m< 0 Figure 2.24m=0 Figure 2.25m= o0

95 Example By Theorem93, the equatiory = x represents a line with slope 1 and passing through the oi®jicey = x,
the line makes a 4#5angle with thex-axis, and bisects quadrants | and Ill. See figliges

Figure 2.26: Examplés. Figure 2.27: Examplé6. Figure 2.28: Examplé?.

96 Example A line passes through-3,10) and(6,—5). Find its equation and draw it.

Solution: » The equation is of the form=y mx+ k. We must find the slope and the y-intercept. To find m we
compute the ratio

_10-(-5 5

- -3-6 3
Thus the equation is of the form:y—gx—i— k and we must now determine k. To do so, we substitute either
point, say the first, into y —gx+ k obtaining10= —2(—3) +k, whence k= 5. The equation sought is thus

y= —gx+ 5. To draw the graph, first locate the y-intercept (8t5)). Since the slope isg, move five units
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down (to(0,0)) and three to the right (t¢3,0)). Connect now the point®,5) and(3,0). The graph appears in

figure . <

97 Example Three pointg4,u),(1,—1) and(—3,—2) lie on t

he same line. Find.

Solution: » Since the points lie on the same line, any choice of pairs oftpaised to compute the gradient

must yield the same quantity. Therefore

u—-(-1) -1-(-2
4-1 1-(-3)
which simplifies to the equation
u+1l 1
3 4

Solving for u we obtain & — 3. <

Homework

2.5.1 Problem Assuming that the equations for the linigsly, |3,
andly in figure below can be written in the formn= mx+ b for
suitable real numbenms andb, determine which line has the largg
value ofmand which line has the largest valuetnf

Figure 2.29: Problerm

2.5.2 Problem (AHSME 1994) Consider the L-shaped region
the plane, bounded by horizontal and vertical segmentsveittices
at(0,0),(0,3),(3,3),(3,1),(5,1) and(5,0). Find the gradient of thq
line that passes through the origin and divides this areatkyxim
half.

h

2

e &
0 1 2 3 4

Figure 2.30: Probler

-4

2.5.3 Problem What is the slope of the line with equati<§n+
1?

oI

2.5.4 Problem If the point (a,—a) lies on the line with equation
—2x+ 3y = 30, find the value o&.

2.5.5 Problem Find the equation of the straight line joinir{®, 1)
and(—5,-1).

=)

2.5.6 Problem Let (a,b) € R?. Find the equation of the straight line
joining (a,b) and(b, a).

st

2.5.7 Problem Find the equation of the line that passes through
(a,a?) and (b, b?).

2.5.8 Problem The pointg(1,m), (2,4) lie on a line with gradienn.
Findm.

2.5.9 Problem Consider the following regions on the plane.
Ri={(xy) e R?ly<1-x},
Ry ={(xy) € R?ly>x+2},
Rs={(xy) € R?ly < 1+x}.

Sketch the following regions.

1. Ri\R

2. R\Ry

3. RiNRNR3

4. R\ (RLURy)

2.5.10 Problem In figure , point M has coordinateg2,2),
pointsA, Sare on the-axis, pointB is on they-axis ASMAIs isosce-

les atM, and the line segme®M has slope%. Find the coordinates
of pointsA B, S.

S
Figure 2.31: Probler

A
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2.5.11 Problem Which points on the line with equation= 6 — 2x | Find the equation of this vertical line.
are equidistant from the axes?

2.5.13 Problem Draw
2.5.12 Problem A vertical line divides the triangle with verticds ) )
(0,0),(1,1) and(9,1) in the plane into two regions of equal arda. C-D(Y? -1 -y =0.

2.6 Parallel and Perpendicular Lines

\fl, m)

Y=nmX

Figure 2.32: Theorerfs. Figure 2.33: Theorerh

98 Theorem Two lines are parallel if and only if they have the same slope.

Proof: Suppose the the lines L antdre parallel, and that the points(&,y1) y B(xz,y2) lie on L and that the
points A(xy,y;) and B(xy,Y,) lie on L'. Observe tha t ABB is a parallelogram, and hencepy-y1 =Y, — Y},
which gives

Y2=Y1_ YoV

Xo—X1  Xo—Xi’
demonstrating that the slopes of L anfddre equal.

Assume now that L and have the same slope. The

Y2=¥1_ Yo—¥1

e —_ - — .
Xo— X1 Xp—X Y2=Y1=Y>-V1

Then the sides of A&nd BB of the quadrilateral ABBY are congruent. As these sides are also parallel, since
they are on the verticals % x; and x= x,, we deduce that ABR' is a parallelogram, demonstrating that L and
L" are parallel.O

99 Example Find the equation of the line passing through0) and parallel to the line joining—1,2) and(2,—4).

Solution: » First we compute the slope of the line joinifigl,2) and (2, —4):

2— (-4
=< =-2
A
The line we seek is of the form=y—2x+ k. We now compute the y-intercept, using the fact that tleenfinst pass
through(4,0). This entails solvin@ = —2(4) + k, whence k= 8. The equation sought is finally=y —2x+ 8. «
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100 Theorem Lety = mx-+k be a line non-parallel to the axes. If the lipe- myx+ k; is perpendicular ty = mx+ k then

1 . : . . .
m = e Conversely, ifmm, = —1, then the lines with equatioys= mx+ k andy = myx+ k; are perpendicular.

101

102

o o M w NP

Proof: Refer to figure?.32 Since we may translate lines without affecting the angtesben them, we assume
without loss of generality that both=y mx+ k and y= myx+ k; pass through the origin, giving thuskk; = 0.
Now, the line y= mx meets the vertical line=x 1 at (1,m) and the line y= mx meets this same vertical line at
(1,my) (see figure?.33. By the Pythagorean Theorem

(m—my)?=(1+m?) + (1+m) = mP—2mm +me =2+nP+ M — mm = —1,

which proves the assertion. The converse is obtained bwaieiy the steps and using the converse to the
Pythagorean Theorentl

Example Find the equation of the line passing throughO) and perpendicular to the line joinir{g-1,2) and(2,—4).

Solution: » The slope of the line joining—1,2) and (2, —4) is —2. The slope of any line perpendicular to it

O
T Tm 2
The equation sought has the form:yg + k. We find the y-intercept by solvilig= g +k, whence k= —2. The

equation of the perpendicular line is thu&yg —2. <

Example For a given real number associate the straight ling with the equation
Li: (4—t)y= (t+2)x+6t.
Determing so that the point1,2) lies on the line.; and find the equation of this line.
Determing so that the.; be parallel to the--axis and determine the equation of the resulting line.
Determing so that the.; be parallel to the-axis and determine the equation of the resulting line.
Determing so that the; be parallel to the line-5y = 3x — 1.
Determing so that thd ; be perpendicular to the line5y = 3x— 1.

Is there a poinfa, b) belonging to every liné; regardless of the value &?

Solution: »

1. If the point(1,2) lies on the line kLthen we have
(4—1)(2) = (t+2)(1)+ 6t — t— g
The line sought is thus

ory= 4x+ 6
Y=5*t5
2. Weneed4+2=0 = t = —2. In this case
(4—(-2)y=-12 = y=-2.
3. We need —t =0 = t = 4. In this case

0=(4+2)x+24 = x=—-4.
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4. The slope ofLis
t42
4—t’
. .3
and the slope of the line5y = 3x— 1is —E Therefore we need
t+2 3
tre_ 2 —3(4—t)=5(t+2) = t=—11
4—t 5
5. In this case we need (1o & ;
+
— == 54—-t)=3(t+2 t=-.
-t 3 o4my=3t42) = t=g
6. Yes. From above, the obvious candidateid, —2). To verify this observe that
(4-1)(—-2)= (t+2)(—4) + 6t,
regardless of the value of t.
|
y y=X
g X (b,a)
o
(73.5.4). i
i
£ SRS b =
2 L/ 109787776757473;;:: ‘Eil 2
b
i
i
L =k
nx
Figure 2.34: Examplé03 Figure 2.35: Examplé04. Figure 2.36: Theorem
103 Example In figure , the straight lineg y L’ are perpendicular and meet at the pdéint

1. Find the equation df’.
2. Find the coordinates &t

3. Find the equation of the lire

Solution: »

1. Notice that L passes through—3,5.4) and through(0, 3), hence it must have slope

54-3
m — _0.8.

The equation of Lhas the form y= —0.8x+ k. Since Lpasses throug(D, 3), we deduce that'lhas equation
y=—0.8x+3.

2. Since P if of the formi2,y) and since it lies on 1. we deduce thaty —0.8(2) + 3= 1.4.

3. Lhas sIopc—:u%3 = 1.25. This means that L has equation of the forms §.25x+ k. Since FB2,1.4) lies
on L, we must havie4 = 1.25(2) + k = k= —1.1. We deduce that L has equatiory1.25x— 1.1.
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104 Example Consider the circl&’ of centreO(1,2) and passing through(5,5), as in figure
1. Find the equation of’.
2. Find all the possible values affor which the point(2,a) lies on the circlez’.

3. Find the equation of the linetangent tag at A.

Solution: »
1. Let R> O be the radius of the circle . Then equation of the circle hasftiim
(x—1)%+(y-2%=R%.
Since A5,5) lies on the circle,
(5-1)?+(5-2?=R* — 164+ 9=R> — 25=R’,
whence the equation sought fétis
(x—1)2+(y—2)2=25
2. Ifthe point(2,a) lies on%’, we will have

(2-1)%4(a—2)?=25—= 1+(a—2)?=25— (a—2)°=24— a—2=+V24 — a=24+24=2+2V6.

3. Lis perpendicular to the line joinin@L, 2) and (5,5). As this last line has slope
5-2 3
5-1 4

the line L will have slopeg. Thus L has equation of the form

y= —%x—kk.

As(5,5) lies on the line,

4 20 35

. 4 35
from where we gather that L has equatioa-y- §x+ 3

<

We will now demonstrate two results that will be needed later

105 Theorem (Distance from a Point to a Line)Let L : y = mx+k be a line on the plane and IBt= (xo,Yo) be a point on
the plane, not oh. The distancel(L,P) from L to P is given by

[xom+ K — yo|
Vitme

Proof: If the line had infinite slope, then L would be vertical, ancgqgfiation x= c, for some constant ¢, and
then clearly,
d(L.P) =[x —c].
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If m =0, then L would be horizontal, and then clearly
d{L,P) = lyo— K|,

agreeing with the theorem. Suppose now thag . Refer to figure2.37. The line L has slope m and all
perpendicular lines to L must have slopq}]. The distance from P to L is the length of the line segmenirjgin
P with the point of intersectiofxy,y1) of the line L perpendicular to L and passing through P. Now, it is easy to
see that Lhas equation
L'y= —lx+ 42
. y - m yO m7
from where L and Lintersect at

_ Yom+Xo—bm ~ Yo? +Xom+k

& 1m0 T T 1w

This gives

d{L,P) = d{(X0,Y0),(X1,Y1))

= \/(Xo —x1)2+ (Yo —y1)?

B Yom-+ Xo — km\ ? Yom2 + xom-+ K\ 2
D
v/ (Xom? — yom+km)? + (yo — Xom— k)2

1+m?

V/(mP + 1) (xom— yo + k)2
1+m?

[Xom— Yo+ K|
Vitme

proving the theorem.

Aliter: A “proof without words” can be obtained by considering thengar right triangles in figure?.38 O

Figure 2.37: TheoremOX5, Figure 2.38: Theorem

106 Example Find the distance between the lihe 2x— 3y = 1 and the poinf—1,1).
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Solution: » The equation of the line L can be rewritten in the formyl= %x— % Using Theorem 05 we have

wIN

|  6V13

[

d(L,P) =

<

107 Theorem The point(b,a) is symmetric to the pointa, b)

Proof:
and intersects it when

X=—-X+a+b

Then, since y=x= a—erb,

~1
+(

;

2, 13
3

with respect to the ling = x.

The line joining(b,a) to (a,b) has equation y= —x-+a+ b. This line is perpendicular to the line=y x

a+b

the point of intersection i@a%b, %b). But this point is the midpoint of the line segment

joining (a,b) to (b,a), which means that botfe,b) and (b,a) are equidistant from the line ¥ x, establishing

the result. See figura 36 O

Homework

2.6.1 Problem Find the equation of the straight line parallel to
line 8x— 2y = 6 and passing throug(®, 6).

2.6.2 Problem Let (a,b) € (R\ {0})?. Find the equation of the lin
passing througlfia,b) and parallel to the ling — Y=1,

2.6.3 Problem Find the equation of the straight line normal to
line 8x— 2y = 6 and passing throug(®, 6).

=

Lt passes through the origi0,0).

L; is parallel to thec-axis.

L; is parallel to they-axis.

L; is parallel to the line of equatiorx3- 2y — 6 = 0.
L; is normal to the line of equatiop= 4x — 5.

L: has gradient-2.

Is there a pointxg, Yo) belonging toLt no matter which real
numbert be chosen?

7

© N gk wN

2.6.4 Problem Let a,b be strictly positive real numbers. Find the2.6.10 Problem For any real numbetr; associate the straight lire

equation of the line passing througa b) and perpendicular to th
line X —§ =1.

2.6.5 Problem Find the equation of the line passing throudlz, 0)
and parallel to the line joiningl, 2) and(—3,-1).

2.6.6 Problem Find the equation of the line passing throudlz, 0)
and normal to the line joiningl, 2) and(—3,—1).

2.6.7 Problem Find the equation of the straight line tangent to
circlex? +y? = 1 at the point(3, @).

2.6.8 Problem Consider the lineL passing through(a,a®) and
(b,b?). Find the equations of the lingg parallel toL andL, normal
toL, if L1 andL, must pass througft, 1).

2.6.9 Problem For any real numbet, associate the straight ling
having equation
(2t —1)x+ (3—-t)y—7t+6=0.

In each of the following cases, find arsatisfying the stated cond
tions.

E having equation
(t—2)x+(t+3)y+10 —5=0.

In each of the following cases, find &mand the resulting line satis-
fying the stated conditions.

1. L passes through-2,3).
2. L is parallel to thec-axis.
3. L is parallel to they-axis.
4. Ly is parallel to the line of equation—2y— 6 = 0.
he 5. Lt is normal to the line of equatiop= —%x— 5.
6. Is there a pointxo,Yo) belonging toLt no matter which real

numbert be chosen?

2.6.11 Problem Shew that the four pointd = (—2,0), B= (4,—-2),
C=(5,1), andD = (-1, 3) form the vertices of a rectangle.

2.6.12 Problem Find the distance from the poiiit,1) to the line
y=—X

2.6.13 Problem Let a € R. Find the distance from the poif#,0)
to the lineL : y = ax+ 1.

2.6.14 Problem Find the equation of the circle with centre(&t4)

1. Lt passes througtt, 1).

and tangent to the lire—2y+3=0.
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2.6.15 Problem AABC has vertices a#\(a,0), B(b,0) andC(0,c),
wherea < 0 < b. Demonstrate, using coordinates, that the m

ans of AABC are concurrent at the poi/([%b, %) The point of

concurrence is called tHearycentreor centroidof the triangle.

2.6.16 Problem AABC has vertices af\(a,0), B(b,0) andC(0,c),

wherea < 0 < b, c # 0. Demonstrate, using coordinates, that
. . ab .
altitudes of AABCare concurrent at the poifto, < ) The point

of concurrence is called trathocentreof the triangle.

2.7 Linear Absolute Value Curves

2.6.17 Problem AABC has vertices af(a,0), B(b,0) y C(0,c),
bdichere a < 0 < b. Demonstrate, using coordinates, that the
perpendicular bisectors oAABC are concurrent at the point
a+b ab+c?
2 2
centreof the triangle.

. The point of concurrence is called tobcum-

h&6.18 Problem Demonstrate that the diagonals of a square are mu-
tually perpendicular.

In this section we will use the sign diagram methods of sactié in order to decompose certain absolute value curves as the

union of lines.

108 Example Since

X
X =

—X

the graph of the curve= |x| is that of the liney = —x for x <
in figure

109 Example Draw the graph of the curve with equatign-

if x>0
if x<O

0 and that of the ling = x whenx > 0. The graph can be seen

[2x—1].

Solution: » Recall that eithef2x— 1| = 2x— 1 or that |2x— 1| = —(2x— 1), depending on the sign &k — 1.

If 2x— 1> 0then x> :_ZL and so we have 3 2x— 1. This means that for

> we will draw the graph of the line

y=2x—1. If 2x— 1< Othen x< 1 and so we have ¥ —(2x— 1) = 1— 2x. This means that for x } we will
draw the graph of the line y 1 — 2x. The desired graph is the union of these two graphs and appedigure

| <

BN w G o N o
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Figure 2.39y = |x]. Figure 2.40:

= 5678 244 567
N eI
B v B
B = F
B °F
B . i
Examplé Figure 2.41: Examplé

110 Example Consider the equation= |x+ 2| — |x— 2|. The terms in absolute values vanish whea —2 orx = —2. If

x < —2then
[x+2| — |x—2| = (—x

—-2)— (—x+2)=—-4.
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For—-2 <x< 2, we have
[X+2| —|X—2| = (X+2) — (—X+2) = 2x.

Forx > 2, we have
X+2|—|x—2|=(x+2)— (x—2) =4

Then,
—4 if x< -2,
y=[X+2|-x=2[=4q 2x if —2<x<+2,
+4 if x> +2,

The graph is the union of three lines (or rather, two rays alimteassegment), and can be see in figtire

Figure 2.42: Example11 Figure 2.43: Examplé12

111 Example Draw the graph of the curve= |1— |x||.

Solution: » The expressiol — |x| changes sign wheh— |x| = 0, that is, when x= +1. The expressiofx|
changes sign when=x 0. Thus we puncture the real line atx—1, x=0and x= 1.
When x< -1

[1—-|X|=x—-1=—x—1

When-1<x<0
[1-1|X]=1—|x=1+x

When0 <x<1

[1-|¥X]=1—|x=1-x
When x> 1

[1-1|X|=x—-1=x—-1.
Hence,

—x—1 if x<-1,

1+x if —1<x<0,
y=[1-|x||=

1-x if 0 <x<1,

x—1 if x>1,
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The graph appears in figureé.

<

112 Example Using Theoreni07, we may deduce that the graph of the cuxve |y| is that which appears in figure7

Homework
2.7.1 Problem Consider the curve 2.7.4 Problem Draw the plane region
Gy =|x—1]— x|+ [x+1]. {(xy) €R*:X°+y* < 16,|x| +y| > 4}.
1. Find an expression without absolute valuesdowhenx < . .
1. 2.7.5 Problem Draw the graphs of the following equations.
2. Find an expression without absolute valuesdovhen—1 < Ly=[|x+2]
x<0. 2. y=3—|x+2|
3. Find an expression without absolute valuesdbwhen 0< 3. y=2|x+2]
x< L 4. y=|x—1+|x+1]
4. Find an expression without absolute valuesforvhenx > 1. 5. y=|x—1|—[x+1]
5. Draw?. 6. y=|x+1—|x—1]
2.7.2 Problem Draw the graph of th f equati Ty= bt el
.7.2 Problem Draw the graph of the curve of equatipt = |y|.
grap quatipn = |yl 8. y=|x—1|— x|+ [x+1]
X+ X 9. y=|x—1|+x+ |x+1]
2.7.3 Problem Draw the graph of the curve of equatipe= T 10. y =[x+ 3/ +2/x— 1| — [x—4]

2.8 Parabolas, Hyperbolas, and Ellipses

113 Definition A parabolais the collection of all the points on the plane whose distainam a fixed poin¥ (called the
focusof the parabola) is equal to the distance to a fixed lir(ealled thedirectrix of the parabola). See figute44 where
FD =DP.

We can draw a parabola as follows. Cut a piece of thread asalstige trunk of T-square (see figurel5). Tie one end to the
end of the trunk of the T-square and tie the other end to thesfagay, using a peg. Slide the crosspiece of the T-squarg alo
the directrix, while maintaining the thread tight agairm tuler with a pencil.

Figure 2.44: Definition of a

parabola. Figure 2.45: Drawing a parabola. Figure 2.46: Examplé15

X2

114 Theorem Letd > 0 be a real number. The equation of a parabola with foc(8,d and directrixy= —disy= 2
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Proof: Let(x,y) be an arbitrary point on the parabola. Then the distancéoy) to the line y= —d is |y +d|.
The distance ofx,y) to the point(0,d) is /X2 + (y —d)2. We have

y+di=V¥+y—-d? = (y+d)*=x*+(y—d)
y2 + 2yd+d? = X2+ y2 — 2yd + d?

4dy = x?
2

Ll

X

y= Ea

as wanted[]

Observe that the midpoint of the perpendicular line segrfrent the focus to the directrix is on the parabola.
2

We call this point thevertex For the parabola y= :—d of Theoreml14, the vertex is clearly0,0).

115 Example Draw the parabolg = x°.

. 1 : 1 .
Solution: » From Theoreni 14, we Wantm =1, thatis, d= 7 Following Theorem.14, we locate the focus

at (0, %) and the directrix at y= —% and use a T-square with these references. The vertex of tabgla is at
(0,0). The graphis in figure€.46 <

3 4+ 3 4 s 4
2 4+ 2 + 2 4+
1 4 1 4 1 4

A NN N I A NS
2 4 2 F P B
3 4+ 3 4 3 4+

Figure 2.47x =y~ Figure 2.48y = \/X. Figure 2.49y = —/x.

116 Example Using Theorem 07, we may draw the graph of the curxe= y?. Its graph appears in figute

117 Example Taking square roots on=y?, we obtain the graphs gf= \/x and ofy = —/x. Their graphs appear in figures
and

118 Definition A hyperbolais the collection of all the points on the plane whose absolatue of the difference of the
distances from two distinct fixed poinks andF, (called thefoci- of the hyperbola) is a positive constant. See figuie]
where|FD — FD| = |F D' — D).

We can draw a hyperbola as follows. Put tackgpandF, and measure the distaneg-,. Attach piece of thread to one end
of the ruler, and the other t6,, while letting the other end of the ruler to pivot arouRd The lengths of the ruler and the
thread must satisfy

length of the ruler length of the threaet FiF».

2Fociis the plural offocus
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Hold the pencil against the side of the rule and tighten theath, as in figure.51.

Figure 2.50: Definition of a hyper- 1

bola Figure 2.51: Drawing a hyperbola. Figure 2.52: The hyperbola= -

119 Theorem Let ¢ > 0 be a real number. The hyperbola with fociFat= (—c,—c) andF; = (c,c), and whose absolute

value of the difference of the distances from its points ®ftiti is Z has equationy = >

Proof: Let(x,y) be an arbitrary point on the hyperbola. Then

|d<(X,y), (_C7 _C)> - d((x,y), (Cv C)>| =2c

= ‘\/(x+c)2+ (y+¢)2—+/(x—c)2+ (y—c)z‘ =2c

= (x+0)2+ (y+0)2+ (x—0)2+ (y— )2 —2¢/(x+ )2+ (y+ ¢)2- /(x— )2+ (y— c)2 = 4c?

= 2@+ 2y? = 2,/(X +y2+2¢%) + (2xC+ 2yC) - /(X2 + y2 + 2¢2) — (2xC+ 2y0)

> 22+ 2y? = 2,/ (X2 +y2 + 2¢2)2 — (2xCc+ 2yC)2

= (2@ +2y?)? =4((x2+y?+2c%)? — (2xc+ 2yc)?)

= A4 82+ Ayt = A((X* + YA+ Act + 2Py 4 AyPC2 + 4xPC?) — (4XPC% + 8xy P + 4y2c?))
= xy=,

2
where we have used the identities

(A+B+C)?=A?4+B?+C?+2AB+2AC+2BC and VA—B-vA+B=+A2-B2
O

. c c c c c? .
Observe that the points——,—— | and| —, — | are on the hyperbola x¢ —. We call these points
P ‘é V2 ﬁ) (ﬁ ﬁ) YPEmOR 2 P

thevertices of the hyperbola xy= %

120 Example To draw the hyperbolka= % we proceed as follows. According to Theorén, its two foci are at —v/2, —/2)

and(v/2,v/2). Putlength of the ruler- length of the threae- 2,/2. By alternately pivoting about these points using the pro-
cedure above, we get the picture in figaré?2.

SVerticesis the plural ofvertex
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121 Definition An ellipseis the collection of points on the plane whose sum of distarfican two fixed points, called the
foci, is constant.

122 Theorem The equation of an ellipse with foé; = (h—c,k) andF, = (h+ c,k) and sum of distances is the constant
t=2ais

(y=K? _
b2

(x—h)?
a2

+ 1

whereb? = a2 — ¢2.

Proof: By the triangle inequality, - F1F, = 2c, from where a> c. It follows that

d{(x.y), (x1,y1)) +d{(xy), (x2,¥2)) =t

< /(x—=h+c)2+(y—k2=2a—/(x—h—c)2+ (y—k)?

= (x—h+c)*+(y—k?=4a—4a,/(x—h—0)2+(y—k)?+ (x—h—c)?+ (y —k)?
—  (x—h)2+2c(x—h) +? = 4a® — 4a,/(x—h—c)2+ (y — k) 2+ (x—h)?— 2c(x— h) + 2
— (x—hjc—a?=—a,/(x—h—c)2+ (y—k)?

< (x—h)?c? - 2a%c(x—h) +a? = a(x— h—c)?+ a?(y — k)2

—  (x—h)2c? - 2a%c(x— h) +a2 = a2(x— h)2 — 2a%c(x — h) + a?c2 + a?(y — k)2

—  (x—h)(?—a?) —a(y— k)2 = a’c? — a?

o DL O,

Since & — ¢ > 0, we may let b= a? — ¢, obtaining the resull

123 Definition The line joining(h+ a,k) and(h—a,k) is called thenorizontal axisof the ellipse and the line joinind, k—b)
and(h,k+ b) is called thevertical axisof the ellipse. ma¢a, b) is thesemi-major axisind mir(a, b) the semi-minor axis

The canonical equation of an ellipse whose semi-axes am@lphto the coordinate axes is thus

y—k)?
b2

(x—h)?

= 1

L

Figure 2.53: Drawing an ellipse.

Figure2.53 shews how to draw an ellipse by putting tags on the foci, tyiregends of a string to them and tightening the
string with a pencil.

124 Example The curve of equationd — 18x+ 4y?+ 8y = 23 is an ellipse, since, by completing squares,

(=12 (y+172 _

9 —2x+1) + 4y +2y+1)=23+9+4 — 9(x—1)°+4(y+1)°=36 — 1 S

1
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The centre of the ellipse i, k) = (1,—1). The semi-major
V4 =2 units.

Homework

2.8.1 Problem Letd > O be a real number. Prove that the equat

Y’

of a parabola with focus dtl,0) and directrixx = —d isx = d

2.8.2 Problem Find the focus and the directrix of the parabgla

y2.

2.8.3 Problem Find the equation of the parabola with directyix
—x and vertex af1,1).

2.8.4 Problem Draw the curved + 2x+4y? — 8y = 4.

axis measure® = 3 units and the semi-minor axis measures

ahe equation of the curve it describes.

2.8.6 Problem The pointsA(0,0) , B, andC lie on the parabola
2

X -
y = — as shewn in figure
the coordinates dB andC.

. If AABCis equilateral, determine

2.8.5 Problem The point(x,y) moves on the plane in such a wry

that it is equidistant from the poiri2,3) and the linex = —4. Find

Figure 2.54: Problem
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This chapter introduces the central concept fufrection We will only concentrate on functions defined by algebrartifulee
with inputs and outputs belonging to the set of real numba&fkswill introduce some basic definitions and will concerdra
the algebraic aspects, as they pertain to formulae of fumeti®he subject ofraphingfunctions will be taken in subsequent
chapters.

3.1 Basic Definitions

Figure 3.1: The main ingredients of a function.

Dom(f) — Target(f)
125 Definition By a (real-valued) function £ we mean the collection of the following ingre-

X — f(x)
dients:

1. anamefor the function. Usually we use the lettér

2. a set of real number inputs—usually an interval or a finit®n of intervals—called thdomainof the function. The
domain off is denoted bypom(f).

3. aninput parameter also calledndependent variabler dummy variableWe usually denote a typical input by the letter
X.

4. aset of possible real number outputs—usually an intemafinite union of intervals—of the function, called ttaeget
setof the function. The target set défis denoted bylarget(f).

5. anassignment ruler formula, assigning tevery input a unique output. This assignment rule fdris usually denoted
by x — f(x). The output ok underf is also referred to as thmage of x under fand is denoted by(x).

See figurée

126 Definition Colloquially, we refer to the “functiori” when all the other descriptors of the function are underdto

Dom(f) — Target(f)
127 Definition Theimageof a functionf : is the set
X — f(x)
Im (f) = {f(x) : xe Dom(f)},

that is, the collection of all outputs df

50
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Necessarily we haven (f) C Target(f), but we will see later on that these two sets may not be equal.
128 Example Find all functions with domaida, b} and target sefc,d}.

Solution: » Since there are two choices for the output of a and two chdaetse output of b, there arg? = 4
such functions, namely:

1. f; given by {(a) = fi(b) = c. Observe that 3. f3 given by £(a) = c, f3(b) = d. Observe that

Im (f1) = {c}. Im (f1) = {c,d}.
2. f, given by $(a) = fo(b) = d. Observe that 4. f, given by §(a) = d, f4(b) = c. Observe that
Im (f2) = {d}. Im (f1) = {c,d}.

<

It is easy to see that if A has n elements and B has m elemeeastite number of functions from A to B
is m'. For, if a,a,...,an are the elements of A, then there are m choices for the oufgayt on choices for the

output of @, ..., m choices for the output of agiving a total of
m---m=m".
——
n times
possibilities.

In some computer programming languages like €4C and Java, one defines functions by statementgritké(double)
This tells the computer that the input set is allocated ehaugmory to take a double (real number) variable, and that the
output will be allocated enough memory to carry an integeiatde.

129 Example Consider the function

Find the following:
1. f(0)
2. £(=v2)
3. f(1-2)
4. Whatislm (f)?

Solution: » We have
1. f(0)=0°=0
2. f(—V2) = (—V2)?2=2
3. f(1-v2)=(1-v2)2=12-2.1-v2+ (v/2)?=3-22
4. Since the square of every real number is positive, we havd)

-
vaeR and f(y/a) = a, so ac Im (f). This means thal0;+o[ C
[0;4-00].

[0;+0[. Now, let ac [0;+[. Then
Im (f). We conclude thatm (f) =

<

In the above example it was relatively easy to determinertfage of the function. In most cases, this calculation is @ fa
very difficult. This is the reason why in the definition of a tlion we define the target set to be the set opalisible outputs
not the actual outputs. The target set must be large enouggtttommodate all the possible outputs of a function.




52 Chapter 3

130 Example Does

define a function?

Solution: » No. The target set is not large enough to accommodate allutguts. The above rule is telling us
that every output belongs . But this is not true, since for examplg1f- v/2) =3—-2V2 ¢ 7. <

Upon consideration of the preceding example, the readenmager why not then, select as target set the entir® sd@his
is in fact what is done in practice, at least in Calculus. Fthepoint of view of Computer Programming, this is wasteful,

as we would be allocating more memory than really needed. nreeintroduce the concept sfirjectionslater on in the
chapter, we will see the importance of choosing an apprtptéaget set.

131 Example Does

define a function?

Solution: » No. In a function, every input must have a defined output. €Sf() is undefined, this is not a
function. «

132 Definition (Equality of Functions) Two functions are equal if
1. Their domains are identical.
2. Their target sets are identical.

3. Their assignment rules are identical.

This means that the only two things that can be differenttaeiames of the functions and the name of the input parameter.

133 Example Consider the functions
7Z — Z 7 — 7 7 — R
: , :

X — X s — & X — X

Then the functiond andg are the same function. The functiofisand h are different functions, as their target sets are
different.

We must pay special attention to the fact that although a ditarmay make sense for a “special input”, the “input” may not
be part of the domain of the function.

134 Example Consider the function

N\{0} — Q

f 1
X — —

X+ =

Determine:
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1. f(1)
2. 1(2)
1
e
4. f(-1)
Solution: »
I
1+-
1 1 2
24 - >
1 1 1 2
2 1 1 5
E"ri —+2
2

4. f(—1)is undefined, as-1 ¢ N\ {0}, that is—1 is not part of the domain.
<

It must be emphasised that the exhaustion of the elementeafdmain is crucial in the definition of a function. For
example, the diagram in figur&2 does notrepresent a function, as some elements of the domain aressighad. Also
important in the definition of a function is the fact that themut must be unique. For example, the diagrarfi.indoes not
represent a function, since the last element of the domaissigned to two outputs.

Figure 3.2: Not a function. Figure 3.3: Not a function.

To conclude this section, we will give some miscellaneowsmgxes on evaluation of functions.

135 Example (The Identity Function) Consider the function

Id :
X — X

This function assigns to every real its own value. Thiu$—1) = —1,1d (0) =0, Id (4) =4, etc.

In general, if AC R, the identity function on the set A is defined and denoted by

A —- A
|dAZ .
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136 Example Lety: .Findy(x® +1) — y(x*— 1).

Solution: » We have
YOC+1) —y(C—1) = (P +1)°2-2) = ((¥—1)2—-2) = (X +2C+1-2) — (X —2C +1—2) = 4%°.
<

Sometimes the assignment rule of a function varies throagiows subsets of its domain. We call any such function a
piecewise-defined function

137 Example Consider the functior : [—5;4] — R defined by
1 if 2x € [-5;1]
fo=4 2  ifx=1
x+1 ifxe]l;4
Determinef (—3), f(1), f(4) andf(5).
Solution: » Plainly, f(—3)=2(-3) = -6, f(1) =2, f(4) =4+ 1=5, and f(5) is undefined«
138 Example Write f : R — R, f(x) = |2x— 1| as a piecewise-defined function.

Solution: » We have fx) = 2x—1for 2x— 1> 0and f(x) = —(2x— 1) for 2x— 1 < 0. This gives

{ x—1 ifx<
f(x) =

1-2x ifx>

NI NI

<

Lest the student think that evaluation of functions is a $&ngffair, let us consider the following example.

139 Example Let f : R — R satisfy f (2x+4) = x> — 2. Find
1. f(6)

2. (1)

3. f(x)

4. f(f(x))

Sqlution: » Since2x+4is what is inside the parentheses in the formula given, wd temake all inputs equal
to it.

1. We nee@x+4=6 —> x=1. Hence
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3. Here we confront a problem. If we proceeded blindly asfeedimd se2x + 4 = x, we would get x= —4,
which does not help us much, because what we are trying taroistd (x) for every value ofx. The key
observation is that the dummy variable has no idea of whati®nalling it, hence, we may first rename the

. —4
dummy variable: say (Pu+4) = u? — 2. We nee@u+4=x = u= XT Hence

f(x) = f <2<%‘> +4> = <%‘>2—2_X742—2x+2.

4. Using the above part,

2
(1) = 0 ~2109+

< —2x+2> 2

= —2(Z—ZX+2) +2
x4 x3 G

= 6__Z+T+2 X—1

<
140 Example f : R — R is a function satisfyind (3) = 2 andf (x+ 3) = f(3) f(x). Find f(—3).

Solution: » Since we are interested in+3), we first put x= —3 in the relation, obtaining
f(0) = f(3)f(-3).
Thus we must also know(@) in order to find f(—3). Letting x= 0 in the relation,
f(3)=1f3)f(0) = () =F3)f(Jf(-3) = 2=4f(-3) = f(—3):§.
<

The following example is a surprising application of the cept of function.

141 Example Consider the polynomiagk? — 2x+2)2%%8 Find its constant term. Also, find the sum of its coefficieaftsr
the polynomial has been expanded and like terms collected.

Solution: » The polynomial has degree 2008= 4016 This means that after expanding out, it can be written

in the form

(X — 2x+2)2098 = o010 1 g x*O13 1 ... 4 ay01x+ Ag016

Consider now the function
R — R
x = agxX* a1+ aso16

The constant term of the polynomial isyge, which happens to be(p). Hence the constant term is
as016= p(o) _ (0 —92. 0+ 2)2008 22008
The sum of the coefficients of the polynomial is

80+a1+a+ -+ +aso1e= P(1) = (1 ~2-1+2)"%= 1,

<

Homework
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3.1.1 Problem Let 3.1.8 Problem Let f : R — R, f(1—x) =x%—2. Find f(—2), f(x)
andf(f(x)).
R — R
f: x—1 3.1.9 Problem Let f : Dom(f) — R be a function. f is said to
2+1 have afixed pointatt € Dom(f) if f(t) =t. Lets: [0;+o[— R,

s(x) = x> — 233 + 2x. Find all fixed points of.

Find f(0) + f(1) + f(2) and f(0+ 1+ 2). Is it true that
fO+f(1)+f(2)=f0+1+2)? 3.1.10 ProblemLet : R — R, h(x+2) = 1+ x—x2. Express

1 h(x—1), h(x), h(x+ 1) as powers ok.

Is there a real solution to the equatidiix) = ;? Is there a red|

solution to the equatiofi(x) = x? 3.1.11 Problem Let f : R — R, f(x+1) = 2. Find f(x), f (x+2)

andf(x—2) as powers ok.

3.1.2 Problem Find all functions from{0, 1,2} to {—1,1}.

3.1.12 Problem Let h: R — R be given byh(1—x) = 2x. Find

3.1.3 Problem Find all functions from{—1,1} to {0,1,2} . h(3x).
3.1.4 Problem Let f : R — R, x — x2 — x. Find 3.1.13 Problem Consider the polynomial
f(x+h) — f(x—h) (132 + x93 = ag + agx+apx® + - - + ago1 2012
h Find
3.1.5 Problem Let f : R — R, X — x3 — 3x. Find 1 a
F(x-+h) — f(x—h) 2. apt+ag+ap+---+ago2
h ‘ 3. ag—ay +ap —ag+--- —ago11+ago12
4. ap+ap+ay+---+2agoio+agoi2
- 5. & +ag+---+agoog+ ago11

3.1.6 Problem Consider the functiorf : R\ {0} — R, f(x) = X
Which of the following statements are always true?
a f(a) 3.1.14 Problem Let f : R — R, be a function such thatx €]0;+oo],
1f(3)-1@
b f(b)
2. f(a+b) = f(a)+ f(b).
2

3. f(a®) = (f(a))

[FOC+1)]V¥ =5,

find the value of

{f (27+y3)} \/?
3.1.7 Problem Leta: R — R, be given bya(2 — x) = x2 — 5x. Find y3

a(3), a(x) anda(a(x)). for y €]0; o]

3.2 Graphs of Functions and Functions from Graphs

In this section webriefly describe graphs of functions. The bulk of graphing will bkeeta up in subsequent chapters, as
graphing functions with a given formula is a very tricky neatt

Dom(f) — Target(f)
142 Definition Thegraphof a functionf : isthe sef ¢ = {(x,y) € R?:y= f(x)} on the plane.

X — f(x)
For ellipsis, we usually sathe graph of f orthe graph y= f(x) or thethe curve y= f(x).

By the definition of the graph of a function, tieaxis contains the set of inputs ap@xis has the set of outputs. Since in
the definition of a function every input goes to exactly ongpat; wee see that a vertical line crosses two or more points of
a graph, the graph does not represent a functidre will call this thevertical line tesffor a function. See figures 4 and

At this stage there are very few functions with a given foranahd infinite domain that we know how to graph. Let us list
some of them.
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143 Example (Identity Function) Consider the function

By TheorenB3, the graph of the identity function is a straight line.
144 Example (Absolute Value Function)Consider the function

— R
AbsVal :

X — X

By Examplel08, the graph of the absolute value function is that which appiedigure3.7.

Figure 3.4: Fails the vertical Figure 3.5: Fails the vertical
line test. Not a function. line test. Not a function.

Figure 3.6:1d Figure 3.7:AbsVal

145 Example (The Square Function)Consider the function

R — R
Sq: .
X — X

This function assigns to every real its square. By Theoténj the graph of the square function is a parabola, and it is
presented in in figurs.8.

146 Example (The Square Root Function)Consider the function
[0+ — R

X — VX

By Examplel17, the graph of the square root function is the half parab@tadppears in figure.o.

Rt:

147 Example (Semicircle Function)Consider the functioh

[—1;1] — R
Sc:

X — 1—x2

By Example39, the graph of5cis the upper unit semicircle, which is shewn in figGreQ

1Since we are concentrating exclusively on real-valuedtfans, the formula foSconly makes sense in the intervial1; 1]. We will examine this more
closely in the next section.
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148 Example (The Reciprocal function) Consider the function

R\ {0} — R
Rec:
1

X —

x

By Examplel20, the graph of the reciprocal function is the hyperbola shiewfigure

Figure 3.8:Sq Figure 3.9:Rt Figure 3.10:Sc Figure 3.11Rec
We can combine pieces of the above curves in order to grapgkwise defined functions.

149 Example Consider the functiori : R\ {—1,1} — R with assignment rule

—X ifx<-1
fX)=¢ % if —1<x<1
X if x>1

Its graph appears in figufi

Figure 3.12: Examplé
The alert reader will notice that, for example, the two difst functions
R — R R —  [0;40o]
' 2 2

X — X X — X

possess the same graph. It is then difficult to recover alintfegmation about a function from its graph, in particuliais
impossible to recover its target set. We will now preseniaed concept in order to alleviate this problem.

150 Definition A functional curveon the plane is a curve that passes the vertical line test.dohwin of the functional
curveis the “shadow” of the graph on theaxis, and thémage of the functional cunis its shadow on thg-axis.

2The formula forReconly makes sense wher 0.
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In order to distinguish between finite and infinite sets, wit wake the convention that arrow heads in a functional curve
indicate that the curve continues to infinity in te directafrthe arrow. In order to indicate that a certain value is raot pf
the domain, we will use a hollow dot. Also, in order to make graphs readable, we will assume that endpoints and dots fall
in lattice points, that is, points with integer coordinatéke following example will elaborate on our conventions.

I
5 -4-3-2-1012 3 45 5 -4-3-2-101 2 3 45 5 -4-3-2-101 2 3 45 5 -4-3-2-101 2 3 45

[ A U N O I ey

[ A U N O I ey

[ N U N O I ey

[, 3 NN RN T kN WA
|

Figure 3.13: Example51:  Figure 3.14: Example51:  Figure 3.15: Examplé51  Figure 3.16: Examplé
a. b. C. d.

151 Example Determine the domains and images of the functional cuayvies, d given in figures3.13through
Solution:; » Figure consists only a finite number of dots. These dots x-coormelret the sef—4,—2,2 4}
and henceDom(a) = {—4,—-2,2,4}. The dots y-coordinates are the det3,—1,1} and solm (a) = {-3. —
1,1},

Figure has x-shadow on the interv&t3;3[. Notice that x= 3 is excluded since it has an open dot. We
conclude thaDom (b) = [-3; 3[. The y-shadow of this set is the inter{al3; 1]. Notice that we do includey: 1
since there are points having y-coordindtgior examplg2, 1), which are on the graph. Henclen (b) = [-3;1].

The x-shadow of figuré.15commences just right ofx —3 and extends tet, as we have put an arrow on
the rightmost extreme of the curve. Hellem (c) = |—3: +oo[. The y-shadow of this curve starts a0 and
continues totoo, thusim (c) = [0;+oo].

We leave to the reader to conclude from figaré6that

Dom(d) = R\ {~3,0} = ]—o0; —3[U]-3;0[U]0;+oo[,  Im (d) =]—c0;2[U]2;4].
|

Homework

3.2.1 Problem Consider the functional curvd shewn in figure| 3.2.2 Problem Thesignumfunction is defined as follows:

R — {-1,0,1}
1. Find consecutive integessb such thad(—2) € [a; b]. +1 ifx>0
sighum:
2. Determined(—3). X = 0 ifx=0
-1 ifx<O

3. Determined(0).
Graph the signum function.
4. Determined(100).

3.2.3 Problem By looking at the graph of the identity functidd,
determineDom (Id) andIm (Id).
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3.2.4 Problem By looking at the graph of the absolute value fuff3.2.10 Problem Consider the functiorf : [—4;4] — [-5;1] whose
tion AbsVal, determineDom (AbsVal) andim (AbsVal). graph is made of straight lines, as in figur€.7. Find a piecewise
formula for f.

3.2.5 Problem By looking at the graph of the square functiSuaj,
determineDom(Sq) andIim (Sq).

3.2.6 Problem By looking at the graph of the square root functipn
Rt, determineDom(Rt) andim (Rt).

4+ v w0 » oo
L
I

=
L
I
-

3.2.7 Problem By looking at the graph of the semicircle functign =t
Sc, determindDom(Sc) andIm (Sc). MR 4o

3.2.8 Problem By looking at the graph of the reciprocal functign
Rec determineDom(Rec) andIm (Rec).

S A e
L
I

3.2.9 Problem Graph the functiorg : R — R that is piecewise def

fined by
. oo —1
o fFxe] -1 Figure 3.17: Problerf
9x) =< x ifxe[-1;1]
1 if x €]1; 400
X

3.3 Natural Domain of an Assignment Rule

Given a formula, we are now interested in determining whiassible subsets d will render the output of the formula also
a real number subset.

152 Definition Thenatural domain of an assignment rukethe largest set of real number inputs that will give a reshber
output of a given assignment rule.

For the algebraic combinations that we are dealing with, westrthen worry about having non-vanishing
denominators and taking even-indexed roots of positivermeabers.

153 Example Find the natural domain of the rule— x27§<6

Solution: » In order for the output to be a real number, the denominatostmot vanish. We must have
X2 —x—6=(x+2)(x—3) # 0, and so x# —2 nor x# 3. Thus the natural domain of this rulel®\ {-2,3}.
<

1

154 E le Find th tural d inof— —/———.
xample Find the natural domain ofi— —7—=

Solution: Sinced* — 16 = (x? — 4)(x2 +4) = (x+ 2)(x— 2)(x?+ 4), the rule is undefined when= —2 orx = 2. The natural
domain is thu®R \ {-2,+2}.

2

155 Example Find the natural domain for the rufgx) = yp

Solution: » The denominator must not vanish, heneex4. The natural domain of this rule is th@is\ { —4,4}.

<
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156 Example Find the natural domain of the rufgx) = v/x+ 3

Solution: » In order for the output to be a real number, the quantity unter square root must be positive,
hence x-3> 0 = x> —3 and the natural domain is the interval3;4oo|.

<
157 Example Find the natural domain of the ruggx) = 2
- VXx+3

Solution: » The denominator must not vanish, and hence the quantityrahdequare root must be positive,
therefore x> —3 and the natural domain is the intervgt 3+; oo|.

<

158 Example Find the natural domain of the rule— Ve,

Solution; » Since for all real numbers¢ 0, the natural domain of this rule .
<

159 Example Find the natural domain of the rule— v/ —x2.

Solution: » Since for all real numbers-x? < 0, the quantity under the square root is a real number only when
x = 0, whence the natural domain of this rule{i8}.

<

160 Example Find the natural domain of the rule— i
V2
Solution: » The denominator vanishes whee=X. Otherwise for all real numbers, 0, we have %> 0. The

natural domain of this rule is thuk \ {0}.
<

161 Example Find the natural domain of the rule— %
—X

Solution: » The denominator vanishes whegr=X. Otherwise for all real numbers, % 0, we have—x? < 0.
Thusv/ —x2 is only a real number when= 0, and in that case, the denominator vanishes. The naturabiom
of this rule is thus the empty set

<

162 Example Find the natural domain of the assignment rule

1
X—V1—X+ .
- V1+X

Solution: » We need simultaneously— x > 0 (which implies that x< 1) and 1+ x > 0 (which implies that
x> —1), soxe| —1;1].

<

163 Example Find the largest subset of real numbers where the assignmlent— /X2 — x — 6 gives real number outputs.

Solution: » The quantity x— x— 6 = (x+ 2)(x— 3) under the square root must be positive. Studying the sign
diagram
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X€ J—00;=2 | [-2;3 | [3i+o]
signum(x +2) = - + +
signum(x— 3) = _ _ n
signum(x+2)(x—2)) = |+ S -

we conclude that the natural domain of this formula is the sed; —2] U [3; 4.
<

1

164 Example Find the natural domain for the rufgx) = N
X2 —X—

Solution: » The denominator must not vanish, so the quantity under thareqoot must be positive. By the
preceding problem this happens whea|x- c; —2[ U |3;4[. <

165 Example Find the natural domain of the rule— v/x2 + 1.

Solution: » Sincevx € R we have X+ 1> 1, the square root is a real number for all real x. Hence the naltu
domain isR. «

166 Example Find the natural domain of the rule— v/x2 + x4+ 1.

Solution: » The discriminant of %4 x4 1 = 0is 12 — 4(1)(1) < 0. Since the coefficient ofs 1 > 0, the
expression %+ x+ 1is always positive, meaning that the required natural damisiall of R.

Aliter: Observe that since
X4 x+1= x+1 2+3 > 3>O
- 2 4=47 7

the square root is a real number for all real x. Hence the natalomain isR.

<
Homework
3.3.1 Problem Below are given some assignment rules. Verify that 1. x— 6. X+ 1
the accompanying set is the natural domain of the assignmalent V141X [x—1]+[x+1]
2. x— ¥/5-1¥| V=X
7. X—
3. x— /5—|x| x“—1
Assignment Rule Natural Domain 1 12
4 X 8. xi Y1 X
X/ (1-x)(x+3) | xe[-3;1]. X+ )1(+ 1—[X|
1-x 5. X
x—\/ {3 x€]—3;1) VX2 —2x-2 9. X VX4 V=X
X+3
X —_— xe[-3;1
AT e[-31
X 1 x€]—3;1
= T —— 9
(x+3)(1—x)
3.3.2 Problem Find the natural domain for the given assignmer®3.3 Problem Below are given some assignment rules. Verify that
rules. the accompanying set is the natural domain of the assignmknt
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Assignment Rule Natural Domain 3.)3(3.4_Plrg(blem Find the natural domain for the ruld(x) =
X
X 29 x€]—3;0 U]3;+]
- 3.3.5 Problem Find the natural domain of the rulex —
X /=X x=0 1
2_x—2
xi— /=X = 2] xe {-2,2} X
1 0 +-00
X~ X X €J0;+oof 3.3.6 Problem Find the natural domain for the following rules.
X\ 2 xe R\ {0}
1
X X €] — ;0 1. X /= (x+1)2, 5. h(x):;
1 ) 1 VX8 — 13x4 4 36¢2
— @ (th ty set X e
xH\/X (the empty set) —(x+11)/22 A j(x)_;
! : : 3 ()= T 138 1 36x
X T x€]—1,0[ U ]0;4oo ) X4 — 132 + 36 .
V3—x
. - Vv 7. kX)= ——————
Xi— VI+x+vV1I—x | [-1;1] 4. 9(x) @132 135 (x) X — 13+ 36

3.4 Algebra of Functions

167 Definition Let f : Dom(f) — Target(f) andg: Dom(g) — Target(g). ThenDom(f +g) = Dom(f)Dom(g) and
the sum (respectively, difference) functibr- g (respectivelyf — g) is given by

Dom(f)NDom(g)

— Target(f+g)
f+g: .

X —  f(X)£g(x)
In other words, ifx belongs both to the domain défandg, then

(f£9) () = f(x) £9(0).

168 Definition Let f : Dom(f) — R andg: Dom(g) — R. ThenDom(fg) = Dom(f)NDom(g) and the product function
fgis given by

Dom(f)nDom(g) — Target(fg)
fg: .
X = f(x)-9(x)
In other words, ifx belongs both to the domain dfandg, then
(fg)(¥) = F(x)-g(x).
169 Example Let
[—1;1] — R [0;2] — R
f , g: .
X = X42X X = 3X+2
Find
1. Dom(f +g) 4. (f+0)(1)
2. Dom(fg) 5. (fg)(1)
3. (f+9)(-1) 6. (f-9)(0)
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7. (f+9)(2)

Solution: » We have

1. Dom(f+g) = Dom(f)NnDom(g) = [-1;Jn 4. (f+9g)(1)=f(1)+9(1)=3+5=8.
10:2 = [0:1. 5. (fg)(1) = f(1)g(1) = (3)(5) = 15.

2. Dom(fg) is alsoDom(f)NDom(g) = [0;1]. 6. (f—g)(0)=f(0)—g(0)=0-2=—2.

3. Since-1¢[0;1], (f +9)(—1) is undefined. 7. Since2 ¢ [0;1], (f +0)(2) is undefined.

<

170 Definition Letg: Dom(g) — R be a function. Theupportof g, denoted bysupp(g) is the set of elements iDom(g)
whereg does not vanish, that is

supp(g) = {x € Dom(g) : g(x) # 0}.
171 Example Let
R — R
X — X—2X

Thenx® — 2x = x(x— v/2)(x+ v/2). Thus
supp(g) =R\ {~v2,0v2}.
172 Example Let
0;] — R
g: .
X = XC—2X
Thenx® — 2x = x(x— v/2)(x+ v/2). Thus

supp(g) = [0; 1]\ {~Vv2,0v2} =]0; 1.

173 Definition Let f : Dom(f) — R andg: Dom(g) — R. ThenDom (é) = Dom(f)Nsupp(g) and the quotient function
f

—isgivenb

9 g y

f Dom(f)Nsupp(g) — Target(é)

' fx)
g X .
a(x)

In other words, ifx belongs both to the domain éfandg andg(x) # 0, then(é) = —.

174 Example Let
2,3 — R [0;5 — R
X — X3—X X — X3—2X2
Find
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1. supp(f
(

2. supp g)) i <%) ?

5. oom( ) 2 (Ns
son() v
: (3)e (1)

Solution: »

1. As® —x=x(x—1)(x+1), supp(f) = [-2;—1[U] — 1;0[U]0; 3
2. As ® —2x% = x?(x— 2), supp(g) =]0;2U]2;5].

w

Dom (é) =Dom(f)Nnsupp(g) = [—2;3 N (]0;2U]2;5) =]0;2[U]2;3

Dom <%> = Dom(g) Nsupp(f) =[0;5 N ([—2;—-1[U] — 1,;0[U]0; 3]) =]0; 3

(2) is undefined, a8 ¢]0; 2[U]2; 3].

IS
/N 7N 7 N 7N
=l Q|-+ —+wQ Q|-

~—~
N
S~—"
Il
—h‘LQ
—|
NN
— =
Il
ol o
Il
o

We are now going to consider “functions of functions.”

175 Definition Let f : Dom(f) — Target(f), g: Dom(g) — Target(g) and letU = {x € Dom(g) : g(x) € Dom(f)}. We
define thecompositiorfunction of f andg as

U — Target(fogQ)
fog: . (3.1)

x = flgx)

We readf o g as “f composed with §

We haveDom(f og) = {x € Dom(g) : g(x) € Dom(f)}. Thus to findDom(f o g) we find those elements of
Dom(g) whose images are iDom(f) NIm (g)

176 Example Let

{_27 _15 07 13 2} - R {07 17 27 3} - R
f: , g:
X — 2X+1 X — X—4
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177

R

o & w0 nNoE

FindIm (f). 5. Find(f og)(0).
Findlm (g). 6. Find(go f)(0).
FindDom(f o Q). 7. Find(foQg)(2).
FindDom(go f). 8. Find(go f)(2).

Solution: »

2. We have @) = —4, g(1) = -3, 9(2) =0, g(3) = 5. Hencelm (g) = {—4,-3,0,5}.
3. Dom(fog)={xeDom(g):g(x eDom( )} ={2}.
4. Dom(go f) = {xe Dom(f): f(x) e Dom(g)} = {0,1}.
5. (fo)(0) = f(g(0)) = f(—4), but this last is undefined.
6. (9o f)(0) =g(f(0)) =g(1) = -3
7. (fog)(2)=f(g(2)) = 1(0) =1
8. (go f)(2) = g(f(2)) = g(5), but this last is undefined
<
Example Let
R — R R — R
f , g:
X — 2x-3 X +— bBx+1

Demonstrate tham (f) =R.
Demonstrate tham (g) = R.

Find(f o g)(x).

Find(go )(x).

Is it ever true thatf o g)(x) = (go f)(x)?

Solution: »
1. Take b R. We must shew thaix € R such that fx) = b. But

f(x)=b = 2x—3=b = XZ?'

Since? is a real number satisfying <b%3> = b, we have shewn than () =R.

2. Take b= R. We must shew thaix € R such that ¢x) = b. But

b-1

gxX)=b = 5x+1=b = x= 5

Sinceb%1 is a real number satisfying é%) = b, we have shewn thah (g) = R.

3. We have
(fog)(x)=f(g(x)) = f(5x+1) =2(5x+ 1) —3=10x—1

4. We have
(go f)(x) =0g(f(x)) =g(2x—3) =5(2x—3) + 1= 10x— 14

(go £)(x).

1. We have (—2)=-3, f(-1)=-1, f(0 ):1 f(1) =3, f(2) =5. Hencelm (f) = {-—3,-1,1,3,5}.
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(fog)(x) =(go f)(X)
then we would have
10x—1=10x—14

which entails that-1 = —14, absolute nonsense!

<
Composition of functions need not be commutative.

178 Example Consider

~V3v3 — R [-2i+w] — R

X = V/3-x2 X - —VX+2
FindIm (f).
Findlm (g).
FindDom(f o Q).
Findfog.
FindDom(go f).

o g & w N PkF

Findgo f.

Solution: »

1. Assume y= v/3—x2. Then y> 0. Moreover x= ++/3—Yy2. This makes sense only-fy/3 <y < /3.
Hencelm (f) = [0;1/3].

2. Assume y= —/X+2. Then y< 0. Moreover, x=y? — 2 which makes sense for every real number. This
means thaty is allowed to be any negative number arichs@) =] — ; 0].

3.
Dom(fog) = {xe&Dom(g):g(x) € Dom(f)}

= {xe[-2ito[ —v3< —VX+2<V3}
= {xe[-24o[: —V3< —V/x+2<0}
—  {x€[-24w:x<1}

= [-2]]

4. (fog)(x)=f(9(x) = f(—VX+2) =v1-X.

Dom(gof) = {xeDom(f):f(x) € Dom(g)}
{xe[-V3iV3:V3-x> -2}
{xe[-V3;V3]: V3-x2 >0}
= [-V3;V3
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6. (go f)(X) =g(f(X)) =g(v3—x3) = —/V/3—- X2+ 2.

<
Notice thatDom (f o g) = [—2; 1], although the domain of definition ofx% v/1— x is] — o0; 1].

179 Example Let
R\{1} — R |—;2] — R
f:

X _ — X — V2—X

x
I
[N

Findlm (f).
Findlm (g).
FindDom(f o Q).
Findfog.
FindDom(go f).
Findgo f.

2 T o

Solution: »
2 .
1. Assume ¥ x—xl x € Dom(f) is solvable. Then

Yy(X—1)=2X = yx—2X=y = X= y%z
Thus the equation is solvable only whe# 2. Thusim (f) =R\ {2}.
2. Assume that ¥ v/2—x, x€ Dom(g) is solvable. Then ¥ 0 since y=1/2—x is the square root of a
(positive) real number. All 0 will render x= 2 —y? in the appropriate range, and dm (g) = [0;+oo[.

3.
Dom(fog) = {xeDom(g):g(x) € Dom(f)}
= {x€]-;2]:vV2-x#1}
= |—;1[U]1;2
4. (109)00 = 1(g) = 1(VZ=R) = —=—.
) Dom(gof) = {xeDom(f): f(x) € Dom(g)}
= {xeR\{l}:XZTXlSZ}
= (XeR\(1): 21 <0}
= |-
6.
9o =at0 =a(325) = y/2- 2 =\ 1o
|

Homework
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3.4.1 Problem Let

[—5;3] — R [—4;2] — R

X — X4716 X — |X|f

Find

3.4.2 Problem Let

{_27_1707172} - Z
f:

X = 2X X

FindIm (f
Findim (g
FindDom(f og).

FindDom(go f).

W DR

)-
)-
(fo
(

3.4.3 Problem Let f,g,h: {1,2,3,4} — {1,2,10,1993 be given
by

2)=2,9(3) =
h(1) =h(2) =h(3) =
1. Compute(f+g+h)(3)

2. Compute(fg-+gh+hf)(4).
3. Computef (14h(3)).
4. Computgfofofofof)(2)+f(g(2)+2).

3.4.4 Problem Two functions f,g: R — R are given byf(x) =
ax+ b, g(x) = bx+a with a and b integers. If f(1) = 8 and
f(g(50)) — g(f(50)) = 28, find the producab.

3.4.5Problem If a,b,c: R — R are functions witha(t) =t —

2,b(t) =t3,c(t) = 5 demonstrate that

(ash)t) =
(boa)t) =
(boc)(t) = 125
(cob)t) = 5
(coa)t) = 5

(aoboc)(t)

1
[EEY
N
w

1
ul

(coboa)(t)

(aocob)(t)

1}
w

3.4.6 Problem Let

. [2;40] — R g
X —
FindIm (f).
FindIm (g).
FindDom(f og).
(gof).

)(X).

)(X).

FindDom
Find(fog
Find(go f

I A

X

3.4.7 Problem Let

[-vV2+v2] - R

X — 2—x2 X

FindIm (f).
FindIm (g).
FindDom(f og).
(gof).
) (%)
)(X)-

FindDom
Find(fog
Find(go f

2 e o o

X

3.4.8 Problem Let f,g,h: R — R be functions. Prove that their
composition is associative

o(goh) =(fog)oh

whenever the given expressions make sense.

3.4.9 Problem Let f : R — R be the function defined by (x) =
ax’ — /2 for some positive. If (o f)(v/2) = —v/2 find the value
of a.

3.4.10 Problem Let f :]0 : +0[—]0 : +oo[, such f(2x) = 5%

Find 2f (x).
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3.4.11 Problem Let f,g: R\ {1} — R, withf(x) = irg(x) = | that(f o f)(x) = x. Find the value ot.

2x, find allx for which (go f)(x) = (f 0 g)(x). -
3.4.14 Problem Let f,g: R — R be functions satisfying for all real

3.4.12 Problem Let f : R — R, f(1—x) & Find (fo f)(x). | Mumperscandy the equality

f(x+9g(y)) = 2x+y+5. (3.2)

3 o CX
3.4.13 Problem Let f : R\ {—é} — R\ {§}7x — m be such Find an expression f(g'(x+ f(y))

3.5 lteration and Functional Equations

180 Definition Given an assignment rule— f(x), itsiterate at xis f(f(x)), that is, we use its value as the new input. The
iterates ak

x, £(x), F(F(x)), F(F(F(X),...

are called &h iterate 1st iterate 2nd iterate 3rd iterate, etc. We denote the-th iterate byf .

In some particular cases it is easy to find thie iterate of an assignment rule, for example
ax) =X = a"(x) =x",
b(x) = mx = bl"(x) = mx,

m-—1

The above examples are more the exception than the rule.idtseepossible to find a closed formula for tineth iterate some
cases prove quite truculent.

c(x) = mx+k = cM(x) = m'x+k (mn_ 1) .

181 Example Let f(x) = %( Find then-th iterate off atx, and determine the set of valuesdbr which it makes sense.

Solution: » We have

fB(x)=(fofof)(x)=f(fA(x)) =f (X_l) = 1H =X.

X

Notice now that (x) = (f o f3)(x) = f(f¥(x)) = f(x) = f[U(x). We see that f is cyclic of perid@] that is,

1
W)=t = flx)=... = —
fEX) = 8 (x) = f19(x) 1—x
() = £0(x) = fEl(x) = :X%l,
fBx) =f8x) =fox) =...=x

The formulee above hold forg{0,1}. «
182 Definition A functional equatioris an equation whose variables range over functions, or oftea, assignment rules.

A functional equation problem asks for a formula, or formsk#sfying certain features.

183 Example Find all the functiong : R — R satisfying

g(x+y) +g(x—y) = 23 + 2y,




Iteration and Functional Equations 71

Solution: » Ify = 0, then2g(x) = 2x?, that is, gx) = x°. Let us verify that ¢x) = x> works. We have
gX+Y) +g(X—y) = (X+ )%+ (X—=y)2 = X2+ 2Xy+ Y2 + X2 — 2xy+ y? = 2% + 22,
from where the only solution ig) = x?. <«
184 Example Find all functionsf : R — R such that

X () + f(1—x) =2x—x%

Solution: » From the given equation,
f(1—x) =2x—x*—x%f(x).
Replacing x byl — x, we obtain
(1—x)?f(1—x) 4+ f(x) =2(1—x) — (1—x)*
This implies that
f(X) =2(1—x) — (1—x)*— (1—x)2f(1—x) = 2(1—x) — (1 —x)*— (1 — x)?(2x— x* — X2 £ (x)),
which in turn, gives
f(X) =2(1—%) — (1—x)* = 2x(1 = )2+ X}(1— x)? + (1 — )22 (x).
Solving now for {x) we gather that

2(1—x) — (1—x)*—2x(1— x)2+x*(1 —x)2
1-(1—x)%¢2
3
_ (A-x(2-(1-x —)2x(1—x)+x4(1—x)(1_ (1014 (1 x%)
(1—%)(2— (1 —3x+ 32— x3) — 2x+ 232+ x* — x3)
(1—x+x2)(14+x—x2)
(L1—X)(L+ X=X+ +x* —xO)
(1—x+x2)(14+x—x2)
(1=X)(1+X)(1—x+x2) (L +x—x?)
(1—x+x2)(1+x—x2)

f(x) =

= 1-x2
We now check. If (k) = 1 — x? then
I+ F(1-X)=x(1-x)+1-(1-x?=x¥—x*+1-14+2x—x*=2x—x,

from f(x) = 1— x? is the only such solution.

<
We continue with, perhaps, the most famous functional egat

185 Example (Cauchy’s Functional Equation) Supposef : Q — Q satisfiesf(x+y) = f(x) + f(y). Prove thatdc € Q
such thatf (x) = cx, Vx € Q.
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Solution: » Letting y= 0 we obtain {x) = f(x) + f(0), and so {0) = 0. If k is a positive integer we obtain
f(kx) = f(x+(k—1)x)
=f(x)+ f((k—1)x)
=f(xX)+ f(xX)+ f((k—2)x) = 2f(x) + f((k—2)x)
=2f(x) + f(X) + f((k—3)x) = 3f(x) + f((k—3)x)
=---=kf(x) + f(0) = kf(x).
Letting y= —x we obtain0 = f(0) = f(x) + f(—x) and so {—x) = —f(x). Hence {nx) = nf(x) forn€ Z. Let
x € Q, which means that x n for integers st with t £ 0. This means that tx s- 1 and so ftx) = f(s-1) and
by what was just proved for integers,(&j = sf(1). Hence 1x) = Esf(l) = xf(1). Since {1) is a constant, we
may put c= f(1). Thus fx) = cx for rational numbers x«
Homework

3.5.1 Problem Let flH(x) = f(x) = x+ 1, {1 = fo fM n> 1.
Find a closed formula fof [

3.5.2 Problem Let f[t(x) = f(x) = 2x, {1 = f o [V n> 1. Find
a closed formula foff [l

3.5.3 Problem Find all the assignment rulesthat satisfyf (xy) =
yf(x).

3.5.4 Problem Find all the assignment rulésfor which

f(x)+ 2f (;1() =X

3.5.5 Problem Find all functionsf : R\ {—1} — R such that

(F())?- 1 (%) 6

3.6

186 Definition A function

Injections and Surjections

Dom(f)
f:

a

is said to benjectiveor one-to-onef (a;,ay) € (Dom(f))?,

3.5.6 Problem An assignment rulé is said to be amvolutionif for
all x for which f(x) and f(f(x)) are defined we havé(f(x)) = x.

Prove thag(x) = 3 is an involution forx # 0.

3.5.7 Problem Prove thatf (x) = v/1—x2 is an involution for 0<
x<1.

3.5.8 Problem Let f satisfy f (n+1) = (—1)"*n—2f(n),n > 1 If
f(1) = £(100D) find f (1) + f(2) + f(3)+ -+ f (1000.

3.5.9 Problem Let f : R — R satisfy

f(1)=1 WxeR f(x+3)>f(x)+3, f(x+1)<f(x)+1

Putg(x) = f(x) —x+ 1. Determiney(2008).

3.5.10 Problem If f(a)f(b) = f(a+b) V abe R and f(x) >
0V xeR,find f(0). Also, find f (—a) and f (2a) in terms off (a).

— Target(f)

— f(a)

a#ay = f(a1) # f(ag).

Thatis,

f(an) = f(ap) = ay=ap.
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f is said to besurjectiveor ontoif Target(f) =Im (f). Thatis, if(vb € B) (3a € A) such thatf (a) = b. f is bijectiveif it is
both injective and surjective. The numlzeis said to the th@re-imageof b.

A function is thus injective if different inputs result infiirent outputs, and it is surjective if every element of thiget set is
hit. Figures through present various examples.

e o o
e o o

e o o
e o o

Figure 3.18: Injective, not Figure 3.19: Surjective, not Figure 3.20: Neither injec-

surjective. injective. tive nor surjective. Figure 3.21: Bijective.

It is apparent from figures.18through that if the domain and the target set of a function are finitentthere are
certain inequalities that must be met in order for the fumrcto be injective, surjective or bijective. We make the mec
statement in the following theorem.

187 Theorem Let f : A — B be a function, and leA andB be finite, withA havingn elements, and ar8 melements. Iff is
injective, them < m. If f is surjective them < n. If f is bijective, therm= n. If n < m, then the number of injections from
AtoBis

m(m—1)(m—2)---(m—n+1).

Proof: Let A= {Xq,X2,...,%Xn} and B= {y1,¥2,...,Ym}-

If f were injective then (x1), f(x2),..., f(X,) are all distinct, and among thgyHence n< m. In this case, there
are m choices for (x; ), m— 1 choices for fx,), ..., m—n+ 1choices for fx,). Thus there are

mm—21)(m—2)---(m—n+1)
injections from A to B.
If f were surjective then each ys hit, and for each, there is an with f(x;) = yk. Thus there are at least m
different images, and soxn m. 0
To find the number of surjections from a finite set to a finitevgetneed to know about Stirling numbers and inclusion-

exclusion, and hence, we refer the reader to any good booérimb@atorics.

188 Example Let A= {1,2,3} andB = {4,5,6,7}. How many functions are there froAto B? How many functions are
there fromB to A? How many injections are there frofrto B? How many surjections are there frdvo A?

Solution: » There ared-4-4 = 64functions from A to B, since there adgossibilities for the image df, 4 for
the image oR, and4 for the image o8. Similarly, there are8-3-3- 3= 81 functions from B to A.

By Theorem. 87, there are
4.3.2=24

injections from A to B.

The3? functions from B to A come in three flavours: (i) those thatsrgective, (i) those that map to exactly
two elements of A, and (iii) those that map to exactly one efeimf A.
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Take a particular element of A, sdy= A. There are2* functions from B td 2, 3}. Notice that some of these may
map to the whole s€f2,3} or they may skip an element. Coupling this with the A, this means that there are

2 functions from B to A that skip tHeand may or may not skip tior the 3. Since there is nothing holy about
choosingl € A, we conclude that there aB 2* from B to A that skip either one or two elements of A.

Now take two particular elements of A, sf¥,2} C A. There arel* functions from B to{3}. Since there are
three2-element subsets in A—namély 2}, {1,3}, and{2,3}—this means that there ag 1* functions from B
to A that map precisely into one element of A.

To find the number of surjections from B to A we weed out theifurscthat skip elements. In considering the
difference3* — 3- 24, we have taken out all the functions that miss one or two eiesraf A, but in so doing, we
have taken out twice those that miss one element. Hence wiegsetback in and we obtain

3*-3.2*+3.1°=36

surjections from B to A«

It is easy to see that a graphical criterion for a function ®ibjective is that every horizontal line crossing
the function must meet it at most one point. See figiirgsand

Figure 3.22: Passes horizontal line test: injective. Figure 3.23: Fails horizontal line test: not- injective.
R — R
189 Example Thea: is neither injective nor surjective. For exammé;-2) = a(2) = 4 but—2 +# 2, and there
X — X
R —  [0;+4oo 040 — R
is nox € R with a(x) = —1. The functiorb : is surjective but not injective. The functian
X — X X — X2

o . [0l = [0y
is injective but not surjective. The functiah: is bijective.

X — X2

Given a formula, it is particularly difficult to know in advea what it set of outputs is going to be. This is why when we
talk about function, we specify the target set to be a canfsteevery possible value. The next few examples shew how to
find the image of a formula in a few easy cases.

190 Example Let f : R — R, f(x) = x2+ 2x+ 3. Determindm (f).

Solution: » Observe that

X 2X+3=X 4+ 2x+1+2=(x+1)2+2>2,
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since the square of every real number is positive. Sixce 1)? could be made as arbitrarily close 1 as
desired (upon taking values of x close td), and can also be made as large as desired, we conclude that
Im (f) € [2;+00[. Now, let ac [2;+oo[. Then

X¥42x+3=a < (x+1)?+2=a < x=-1+va-2

Since & 2, v/a—2 € R and x€ R. This means thg®2;+o[ & Im (f) and so we conclude thémn () = [2 : 4-oo].
<

191 Example Let f : R\ {1} = R, f(x) = XZTX1 Determindm (f).

Solution: » Observe that ) )
X
=1 2Tx=17?

sinc:ei never vanishes for any real number x. We will shew ima¢f) = R\ {2}. For let a# 2. Then

a
=a = 2X=ax—a = X(2—a)=-a = x=——.

x—1 a—2
But if a# 2, then x€ R and so we conclude thén (f) =R\ {2}. «
x—1
X — —
192 Example Consider the functioff : X+1  whereAis the domain of definition of.
A — B

1. DeterminéA.
2. DetermineB so thatf be surjective.

3. Demonstrate thdt is injective.

. x—1
Solution: » The formula fx) = r1 outputs real numbers for all values of x except foex-1, whence
A=R\{-1}.
Now,

. 2 .
smce—1 never vanishes. If & 1 then

x—1 l+a
—=a= ax—a=x+1= x(a-1)=1+a = x= ——,
x+1 l-a
which is a real number, since-A 1. It follows thatlm (f) =R\ {1}.

To demonstrate that f is injective, we observe that

f(a)=f(b) = a-l_b-1_, (a—1)(b+1) = (a+1)(b—1) = ab+a—b=ab—a+b— 2a=2b = a=h,
a+1 b+1
from where the function is indeed injective.

<

193 Example Prove that
R — R

X — X

is a bijection.




76 Chapter 3

Solution: » Assume tb) = h(a). Then

h(a) =h(b) = a®=1b3
= a-b3=0
= (a—b)(a®+ab+b? =0

Now, )
ay2 3a
b2+ ab azz(b —) =

+ab+ +35) +3
This shews thatb+ ab+ a? is positive unless both a and b are zero. Heneedb= 0in all cases. We have shewn

that h(b) = h(a) = b= a, and the function is thus injective.

To prove that h is surjective, we must prove tiiéab € R) (3a) such that Ifa) = b. We choose a so that-a b/3.
Then
h(a) = h(b"/3) = (b¥3)3 = b.

Our choice of a works and hence the function is surjectwe.

R\ {1} — R

194 Example Prove thatff : is injective but not surjective.

x1/3
X x1/3 -1
Solution: » We have
f(a)="f(bh) = % = bl?:i/il
—  al/3pl/3_gl/3 _—  gl/3pl/3_pl/3
— _al/3 _ _pl/3
— a = b,

whence f is injective. To prove that f is not surjective asstimt f(x) = b,b € R. Then

x1/3 b3

The expression for x is not a real number whea b, and so there is no real x such thafxj = 1. «

195 Example Find the image of the function

R — R
Xx—1
X241

X

Solution: » First observe that fx) = 0 has the solution x 1. Assume & R, b+ 0, with f(x) =b. Then

Xz;lzb — b —x+b+1=0.
xe+1

Completing squares,

~2b 4b

L 2+ —1+4b+ 4b?
b 4b '

bxz—x+b+1_b(x2—)—()+b+1_b(x2—)—l;+4—i2>+b+1—i_b
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Hence
1

2b

2
bx2—x—|—b+1:O<:>b<x— _1

)

—4b—4bh?

1
<— X==-=+

1—4b— 4p?
St —

4b 2b

We must in turn investigate the values of b for which ® and 1 — 4b — 4b? > 0. Again, completing squares

1—4b—4b2:—4(b2+b)+1:—4<b2+b+%) +2=2-(@b+1 == (V2-2b-1) (V2+2b+1).

A sign diagram then shews that- 4b — 4b? > 0 for

1 2 1 2
bE ___£,__+£ 9
2 2 2 2
and so
1 2 1 2
Im (f) = ___i;__Jri
2 2 2 2
<
Homework
3.6.1 Problem Prove that 1. fiR—R, x—xt
R R
g: - 2. f:R—{1}, x—1
S — 2s+1
is a bijection. 3. f:{1,2,3} - {a,b}, f(1)=1(2)=4af(3)=b
3.6.2 Problem Prove that : R — R given byh(s) = 3—sis a bi- 4. 1[0 4o[= R, x—xC
jection.
5. f:R—R, x— X
3.6.3 Problem Prove thag: R — R given byg(x) = x/3 is a bijec-
tion. 6. f:[0;+oo[—R, X— —[X|
R\{1} — R\{2} 7. fiR— [0;+%, X+ X
3.6.4 Problem Prove thatf : 5 is surjective
X
X X+1 8. f:[0;+oo[— [0;+[, x> x*
R\{1} — R
but thatg : is not surjective.
X i 3.6.6 Problem Let f : E — F,g: F — G be two functions. Prove
X+ that if go f is surjective themy is surjective.
3.6.5 Problem Classify each of the following as injective, surjec-
tive, bijective or neither. 3.6.7 Problem Let f : E — F,g: F — G be two functions. Prove
that if go f is injective thenf is injective.

3.7

Let SC R. Recall thatd gis the identity function or$, that is

Inversion

Jd s: S— Swithld g(x) = x.

196 Definition Let Ax B C R?. A function f : A— Biis said to beight invertibleif there is a functiorg : B — A, called the
right inverse of fsuch thatf og=1d g. In the same fashiorf, is said to bdeft invertible if there exists a functioh: B — A

such thaho f =Id a. A function isinvertibleif it is both right

and left invertible.
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197 Theorem Let f : A — B be right and left invertible. Then its left inverse coincdeith its right inverse.

Proof: Letgh:B— A be the respective right and left inverses of f. Using theciasivity of compositions,
(fog)=(ldg) = ho(fog)=hold g = (hof)og=holdg = (Id A)ocg=holdg = g=h.
O

198 Corollary (Uniqueness of Inverses)if f : A— Bis invertible, then its inverse is unique.

Proof: Let f have the two inversests B — A. In particular, s would be a right inverse and t would be 4 lef
inverse. By the preceding theorem, these two must coincide.

199 Definition If f : A— Bis invertible, then its inverse will be denoted by : B — A.

We must alert the reader that ¥ does not denote the reciprocal (multiplicative inversej of

200 Theorem Let f : A— B andg: C — Abe invertible. Then the composition functidér g : C — B is also invertible and
(fogyt=gtof™
Proof: By the uniqueness of inverses; d may only have one inverse, which is, by definitidn g)~*. This

means that any other function that satisfies the conditidbeimg an inverse of ¢ g must then by default iae
inverse of fog. We have,

(g lof Ho(fog)=glo(flof)og=gtold nog=glog=Idc.
In the same fashion,
(fog)o(glofl)y=fo(goghoft=foldpof t=foft=Idg.

The theorem now follows from the uniqueness of inverses.

2X X

X — X —

201 Example Let f : Xx=1 | pemonstrate thay: X=2 jsthe inverse of.

RA{1} — R\{Z} R\{2} — R\{1}

Solution: » Let xe R\ {2}. We have

2X
29(x) x—2 2X
fO X) = f X = e e = X7
( g)( ) (g( )) g(X)—l X 1 X — (X—Z)
X—2
from where g is a right inverse of f. In a similar manneg R\ {2},
2X
B o fx x—1 2X B
(gOf)(X)_g(f(X))_ f(X)—Z_ 2X 2_2X—2(X—1)_X’

x—1
whence g is a left inverse of

Consider the functions: {a,b,c} — {x,y,z} andv: {x,y,z} — {a,b,c} as given by diagrarfi.24 It is clear thev undoes
whateve does. Furthermore, we observe thandv are bijections and that the domainwif the image o and vice-versa.
This example motivates the following theorem.
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202 Theorem A function f : A — Bis invertible if and only if it is a bijection.

Proof: Assume first that f is invertible. Then there is a functiod fB — A such that
fofl=Idg and f1of=Id a. (3.3)

Let us prove that f is injective and surjective. Lgtlse in the domain of f and such thagsj = f(t). Applying
f~1 to both sides of this equality we geit o f)(s) = (f 1o f)(t). By the definition of inverse functioff,~* o
f)(s) =sand(f~1of)(t) =t. Thus s=t. Hence {s) = f(t) = s=t implying that f is injective. To prove
that f is surjective we must shew that for every b(A) 3a € A such that fa) = b. We take a= f~1(b) (observe
that f~X(b) € A). Then {a) = f(f~%(b)) = (f o f~1)(b) = b by definition of inverse function. This shews that f
is surjective. We conclude that if f is invertible then it isaa bijection.

Assume now that f is a bijection. For evergIB there exists a unique a such thgaf = b. This makes the rule
g: B — Agiven by gb) = a a function. Itis clear thatg f =Id 5 and fog=Id g. We may thus take f = g.
This concludes the proof]

be—\———y v\ p
a X X a
Ce z Ze C

Figure 3.24: A function and its inverse.
We will now give a few examples of how to determine the assigminnule of the inverse of a function.

203 Example Assume that the function

LRV - RV

x . x—1
x+1
is a bijection. Determine its inverse.
Solution: » Put
x—1
xr1 Y
and solve for x:
x—1 1+y
—— =y = X—1=yx = X—yx=1 = X(1-y)=1 = X=—.
1Y yx+y yx=1+y (1-y)=1+y 1y
14X o .
Now, exchange x and y:=y 1% The desired inverse is

R\{1} — R\{-1}
1+x
1-x

f1:

X
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204 Example Assume that the function

X — (x=23%+1
is a bijection. Determine its inverse.
Solution: » Put
(x-23+1=y
and solve for x:
x=2P+1=y = x-2°%=y-1= x—2=3y-1 = x=3Jy-1+2

Now, exchange x and y:3y /x— 1+ 2. The desired inverse is

1 R — R
f=: .
X — Ix—1+2

<

Since by TheoremO7, (x, f(x)) and(f(x),x) are symmetric with respect to the linexyx, the graph of a
function f is symmetric with its inverse with respect to the = x. See figures.25through3.27.

Figure 3.25: Function and its inverse.  Figure 3.26: Function and its inverse. Figure 3.27: Function and its inverse.

205 Example Consider the functional curve in figure28
. DetermindDom (f).

. Determindm (f).

. Draw the graph of ~1.

. Determinef (+5).

Determinef —1(—2).

o U A W N P

Determinef ~1(—1).

Solution: »

1. [-5;5
2. [-3:3
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3. To obtain the graph, we look at the endpoints of lines ongtlagh of f and exchange their coordinates.
Thus the endpoints-5,—3), (—3,—2), (0,—1), (1,1), (5,3) on the graph of f now form the endpoints
(=3,-5),(—2,-3),(-1,0), (1,1), and(3,5) on the graph of f1. The graph appears in figure 29below.

4. f(+5)=3.

5 f1(-2)=-3.

6. f1(—-1)=0.

|
3 /Q 3
2 2
1 1
0 0
-1 / 1 I
2 / 2
-3 ‘/ 3 /
-4 4 J
7 5 4 3 2 1 0 1 2 3 4 5 5 4 3 -2 -1 0 1 2 3 4 5
Figure 3.28:f for example205 Figure 3.29:f 1 for example

206 Example Consider the formuld(x) = x?>+4x+5. Demonstrate thdtis injective in[—2;4-o0[ and determiné ([—2;+]).
Then, find the inverse of

. [~2i4w] —  f([-2+))

X = X2+ 4x+5

Solution: » Observe that%+ 4x+5= (x4 2)?+ 1. Now, if a€ [~2;+c0[ and be [~2;+o], then
f(a)=f(b) = (a+2?+1=(b+2°+1 = (a+2)?=(b+2)%
As at+2>0and b+2> 0, we have
(a+2)?%=(b+2)?2 = a+2=b+2 = a=h,

whence f is injective if—2;+oo.
We have fx) = (x+2)?+ 1> 1. We will shew that f[—2;+oo[ = [1;-+oo[. Let be& [1;+oo[. Solving for x:
fX)=b = (x+2?+1=b = (x+2)?=b—-1.
Asb—1>0,vb—1is areal number and thus
x=-24+vb-1

is a real number with x< —2. We deduce that(f—2;+]) = [1;+].
Since

e

| X = X2+ 4x+5
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is a bijection, it is invertible. To find 1, we solve
X dx+5=y = (x+2)?+1=y = x=-2+./y—1,

where we have taken the positive square root, sinee>2. Exchanging x and y we obtainy—2+ /x— 1. We

deduce that the inverse of f is
-y [1;400] —  [=2;400] |
X — —2+vX—-1

<

In the same fashion it is possible to demonstrate that

J=0; =2 —  [1;400]
g:
X — X2+ 4x+5

bijective is, with inverse

(14 —  ]-00;-2]

X — —2—vx-1
Homework

3.7.1 Problem Let Observe thatf passes the horizontal line test, that it is surjective,
and hence invertible. .

R\{-2} — R\{1} 1. Find a formula forf and f 1 in [-5;0].
X 2. Find a formula forf andf~1in [0;5].

X+2 3. Draw the graph of 1.
Prove that is bijective and find the inverse of

C:
X

3.7.2 Problem Assume thaf : R — R is a bijection, wherd (x) =
23 +1. Find f~1(x).

&

3.7.3 Problem Assume thatf : R\ {1} — R\ {1} is a bijection,
X t2 et
wheref(x) = 1 Find f .

3.7.4 Problem Let f andg be invertible functions satisfying

it

hhbNvProrNvMwd o N®O

5-4-3-2-1012345¢67829

Figure 3.30: Problers
91 =-1 92)=3 9g4=-2
Find (fog)~*(1). 3.7.7 Problem Consider the rule

3.7.5 Problem Consider the formuld : x — x2 — 4x+5. Find two f(x) =+
intervalsl; andl, with R =11 Ul, andly N, consisting on exactly
one point, such that be injective on the restrictions to each interyal 1. Find the natural domain df.

f| andf
1

. Then, find the inverse df on each restriction. 2. Find the inverse assignment riflel.

| I2

3. Find the image of the natural domainfofind the natural do-

- - main of f 1,
3.7.6 Problem Consider the functiorf : [-5;5 — [—3;5 whose
graph appears in figure.30, and which is composed of two lineg. 4. Conclude.
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3.7.8 Problem Find all the real solutions to the equation

xz—if\/x—k}
4 4

3.7.9 Problem Let f,g,h: {1,2,3,4} — {1,2,10,1993} be given
by f(1) =1,f(2) = 2,f(3) = 10,f(4) = 19939(1) = 9(2) =
2,0(3)=9(4)—-1=1,h(1) =h(2) =h(3)=h(4)+1=2.

1. Is f invertible? Why? If so, what i$ ~1(f (h(4)))?

2. Isgone-to-one? Why?

3.7.10 Problem Giveng: R — R, g(x) = 2x+8 andf : R\ {-2} —
R\ {0}, f(x) = find (go f~1)(-2).

1
X+2

] —ooi1]
3.7.11 Problem Prove that :

—

[0; 400
is a hijec-
1-x

X —

tion and findt 1.

3.7.12 Problem Let f : R — R, f(X) = ax+b. For which parame
tersaandbis f = f~1?

3.7.13 Problem Prove that ifab# —4 and f : R\ {2/b} — R\
_ X+a 1
{2/b}, f(x) = bx_ 2 thenf = f~=.

3.7.14 Problem Let f : [0;4o[ — [0;+[be given by

f(X) = \/X+ VX

Demonstrate that is bijective and that its inverse is

1-V1+42 5
— +X".

f71:[0;400] — [0; 40, FL(x)= 5

3.7.15 Problem Demonstrate that

3 31—
PR [LY, f= YiXovIzX
14+Xx4+vV1-x
is bijective and that its inverse is
2
1. .. “1, _ X(X+3)
f~: -1 —-R, f (x)_71+3x2'

3.7.16 Problem Demonstrate that

1 1-V1+4
R B R R

4 1+v1+4x
is bijective and that its inverse is

X
(1+x)2°

f=]-1,1 — {—%;+°0{7 i) =—

3.7.17 Problem Demonstrate that

f:R—R, f(x):\3/x+\/x2+1+\3/x—\/x2+17

is bijective and that its inverse is

F1(x) = x3+3x.

f1:RR,
- 2

3.7.18 Problem Consider the functiori : R — R, with

2x ifx<0

f(x) =

X2 ifx>0

whose graph appears in figuse3 1.
1. Isf invertible?
2. If the previous answer is affirmative, draw the grapti of.
3. If f is invertible, find a formula forf 1.

Figure 3.31: Problers

3.7.19 Problem Demonstrate that : [0; 1] — [0; 1], with

X if xe QN[0;Y
f(x) =

1-x ifxe(R\Q)NI[0;Y
is bijective and thaf = 1.

3.7.20 Problem Prove, without using a calculator, that
9 Kk )2 K >
— | /=] <95
k; ((10 10

3.7.21 Problem Verify that the functions below, with their domains
and images, have the claimed inverses.

Assignment Rule| Natural Domain| Image Inverse
X V2—X ] — ;2] [0;400] | x—2—x2
1 1
XHﬁ ]| — ;2] ]0;+00] XHZ—?
243 . o/ 2x—
X~ R\ {V2} R | xe g
1 3 1
XI—)H R\ {1} R\ {0} X»—>\/1+;




|||||% Transformations of the Graph of Functions

4.1 Translations

In this section we study how several rigid transformatidifesch both the graph of a function and its assignment rule.

207 Theorem Let f be a function and le¢ andh be real numbers. Ifxo,Yo) is on the graph off, then(xg,yo + V) is on
the graph ofg, whereg(x) = f(x) +v, and if (x1,y1) is on the graph off, then(x; — h,y;) is on the graph ofj, where
i) = f(x+h).

Proof: Letl¢,[4,I"; denote the graphs of, §, j respectively.
(X0,Y0) €Tt <= Yo=f(X0) <= Yo+V="f(x0)+V <= Yo+V=g(x0) <= (Xo,Yo+V) €.
Similarly,
(xLy1) €Tt <= y1="1(x1) <= y1=f(xa—h+h) <= y1=jx1—h) < (x—hy)€T;.
d
208 Definition Let f be a function and letandh be real numbers. We say that the cuyve f (x) + v is avertical translation
of the curvey = f(x). If v> 0 the translation ig up, and ifv < O, it is v units down. Similarly, we say that the curye- f(x+h)

is ahorizontal translatiorof the curvey = f(x). If h > 0, the translation i& units left, and ith < O, then the translation is
units right.

Given a functional curve, we expect that a translation waolthehow affect its domain and image.

5 5 5 i

4 4 4 3

3 3 3 ) H

: a b esets : = R isErsadnas

0 - i 0 - -\ , o - i _2 N >

T TINIV 2 u 1INV 2

2 — 2 2 4 3

-3 -3 -3 -4

-4 -4 -4 =

-5 y -5 Y -5 Y )

5-4-3-2-101234°5
5-4-3-2-10123 45 5-4-3-2-101 2345 5-4-3-2-101 2345
. . . . , _ Figure 4.4:

Figure 4.1y = f(x). Figure 4.2,y = f(x) + 1. Figure 4.3y = f(x+1). y=f(x+1)+1.

209 Example Figures4.2 through4.4 shew various translations df: [—4;4 — [—2;1] in figure 4.1. Its translationa :

[—4;4 — [-1;2) one unit up is shewn in figuré 2. Notice that we have simply increased §heoordinate of every point on
the original graph by 1, without changing tkeoordinates. Its translatidn: [-5; 3] — [—2; 1] one unit left is shewn in figure

. Its translatiorc : [-5; 3] — [—1;2] one unit up and one unit left is shewn in figure. Notice how the domain and image
of the original curve are affected by the various transtetio

210 Example Consider
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Figures4.5, 4.6 and4.7 shew the vertical translatiom 3 units up and the vertical translatitn3 units down, respectively.
Observe that

R — R R — R
a: , b:
X — X°+3 X +— x2-3

Figures4.8 and4.9, respectively shew the horizontal translato8 units right, and the horizontal translatidr8 units left.
Observe that

R — R R — R
c: , d:

X — (x—3)? X = (x+3)?

Figure4.1( shewgy, the simultaneous translation 3 units left and down. Olesthrat

o

Figure 4.5: Figure 4.6: Figure 4.7: Figure 4.8: Figure 4.9: §|gure 4'1_0:
— _\2 2 _\2_ — (x_12)2 _ 2 =
y=f(x) =x y=x2+3 y=x"-3 y=(x-3) y=(x+3) (x+3)2-3

211 Example If g(x) = x (figure4.11), then figures 4.12and4.13shew vertical translations 3 units up and 3 units down,
respectively. Notice than in this cagex+t) = x+t = g(x) +t, so a vertical translation Ryunits has exactly the same graph
as a horizontal translatidrunits.

Figure 4.12:y =g(x) + 3= Figure 4.13;y=g(x) —3 =

Figure 4.11y = g(x) =X X+3 x—3
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Homework
4.1.1 Problem Graph the following curves: 4.1.2 Problem What is the equation of the curye= f(x) = x3 — )—1(
1 y=|x—2/+3 after a successive translation one unit down and two urgjte?i

2. y=(x—22+3
4.1.3 Problem Suppose the curve= f(X) is translated units ver-

1
3. y= 2 +3 tically and b units horizontally, in this order. Would that have the
same effect as translating the cufveunits horizontally first, and
4. y=vVa4-—x2+1 thena units vertically?

4.2 Distortions

212 Theorem Let f be a function and le¥ # 0 andH # 0 be real numbers. Ifxg,Yo) is on the graph of, then(xo,V yo)
is on the graph ofj, whereg(x) =V f(x), and if (x3,y1) is on the graph off, then (%,yl) is on the graph of,, where
J(x) = f(Hx).

Proof: Letl¢,lg,I"j denote the graphs of, §, j respectively.
(X0,Y0) €Tt <= Yo= f(X0) <= Vo=V (X)) <= Vyo=0(X0) < (Xo0,VYo) € lg.
Similarly,

(x,y1) €Tf <= 1= f(x) <~ Y1:f(%~H) = Y1:j(%) — (%,yl) er;.

O
213 Definition LetV > 0,H > 0, and letf be a function. The curve=V f(x) is called avertical distortionof the curve
y = f(x). The graph ofy =V f(x) is avertical dilatationof the graph ofy = f(x) if V > 1 and avertical contractionif

0<V < 1. The curvey = f(HXx) is called ahorizontal distortiorof the curvey = f(x) The graph ofy = f(Hx) is ahorizontal
dilatation of the graph ofy = f(x) if 0 < H < 1 and ahorizontal contractiornf H > 1.

214 Example Consider the function

f:
X —  f(x)
whose graph appears in figutel4
If a(x) = f® then
2
[-4;4 — [-3;3
a: ,
X — ax
and its graph appears in figutel 5
If b(x) = f(2x) then
[-2;2] — [-6;6
b: ,

and its graph appears in figutel g
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f(24) then

If c(x) =

and its graph appears in figufel 7.

: ’i\ : : . :
. I : - ; .
: I \ : AN : AL : ]
: : : : [
2 2 /. 2 2
4 ’ 3 4 -3
! : : :
. . f(x . . f(2x
Figure 4.14y = f(x) Figure 4.15y = (T) Figure 4.16y = f(2x) Figure 4.17y = (2 )

215 Example If y = /4 — X2, thenx? + y? = 4 gives the equation of a circle with centrg@t0) and radius 2 by virtue i3,
Hence

y=v4-x?

is the upper semicircle of this circle. Figurés 8through4.23shew various transformations of this curve.

A

. . Figure 4.23:
Figure 4.18: Figure 4.19: Figure 4.20: Figure 4'271: Figure 4'23: y ’ =
y=+V4-—x2 y=2v4—-x2 y=+V4—4x2 y T ax - gm - i\/4—4x2 +

216 Example Draw the graph of the curve= 2x% — 4x+ 1.
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Solution: » We complete squares.

y=2C—4x+1 <= %:x2—2x+%
— )—2/+1:x2—2x+1+—
y 2, 1
P 1= (x—1)2+ =
= 5+ (x )+2
y _ 2
= 5_()(_1)__
= y=2(x—-1)2-1,

whence to obtain the graph ofy 2x? — 4x+ 1 we (i) translate y= x? one unit right, (ii) dilate the above graph
by factor of two, (iii) translate the above graph one unit agovirhis succession is seen in figureg4through
1 <

217 Example The curvey = x? + X experiences the following successive transformatiofs: tfianslation one unit up, (ii) a
horizontal shrinkage by a factor of 2, (iii) a translatioreamit left. Find its resulting equation.

Solution: » After a translation one unit up, the curve becomes
2 1
y=1x)+1=x"+-+1=a).
After a horizontal shrinkage by a factor atthe curve becomes
2 1
y=a(2x) = 4x"+ — + 1 =Db(x).
2x
After a translation one unit left the curve becomes
—b(x+ 1) = 4(x+ 1P+ = 11
Y= - ™2

The required equation is thus

1 1
y=4(x+1) +2X+2+1 4x +8x+5+2x+2.

Fi 4.26y=2(x—1)>—
Figure 4.24y = (x—1)? Figure 4.25y = 2(x— 1)2 1Igure y=2(x-1)

<

Homework
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4.2.1 Problem Draw the graphs of the following curves:

2
X
1 y="2
y=3
2
X
2.y_§—1
3. y=2x+1
2
4. y=12
y X

5. y=x2+4x+5
6. y =23 +8x

1 . .
4.2.2 Problem The curvey = — experiences the following succe]

sive transformations: (i) a translation one unit left, éiyertical di-
latation by a factor of 2, (iii) a translation one unit downind its
resulting equation and make a rough sketch of the resultingec

4.2.3 Problem For the functional curve given in figure27, deter-
mine its domain and image and draw the following transforomast
also determining their respective domains and images.

1. y=2f(x)
2. y=f(2x)
3. y=2f(2x)

o

hhbbbornvwson

54321012345

4.3 Reflexions

Figure 4.27: Problem

218 Theorem Let f be a function If(xo,Yo) is on the graph of, then(xp, —Yo) is on the graph of, whereg(x) = —f (x),
and if (x1,y1) is on the graph of, then(—xy,y1) is on the graph of, wherej(x) = f(—x).

(X0,Y0) €Tt <= Yo= f(X0) <= —Yo=—T(X) <= —Yo=0(X) < (X0,—Yo) € g.

(xL,y1) €Tt <= y1=1(x1) <= nn=1(-(-x)) <= n1=j(-x) < (—x,y1) €T}j.

Proof: Letl¢,[4,I; denote the graphs of, §, j respectively.
Similarly,
O

219 Definition Let f be a function. The curvg = —f(x) is said to be theeflexion of f about the x-axiand the curve

y = f(—X) is said to be theeflexion of f about the y-axis

220 Example Figure shews the graph of the function

[-4:4
f:
X
Figure shews the graph of its reflexi@about thex-axis,
(44
a:
X
Figure shews the graph of its reflexidnabout they-axis,
[-4:4
b:
X

- [-2:4
— f(X)
— [—4; 2]
— ax
— [—2; 4]
— b(X)
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Figure shews the graph of its reflexiaabout thex-axis andy-axis,

44 — [-42
c: .
X —  c(X)
5 5 5 i
4 4 4 3
3 — 3 3 — 2 u
] - H : L HHANE
0 0 9 2
> AN B 2 N 3 u
3 -3 1 -3 -4
: 3 E RRAARAN
' rr ' 5-4-3-2-1012345

5-432-1012345 54321012345 654321012345

_ _ _ Figure 4.31:
Figure 4.28y = f(x). Figure 4.29y = —f(x). Figure 4.30y = f(—x). y=—f(—x).

221 Example Figures through shew various reflexions about the axes for the function

| |
- b

Figure 4.32y=d(x) = (x—  Figure 4.33:y = —d(x) = Figure 4.34:y=d(—x) = Figure 4.35;)y = —d(—x) =
17 ~(x-1)? (—x—1)? —(—x-1)?

222 Example Let f : R\ {0} — R with X
f(x) =x+ N 1
The curvey = f(x) experiences the following successive transformations:
1. Areflexion about the-axis.
2. Atranslation 3 units left.
3. Areflexion about thg-axis.
4. A vertical dilatation by a factor of 2.

Find the equation of the resulting curve. Note also how thaalo of the function is affected by these transformations.

Solution: »
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1. Areflexion about the x-axis gives the curve
2
y=—f(x)=1- ™ —x=a(x),

say, withDom(a) = R\ {0}.
2. Atranslation3 units left gives the curve

2 2
y=a(x+3)= 1—m—(x+3)— —Z—m’—x_b(x),
say, withDom(b) =R\ {—3}.
3. Areflexion about the y-axis gives the curve
y=b(—x)=-2— +Xx=¢(x),

—X+3
say, withDom(c) =R\ {3}.
4. Avertical dilatation by a factor a2 gives the curve
y=2c(x)=—-4+ X%"a +2x=d(x),
say, withDom(d) = R\ {3}. Notice that the resulting curve is
y =d(x) = 2¢(x) = 2b(—x) = 2a(—x+3) = —2f (—x+3).

<

Homework

4.3.1 Problem Let f : R — R with 2. y=2x-3
f(x) =2—x. 3. y=[x+2/+1
The curvey = f(x) experiences the following successive transforf
tions:
1. Areflexion about the-axis.
2. Atranslation 3 units up.

'93.3 Problem For the functional curvey = f(x) in figure )
drawy = f(x+1),y= f(1—x) andy = —f(1—Xx).

3. A horizontal stretch by a factor (%f

Find the equation of the resulting curve.

4.3.2 Problem The graphs of the following curves suffer the folloyv-
ing successive, rigid transformations:

1. avertical translation of 2 units down,

2. areflexion about thg-axis, and finally,

3. ahorizontal translation of 1 unit to the left.

h A b v Bk o kN w A~ oo

Find the resulting equations after all the transformatibage

been exerted. 5 4 3 2 1 0 1 2 3
Figure 4.36: Problem
1 y=x(1-x)

4.4 Symmetry

4 5

223 Definition A function f is evenif for all x it is verified thatf (x) = f(—x), that is, if the portion of the graph for< 0 is
a mirror reflexion of the part of the graph fer> 0. This means that the graph bis symmetric about thg-axis. A function
g is oddif for all x it is verified thatg(—x) = —g(x), in other wordsg is odd if it is symmetric about the origin. This implies
that the portion of the graph appearing in quadrant | is & I8tation of the portion of the graph appearing in quadrant I|
and the portion of the graph appearing in quadrant Il is & 18tion of the portion of the graph appearing in quadrant IV
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224 Example The curve in figurel.37is even. The curve in figuré 38is odd.

Figure 4.37: Examplé24. The graph of an even Figure 4.38: Examplé24. The graph of an odd
function. function.

225 Theorem Let &1, & be even functions, and ley, «wy, be odd functions, all sharing the same common domain. Then
1. & £ & is an even function.
2. wy £ wyp is an odd function.
3. & - & is an even function.
4. w - wp is an even function.

5. & - wy is an odd function.

Proof: We have

=

W) (—X) = Wi (=X)wp(—X) = (=W (X)) (—w2(X)) = Wi (X)wx(x))
g11)(—X) = e1(—X)wr(—X) = —€1(X) w1 (X)

Al A

O

226 Corollary Let p(x) = ag+ aix+ ax? + agx® + - - - + an_1x"" + ax" be a polynomial with real coefficients. Then the
function

R —- R

X = p(x)

is an even function if and only if each of its terms has eveneleg

Proof: Assume pis even. Thefp= p(—x) and so

X) + p(—X
p(x) :%
. ao+a1X+a2X2—|—a3x3+...+%7lxnfl+anxn
- 2
+ao—alx+a2X2_a3X3+..._|_(_1)“71%71Xn71+(_1)n%xn

2
=ag+axX’+axt+- -+

and so the polynomial has only terms of even degree. The s@nwetthis statement is triviall
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227 Example Prove that in the product
(L—x+x2 =+ x4 xO) (L4 x4 32 453+ - 4 x29 X109

after multiplying and collecting terms, there does not a@peterm inx of odd degree.

R — R
Solution: » Let f: with

X = f(x
f(X) = (L—x+x2 =+ =X x0 (14 x4+ 2+ 3+ 4 x4 x199)

Then
f(—X) = (14 X+ + - x4 x0) (1 —x 432 =3+ = x4 x190) = £(x),

which means that f is an even function. Since f is a polynothisl means that f does not have a term of odd
degree.«

Analogous to Corollar2 26 we may establish the following.

228 Corollary Let p(x) = ag+ ajx+ ax? + agx® + - - - + an_1x""1 4+ ax" be a polynomial with real coefficients. Then the
function

R — R
X = p(x)

is an odd function if and only if each of its terms has odd degre

229 Theorem Let f : R — R be an arbitrary function. Theh can be written as the sum of an even function and an odd
function.

Proof: Given xe R, put E(x) = f(x) + f(—x), and Qx) = f(x) — f(—x). We claim that E is an even function
and that O is an odd function. First notice that

E(—x) = f(=x) + f(=(—x)) = f(—x) + f(x) = E(x),
which proves that E is even. Also,
O(—x) = f(=x) = F(=(=x)) = =(f(x) = f(—x))) = —O(x),

which proves that O is an odd function. Clearly

which proves the theoreml

230 Example Investigate which of the following functions are even, odidneither.
3

X

1.a:R—R, = 5.

a:R—R,ax) 1
: _ M

2. b:R—R, b(x)_X2+1.

3. c:R—=R,c(X) =[x +2.
4. d:R—-R,d(x) =|x+2|.




94 Chapter 4

5. f:[-4;,59—R, f(x) =[x+ 2.

Solution: »

1. 5 .

—X X
(—x)2+1 X2 +1

whence a is odd, since its domain is also symmetric.

=X X
b(—x) = = = b(x
(=) (—x)2+1 x2+1 ),
whence b is even, since its domain is also symmetric.

c(—X)=|—X|+2=|x+2=c(x),
whence c is even, since its domain is also symmetric.
4. d(—1)=|—-1+2|=1, butd(1) = 3. This function is neither even nor odd.
5. The domain of f is not symmetric, so f is neither even nor odd

<

Homework

4.4.1 Problem Complete the following fragment of graph so tha#.4.2 Problem Let f : R — R be an even function and Igt R — R
the completion depicts (i) an even function, (ii) an odd fiom. be an odd function. If (—2) =3, f(3) =2 andg(—2) =2,9(3) =4,
find

(f+9)(2),  (goh)(2).

4.4.3 Problem Let f be an odd function and assume tHais de-
fined atx = 0. Prove thatf (0) = 0.

4.4.4 Problem Can a function be simultaneously even and odd?
What would the graph of such a function look like?

Figure 4.39: Problem 4.4.5 Problem Let Ax B C R? and suppose thdt: A — Bis invert-

ible and even. Determine the sé&tsndB.

4.5 Transformations Involving Absolute Values

231 Theorem Let f be a function. Then both— f(|x|) andx— f(—|x|) are even functions.
Proof: Put ax) = f(|x|). Then d—x) = f(| —x|) = f(|x]) = a(x), whence x— a(x) is even. Similarly, if
b(x) = f(—|x|), then H—x) = f(—| —x|) = f(—|x|) = b(x) proving that x— b(x) is even.]

Notice thatf (x) = f(|x|) for x> 0. Sincex+— f(|x|) is even, the graph of— f(|x|) is thus obtained by erasing the portion
of the graph ofk — f(x) for x < 0 and reflecting the part for> 0. Similarly, sincef (x) = f(—|x|) for x < 0, the graph of
x— f(—|x|) is obtained by erasing the portion of the grapixe$ f(x) for x > 0 and reflecting the part for< 0.

232 Theorem Let f be a function If(xg, yo) is on the graph of, then(xo, |yol|) is on the graph of, whereg(x) = |f (X)|.

Proof: Letl ¢,y denote the graphs of, §, respectively.

(X0,Y0) €Tt = Yo= f(x0) = |yo| =|f(%0)| = IYo| =9(%) = (X0, |Yo|) € g
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233 Example The graph ofy = f(x) is given in figure4.40 The transformatiorly = |f(x)| is given in figure4.41. The
transformatiory = f(|x|) is given in figure4.42 The transformatioy = f(—|x|) is given in figure4.43 The transformation
y = |f(|x])| is given in figure

5 5 5 5

4 4 4 4

3 3 3 3

- 2 - 2 2 — —] 2
l 0 I : s TITTNAT ;e

1 1 a1 1

2 2 2 2

3 3 3 3

4 4 -4 -4

y 5 y 5 Y -5 y -5 Y

5-4-3-2-101 2345 5-4-3-2-101234°5 5-4-3-2-101 2345 5-4-3-2-101234°5 5-4-3-2-101 2345
Figure 4.40:y = Figure 4.41:y = Figure 4.42:y = Figure 4.43:y = Figure 4.44:y =
F(x). £ FIx1). F(=[x]). (XD

234 Example Figures through exhibit various transformations df: x — (x — 1)2 — 3.

Figure 4.45y=f(x) = (x—  Figure 4.46:y = f(|x])| =

1)2-3 (x| —1)2-3
Homework
4.5.1 Problem Use the graph of in figure in order to draw
1. y=2f(x) 5 y=—f(—x
2. y=f() 6. y=f(|x])
3. y="f(-x) 7. y=|f(x)
4. y=—f(x) 8. y=f(=x))

h A d B or N

AN

5 -4-3-2-10 1 2 3

Figure 4.49y = f(x)

Figure 4.47:y = f(—|x|) = Figure 4.48:y = |f(|x])| =
(=X —1)2-3 (x| = 1) -3

4.5.2 Problem Draw the curvey = x2 — 1 andy = [x2 — 1] in suc-
cession.

4.5.3 Problem Draw the graph of the curve= /|x.

4.5.4 Problem Draw the graphs of the curves

y=1/—X+2/x|+3, y=1/—-X-2x+3.

4.5.5 Problem Draw the following graphs in succession.
1. y=(x—12-2
2. y=|(x—1)>2%-2
3 y=(x-12%-2
4. y=(1+x))2-2

4.5.6 Problem Draw the graph off : R — R, with assignment rule
f(Xx) = X|x].
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4.5.7 Problem Draw the following curves in succession: 8. y=1-]1—-]1—]1—x]|||
1. y=x2
2. y=(x—1)? 4.5.11 Problem Put f1(x) = x; fa(X) = |1 — f1(X)]; fa(X) =[1—
3. y=(x—-1)2 f2(X)|; ... fn(x) = |1— f_1(x)|. Prove that the solutions of the equa-

tion fo(x) = 0 are{£1,£3,...,+(n—3),(n—1)} if nis even and
{0,£2,...,+(n—=3),(n—1)} if nis odd.
4.5.8 Problem Draw the following curves in succession:

— 2
L y—x2 4.5.12 Problem Given in figures and are the graphs of
2. y=x—-1 two curvesy = f(x) andy = f(ax) for some real constart< 0.
3 y=|x—1

1. Determine the value of the constant
4.5.9 Problem Draw the following curves in succession:

1. y=x2+2x+3
2. y=x+2x+3 y y
3. y=[x2+2x+3|
4. y=|x2+2|x +3|

2. Determine the value @.

4.5.10 Problem Draw the following curves in succession:

1. y:]_fx L 77\ T T X
2.y=|[1 1 C 4
-y=1[1-X T 3

3. y=1-]1-x 4

4. y=]1—|1-x| 1

5. y=1—-]1-]1-x

6. y=[1-[1—[1-x]| Figure 4.50: Problem  Figure 4.51: Problem

7. y=1-[1-|1-[1-X]] Ly = f(x) 2y = f(ax)

4.6 Behaviour of the Graphs of Functions

So far we have limited our study of functions to those farsili¢ functions whose graphs are known to us: lines, parapolas
hyperbolas, or semicircles. Through some arguments imglsymmetry we have been able to extend this collection to
compositions of the above listed functions with the absouatiue function. We would now like to increase our repeetoir
functions that we can graph. For that we need the machine@atifulus, which will be studied in subsequent courses. We
will content ourselves witlinformally introducing various terms useful when describing curveswaith proving that these
properties hold for some simple curves.

4.6.1 Continuity

235 Definition We write x — a+ to indicate the fact that is progressively getting closer and closeratthrough values
greater (to the right) od. Similarly, we writex — a— to indicate the fact thatis progressively getting closer and closeato
through values smaller (to the left) af Finally, we writex — a to indicate the fact thatis progressively getting closer and
closer toa through values left and right @f

236 Definition Given a functionf, we write f(a+) for the value thatf (x) approaches as — a+. In other words, we
consider the values of a dextral neighbourhood,girogressively decrease the length of this neighbourhamd see which
value f approaches in this neighbourhood. Similarly, we wfita—) for the value thaf (x) approaches as— a—. In other

words, we consider the values of a sinistral neighbourhdad progressively decrease the length of this neighbour e,
see which valud approaches in this neighbourhood.
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237 Example Let f : [-4;4 — R be defined as follows:

X+l if —4<x< -2
2 if x=-2
2+2x if —2<x<+42

6 if +2<x<4

Determine
1. f(—2-)
f(-2)
—2+)
+2-)
+2)
+2+)

o o kM w Db
—h

(
(
(
(
(
f(

Solution: »

1. Tofind f—2—) we look at the definition of f just to the left 2. Thus f{—2—) = (-2)2+1=5.

f(—2)=2.

f(+2) =®6.

ok wb

<

To find f—2+) we look at the definition of f just to the right eR2. Thus f{—2+) =2+2(-2) = -2.
To find f+2—) we look at the definition of f just to the left- 2. Thus {+2—) =2+ 2(2) =6.

To find f{+-2+) we look at the definition of f just to the right e2. Thus f{+2+) = 6.

Let us consider the following situation. Létbe a function ané € R. Assume thaf is defined in a neighbourhood of
a, but not precisely at = a. Which value can we reasonably assigrf{a)? Consider the situations depicted in figufes2
through4.54 In figure4.52it seems reasonably to assig(0) = 0. What value can we reasonably assign in figfes?

141

b(0) = 5 = 07? In figure4.54 what value would it be reasonable to assig(@) = 0?,c(0) = +«?,c(0) = —»? The

situations presented here are typical, but not necessatilgustive.

i,x;AO.

Figure 4.53b: x— ™

Figure 4.52a: x+— |x|, x#£0.

Figure 4.54¢: x— )—1( x#£ 0.

238 Definition A function f is said to bdeft continuousat the poinx = aif f(a—) = f(a). A function f is said to beight
continuousat the pointx = a if f(a) = f(a+). A function f is said to becontinuousat the poinx = aif f(a—) = f(a) =

f(a+). Itis continuous on the intervalif it is continuous on every point df
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Heuristically speaking, a continuous function is one whgrseh has no “breaks.”

239 Example Given that

6+ X if X €] — 00; —2]
f(x) =

3x?+xa if xe] —2;+oo]

is continuous, find.

Solution: » Since {—2—) = f(-2) =6—2=4and f(—2+) = 3(-2)2 - 2a= 12— 2awe need
f(—2—)=1f(-24) = 4=12—-2a = a=4.

<

4.6.2 Monotonicity

240 Definition A function f is said to bencreasing(respectivelystrictly increasingif a<b — f(a) < f(b) (respectively,
a<b = f(a) < f(b)). Afunctiongis said to bedecreasingrespectivelystrictly decreasinyif a< b = g(a) < g(b)
(respectivelya < b = g(a) < g(b)). A function is monotonicif it is either (strictly) increasing or decreasing. By the
intervals of monotonicity of a functiome mean the intervals where the function might be (striétigfeasing or decreasing.

If the function f is (strictly) increasing, its oppositef is (strictly) decreasing, and viceversa.

The following theorem is immediate.

241 Theorem A function f is (strictly) increasing if for ala < b for which it is defined

f(b)— f(a) . f(b)— f(a)
- 7> — .
b2 2 0 (respectively b_a 0)

Similarly, a functiong is (strictly) decreasing if for abh < b for which it is defined
9 -9(@) <0 (respectivelyM <0).

b—a b—a

4.6.3 Extrema

242 Definition If there is a point for which f(x) < f(M) for all xin a neighbourhood centredxat M then we say that
has docal maximunatx = M. Similarly, if there is a pointn for which f(x) > f(m) for all xin a neighbourhood centred at
x = mthen we say that has aocal minimumatx = m. The maxima and the minima of a function are calleccksema

Consider now a continuous function in a closed intefagh]. Unless it is a horizontal line there, its graph goes up and
down in[a;b]. It cannot go up forever, since otherwise it would be unbearehd hence not continuous. Similarly, it cannot
go down forever. Thus there exist 8 in [a;b] such thatf (a) < f(x) < f(B), thatis,f reaches maxima and minimalex b].

4.6.4 Convexity

We now investigate define the “bending” of the graph of a fiomct

243 Definition A function f : A — Bis convexn Aif V(a,b,A) € A? x [0; 1],
f(Aa+(1-A)b) < f(a)A +(1—A)f(b).
Similarly, a functiong : A — Bis concaven Aif V(a,b,A) € A% x [0;1],
g(Aa+ (L—2A)b) > g(@A + (L A)g(b).

By theintervals of convexity (concavity) of a functior® mean the intervals where the function is convex (concae)
inflexion pointis a point where a graph changes convexity.
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By Lemmal5, Aa+ (1— A)blies in the intervala; b for

0 < A < 1. Hence, geometrically speaking, a convex function

is one such that if two distinct points on its graph are taked the straight line joining these two points drawn, then the
midpoint of that straight line is above the graph. In otherdspthe graph of the function bends upwards. Notice th&tsf

convex, then its opposite f is concave.

/

Figure 4.55: A convex curve

Homework

4.6.1 Problem Given that

a

is continuous, fincw.

4.6.2 Problem Give an example of a function which is discontin
ous on the sef—1,0,1} but continuous everywhere else.

4.6.3 Problem Given that

x2—-1 ifx<1

f(x)

2x+3a ifx>1

N

Figure 4.56: A concave curve.

is continuous, finc.

4.6.4 Problem Let n be a strictly positive integer. Given that

x1—1

— if x#£1

f(x) =
a ifx=1

is continuous, finc.

4.6.5 Problem Give an example of a function discontinuous at the

points+/1,+/2,+v3,+74,+5,.. ..

4.7 The functionsx — ||x||, X — [[X]], X +— {x}

244 Definition Thefloor ||x|| of a real numbex s the uniqu

e integer defined by the inequality

[IX]) < x < [[x]|+ 1.

In other words||x|| is X if x is an integer, or the integer just to the leftxils not an integer. For example

131 =3,
If ne Z and if

13.9] =

3, |- = —4.

n<x<n+1,

then||x|| = n. This means that the function— ||x|| is constant between two consecutive integers. For exarbptejeen

0 and 1 it will have output O; between 1 and 2, it will hav

e ouwtpuetc., always taking the smaller of the two consecutive

integers. Its graph has the staircase shape found in figtire

245 Definition Theceiling [[x]] of a real numbex is the unique integer defined by the inequality

X —1<x<[X].
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In other words|[[X]| is X if x is an integer, or the integer just to the rightxifs not an integer. For example

T3 =3, [39]=4, |[-n=-3.

If ne Z and if
n<x<n+1,

then[[x]] = n+ 1. This means that the function— [[X] is constant between two consecutive integers. For exaingleieen
0 and 1 it will have output 1; between 1 and 2, it will have outpuetc., always taking the larger of the two consecutive
integers. Its graph has the staircase shape found in figtife

o—e
4+ [ ) B o—e 4+
3 4 [ ) 3 4 o0—9 3 4
2 4+ =0 2 + O0=0 2 4+
1 4+ =0 1
ettt — e Pttt )—W
5 -4 -3 -2 1 2 3 4 5 -4 -3 o—. S+ 1 2 3 4 5 -4 3 -2 -5 3 1 2 3 4
e |+ =0 -2 T
=0 3 |+ o0—9 3 1+ 3 1+
=0 4 4 4 4 4 4
5 5 L 5
Figure 4.57x+— ||X]|. Figure 4.58x +— [[X]|. Figure 4.59x +— x— |||

246 Definition A function f is said to beperiodic of period Hf there a real numbe? > 0 such that

xeDom(f) = (x+P)eDom(f), f(x+P)=f(x).

That is, if f is periodic of period® then oncef is defined on an interval of perid®) then it will be defined for all other values
of its domain.
The discussion below will make use of the following lemma.

247 Lemma Letx € Randze Z. Then
Ix+2z|| = [x]| +z

Proof: Recall that]| x| is the unique integer with the property
[IX]) < x < [[x]|+ 1.

In turn, this means thdix+ z|| — z also satisfies this inequality.

By definition,
IX+2z| <x+z<|x+2z|]+1,

and so we have,
IX+2z|| —z<x<|x+z]] —z+1,

from where|| x+ z|| — z satisfies the desired inequality and we conclude tHat-ez|| — z= || x||, demonstrating
theorem.J

248 Example Put{x} = x—[|x]]. Consider the functiori : R — [0;1], f(x) = {x}, the decimal partlecimal part of x We
have
X <x< [X]|+1 = 0<x—|x]|] <1

Also, by virtue of lemma47,

f(x+1) ={x+1} = (x+1)— ||[x+1]] = (x+21) — (||| +1) =x— ||x]] = {x} = f(x),
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which means that is periodic of period 1. Now,

xe[0;1] = {x} =x,

from where we gather that between 0 and behaves like the identity function. The graphxef> {x} appears in figuré

Homework

4.7.1 Problem Give an example of a functiandiscontinuous at thd
reciprocal of every non-zero integer.

4.7.2 Problem Give an example of a function discontinuous at
odd integers.

4.7.3 Problem Give an example of a function discontinuous at
square of every integer.

4.7.4 Problem Let ||x|| = minpez |x—n|. Prove thak — ||x|| is pe-
riodic and find its period. Also, graph this function. Notibat this
function measures the distance of a real number to its rtiaateger.

4.7.5 Problem Investigate the graph ofi— || 2x]|.

4.7.6 Problem lIs it true that for all real numberswe have{xz} =

{x}?2

4.7.7 Problem Demonstrate that the functidn R — {—1,1} given
by f(x) = (—1)X!/ is periodic of period 2 and draw its graph.

1
4.7.8 Problem Discuss the graph of— ——————.
XTI = 1[x[

4.7.9 Problem Find the points of discontinuity of the functioh:

b 4.7.10 Problem Find the points of discontinuity of the function

X ifxe@Q
X —
he: 0 ifxeR\Q
R +— R

he

4.7.11 Problem Find the points of discontinuity of the function

0 ifxe@Q
X —
f x ifxeR\Q
R R

4.7.12 Problem Find the points of discontinuity of the function

0 ifxeQ
X —
f: 1 ifxeR\Q
R — R

4.7.13 Problem Prove thatf :R — R, f(t+1) = % +4/ f(t) = (f(1))?

R—R, f:x— [|x]]+/X—[Xx]

has period 2
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249 Definition A polynomial gx) of degreen € N is an expression of the form
p(x) =anx"+an-1x" 1+ +ax+a,  an#0,  aER,

where thegy are constants. If the are all integers then we say thahas integer coefficients, and we wripéx) € Z[x]; if
theay are real numbers then we say tipettas real coefficients and we wripgx) € R[x]; etc. The degres of the polynomial
p is denoted by deg. The coefficient, is called theleading coefficienof p(x). A root of pis a solution to the equation

p(x) =0.
In this chapter we learn how to graph polynomials all whos#sare real numbers.
250 Example Here are a few examples of polynomials.

e a(x) =2x+1€Z[X, is a polynomial of degree 1, and leading coefficient 2. It>has—§ as its only root. A polynomial
of degree 1 is also known as affine function

e b(x) = m?+x—+/3 € R[X|, is a polynomial of degree 2 and leading coefficienBy the quadratic formula has the

two roots
w_—1+V1+mu@ x_—l—v1+mn@
N 21 B 21 '

and

A polynomial of degree 2 is also callecqa@adratic polynomiabr quadratic function

e C(x) =1-x%:=1, is a constant polynomial, of degree 0. It has no rootsgsiris never zero.

251 Theorem The degree of the product of two polynomials is the sum of ttiegrees. In symbols, J,q are polynomials,
degpq= degp + deqg.

Proof: If p(X) = anX"+an_1X" 1+ .- +a;x+ag, and qx) = byX™ -+ by 1x™ 1 + - 4+ byx + bo, with a, # 0
and hy, # 0 then upon multiplication,

P(X)q(X) = (anX"+ an_ X"+ - + agx+ @) (byX™ + by 1X™ L -+ byx+ bo) = anbpX™ "+ 4

with non-vanishing leading coefficientla,. O

252 Example The polynomialp(x) = (14 2x+ 3x%)4(1— 2x?)° has leading coefficient'8—2)° = —2592 and degree-3+
2.5=22.

253 Example What is the degree of the polynomial identically equal to QR ix) = 0 and, sayg(x) = x+ 1. Then by
Theorem251we must have degg= degp+ degg = degp+ 1. Butpqis identically 0, and hence deg = degp. But if degp
were finite then

degp=degpg=degp+1 = 0=1,

nonsense. Thus the 0-polynomial does not have any finiteedeliVe attach to it, by convention, degree.

5.1 Power Functions

254 Definition A power functioris a function whose formula is of the forrm— x%, wherea € R. In this chapter we will
only study the case whemis a positive integer.

102
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If nis a positive integer, we are interested in how to graph x". We have already encountered a few instances of power
functions. Fom = 0, the functiornx — 1 is a constant function, whose graph is the straightyinel parallel to thex-axis.
Forn =1, the functionx — x is the identity function, whose graph is the straight ljne x, which bisects the first and third
guadrant. These graphs were not obtained by fiat, we demate$tihat the graphs are indeed straight lines in The@rem
Also, forn= 2, we have the square function— x> whose graph is the parabofa= x*> encountered in examplgl5 We
reproduce their graphs below in figures through5.3for easy reference.

—{— %—i—»
Figure 5.1:x — 1. Figure 5.2:X — X. Figure 5.3:x — X2.

The graphs above were obtained by geometrical argumemig sishilar triangles and the distance formula. This method
of obtaining graphs of functions is quite limited, and heraea view of introducing a more general method that argoas fr
the angles of continuity, monotonicity, and convexity, wi# derive the shape of their graphs once more.

5.2 Affine Functions

255 Definition Let m,k be real number constants. A function of the foxm» mx+ k is called anaffine function In the
particular case thah = 0, we callx — k a constant functionlf, howeverk = 0 andm +# 0, then we call the functior — mx
alinear function

256 Theorem (Graph of an Affine Function) The graph of an affine function
R — R

X — mx+k

is a continuous straight line. It is strictly increasingrif> 0 and strictly decreasing ih < 0. If m= 0 thenx— mx+k has a
. k
unique zer= — . If m+# 0 thenlm (f) =R.

Proof: Since for any & R, f(a+) = f(a) = f(a—) = ma+Kk, an affine function is everywhere continuous. Let
A €]0;1]. Since

f(Aa+(1—A)b)=m(Aa+(1—A)b)+k=mra+mb—mbA +k=Amf(a)+ (1—A)mf(b),
an affine function is both convex and concave. This meandtttia¢s not bend upwards or downwards (or that
it bends upwards and downwards!) always, and hence, it neiatdiraight line. Let a< b. Then
f(b)—f(a) mb+k-—ma—k

=m
b—a b—a ’
which is strictly positive for m> 0 and strictly negative for rc 0. This means that f is a strictly increasing
function for m> 0 and strictly decreasing for rx 0. Also given any & R we have

f(x) =a = mx+k=a = x:%(,

which is a real number as long as #0. Hence every real number is an image of f meaning bimetf) = R.
In particular, if a= 0, then x= —% is the only solution to the equation¥) = 0. Clearly, if m= 0, then
Im (f) = {k}.O

This information is summarised in the following tables.
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f(x) = mx+k 0

Figure 5.4: Variation chart fox — mx+ Kk, with
m> 0.

f(x) = mx+k 0

Figure 5.6: Variation chart fox — mx+k, with
m< 0.

Homework

5.2.1 Problem (Graph of the Absolute Value Function)Prove
that the graph of the absolute value function

R — R

AbsVal :
X — [X

5.3 The Square Function

Figure 5.5: Graph ot — mk+k, m> 0.

Figure 5.7: Graph ot — mk+k, m< 0.

is convex. Prove that — |X| is an even function, decreasing for
x < 0 and increasing fax > 0. Moreover, prove thadtn (AbsVal) =
[0;+oo.

In this section we study the shape of the graph of the squargifunx — x2.

257 Theorem (Graph of the Square Function)The graph of the square function

Sq:

R — R

2

= X
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is a convex curve which is strictly decreasing %ot 0 and strictly increasing for > 0. Moreoverx — x? is an even function
andim (Sq) = [0;+oo].

Proof:

AsSq(—x) = (—x)? = x? = Sq(x), the square function is an even function. Now, fer &

_ 2 2
Sqb) —So(@ _b"—a” o
b—a b—a

If a < b < 0the sum a-b is negative and x- x? is a strictly decreasing function. & < a < b the sum a-b is
positive and x— X2 is a strictly increasing function. To prove thatx x? is convex we observe that

Sq(Aa+(1—A)b) < ASg(@) + (1— A)Sq(b)
A2a2 422 (1—-A)ab+ (1-2)? <Aa?+ (1-A)b?
0<A(1—MA)a2—2A(1—A)ab+ ((1—A) — (1—A)?)b?

0<A(1—A)a2—2A(1—A)ab+A(1—A)b?

[

0<A(1-A)(a®—2ab+b?)
e 0<A(1-A)(a—b)2

This last inequality is clearly true fok € [0;1], establishing the claim. Also suppose that im (Sq). Thus
there is x€ R such thatSg(x) =y = x% =y. But the equation ¥ x? is solvable only for y> 0 and so only
positive numbers appear as the image ef:x?. Since for xc [0;+[ we haveSq(y/X) = X, we conclude that

Im (Sg) = [0;+oo[. The graph of the x> x? is called aparabolaWe summarise this information by means of the
following diagram.

Figure 5.9: Graph of — x2.

Figure 5.8: Variation chart fox — x2.

O

5.4 Quadratic Functions

258 Definition Leta,b,c be real numbers, with # 0. A function of the form

R — R
X — ad+bx+c

is called aguadratic functiorwith leading coefficiena.
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259 Theorem Leta # 0,b, ¢ be real numbers and lgt— ax? + bx+ ¢ be a quadratic function. Then its graph is a parabola. If

- b . .
a > 0 the parabola has a local minimunmxat ~%a and it is convex. Ifa < 0 the parabola has a local maximumnxat ~%a

and it is concave.

Proof: Put f(x) = ax’ 4 bx+c. Completing squares,

2 2
a+bx+c = a<x2+2£x+b—) +c—b—

2a  4a? 4a
— a(x+ 2 2+4ac—b2
- 2a da ’

. . b . . dac—Db® .
and hence this is a horizontal translatlcmg1 units and a vertical translatlonT units of the square

function x— x? and so it follows from Theoreni$ 7, and 212, that the graph of f is a parabola.

. . . b . , b )
Assume first that & 0. Then f is convex, decreases |f<x—El and increases if % 2 and so it has a

minimum at x= —2—21. The analysis of- f yields the case for & 0, and the Theorem is proved.

The information of Theorei59is summarised in the following tables.

X —0 b +o
Za
N\ /
f(x) =ax®+bx+c 0

Figure 5.10x — ax? + bx+ ¢, with a > 0. _
Figure 5.11: Graph of — ax? 4+ bx+c,a> 0.

X —0 b +o
Za
f(x) = a+bx+c 0
/ N\

Figure 5.12x +— ax? + bx+- ¢, with a < 0. Figure 5.13: Graph at— ax’ + bx+¢,a < 0.




Quadratic Functions 107

b 4ac—b?
2a’  4a
The quantityb® — 4acis called thediscriminantof ax? + bx+ c. The equation

260 Definition The point< lies on the parabola and it is called thertexof the parabolg = ax? + bx+c.

—a(x+ 2 2+4ac_b2
y= 2a da

is called thecanonical equation of the parabolasy ax? + bx+c.

The parabola x— ax? + bx+ ¢ is symmetric about the vertical linex— %a passing through its vertex. Notice

that the axis of symmetry is parallel to the y-axigiHfk) is the vertex of the parabola, by completing squares, the
equation of a parabola with axis of symmetry parallel to thaxys can be written in the forma a(x— h)2 +k.
Using Theoreni 07, the equation of a parabola with axis of symmetry paralleh® x-axis can be written in the

form x=a(y—k)?+h.

261 Example A parabola with axis of symmetry parallel to tigeaxis and vertex afl,2). If the parabola passes through
(3,4), find its equation.

Solution: » The parabola has equation of the form=ya(x — h)? + k = a(x— 1)?+ 2. Since when x 3 we get
y =4, we have,

1
4=a(3-1)%+2 = 4=4a+2 — a==

5
The equation sought is thus
1
y==(x—1)%+2.
2
<
5.4.1 Zeros and Quadratic Formula
Figure 5.14: No real zeroes. Figure 5.15: One real zero. Figure 5.16: Two real zeros.

262 Definition In the quadratic equaticax® + bx+ ¢ = 0,a # 0, the quantityp? — 4acis called thediscriminant

263 Corollary (Quadratic Formula) The roots of the equaticax? + bx+ ¢ = 0 are given by the formula

—b£vb? -4
a+bx+c=0 X:Tac (5.1)
If a+ 0,b,care real numbers artf — 4ac= 0, the parabola — ax? + bx+ cis tangent to the-axis and has one (repeated)
real root. Ifb? — 4ac > 0 then the parabola has two distinct real roots. Finallg?i- 4ac < 0 the parabola has two complex

roots.
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Proof: By Theoren?59we have

2 _p
ax+bx+c=a x+B +4ac b ,
2a 4a
and so 2
b b —4ac
¥ +bx+c=0 — ) ==
ax®+bx+c — X+ a 122
vbZ —4ac
= Xt —-—=ft—7—
2a 2|4
—b+vb?—-4ac
= X=—,
2a
where we have dropped the absolute values on the last lineusedhe only effect of having<aO is to change
from =+ to .

2a’

Also, x= % would be the only root of this equation. This is illustratadigure5.15

. b . .
If b2 — 4ac= O then the vertex of the parabola is ét— — O> on the x-axis, and so the parabola is tangent there.

If b2 — 4ac> 0, thenv/b? — 4ac is a real numbes 0 and sc_b
numbers. This is illustrated in figufe1a

are distinct

—vb?2—4ac and —b+vb%—4ac
2a 2a

b—+vb2—4ac —b++vb?2—4ac
and are
2a 2a

If b2 — 4ac < 0, then/b? — 4ac is a complex numbe# 0 and so—
distinct complex numbers. This is illustrated in figGré4 0

If a quadratic has real roots, then the vertex lies on a linessing the midpoint between the roots.

€

Figure 5.17y = x> —5x+3 Figure 5.18y = |x* — 5x+ 3| Figure 5.19y = |x|2 —5|x| + 3

264 Example Consider the quadratic functidn: R — R, f(x) = x? — 5x+ 3.

1. Write this parabolain canonical form and hence find the 2. Find thex-intercepts ang-intercepts off.

vertex of f. Determine the intervals of monotonicity of
f and its convexity. 3. Graphy = f(x), y=[f(x)[, andy = f(|x]).

4. Determine the set of real numberfor which f (x) > 0.
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Solution: »

1. Completing squares

5\% 13
2

=X"—5+3=(X—z | ——.
y=X X (X >

From this the vertex is a<g,

5 N . 5 .
X > > and it will be decreasing for x > and f is concave for all real values of x.

2. Forx=0, f(0) = 0> -5-0+3= 3, and hence y- f(0) = 3is the y-intercept. By the quadratic formula,

—(=5)+V(-52-4(1)(3) _5£V13

—%3) Since the leading coefficient of f is positive, f will be &asing for

f(X) =0 <= x*—5x4+3=0 < x=

2(1) 2
Observe that5_27\/1_3 ~ 0.697224362and 5+2\/ﬁ ~ 4.302775638

3. The graphs appear in figurésl7through

4. From the graph in figuré ,x2—5x+3>0forvaluesxe]—oo;5_2\/1_3[0rxe]5+2\/f3;+oo.

<

265 Corollary If a+ 0,b,c are real numbers andtif — 4ac < 0, thenax? + bx+ ¢ has the same sign as

Proof: Since

2a 432

2 _p2
ax2+bx+c=a<(x+3) +M>,

b )2 dac—b?
+7
2a

and4ac—b? > 0, <<x+ — 12 ) > 0 and so aX + bx+ ¢ has the same sign as @.

266 Example Prove that the quantity(x) = 2x* +x+ 1 is positive regardless of the valueof

Solution: » The discriminant i€? — 4(2)(1) = —7 < 0, hence the roots are complex. By Coroll&5, since
its leading coefficient i > 0, q(x) > 0 regardless of the value of x. Another way of seeing this i©topiete
squares and notice the inequality

1\% 7_7
2
= — —_ > —
2X°+x+1 2<x+4) +8_ 8’
1\ 2
since<x+ Z) being the square of a real number3s0. «

By Corollary 263, if a+ 0,b,c are real numbers andlif — 4ac+ 0 then the numbers

—b—+vb2—4ac —b+vb2—4ac
rlzT and rzzT

are distinct solutions of the equatiax’ 4 bx+ c= 0. Since
ri+rp= and rirp=
1 2 ) 1 2 E’

any quadratic can be written in the form

bx

ax +bx4c= a(x2+ 2+ g) =a(¥— (r1+r2)X+r1rz) = a(x—ry)(X—rz).

We calla(x—r1)(x—ry) afactorisationof the quadrati@x® + bx+ c.




110

Chapter 5

267 Example A quadratic polynomiap has 14- /5 as roots and it satisfigg1) = 2. Find its equation.

Solution: » Observe that the sum of the roots is

r1+r2:1—\/§+1+\/§:2

and the product of the roots is

rir2=(1-v5)(1+v5) =1-(V5?=1-5=—4.

Hence p has the form

P(x) = a (X — (rL+12)x+11r2) = a( — 2x— 4).

Since

2=p(l) = 2=a(1*-

the polynomial sought is
2

_E(

p(X)
<

Homework

5.4.1 Problem Let
Ry ={(xy) € R%y>x*—1},

Re={(xy) e R +y* < 4},
Rs = {(x,y) € R?ly < —x*+4}.
Sketch the following regions.
1. Ri\Ry
2. RiNR3
3. R\ Ry
4. RiNR,

5.4.2 Problem Write the following parabolas in canonical forr]
determine their vertices and graph them: y(iy= X2 + 6x+ 9, (ii)
y = X2 +12x + 35, (ii) y = (x—3)(x+5), (iv) y = x(1—x), (V)
y =24 —12x+23, (vi)y = 3x% —2x+ &, (vi) y = $x% +2x+13

5.4.3 Problem Find the vertex of the paraboja= (3x—9)2—9.

5.4.4 Problem Find the equation of the parabola whose axis of sy
metry is parallel to the-axis, with vertex af0,—1) and passing
through(3,17).

5.4.5 Problem Find the equation of the parabola having rootg
x= —3 andx =4 and passing throug(®, 24).

5.4.6 Problem Let0< a,b,c < 1. Prove that at least one of the pro

21)-4) = a

)

2
5

Z_2x—4).

5.4.7 Problem An apartment building has 30 units. If all the units
are inhabited, the rent for each unit is $700 per unit. Foryesmpty
unit, management increases the rent of the remaining tebsu#25.
What will be the profitP(x) that management gains whemnits are
empty? What is the maximum profit?

5.4.8 Problem Find all real solutions t¢w? — 2x| = |x%+ 1].

5.4.9 Problem Find all the real solutions to

(@ +2x—3)%2=2.
5.4.10 Problem Solvex® —x2 —9x+9=0.
h5.4.11 Problem Solvex3 — 2x% — 11x+ 12 = 0.
5.4.12 Problem Find all real solutions te — 1 = 0.

5.4.13 Problem A parabola with axis of symmetry parallel to the
x-axis and vertex atl, 2). If the parabola passes through4), find
its equation.

r6-4.14 Problem Solve 9+ x4 = 10x 2.

5.4.15 Problem Find all the real values of the parametéor which
the equation ix
at

has a solution.

t2x— 3t = 81x— 27

[05.4.16 Problem The sum of two positive numbers is 50. Find the

uctsa(l—b),b(1—c),c(1—a) is smaller than or equal t@.

largest value of their product.

1As a shortcut for this multiplication you may wish to recéietifference of squares identitya— b)(a+ b) = a® — b2,
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5.4.17 Problem Of all rectangles having perimeter 20 shew that
square has the largest area.

5.4.18 Problem An orchard currently has 25 trees, which prody
600 fruits each. It is known that for each additional treenped, the
production of each tree diminishes by 15 fruits. Find:

the 2. a formula for the production obtained from each tree upon
plantingx more trees,

3. aformulaP(x) for the production obtained from the orchard

C€  upon planting« more trees.

4. How many trees should be planted in order to yield maximum

1. the current fruit production of the orchard,

55 X— x2"2 neN

The graphs of = x?, y = x*, y = x8, etc., resemble one oth
(closer to thex-axis) will be, since
X<l= <

production?

er. Feld < x < 1, the higher the exponent, the flatter the graph

X< ¥ <X < 1.

For x| > 1, the higher the exponent, the steeper the graph will besinc

X>1= - >

X8> x> x> 1.

We collect this information in the following theorem, of vehiwe omit the proof.

268 Theorem Let n > 2 be an integer and(x) = x". Then
increasing fox > 0. Also, f(—o0) = f(4) = +oo.

Figure 5.20y = x2. Figure 5.21y = x*.

5.6 The Cubic Function

We now deduce properties for the cube function.

if n is even,f is convex,f is decreasing fok < 0, andf is

f(x) =x" 0

Figure 5.22y = x5.
Figure 5.23x~ X", with
n> 0 integer and even.

269 Theorem (Graph of the Cubic Function) The graph of the cubic function

R
Cube:

X

— R

- X

is concave fox < 0 and convex fok > 0. x — X3 is an increasing odd function amah (Cube) = R.
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Proof: Consider
Cube(Aa+ (1—A)b) — ACube(a) — (1 — A)Cube(b),

which is equivalent to
(Aa+(1-A)b*—ra—(1-A)b3,

which is equivalent to
A3-N)a+((1-A)P—(1-A)b2+3A(1-A)ab(Aa+ (1—A)b),
which is equivalent to
—(A=A)(A+M)Aa3+ (A3 +322-24)b>+3A(1— A)ab(Aa+ (1—A)b),
which in turn is equivalent to
(1=MA(=(1+A)a%+ (A —2)b3+3ab(Aa+ (1—A)b)).
This last expression factorises as
—A(1—A)(a—b))(A(a—b)+2b+a).
SinceA (1—A)(a—b)?2>0for A € [0;1],
Cube(Aa+ (1—A)b) — ACube(a) — (1— A)Cube(b)

has the same sign as
—(A(a—b)+2b+a)=—(Aa+(1—A)b+b+a).

If (a,b) €]0;+o0[? thenAa+ (1—A)b > 0 by lemmal5and so
—(Aa+(1—-A)b+b+a)<0

meaning thaCubeis convex for x> 0. Similarly, if (a,b) €] — ;0] then
—(Aa+(1-A)b+b+a)>0

and so x— x° is concave for %> 0. This proves the claim.

AsCube(—x) = (—x)® = —x3 = —Cube(x), the cubic function is an odd function. Since ford

Cube(b) —Cube(a) b®*-a® , 5 a2 3a?
b_a ~b_a =b“+ab+b _(b+§) +T>O,

Cubeis a strictly increasing function. Also ifg Im (Cube) then there is x R such that X = Cube(x) =y. The
equation y= x° has a solution for every g R and solm (Cube) = R. The graph of x- x® appears in figure
O

57 X— X3 neN

The graphs of = X3, y = X, y = X/, etc., resemble one other. Fell < x < 1, the higher the exponent, the flatter the graph
(closer to thex-axis) will be, since
X <1l= - < X< <<l

For|x| > 1, the higher the exponent, the steeper the graph will besinc
X>1 = > X|> > > 1
We collect this information in the following theorem, of vehiwe omit the proof.

270 Theorem Letn > 3 be an integer anfi(x) = x". Then ifnis odd, f is increasingf is concave fok < 0, andf is convex
for x > 0. Also, f(—) = —co and f () = 4.
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/!

Figure 5.25y = x°. Figure 5.26y = x°. Figure 5.27y = x.
Figure 5.24x+— x", with
n> 3 odd.
5.8 Graphs of Polynomials

Recall that the zeroes of a polynomEk) € R[x] are the solutions to the equatip(x) = 0, and that the polynomial is said
to split in R if all the solutions to the equatiop(x) = O are real.

In this section we study how to graph polynomials that spliRj that is, we study how to graph polynomials of the form
P(X) = a(x—r1)™(x—12)™ - (x— )™,
wherea € R\ {0} and ther; are real numbers and ting > 1 are integers.

To graph such polynomials, we must investigategludal behaviouof the polynomial, that is, what happensas: +o,
and we must also investigate tloeal behaviouraround each of the roots

We start with the following theorem, which we will state watht proof.
271 Theorem A polynomial functionx — p(x) is an everywhere continuous function.

272 Theorem Let p(x) = anx"+an_1x"" 1+ -4 a;x+ag an # 0, be a polynomial with real number coefficients. Then

p(—) = (signum(an))(—1)"e, p(+00) = (signum(an))ee.

Thus a polynomial of odd degree will have opposite signs &ues of large magnitude and different sign, and a polynbmia
of even degree will have the same sign for values of large madmand different sign.

Proof: If x # 0then

_ a;
P(X) = axX" +an X" 1 - ax+ ag = anx” (1+%+---+an1 +%) ~ anx",

since as x— +oo, the quantity in parenthesis tendstand so the eventual sign of>) is determined by &",
which gives the result]

We now state the basic result that we will use to graph polyiatsm

273 Theorem Leta # 0 and the are real numbers and ting be positive integers. Then the graph of the polynomial
p(x) = a(x—r1)™(x—rz)™ - (x— )",
e crosses the-axis atx = r; if my is odd.

e istangent to the-axis atx =r; if m is even.
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e has a convexity change at=r; if my > 3 andm is odd.

Proof:  Since the local behaviour of(p) is that of ¢x—r;j)™ (where c is a real number constant) negrthe
theorem follows at once from our work in sectioi. O

T

Al

h b b v Bk ok N s g
h A b v Pk ok N s oo
h b b v B ok N s oa

5 4 -3 -2 -1 0 1 2 3 45 5 4 -3 -2 -1 1 2 3 4 5 5 4 -3 -2 -1 0 1 2 3 45 5 4 -3 -2 -1 0 1 2 3 4 5

Figure 5.28: Example Figure 5.29: Example Figure 5.30: Example Figure 5.31: Example

274 Example Make a rough sketch of the graphyf (x+ 2)x(x— 1). Determine where it achieves its local extrema and
their values. Determine where it changes convexity.

Solution: » We have fx) = (X+2)x(X— 1) ~ (x) - X(X) = X3, as x— +o. Hence fj—o) = (—»)3 = —c0 and

p(4-) = (+)3 = 4. This means that for large negative values of x the graphhwilbn the negative side of

the y-axis and that for large positive values of x the graplhlvé on the positive side of the y-axis. By Theorem
, the graph crosses the x-axis atx—2, x= 0, and x= 1. The graph is shewn in figue28 <

275 Example Make a rough sketch of the graphyf= (x+ 2)3x?(1 — 2x).

Solution: » We have(x + 2)3x?(1 — 2x) ~ x3-x?(—2x) = —2x5. Hence if gx) = (x+ 2)3x?(1— 2x) then
p(—00) = —2(—)8 = —c0 and p(+) = —2(+)® = —w, which means that for both large positive and negative
values of x the graph will be on the negative side of the y-&ysTheoren?73 in a neighbourhood of x —2,
p(x) ~ 20(x+ 2)3, so the graph crosses the x-axis changing convexity-at-2. In a neighbourhood 00,

p(x) ~ 8x% and the graph is tangent to the x-axis a£0. In a neighbourhood of x % p(x) ~ i—g(l— 2x), and

so the graph crosses the x-axis a.-t%. The graph is shewn in figue29 <«
276 Example Make a rough sketch of the graphyf= (x+ 2)2x(1 — x)2.

Solution: » The dominant term offx+ 2)?x(1 — x)? is X2 - x(—x)? = x°. Hence if §x) = (x+ 2)?x(1—x)? then
p(—0) = (—)% = —o and p(+) = (+0)° = +o0, which means that for large negative values of x the graph
will be on the negative side of the y-axis and for large pusitialues of x the graph will be on the positive side of
the y-axis. By TheorefV/ 3, the graph crosses the x-axis changing convexity-at>2, it is tangent to the x-axis

at x= 0 and it crosses the x-axis at:x%. The graph is shewn in figufe30 «

277 Example, The polynomial in figure5.31, has degree 5. You may assume that the points marked beldwawdbt
through which the polynomial passes have have integer auaiseb. You may also assume that the graph of the polynomial
changes concavity at= 2.
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1. Determinep(1).
2. Find the general formula fqu(x).

3. Determinep(3).

Solution: »

1. From the graph fil) = —1.

2. p hasroots at x —2, x=0, x= +2. Moreover, p has a zero of multiplicity at=x2, and so it must have
an equation of the form (@) = A(x+ 2)(x)(x— 2)3. Now

—1=p(1) :A(1+2)(1)(1—2)3 = A:% = p(x) = %3)()(_2)3

3. p(3) = (3+2)(3;3(3_2)3 _s,

<

Homework

5.8.1 Problem Make a rough sketch of the following curves. 4. Findp(2).
1. y=x3—x

Ly=x—x2

Ly =X (x=1)(x+1)

Ly =x(x—1)2(x+1)2

Ly =x3(x=1)(x+1)
Cy=—X%(x—1)2(x+1)3
. y=x*—8x2+16

- o—

N o 0o~ WDN

h A bbbk ornvwsaa

5 -4-3-2-101 2 3 465

5.8.2 Problem The polynomial in figuré.32has degree 4.
1. Determinep(0).
2. Find the equation of(x).

3. Findp(—3). Figure 5.32: Problem

5.9 Polynomials

5.9.1 Roots

In sections.2and5.4we learned how to find the roots of equations (in the unkndvarfthe typeax-+b = 0 andax® + bx+c=
0, respectively. We would like to see what can be done for ggpugwhere the power ofis higher than 2. We recall that

278 Definition If all the roots of a polynomial are i (integer roots), then we say that thelynomial splits or factors over
Z. If all the roots of a polynomial are i (rational roots), then we say that thelynomial splits or factors ove. If all the
roots of a polynomial are i€ (complex roots), then we say that thelynomial splits (factors) ovet.

SinceZ ¢ Q c R ¢ C, any polynomial splitting on a smaller set immediatelytspdver a larger set.

279 Example The polynomial (x) = x> — 1= (x— 1)(x+ 1) splits overZ. The polynomiap(x) = 4x?> — 1= (2x—1)(2x+1)
splits overQ but not overZ. The polynomiab(x) = x> — 2= (x—v/2)(x+ v/2) splits overR but not overQ. The polynomial
r(x) = x>+ 1= (x—i)(x+1i) splits overC but not oveiR. Herei = /—1 is the imaginary unit.
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5.9.2 Ruffini’'s Factor Theorem
280 Theorem (Division Algorithm) If the polynomialp(x) is divided bya(x) then there exist polynomiatgx), r (x) with
p(X) =a(x)q(x) +r(x) (5.2)

and 0< degrea (x) < degreea(x).

281 Example If x> +x*+ 1 is divided byx? + 1 we obtain
XA x4+ 1= 03+ —x—1)(%+1) +x+2,

and so the quotient ig(x) = x> + x> — x — 1 and the remainder ix) = x + 2.
282 Example Find the remainder whefx+ 3)° + (x+ 2)8 4 (5x+ 9)1%%7is divided byx+ 2.

Solution: » As we are dividing by a polynomial of degregthe remainder is a polynomial of degree 0, that is,
a constant. Therefore, there is a polynomi@tgand a constant r with

(X+3)°+ (x+2)8+ (5Bx+9) 199 = q(x) (x+ 2) +r
Letting x= —2 we obtain
(=2+43)°+ (-2+2)%+(5(-2) + 91" =q(-2)(-2+2) +r=r.
As the sinistral side is 0 we deduce that the remainderQ. «

283 Example A polynomial leaves remaindefr2 upon division byx — 1 and remainder4 upon division by + 2. Find the
remainder when this polynomial is divided &+ x — 2.

Solution: » From the given information, there exist polynomial$xq, g2(x) with p(x) = q1(x)(x— 1) — 2 and

P(X) = g2(X)(x+2) —4. Thus g1) = —2and g—2) = —4. As ¥ +x— 2 = (x— 1)(x+2) is a polynomial of
degree 2, the remaindetx) upon dividing §x) by ¥ +x— 1 is of degree 1 or smaller, that igx) = ax+ b for

some constants b which we must determine. By the Division Algorithm,

p(X) = q(X) (¢ +x— 1) +-ax+b.
Hence
—2=p(l)=a+b
and
—4=p(-2)=-2a+h
From these equations we deduce that 8/3,b = —8/3. The remainder sought is

2 8
r(x):gx—g.

<

284 Theorem (Ruffini's Factor Theorem) The polynomialp(x) is divisible byx —aif and only if p(a) = 0. Thus if pis a
polynomial of degre@, thenp(a) = 0 if and only if p(x) = (x— a)q(x) for some polynomiat of degreen — 1.

Proof: As x—a s a polynomial of degreg, the remainder after diving () by x— a is a polynomial of degree
0, that is, a constant. Therefore

P(X) =a(x)(x—a)+r.

From this we gather that (@) = q(a)(a—a) +r =r, from where the theorem easily follows.
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285 Example Find the value of so that the polynomial
t(x) =x°—3a +2
be divisible byx+ 1.

Solution: » By Ruffini's Theorem84, we must have
0—t(-1)= (~1)®—3a(~-1)%+2 — a— %
<

286 Definition Leta be a root of a polynomigbh. We say that is a root ofmultiplicity mif p(x) is divisible by(x—a)™ but
not by (x—a)™ 1. This means thap can be written in the fornp(x) = (x — a)™q(x) for some polynomiat) with g(a) # 0.

287 Corollary If a polynomial of degre@ had any roots at all, then it has at masbots.

Proof: Ifit had at least i+ 1 roots then it would have at leastil factors of degred and hence degree-n1l
at least, a contradiction(]

Notice that the above theorem only says that if a polynomaal &ny roots, then it must have at most its degree number of
roots. It does not say that a polynomial must possess a rbat.al polynomials have at least one root is much more difficu
to prove. We will quote the theorem, without a proof.

288 Theorem (Fundamental Theorem of Algebra)A polynomial of degree at least one with complex number caoieffits
has at least one complex root.

The Fundamental Theorem of Algebra implies then that a pofyal of degree n hasxactlyn roots
(counting multiplicity).

A more useful form of Ruffini’s Theorem is given in the follawg corollary.

289 Corollary If the polynomialp with integer coefficients,
p(x) = anX"+ an_1x" T+ +ax+ao.

has a rational roo} € Q (here is assumed to be in lowest terms), trsattividesag andt dividesa,.

Proof: We are given that
s g g1 s

O=ans"+an 18" H+---+ast" L+ agth.

Clearing denominators,

This last equality implies that
—agt" = s(ans" T+ an 18 A+ agt" Y.

Since both sides are integers, and since s and t have no &icteaommon, then s must dividg 8Ve also gather
that
—ans =t(an_18" 1+ Fagst" 2 +at" ),

from where we deduce thatt dividgg aoncluding the proofl]

290 Example Factorisea(x) = x° — 3x — 5x? + 15 overZ[x] and overR[x].
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Solution: » By Corollary 289, if a(x) has integer roots then they must be in the{sel, 1,—3,3,—-5,5}. We
test d+1),a(+3),a(+5) to see which ones vanish. We find thé)a= 0. By the Factor Theorem,x5 divides
a(x). Using long division,
X2 -3
x—5) x3—5x*—3x+15
—x345x2

—3x+15

3x—15

0

we find

a(x) =x3 —3x— 5% 4 15= (x—5)(x* - 3),
which is the required factorisation ovéi{x]. The factorisation oveR[X] is then
a(x) = X3 — 3x—5x2+ 15= (x— 5)(x— V/3) (x+ V/3).
<

291 Example Factorisé(x) = x° — x* — 4x+ 4 overZ[x| and overR[x].

Solution: » By Corollary 289 if b(x) has integer roots then they must be in the{sel,1,—2,2,—4,4}. We
quickly see that f1) = 0, and so, by the Factor Theorem-d divides K{x). By long division

x* -4

x—1) X —x*—4x+4
— x>+ x4

—4x+-4

Ix—4

0

we see that

b(x) = (x—1)(x* — 4) = (x— 1) (x* - 2) (¥ +2),
which is the desired factorisation ov&fx]. The factorisation oveR is seen to be
b(x) = (x— 1) (x— V2)(x+ V2) (% +2).
Since the discriminant ofx- 2 is —8 < 0, X% + 2 does not split oveR. <

292 Lemma Complex roots of a polynomial with real coefficients occucamjugate pairs, that is, ff is a polynomial with
real coefficients and ifi+ vi is a root ofp, then its conjugate — vi is also a root fop. Herei = v/—1 is the imaginary unit.

Proof: Assume

p(X) = ag+aix+-- -+ anx"
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and that gu+vi) = 0. Since the conjugate of a real number is itself, and conjiogas multiplicative (Theorem

), we have
0 =0
= pu+vi)
= ata(u+vi)+---+ap(utvi)"
= a+ay(u+Vi)+---+an(u+vi)
= at+a(u—vi)+---+a(u—vi)"

p(u - Vi)v

whence u- Vi is also a root.0J

Since the complex pair root+ vi would give the polynomial with real coefficients

(X—U—Vi)(X— U4 Vi) = X% — 2ux+ (U +V?),

we deduce the following theorem.

293 Theorem Any polynomial with real coefficients can be factored in thenf

AX—r1)™(x—12)M2 - (X — 1 )™ (3 + agx+ by )™ (2 + apx 4 bo)"2 - - (3 + ax+by)™,

where each factor is distinct, time, [ are positive integers arl r;, a;, b; are real numbers.

Homework

5.9.1 Problem Find the cubic polynomiap having zeroes at =
—1,2,3 and satisfyingp(1) = —24.

5.9.2 Problem How many cubic polynomials with leading coeft
cient—2 are there splitting in the s¢t, 2,3}?

5.9.3 Problem Find the cubic polynomiat having a root o = 1,
a root of multiplicity 2 atx = —3 and satisfying(2) = 10.

5.9.4 Problem A cubic polynomialp with leading coefficient 1 satt

isfiesp(1) = 1, p(2) = 4, p(3) = 9. Find the value op(4).

5.9.5 Problem The polynomialp(x) has integral coefficients an
p(x) = 7 for four different values ok. Shew thatp(x) never equalg
14.

5.9.6 Problem Find the value of so that the polynomial
t(x) =x°— 32 +12
be divisible byx+4..

5.9.7 Problem Let f(x) = x* + X3+ x? + x+ 1. Find the remainde

d

whenf () is divided byf (x).

5.9.8 Problem If p(x) is a cubic polynomial wittp(1) = 1, p(2)
2,p(3) = 3,p(4) =5, find p(6).

5.9.9 Problem The polynomial p(x) satisfies p(—x) = —p(X).
Whenp(x) is divided byx— 3 the remainder is 6. Find the remainder
whenp(x) is divided byx® — 9.

5.9.10 Problem Factorised + 3x? — 4x+ 12 overZ[x].
5.9.11 Problem Factorise 8* +13¢® — 37x2 — 117+ 90 overZ[x].

5.9.12 Problem Finda, b such that the polynomia® -+ 6x2 +ax+b
be divisible by the polynomiat? +x— 12.

5.9.13 Problem How many polynomialg(x) of degree at least one
and integer coefficients satisfy

16p(x%) = (p(2x))?,

for all real numbers?
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6.1 The Reciprocal Function

294 Definition Given a functionf we write f (—oo) for the value thaf may eventually approach for large (in absolute value)

and negative inputs anf{+) for the value thaf may eventually approach for large (in absolute value) arsitige input.
The liney = b is a (horizontalasymptotdor the functionf if either

f(—0)=b  or f(+o) =h.

295 Definition Let k > 0 be an integer. A functiori has apole of order kat the pointx = a if (x—a)*1f(x) — +o as
x — a, but(x— a)*f (x) asx — ais finite. Some authors prefer to use the temntical asymptoterather than pole.

: R\ {0} — R\{0}
296 Example Sincexf(x) =1, f(0—) = —oo, f(0+) = +cofor f : 1 f has a pole of order 1 at= 0.
X Ld ;

297 Theorem (Graph of the Reciprocal Function) The graph of the reciprocal function

R\ {0} — R
Rec:
1
X

X —

. 1. . 1. .
is concave forx < 0 and convex foix > 0. X +— X is decreasing fox < 0 andx > 0. Xx— X is an odd function and
Im (Rec) =R\ {0}.

[=Y

Proof:  Assume first thad < a < b and thatA < [0;
Theorent??, we deduce that

]. By the Arithmetic-Mean-Geometric-Mean Inequality,

oo

+-=>2

olo

Hence the product

A 1-A 0 2 a b
()‘a+(1_)‘)b)<E+T) = A+ (1-A) +)\(1_/\)<5+5>
> A24H(1-2)%24+2A(1-2)
= (A+1-21)?
= 1
Thus for0 < a < b we have
1 ()\ 1-A

7)\a+(1—)\)b§ 5+T> = ReqAa+ (1—A)b) <AReda)+ (1—A)Redb),

1. . . .
from where »— X is convex for x> 0. If we replace ab by —a, —b then the inequality above is reversed and we

. 1.
obtain that x— X is concave for x 0.

120
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1 1 : S .
AsReq—x) = vl —RedX), the reciprocal function is an odd function. Assume b are non-zero and

have the same sign. Then

1
=-=—<0
ab< ’

1
Reqb) -Reda)
b—a b

Q|

since we are assuming thattahave the same sign, whence»x)—( is a strictly decreasing function whenever

arguments have the same sign. Also given arylm (Rec) we have y= RedXx) = )—1( but this equation is
solvable only if y£ 0. and so every real number is an imagdaf meaning thatm (Rec) =R\ {0}.
O

. - . . 1 .
298 Example Figures5.1through6.3exhibit various transformations gf= a(x) = X Notice how the poles and the asymp-
totes move with the various transformations.

I
: ______ +__E
I
: \
______ _.;.___S |
==yt |
I I
I
I
|
Figure 6.1:x ! Figure 6.2:x ! 1 Figure 6.3:x 1 +3
AX = — LR —— — OX D —
9 X g x—1 9 X+2
I 1]
I 1]
I 1]
I ]
| | |
_ — i — =
I A
T\
: TaR1
I i
| | |
Figure 6.4:x 1 1 Figure 6.5:x+— ! 1 Figure66!x»—>I ! 1
L= — — 9. —_— .0. _
g 1 d x—1 X1

6.2 Inverse Power Functions

. . . . 1 ) .
We now proceed to investigate the behaviour of functiontefypex — vl wheren > 0 is an integer.

299 Theorem Letn > 0 be an integer. Then

- 1. . . .

e if nis evenx— o is increasing fox < 0, decreasing fox > 0 and convex for alk # 0.
- 1. .

e if nis odd,x+— v is decreasing for akk # 0, concave fok < 0, and convex fok > 0.

1 :
Thusx — v has a pole of ordar atx = 0 and a horizontal asymptoteyt 0.
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. 1 e
300 Example A few functionsx — v are shewn in figures.7through6.12.

WL Joo o b
I

l

————

Figure 6.7: Figure 6.8: Figure 6.9: Figure 6.10: Figure 6.11: Figure 6.12:
X 1 X L X 1 X 1 X ! X 1
— — — — — — — — — — — —
X X2 x3 x4 x5 X8

6.3 Rational Functions

301 Definition By arational function x— r(x) we mean a function whose assignment rule is of théx) = PX) where

a3’
p(x) andq(x) # 0 are polynomials.

We now provide a few examples of graphing rational functigkisalogous to theorem7 3 we now consider rational functions

p(x)

X r(x) = —= wherep andq are polynomials with no factors in common and splittindRin

a(x)

302 Theorem Leta # 0 and the; are real numbers and thg be positive integers. Then the rational function with assignt

rule
(x— 80)™ (x— 8g)™ - (x— &)™

(Xx—by)"(x—by)"2--- (x—by)™ )

r(x) =K

¢ has zeroes at= g and poles ax = b;.

e crosses the-axis atx = a; if my is odd.

e istangent to thg-axis atx = g if my is even.

e has a convexity change &t g; if mj > 3 andm; is odd.

e bothr(b;—) andr(bj+) blow to infinity. If nj is even, then they have the same sign infinitghi+) = r(bj—) = 40
orr(bi+) =r(bj—) = —oo. If n; is odd, then they have different sign infinity(hj+) = —r(bj—) = +e or r(bj+) =
—r(bi—) = —o.

Proof:  Since the local behaviour ofx) is that of ¢x—r;)% (where c is a real number constant) neasthe
theorem follows at once from Theorex@i8and 299 [

132
303 Example Draw a rough sketch of — w

(X+1)(x—2)2
(x=172(x+2)
(Xx+1)(x—2)2
and x=2. As x— 1, 7(x) ~ 5 (x— 1)?, hence the graph of r is tangent to the axes, and positiveyrate— 2. As

Solution: » Putr(x) = . By Theoren302, r has zeroes atx 1, and x=—2, and poles at x= —1

9 . . "
X— —=2,1(X) ~ —E(er 2), hence the graph of r crosses the x-axis at x 2, coming from positive y-values on

the left of x= —2 and going to negative y=values on the right ofx-2. As x— —1, r(x) ~ ﬁ hence the
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graph of r blows to— to the left of x= —1 and to+ to the right of x= —1. As x— 2, r(x) ~ ﬁ hence

the graph of r blows tetc both from the left and the right of¢ 2. Also we observe that

N2

—~

_1)2
and hence r has the horizontal asymptote §. A sign diagram for(X D*(x+2) follows:

(X+1)(x—2)?

| e =2[| |=2;=1[ | | =151 | |]1;2 | ]2;+o0]

+ | = |+ [+]+

The graph of r can be found in figufel3 «

(x—3/4)%(x+3/4)?
(x+1)(x—1)

(x—1)%2(x+2)
(Xx+1)(x—2)2

Figure 6.13X+— Figure 6.14x —

(X—3/4)%(x+3/4)?
(x+1)(x—1)

304 Example Draw a rough sketch ofi—

(x—3/4)2(x+3/4)%> _ e .
XTDx-1) First observe that {x) = r(—x), and so r is even. By Theorem
36

3 3 :
302 r has zeroes at x iz_l’ and poles at x= £1. As x— 7 r(x) ~ —7(x— 3/4)?, hence the graph of r is

Solution: » Putr(x) =

. - . 3
tangent to the axes, and negative, aroung 8/4, and similar behaviour occurs around=x 7 As x— 1,

r(x) ~ ﬁg—l) hence the graph of r blows tex to the left of x= 1 and to+ to the right of x= 1. As
Xx— =1, r(x) ~ —#9_1), hence the graph of r blows tee to the left of x= —1 and to—oo to the right of

x=—1. Also, as x— +oo,
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- o L (x—3/4)%(x+3/4)? _
SO f(400) = 400 and r(—oo) = +o0. A sign diagram for X+ D=1 follows:
3 3.3 3
Rt i A
+ | = | = =1+

The graph of r can be found in figufel4 «
Homework
6.3.1 Problem Find the condition on the distinct real numbars, c 1. Findq(0).

such that the functior— takes all real values for red

(x—a)(x—Db)
X—C

values ofx. Sketch two scenarios to illustrate a case when the cd
tion is satisfied and a case when the condition is not satisfied

6.3.2 Problem Make a rough sketch of the following curves.

X
1. y=
y x2—1
2
X
2. Y= ———
y x2—1
2
x¢c—1
3.y=
y X
2
X—X—6
4, y= ——
y X2 4+Xx—6
2 _
5. :LXG
X2 —Xx—6
6. v X
YT X 12x—1)2
2
7_y:X7
(x4 1)2(x—1)2

6.3.3 Problem The rational functiorg in figure has only two
simple poles and satisfiegx) — 1 asx — . You may assumq

ndi- 2- Findq(x) for arbitraryx.
3. Findq(-3).
4. To which value doeg(x) approach ag — —2+-?

Figure 6.15: Problem

h

that the poles and zeroesaére located at integer points.

6.4 Algebraic Functions

305 Definition We will call algebraic functiora function whose assignment rule can be obtained from analtianction by
a finite combination of additions, subtractions, multiptions, divisions, exponentiations to a rational power.

306 Theorem Let |g| > 2 be an integer. If

e if qis even therx— x%/9is increasing and concave fqe> 2 and decreasing and convex tp —2 for all x > 0 and it

is undefined fox < 0.

e if qis odd therx — x%/9 is everywhere increasing and convex fot. 0 but concave for > 0 if > 3. If g < —3 then
x — x%9is decreasing and concave o« 0 and increasing and convex for> 0.
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A few of the functionsc — x/9 are shewn in figures.16through6.27.

T T

Figure 6.16: Figure 6.17: Figure 6.18: Figure 6.19: Figure 6.20: Figure 6.21:
X — x1/2 X— x /2 X — x1/4 X— x /4 X — x1/6 X — x1/6
Figure 6.22: Figure 6.23: Figure 6.24: Figure 6.25: Figure 6.26: Figure 6.27:
X — x1/3 X— x /3 X +— x1/5 X— x5 X — x7 X — x 7
Homework
6.4.1 Problem Draw the graph of each of the following curves. 3. X—1+ (1+x)1/3

1. x— (1+x)1/2 4, xr—1—(1-x)1/3

2. x— (1-x)1/2 5. X /X++/—X
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7.1 Exponential Functions

307 Definition Leta > 0,a+# 1 be a fixed real number. The function
R — ]0;+o]

X

X = a

is called theexponential functionf base a

L N = T = S T R N
L N = T = T T R N

Figure 7.1x+— a*, a> 1. Figure 7.2x—a*, 0<a< 1

We will now prove that the generic graphs of the exponentiatfion resemble those in figurés. and

308 Theorem If a> 1, x — a* is strictly increasing and convex, and if0a < 1 thenx+— a* is strictly decreasing and

convex.

Proof: Put f(x) = a*. Recall that a function f is strictly increasing or decreagidepending on whether the

ratio ; ¢
M>O or <O
t—s
fort #s. Now,
_ t .S t-s
f(t) f(s):a a:(as)'a 1.
t—s t—s t—s

Ifa>1,andt—s>0thenalso &% > 1." Ifa> 1, andt—s< Othen also & < 1. Thus regardless on whether
t—s> 0or < Othe ratio
as-1
t—s

>0,

1The alert reader will find this argument circular! | havedrie prove this theorem from first principles without intraihg too many tools. Alas, | feel

tired. ..

126
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whence f is increasing for a 1. A similar argument proves that fér< a < 1, f would be decreasing.
To prove convexity will be somewhat more arduous. Recdlftligconvex if for arbitrary0 < A < 1 we have
fAs+(1—A) <Af(S)+(1-A)F(1),

that is, a straight line joining any two points of the curvediabove the curve. We will not be able to prove this
quickly, we will just content with proving midpoint conugxiwe will prove that

f <S—J2rt) < %f(s)Jr%f(t).

This is equivalent to

NI -

sit 1 ¢ ¢
az < za +=a,
which in turn is equivalent to
s—t t—s
2<az +az.
But the square of a real number is always non-negative, hence

st ts\2 st ts
(a4 —a4) >0— az +az >2

proving midpoint convexity.]

The line y= 0is an asymptote for x> a*. Ifa > 1, then & — 0 as x— —o and & — 4 as x— +oo. If
O<a< 1l then& — +oas x— —o and & — 0 as x— +.

Homework

7.1.1 Problem Make rough sketches of the following curves. 3. x+— 2~
1. x— 2% 4, X+— 2%+ 3

2. x— 2K 5. X 2Xt3

7.2 The numbere

Consider now the following problem, first studied by the Swizathematician Jakob Bernoulli around the 1700s: Query: If
a creditor lends money at interest under the condition theihd each individual moment the proportional part of thauad
interest be added to the principal, what is the balance anbddeof a full year?

Supposea dollars are deposited, and the interest is addéiches a year at a rate of After the first time period, the
balance is

X
by = (1+ ﬁ) a
After the second time period, the balance is
X X\ 2
by = (1+ﬁ) by = (1+ﬁ) a

Proceeding recursively, after theth time period, the balance will be

by = (1+’—r:)na.

1 n
o (101)

2“Quigeritur, si creditor aliquis pecuniam suam feenori exposelege, ut singulis momentis pars proportionalis usumaaa sorti annumeretur; guantum
ipsi finito anno debeatur?”

The study of the sequence
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thus becomes important. It was Bernoulli's pupil, Leonh&tder, who shewed that the sequer(d& %)n,n =1,23,...
converges to a finite number, which he caléedn other words, Euler shewed that

e=lim (1+%)n. (7.2)

n—oo

It must be said, in passing, that Euler did not rigourouskvetd the existence of the above limit. He, however, gaverothe
formulations of the irrational number

e=2.718281828459045235360287471352

among others, the infinite series

1 1 1 1
e=2+z++a++m++a+"'v (7.2)

and the infinite continued fraction
1

1+ !
1

1
1

4+ !
1

1
+1+ !

1

6+ —

2+

1+
1+

We will now establish a series of results in order to prové tha limit in 7.1 exists.

309 Lemma Letn be a positive integer. Then

X' =y = (x—y) (XX 2y X YT e xy 2y,

Proof: The lemma follows by direct multiplication of the dextralesiC]

310 Lemmalf0<a<b,neN

b—a

<nb" 1L,

Proof: By Lemma

= b1 4b"Pat b et 4 b7 P b A At

< bYl4b iy b tppnt
= nb"1
from where the dextral inequality follows. The sinistraégquality can be established similarly.

311 Theorem The sequence .
1
en= <1+ﬁ) ,n=12 ..

is a bounded increasing sequence, and hence it convergésiit ahich we calle.
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Proof: By Lemma
bn+1 _ an+1

s <(n+ 1)b" = b"[(n+1)a—nb < a™*.

1 .
, b= 1+ﬁ we obtain

1 n 1 n+1
€n ( + n) < ( + n+ 1) en+17

. . , 1 .
whence the sequencge=1,2,... increases. Again, by putting-al, b=1-+ o we obtain

Puttinga=1+——
utting +n+1

2n

Since g < ey, < 4for all n, the sequence is bounded. In view of Theofémthe sequence converges to a limit.
We call this limit e.r

1 n 1 2n
<1+%) <2 = (1+—) <4 = en<4

Since the sequence increases towards e we have

1\ !
2=(1+= ]
(1+3) <e
From the proof of Theorel 1it stems thaR < e < 4. In fact, in can be shewn thate2.718281828459045235360287471352
andso2<e< 3.

e is called thenaturalexponential base. The functiornx € has the property that any tangent drawn to the
curve at the point x has slopé.€The notatiorexp(x) = expx = € is often used.

|

[ N I = U R U R N )

Figure 7.3: - x< e*vx e R.

312 Theorem If x € R then
1+x< €,

with equality only forx = 0.
Proof: From figure7.3 the line y= 1+ x lies below the graph of 3 €%, proving the theorem]
Replacingx by x— 1 we obtain,
313 Corollary

x< e vxeR.
Equality occurs if and only ik = 1.
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Homework
7.2.1 Problem True or False. 7.2.5 Problem Put
1. 3t € Rsuch thag' = 4. x — € is increasing coshx — e+e”
-9. overR. 2
2. As X — —oo, 2¥ — & . | and
5. X+ = Is increasing & g X
—00 .
' overR. sinhx =
3.¥x € R, 10+ x% + b h
x> 2, 6. ex< e, VxeR. rove that

cosif x—sinifx = 1.

7.2.2 Problem By using Theoren312, and the fact thatr > | The functionx — coshx is known as thenyperbolic cosine

e, prove thae™ > m°. The functionx — sinhx is known as théwyperbolic sine
(Hint: Putx=Z—1.) 7.2.6 Problem Prove that fon € N,
. n n+1
7.2.3 Problem Make a rough sketch of each of the following. 1 1
1+ o)< 1+ i .
1. x— 2% 4, X— —1+2%
and L )
2. X— et 1 n+ 1 n+
5. xr— e 14> >(1+—) .
1\ % n n+1
3. x= (5) 6. x— e X

Hint: Use a suitable choice afandb in Lemma310.
7.2.4 Problem Letn e N,n > 1. Prove that (Hi u I ! )

na+1\" . X X .
nl < ( + ) _ ZVZGZ Problem Prove that the functiorx — o1 + > is

7.3 Arithmetic Mean-Geometric Mean Inequality

Using Corollary313 we may prove, a la Polya, the Arithmetic-Mean-Geométfean Inequality (AM-GM Inequality, for
short).

314 Theorem (Arithmetic-Mean-Geometric-Mean Inequality) Let
a17 a23 i 7an
be non-negative real numbers. Then

at+ax+---+an
—

(alaz . an)l/n <

Equality occursifandonly iy =a, = ... = ay.

Proof: Put na,

A= et tan
and G, = ajay---an. Observe that
n"Gp

A A —
S PR

and that
Al+Ao+--+A=n.

By Corollary313 we have
A1 <exp(A1—1),
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A <exp(Ay—1),

An <exp(An—1).
Since all the quantities involved are non-negative, we malyiply all these inequalities together, to obtain,
AAr---An<explAr+Ax+---+An—n).
In view of the observations above, the preceding inequialigguivalent to

n"Gp
(a+az+---+an)"

<expn—n)=€"=1.

We deduce that
n
G, < (M) ,
n
which is equivalent to

atar+---
(alaz...an)l/n< M

n
Now, for equality to occur, we need each of the inequalitigsiAexp(Ax — 1) to hold. This occurs, in view of
Corollary if and only if A= 1, Vk, which translates intoa= ap = ... = a,.. This completes the prodil
315 Corollary (Harmonic-Mean-Geometric-Mean Inequality) If
,82,...,8n
are positive real numbers, then
n
i—’—i—’— —"_ig\n/alaz...an'
a & an

Proof: By the AM-GM Inequality,

Dl

a a an

)

JT T 1 atagtot
n
from where the result follows by rearranging.

316 Example The sum of two positive real numbers is 100. Find their maxmuoduct.

Solution: » Let x and y be the numbers. We use the AM-GM Inequality foenThen

<L

In our case, %y = 100 and so
VX < 50,
which means that the maximum product issx$0” = 2500 If we take x=y = 50, we see that the maximum

product is achieved for this choice of x and4.

317 Example From a rectangular cardboard piece measuring 45 a square of side is cut from each of its corners in

order to make an open box. See figuré Find the functiorx — V (x) that gives the volume of the box as a functiorxpand
obtain an upper bound for the volume of this box.
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Solution: » From the diagram shewn, the height of the box is x, its le@§th 2x and its width45— 2x. Hence
V(x) = x(75— 2x)(45— 2x).

Now, if we used the AM-GM Inequality for the three quantitie80— 2x, and50— 2x, we would obtain

V(X) X(75—2x) (45— 2x)

X+ 75— 2X+45 2x>

(
(222

3
= (40-x)%.

(We use the strict inequality sign because we know that é@guweill never be achieved75— 2x never equals
45— 2x.) This has the disadvantage of depending on Xx. In order éwcowne this, we use the following trick.
Consider, rather, the three quantitidg, 75— 2x, and45— 2x. Then

AV (X) 4X(75— 2%) (45— 2X)

(4x+ 75— 2x+ 45— 2x)3

3
_(120)°
3

= 64000
This means that 64000
V(X) < = 16000
<
X X
X X
X X
X X

Figure 7.4: Examplé

Later in calculus, you will see that the volume is

V(x) < (20— gm)(35+ 5v19)(5+5v19),

and that the maximum is achieved when

X=20— g\/ﬁ
0;] — R

318 Example Find the maximum value of the functidn:
X = x(1-x)?
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Solution: » Observe that for x [0; 1] both x andl — x are non-negative. We maximise, rattf(x) via the
AM-GM Inequality.

3
2f(x) = 2x(1—x)? = 2X(1—x)(1—x) < (2)(—1—1—_;—#1—)() = %

Thus

The maximum value is attained wh&n= 1 — x, that is, when x= % <

Homework

7.3.1 Problem Let x,y,z be any real numbers. Prove that | 7.3.4 Problem Maximise the following functions ove0; 1].
3?2 <X +yP 4+ 2. 1. a:x— x(1—x)3.
2. b:xi— x%(1-x)2

7.3.2 Problem The sum of 5 positive real numbers3swWhat
is their maximum product? 3. c:x—x2(1—x)3.

7.3.3 Problem Use AM-GM to prove that cosh> 1, ¥x € | 7.3.5 Problem Prove that of all rectangular boxes with a
R. given surface area, the cube has the largest volume.
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8.1 Logarithms

R — ]0;4o]
Recall that ifa > 0,a # 1 is a fixed real number, maps a real numbegto a positive numbey, i.e.,a*=y.
X +— ax
. . R o= 04l
We callx thelogarithmofy to the base, and we writex = log, y. In other words, the function has inverse
X aX

]0;+40[ — R

X — log,x
319 Example logs 25= 2 since 5 = 25.
320 Example log, 1024= 10 since 2° = 1024
321 Example log; 27 = 3 since 3 = 27.

322 Example |091901234561 = 0 as 1901234%: 1

If a > 0,a+ 1, it should be clear thalbg, 1 = 0, log,a= 1, and in generalog,a' =t, where t is any real
number.

323 Example log ; 8 =10g,1/> (2%/2)5 =6.
324 Example log ; 32=10g,» (2%/%)10 =10,

2 35 35
8 3/2\(2/3)(35/8
325 Example log, 5 81v/27 = logg» (3%/2)?/33%/8) — 318 =1

Aliter: We seek a solutior to

(3V/3)* = 81V/27

1 In higher mathematics, and in many computer algebra pragesiike Maple®, the notation “log” without indicating the base, is usedtfoe natural
logarithm of base. Misguided authors, enemies of the State, communistsg®el@ members, vegetarians and other vile criminals usé itiagalculators
and in lower mathematics to denote the logarithm of baseridpae “In” to denote the natural logarithm. This makes thisgmewhat confusing. In these
notes we will denote the logarithm base 10 by ‘lgigand the natural logarithm by “lgg, which is hardly original but avoids confusion.

134
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Expressing the sinistral side as powers of 3, we have
(3V3 = (3-3¥%)
_ (31+1/2)x
_ (33/2)x
33X/2
Also, the dextral side equals
81y27 = 3*. (P8
34+3/8

— 3358

Thus(3v/3)* = 81927 implies that /2 = 33%/8 or %X = %5 from wherex = 33.

anE

a A W N P O B N W A O
1
a B W N P O B N W A~ O

Figure 8.1:x — log,x,a > 1 Figure 8.2:x — log,x,0 < a< 1.

Sincex — & andx — log, x are inverses, the graph »f— log, X is symmetric with respect to the line= x to the graph of
x— a%. Fora> 1,x+— a‘is increasing and convex,— log, x, a > 1 will be increasing and concave, as in figéré. Also,
for0<a< 1,x— a*is decreasing and convexi— log, X, 0 < a < 1 will be decreasing and concave, as in figar2

326 Example Between which two integers does o000 lie?

Solution: » Observe thap® = 512< 1000< 1024= 210, Since % log, x is increasing, we deduce that
log, 1000lies betweer® and10. «

327 Example Find |logs 201].

Solution: » 3%=81< 201< 243= 3°. Hence|log;201] = 4. «
328 Example Which is greater log7 or log; 3?

Solution: » Clearlylogs7 > 1> logg3. «

329 Example Find the integer that equals

[log, 1] + |log, 2] + |l0g, 3] + [log, 4| + - - + |log, 66.
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Solution: » Firstly, log, 1 =0. We may decompose the inter{266§ into dyadic blocks, as

[2;66 = [2;4[U[4; 8]U[8; 16)U[16, ; 32[U[32, ; 64]U[64; 68.

On the first interval there ard — 2 = 2 integers with|log, x| = 1,x € [2;4]. On the second interval there are
8—4=4integers with|log, x| = 2,x € [4;8[. On the third interval there ar&6 — 8 = 8 integers with

[log, x| =3,x € [8;1¢. On the fourth interval there ar82— 16 = 16 integers with|log, x| = 4,x € [16;37.
On the fifth interval there ar64— 32= 32integers with|log, x| = 5,x € [32;64. On the sixth interval there
are 66— 64+ 1= 3integers with|log, x| = 6,x € [64;68. Thus

<

[log, 1| + [log, 2|+ [log, 3|+

2(1) +4(2) + 8(3)+
+16(4) + 32(5) + 3(6)

= 276

330 Example What is the natural domain of definition ®f— log, (x? — 3x — 4)?

Solution: » We need%— 3x— 4= (x—4)(x+ 1) > 0. By making a sign diagram, or looking at the graph of
the parabola y= (x— 4)(x+ 1) we see that this occurs wherek— oo; —1[U]4;4-o0[. <

331 Example What is the natural domain of definition pf- log),_4(2—x)?

Solution: » We nee® — x> 0and|x| — 4 # 1. Thus x< 2 and x#£ 5,x # —5. We must have

X €] —o0; —=5[U] —5;2[. «

Homework

8.1.1 Problem True or False.

1. 3x € R such that
logyx=2.

2. Ix € R such that
logyx=—2.

3. logp1=0.

4. log,0=1

. log,2=1.

. X+ logy 5xis increasing

*
overR* .

. Vx> 0, (logsX)? = logs X°.
. logz 201=4.

8.1.2 Problem Compute the following.

1. log; /3 243
2. log;o .00001
3. loggg; 100000

lo 1

% 3
l0g; 904 64
l0gs/z 625

log, > 32V2
log, .0625

© N o g &

9. loggezs 2

10. logs \/ 729V/9-127-4/3

8.1.3 Problem Leta > 0,a# 1. Compute the following.
1. log, Va8/5
. log, Va~15/2

2
1
3. log, S/
4. logs a°
5. log, &
6. logss a’/2®

8.1.4 Problem Make a rough sketch of the following.
1. x—log, x

. X+ logy |X|

. X+—=>4+logy /o X

. X+—5—logs X

. X+ 2—100y /4 X

a b wWN
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6. x+— logs x

7. x+— logs ||

8. X+ |logs X

9. x+— [logs [|

10. x+— 2+loge|X|
11. x+— —3+logy > [X
12. x— 5—]logy |

8.1.5 Problem Prove that fox > 0,

1-x< —logex.

8.1.6 Problem Prove that foix > 0 we have

x& < &,

Use this to prove that for > 0,

logeX <

oI Xx

8.1.7 Problem Find the natural domain of definition of the
following.

1. x— logy (X2 — 4)

I T
x
<}
Q
N

8.2 Simple Exponential and Logarithmic Equations

Recall that foa > 0, a+# 1, b > 0 the relatiora* = b entailsx = log, b. This proves useful in solving the following

equations.

332 Example Solve the equation

1
Solution: =43=_,
ution: » X i

333 Example Solve the equation

Solution: » x=25=32. <«

334 Example Solve the equation

logyx=—3.

log, x=5.

log, 16=2.

Solution: » 16=x°. Since the base must be positive, we haxelx <

335 Example Solve the equation*3= 2.

Solution: » By definition, x=logz 2. «

336 Example Solve the equation”d-5-3*+ 6= 0.

Solution: » We have

¥ —5.34+6=(3)2-5.3+6=(3*-2)(3*-3).
Thus eithei3*— 2= 0o0r 3*— 3= 0. This implies that x= log; 2orx=1. «

337 Example Solve the equation 25-5*— 6= 0.

Solution: » We have

25— 5 6= (52 -5 — 6= (5+2)(5—23),

whences* — 3= 0or x=logs 3as5*+ 2= 0does not have a real solution. (Why4)
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Sincex — & andx — log, x are inverses, we have
x=a%Xva>0, a%1, Vx>0 (8.1)

Thus for example,'8%4 = 4, 26°%68 — 8. This relation will prove useful in solving some simple atjans.

338 Example Solve the equation
logylogyx = —1.

Solution: » Aslog,log,x = —1, we have

1

log,x = 210%10%x — =1 — >

Hence x= 419X = 412 — \/4 = 2. 4

339 Example Solve the equation
log,log;logsx =0

Solution: » Sincelog,logzlogsx = 0 we have
logslogs x = 210%2109s1095X — 20 — 7

Hence
loggx = 3/09:1095% — 31 — 3,

Finally x = 599X = 53 — 125 <

340 Example Solve the equation
log,x(x—1) = 1.

Solution: » We have & — 1) = 2' = 2. Hence % — x— 2 = 0. This gives x= 2 or x = —1. Check that both are
indeed solutionsia

341 Example Solve the equation I(ggxe8 =2.

Solution: » We havee+ x)? = €8 or e+ x= +€e*. Now the base & x cannot be negative, so we discard the
minus sign alternative. The only solution is whepx= €*, that is, x=€* — e. <

Homework

8.2.1 Problem Find real solutions to the following equations for 8. #£-9.-2+14=0
1. log, 3=4 9. 49¢-2-7"+1=0
2. logg x=4 10. 36—2.6=0
3. logy x=3 11, 3646 —6-0
4. log_,9=2

12. 5+12.5%=7

5. log, 16=4
6. 2¥-2=0 13. logloggx = 2
7. (2X-3)(¥-2)(6*-1)=0 14. loglogsx=—1

8.3 Properties of Logarithms

A few properties of logarithms that will simplify operatismvith them will now be deduced.
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342 Theorem If If a> 0,a# 1, M > 0, anda is any real number, then
log, M = alog, M (8.2)

Proof: Letx=log, M. Then & = M. Raising both sides of this equality to the exporeentne gathers
a% = MY, But this entails thalog, M? = ax = a(log, M), which proves the theorerfl

343 Example How many digits does®° have?

Solution: » Let n be the integer such tha" < 8330 < 10™2. Clearly ther833C has n+ 1 digits. Since
x— logygX is increasing, taking logarithms base 10 one has 830log 8 < n+ 1. Using a calculator, we see
that298001< 330l0g 8 < 29802, whence n= 298and so0823° has299digits. <

344 Example If log,t = 2, then logt3 = 3log,t = 3(2) = 6.
345 Example logs 125= logg 5° = 3log; 5= 3(1) = 3.

346 Theorem Leta> 0,a# 1, M > 0, and letf # 0 be a real number. Then
1

logs M = B

log, M. (8.3)

Proof: Letx=log, M. Then & = M. Raising both sides of this equality to the pov%we gather

a/P = MYB_ But this entails that

X
IogaMl/B = E = = (logy M),

|~

which proves the theoreml

347 Example Given that log, 51024 is a rational number, find it.

Solution: » We have

2 10_2 20
|098\/§ 1024= |Og27/2 1024= - |0922 — = . 10|092 2 ==
|
348 Theorem If a>0,a# 1, M > 0, N > 0 then
log, MN =log, M+1log, N (8.4)

In words, the logarithm of a product is the sum of the loganish

Proof: Letx=log, M and let y=1log, N. Then &= M and & = N. This entails that &Y = a*a¥ = MN. But
aty = MN entails x+ y = log, MN, thatis

log; M +log, N =x+y=Ilog, MN,

as required.[d
349 Example Iflog, t =2, log, p=3andlog u® = 21, find log, t3pu.

Solution: » First observe thalog, t*pu= log, t3+ log, p+ log,u. Now,log,t3 = 3log, t = 6. Also,
21=log,u® = 3log, u, from wherelog, u= 7. Hence

log, t3pu=log, t3+log, p+log,u=6+3+7=16.
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350 Example Solve the equation
log,x+log,(x—1) = 1.

Solution: » If x > 1then
log, X+ logy(x— 1) = log, x(x — 1).

This entails xx— 1) = 2, from where x= —1 or x= 2. The solution x= —1 must be discarded, as we need
x>1 <

351 TheoremIf a>0,a# 1, M >0, N > 0then

Ioga% =log,M —logyN (8.5)

* M
Proof: Letx=Ilog, M and lety=log, N. Then =M and & = N. This entails thata¥ = % =N But

X—

M . .
a‘“¥ = — entails x-y=log, ¥, thatis

N
M
log, M —log, N=x—y=log, N’

as required.[d

2
352 Example Letlog, t =2, log, p=3and log u®= 21, find log, f—u

Solution: » First observe that

p2

log, e log, p?—log, tu=2log, p— (log, t+log, u).

This entails that
2
|ogaf’_u =2(3)— (2+21) = -17.

<

353 TheoremIf a>0,a# 1, b> 0,b+# 1 andM > 0 then

log, M
log, a°

log, M = (8.6)

Proof: From the identity 8% M — M, we obtain, upon taking logarithms base a on both sides

log, (b'ogb M) =log, M.
By Theorem 3.4.1
log, (0% M) = (log, M)(log, b).

whence the theorem follows.

354 Example Given that
(log,3) - (logz4) - (10g,5) - -~ (l0gs;1512)

is an integer, find it.
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Solution: » Choose a>~0,a# 1. Then

log,3 log,4 log,5 log,512
log;2 log,3 log,4 log,511

(log,3) - (logz4) - (log,5) - - (Iogs11512) =

~ log,512
~ logy2
But
log,512 B 9
log, 2 =10g,512=10g,2" =9,

so the integer sought & «
355 Corollary If a>0,a# 1, b>0,b# 1 then

log, b (8.7)

B log, a’
Proof: Let M=binthe preceding theoreml

356 Example Given that log t = 2a, logsn = 3a2, find log sin terms ofa.

Solution: » We have

log,s
log, s= —=,
% log,t
Now,log,s= —— = 1 Hence
/100 S = logsn  3a2’
log,s o 1
log, s= n>_ 3a _ _—
% log,t 2a 6ad
|

215
357 Example Given that log3=s"3, log b= $+2, loggc = S°, write log, % as a polynomial irs.

Solution: » Observe that
215

logs % = 2logza+ 5logzb—4logsc,

so we seek information abolag; a,log; b andlogs;c. Now,

1 1
|og3a: :Sga |093b:§|09\/§b2532+1

L
log, 3
andlogsc = 2logyc = 2s°. Hence

a’b® 5 5
<

358 Example Given that63 < log; 2 < .631, find the smallest positive integesuch that 8 > 2102,

Solution: » Since x— loggz x is an increasing function, we havéog; 3 > 102log 2, thatis, a> 102log; 2.
Using the given informatior§4.26 < 102log; 2 < 64.362, which means that & 65is the smallest such integer.
<
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359 Example Assume that there is a positive real numbsuch that

g
X =2,

where there is an infinite number x$§. What is the value ok?

Solution: » Since¥ = 2, 0ne has

whence, as x is positive /2. <

Euler shewed that the equation

has real roots only for & [e¢;€/€].

360 Example How many real positive solutions does the equation
X(xx) _ (XX)X

have?

Solution: » Assuming x> 0 we have Xlogex = x10geX* or X*l0g.X = X?l0geX. Thus(logeX) (XX —x2) = 0.
Thus eithelog,x = 0, in which case x= 1, or X* = x, in which case x= 2. The equation has therefore only two
positive solutions«

361 Example The non-negative integers smaller thaft &ée split into two subsets andB. The subsef contains all those
integers whose decimal expansion does not contain a 5, arsgtB contains all those integers whose decimal expansion
contains at least one 5. Givenwhich subsetA or B is the larger set? One may use the fact thafjdd:= .3010 and that

Solution: » The set B contains0” — 9" elements and the set A contaBiselements. Now if0" — 9" > 9"
then10" > 2. 9" and taking logarithms base 10 we deduce

n>log;q 2+ 2nlog;, 3.
Thus

logyo 2

Therefore, if n< 6, A has more elements than B and itr6, B has more elements than A.
362 Example Shew that ifa, b, c, are real numbers with® = b+ ¢%,a+ b > 0,a+b+#1,a—b>0,a—b+# 1, then
10, C+10ga;p, €= 2(10gs  €)(10ga;p C)-
Solution: » As & = a?—b? = (a— b)(a+b), upon taking logarithms base-ab we have
2log, ., ¢=10g,,p (@—b)(a+b) = 1+ log,,, (a—b) (8.8)
Similarly, taking logarithms base-ab on the identity €= (a— b)(a-+ b) we obtain

2log, , c=log,_,, (a—b)(a+b)=1+log, ,, (a+Db) (8.9)
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Multiplying these last two identities,

4(log, p €)(10Gaip €) = (1+10Gs,p (@—D))(1+l0g, , (@+b))
= 1+log, ,(a+b)+log,,, (a—b)
+(log, p, (a+b))(logy,p, (2— b))
= 2+log,  (a+b)+log,,, (a—b)
= 2+log, , 75 +10Gab 375
= log, p c+10gy;p C,
as we wanted to sheva

4(3-a)
3+a

363 Example If log,, 27 =aprove that log 16=

3 3

Solution: » First notice that &= log;, 27=3log;, 3= log, 12 = 17 2log, 2

3—-a
, whencdogg 2 = —a

2a
I 3=—_ Al
00, 3 a S0

logg 16 = 4logg 2

4
log, 6
—4
1+log, 3

4
35

4(3—a)
3+a

as required.«

364 Example Solve the system
5(log,y+log,x) = 26

Xy = 64

Solution: » Clearly we need x 0,y > 0,x # 1,y # 1. The first equation may be written as

5 <Iogxy+ %) = 26 which is the same agog,y — 5)(log, X — :Fl)) = 0. Thus the system splits into the two
equivalent sygtems g,y =5,xy=64and (Il) log,y = 1/5,xy = 64. Using the conditions
x>0,y > 0,x# 1 y+# 1 we obtain the two sets of solutions=2,y =320rx=32y=2. «

Homework
8.3.1 Problem Find the exact value of 3. 3M € R such that log M2 = 2logs M.
1 . 1 . 1 - 1
log,1996! ' 1og31996! ' log, 1996! 1091 9961996! 8.3.3 Problem Given that log p= 2, log,m=19, log,n= —1 find
1. log, p’
8.3.2 Problem 1. logyMN =logsM +logN VYM,N € R. 2. logy p
2. logsM? = 2logsMYM € R. 3. logy p?n®
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4. logs %

8.3.4 Problem Which number is larger,890 or 55007

8.3.5 Problem Find (logz 169)(log,3 243) without recourse of a
calculator or tables.

8.3.6 Problem Find

calculator or tables.

without recourse of a

log, 36+ logz 36

8.3.7 Problem Given thatlog p=b, logya= 3b~2, find log,qin
terms ofb.

8.3.8 Problem Given that loga=s, log,b =%, logee 8 = 527,
. ab° ,
write log, @ as a function os.

8.3.9 Problem Given that logz (a2 + 1) = 16, find the value of

|Oga32 (a+%) .

8.3.10 Problem Write without logarithms. Assume the proper
restrictions on the variables wherever necessary.

1. (a9)~Blogs NV

2. —logg log, log, 16

3. logy 75 l0g, Vv 0125

4, (5“097 5™ 4 (—logyg 0.1)*1/2)l

ba(lo% logy N)/(logp, )

/3

6. 2('093 5) _ 5('093 2)

1 1+(log; 2)
()

8.3.11 Problem A sheet of paper has approximatelyl @m of
thickness. Suppose you fold the sheet by halves, thirtysime
consecutively. (1) What is the thickness of the folded p2apg)
How many times should you fold the sheet in order to obtain the
distance from Earth to the Moon? (the distance from Earthéo t
Moon is about 384 000 km.)

+ 5—(logys 7)

~

8.3.12 Problem How many digits does #2% have?

8.3.13 Problem Let A = logg 16,B = log,,27. Find integers, b,c
such thafA+a)(B+b) =c.

8.3.14 Problem Given that log,a = 4, find
Ya
|Ogab75'

8.3.15 Problem The number 5 s written in binary (base-2)
notation. How many binary digits does it have?

8.3.16 Problem Prove that ifx > 0,a > 0,a# 1 thenx'/'°% X = a

8.3.17 Problem Let a, b, x be positive real numbers distinct from 1.

When is it true that

4(log, X)?+ 3(logy, X)? = 8(log, X)(logy, X) ?
8.3.18 Problem Prove that log T+ 10g,;3 > 2.

8.3.19 Problem Solve the equation

491 =3yl

8.3.20 Problem Solve the equation

514+5(0.2¢2=26

8.3.21 Problem Solve the equation

25— 12.2*— (6.25)(0.16)* =0

8.3.22 Problem Solve the equation

logs(3*—8) =2—x

8.3.23 Problem Solve the equation

log,(x2 — 6x+7) = log,(x— 3)
8.3.24 Problem Solve the equation
logs(2—x) —logz(2+x) —logzsx+1=0
8.3.25 Problem Solve the equation
2logy(2x) = log,(x% 4 75)
8.3.26 Problem Solve the equation
1 4
logy(2x) = I log, (X —15)

8.3.27 Problem Solve the equation

logyx  logg4x
l0gy2x ~ log;g8x

8.3.28 Problem Solve the equation

logsx = 1+1log, 9

8.3.29 Problem Solve the equation

259X = 5.+ 4x/°9:5

8.3.30 Problem Solve the equation

X|09102X =5
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8.3.31 Problem Solve the equation

|X* 3|<X278X+15)/<X72) =1

8.3.32 Problem Solve the equation

X 42
%2171 =

8.3.33 Problem Solve the equation

10g3, X = l0ggy X

8.3.34 Problem Solve
log, x+logyy+logyz=2,

logzx+loggy+loggz=2,

log,x+loggy+l0g162=2.

8.3.35 Problem Solve the equation

0.5 log, 5 (*—x) _ 3loge4




||||% Goniometric Functions

9.1 The Winding Function

Recall that a circle of radiushas a circumference off2 units of length. Hence a unit circle, i.e., one witk- 1, has
circumference 2.

365 Definition A radianis a%rth part of the circumference of a unit circle.

Figure 9.1: A radian.

Smce%r ~ 0.16, aradian s abou% of the circumference of the unit circle. A quadrant or quapeat of a circle has arc

length of 7 radians. A semicircle has arc Iengﬁzﬁ = rrradians.

1. Aradian is simply a real number!
2. If a central angle of a unit circle cuts an arc of x radianseh the central angle measures x radians.
3. The sum of the internal angles of a trianglegisadians.
Suppose now that we cut a unit circle into a “string” and usedtring to mark intervals of lengthr@on the real line. We put

an endpoint 0, mark off intervals to the right of O with endyeiat 21,4, 677, . .., etc. We start again, this time going to the
left and marking off intervals with endpoints alrm, —41, —6711, ..., etc., as shewn in figure 2.

-8 —6rT -4 —21 orm 21 4mT 6 8

Figure 9.2: The Real Line modulo?

We have decomposed the real line into the union of disjobetrials
... U[—61, —4n{U[—4, —2r{U[—27T, 0[U[0; 2r{u[ 21T, 4Tt[U[ 41T, 61U . .

Observe that each real number belongs to one, and only ohesd tntervals, that is, there is a unique intdgsuch that if
x € R thenx € [271k; (2k+ 2) 11]. For example 10@ [30rt;, 32n{ and—9 € [—47T, —271].

146
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366 Definition Given two real numbera andb, we say that is congruent to imodulo 21, writena=b mod 2, if a%nb

: . -b. : . .
is an integer. Ifaz—n is not an integer, we say thatandb areincongruenimodulo 2Tand we writea % b mod 2.

. Bm— (-7 12 .
For example, 5= —7m mod 2, smceM _ 6, an integer. However,’5# 211 mod 2T as

21 21
Sm—2m_3m_ 3 which is not an integer
o 2m 2 ger.

367 Definition If a=b mod 2T, we say thatd andb belong to the sameesidue class mod 2rt. We also say that andb
arerepresentativesf the same residue class modulw. 2

368 Theorem Given a real numbaea, all the numbers of the form+ 27k, k € Z belong to the same residue class modulo
271

Proof: Take two numbers of this form+a2rk; and a+ 27k, say, with integerskks. Then

(a+2mk;) — (a+ 211ky)
21

=k —kz,
which being the difference of two integers is an integers Bhiews that & 21k, = a+ 2nk, mod 2t [

369 Example Takex= %. Then

T = Zi2nm = 2 mod2n
_ _ 5
= §—2rr = —?” mod 2T
_ _ 13
= Z+4m = ¥ mod2r
_ _ 11
= f-4m = —-337 mod2r
Thus all of

m7m Sm A% 1im
3’3" 3’3" 3

belong to the same residue class mad 2

Ifa=b mod 2tthen there exists an integer k such that & + 27k.

Given a real numbey, it is clear that there are infinitely many representativigb® class to whick belongs, as we can add
any integral multiple of Zrto x and still lie in the same class. However, exactly one repitasigexg lies in the interval
[0,271], as we saw above. We calj the canonicalrepresentative of the class (to whicbelongs modulo £).

To find the canonical representative of the class, @fe simply look for the integek such that Rm < x < (2k+2)7. Then
then 0< x— 2kt < 2imrand sox— 271k is the canonical representative of the class.of

370 Definition We will call the procedure of finding a canonical represawtgor the class ok, reductionmodulo 2.
371 Example Reduce 5r mod 2.
Solution: » Sincednt < 5 < 611, we havesbrr= 5m— 4rmr= 1 mod 2. Thusrris the canonical representative

of the class to whicbrr belongs, modul@r.
<
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To speed up the computations, we may avail of the fact thlat20 mod 2, that is, any integral multiple of2is
congruentto 0 mod#2

(2]
g
[ = Z)
% 3 i § &<
: Sty >
A ‘9(/@ /b‘@’ \\}
G
{O@./ ﬁ‘aé\
Quadrant Il(—,+) e e Quadrant I[(+, +) ©
> mradians 0 radians
Quadrant lll(—,—) e e Quadrant IV(+, —) 4z
6)”6@
NG 5 s
ONC
M :
CY
% \9
£
Figure 9.3: The unit circle on the Cartesian Plane. Figure 9.4: The unit circle on the Cartesian Plane.
200
372 Example ReduceT modulo 2.
. 200 19611+ 4 4 4
Solution: » = s m_ 281+ M mod 2 <
7 7 7 7
51
373 Example Reduce—7 modulo 2.
. 5m 5m_ 9m
Solution: » = = 2m— - == mod 27T. <

374 Example Reduce 7 mod2.

Solution: » Since2m < 6.29< 7 < 4, the largest even multiple of smaller than7 is 27, whencer = 7—2m
mod 21T.. «

Place now the centre of a unit circle at the origin of the Gaate Plane. Choosing the poitit, 0) as our departing point (a
completely arbitrary choice), we traverse the circumfeesof the unit circle counterclockwise (again, the choice is
completely arbitrary). If we traverse 0 units, we are stil{r0), on the positive portion of the-axis. If we traverse a
number of units in the intervaD; 7 [, we are in the first quadrant.

If we have traversed exactlg units, we are a0, 1), on the positive portion of the-axis. Traversing a number of units in

the intervaﬂ N n[, puts us in the second quadrant. If we travel examtiynits, we are af—1,0), the negative portion of the
x-axis. Traversing a number of units in the inter}/m 37” [ puts us in the third quadrant. Traversing exaéf—lwnits puts us
at the point0, —1), the negative portion of theaxis. Travelling a number of units in the inter\}éf; 2n[, puts us in the
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fourth quadrant. Finally, travelling exactly@inits brings us back t@l, 0). So, after one revolution around the unit circle,
we are back in already travelled territory. See figire
A

Figure 9.5:% :R — R? % (x) = M.

If we traverse the unit circlelockwise then the arc length is measured negatively.
We now define a functio : R — R? in the following fashion. Given a real numberlet xy be its canonical representative

modulo 2t. Starting at1,0), traverse the circumference of the unit cirggeunits counterclockwise. Your final destination is
a point on the Cartesian Plane, calMt We let% (x) = M. See figured.5 The function® is called thewinding function

375 Example In what quadrant does (—28) lie?

Solution: » Observe that
2831 —280m—3m
5 - 5

3
—56m— L

3
2n— 5

T mod 2.

Sincel €] 3, ¢ (—28) lies in quadrant I1].«
376 Example In what quadrant doeg (451) lie?

Solution: » Since7l< 42—5nl < 718,142 < 451 < 144m, and henc&51= 451— 142t mod 2. Now,
451 142~ 4.89 € | 3, 21|, and s0'(451) lies in the fourth quadrant«

377 Example In which quadrant doe# (1°) lie?

Solution: » We multiply the inequalit < 71 < 4 through by, obtaining2rm < 712 < 411, whence the largest
even multiple oftless tharvt is 27t. Thereforer® = > — 2 mod 2. Now we claim that

3T

MT< T —2m< >
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The sinistral inequality is easily deduced from the obvioesjuality37 < 7. The dextral inequality is deduced
from the fact thatr® < 3.571. The inequalityrt < 12 — 21T < 37” is thus proven, which means tﬁ(nz) liesin
the third quadrant.«

378 Example Find the members of the séf + %" : ke Z}} that belong to the interva8rm, 10rt].

Solution: » The problem is asking for all integers k such that
m km

8m< -+ — < 10m.

n< 2+ 3 < 10m

Now,
gn< i+ <iom = 8n-T<XN<ion- 7
= T =3<7%
< 225<k<285.

Since k is an integer, & {23,24,25,26,27,28}. The required elements are thus

m 26m  55m
m o 23m 497 273 T g
23 6’
mo24m 177 m,2m_19m
273 T 3 2 3 2
m 25m  53m m 28m  59m
23 6’ 23 6

<
379 Example ISW%TE {Z+ K kez}?

Solution: » The problem is asking whether there is an integer k such that
275m _ 1 n km
6 2 3
Solving for k we find k= 136, which is an integer. The answer is affirmative and indeed,

275t n 136

6 2 * 3
<
Homework
9.1.1 Problem True or False. 9.1.2 Problem Reduce the following real numbers mord.2

1. 10=8 mod 2t. Determine the quadrant in which their image undewould lie.

2. =T =37 mod 2.

3. £ =2 mod 2

4. 'T=T mod 2.

5. 87 = -39 mod 2

6. x € [-1;0[ then?¥ (x) is in quadrant IV.
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3. 611 279t 3m 3km

e b 12. 5; -7 B iy ?
1. = 6. =5 9.;:lzroblzm I53k20 €{ 775 ke Z}? Is
3m, 790 : L L L 2
2. -5 7. el 13. 6,; 0 6{4 +5 ke Z}"
3. 7—” L 14. 100,; )
5 ) 9.1.5 Problem Prove that congruence modular % reflexive, that
8 -4 is i =
a4, . 15. —3.14: is,ifac R, thena=a mod 2.
57 10. 3;
57 )
5. ?; 11. 4 16. —3.15 9.1.6 Problem Prove that congruence modular& symmetric,
thatis, ifa,b € R, and ifa=b mod 2rthenb=a mod 2.
9.1.3 Problem Find all the members of the s{et34—n+ %ﬂ keZ}
that lie in the interval (iY0; 7t (ii) [z, 0[. 917 Problem Prove that congruence modular s trangltlve, that
isifif a,b,ce R,thena=b mod 2randb=c mod 2Timply
a=c mod 2t

9.2 Cosines and Sines: Definitions

Consider any real number We find its canonical representati¢¢ mod 27 and use this to fin&’(x) = M, as in figure

R — [—1; 1]
We now project the poirl so obtained ont€ andSon the axes. Theosinefunction is given by
X +—  COX

cogx) = cosx = OC (the algebraic length of the segm@I(t, that is, the signed distance fradnto C) and thesinefunction
R — [—1; 1]
is given by sirix) = sinx = OS(the algebraic length of the segme§).
X +—  sinx

Y
Figure 9.6: Geometric construction of the cosine and sinetfans.

1. The farthest right M can go is td, 0) and the farthest left is t6—1,0). Thus—1 < cosx < 1. Similarly,
the farthest up M can go is {®, 1) and the farthest down it can go is (6, —1). Hence—1 < sinx < 1.
2. The sine and cosine functions are defined for all real numbe
3. Ifa=b mod 2rthencosa = cosb andsina = sinb. In other words, the cosine and sine functions are
periodic with period2m, that is
sin(2rm+ x) = sinx ¥x € R, (9.2)

cog 21+ X) = cosX VX € R. (9.2)
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4. The point M has absciss®sx and ordinatesinx, that is, M= (cosx, sinx).

R — [-1;1 R — [-1;1
5. The functions and are surjective (onto) but not injective

X —  COSX X —  sinx
(one-to-one).

We may now compute some simple sines and cosines.

380 Example From figure9.7, if x= 0 then the poinM is (1,0). Thus cosG=1, sin0=0. If x= gthe pointM is (0,1).

From this we gather that cgs= 0 and sif = 1. If x= rrthen the poinM is (—1,0). Thus cogt= —1, sint=0. If x= 37"
the pointM is (0, 1). From this we gather that c88 = 0 and sirdff = —1.

=
= (cogmm—Xx),sin(1T— X)) (cosx, sinx)
(-1,0) (0,1)
= (cogmm+x),sin(1T+ X)) (coq—x),sin(—x))
e
Figure 9.7: Some values of sin and cos. Figure 9.8: Symmetry Identities.

381 Definition If K # —1, we write siff x,cos‘ x to denotg(sinx)¥, (cosx)¥, respectively. sin'x,cos 1x, a are reserved
for when we study inversion later in these notes.

The following relation, known as thieythagorean Relatiois fundamental in the study of circular functions.

382 Theorem (Pythagorean Relation)Let x be any real number. Then
co€ X+ sirfx = 1. (9.3)
Proof: Let%(x) =M = (cosx,sinx), as in figured.6., where O= (0,0), and SC are the projections of M onto

the axes. IMOCM, cosx = OC, andsinx = OS=CM. AsAOCM is a right triangle and OM= 1, by the
Pythagorean Theorem, we have

cogx+sirfx=0C?+CM? =OM? =12 =1,

which completes the prodf

Pay attention to the notatiozos x for (cosx)? and respectively teir? x for (sinx)2. Do not confuse these
with cosx® andsinx?. For example, if x= rthencog m= (—1)? = 1 andsir? m= 0% = 0. Since? (1) lies in
the third quadrantcosm? < 0 andsin7 < 0. Hencecos 11 # cost andsir? 1T # sinm.

From the Pythagorean Relation,
cosx = +V/1— sirfx
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and
sinx= £/ 1— cogx.

The ambiguity in sign is resolved by specifying in which qued% (x) lies, see figuré

383 Example Let %ﬂ < X< 2mrand cox = % Find sinx.

Solution: » % (x) lies in the fourth quadrant, whegnx < 0. We have

sinx=—v/1—Ccogx= —\/g_ —ZT\/Q.

<

384 Example Given that] < x < 11, and that six = % find cos.

Solution: » Since? (x) lies in the second quadrant, the cosine is negative. Hence
. 3\* 4
cosx= —V/1—sirfx=—1/1- ) =%

385 Theorem (Symmetry Identities) Let x € R. Then the following are identities.

<

cog—X) = CosX, (9.4)
sin(—x) = —sinx, (9.5)
COS(TT— X) = — COSX, (9.6)
sin(T—x) = sinx, 9.7)
COS(TT+X) = — COSX, 9.8)
sin(7T+x) = —sinx, (9.9)

Proof: The first identity says that the cosine is an even functiomstitond that the sine is an odd function.
The third and fourth identities are “supplementary angldéntities. The fifth and the sixth identities are a
“reflexion about the origin.” All of these identities can berilved at once from figuré.8. O

By the 2-periodicity of the cosine and sine we have

coq2nk+X) = cosx, Vxe Rvke Z (9.10)
sin(2rk+ x) = sinx, Vx e Rvk € Z. (9.11)
Now,
cog(2k+ 1) T+ x) = cog 27K + 1T+ X) = CO 7T+ X) = — COX
and

sin((2k+ 1)+ x) = sin(2mk + 11+ X) = sin(7+ X) = — sinXx,
whence the following corollary is proved.
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386 Corollary Letx e R andk € Z. Then
cog(2k+ 1)+ Xx) = — cosx (9.12)

and
sin((2k+ 1) m+x) = —sinx (9.13)

In other words, if we add even multiples mfto a real number, we get back the same cosine and the sine efahsumber.
If we add odd multiples ofrto a real number, we get minus the cosine or sine of the reabeum

387 Example Write
Sin(32mm+ x) — 18 co$19mm— x) + cog 567+ X) — 9sin(x+ 17m)

in the formasinx+ bcosx.

Solution: » The even multiples of addends give

sin(32m+ x) = sinx
and

cog5671T+ X) = COSX.

Examining the odd multiples of addends we see thedg19m— X) = — cog —Xx). Butcog—x) = cosx, as the
cosine is an even function and so
coq19r— X) = — COX.

Similarly,
sin(171+ x) = — sinx.

Upon gathering all of these equalities, we deduce that

sin(32rr+ x) — 18 co$19m— x)
+cog56m+ X) — 9sin(x+ 17m)
= sinx— 18(— cox)
+cosx— 9sinx
= —8sinx+ 19 cox.

<

388 Example Prove that cog =sinf = 4

Solution: » ¢ (g) is half-way betweef® (0) and ¥’ (7—2-[). ThusAOCM in figure9.9is an isosceles right
triangle. As OC=CM, we have

cos7T sin7T
4 T4

By the Pythagorean Relation,

m m
cof = +sif- =1
g TS = b

and so2 cog 7 = 1. Since? (7) lies in the first quadrant, we take the positive square roa.datduce

cosy = @ This implies thasin = 4 <

V3

1 V3
=

389 Example Prove that co%T =5

and that sin%T =
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Solution: » Infigure9.10, A= (cos3,sing), B=(0,0) and C= (1,0). Since BA=BC=1, ABAC is
isosceles. ThugA = ZC. Moreover, since the sum of the angles of a triangte radians and central'B

T . . . . .
measures§ radians, the triangle is equilateral. Let D denote the fobtte perpendicular from A to the side

BC. SinceABAC is equilateral, D is halfway of the distance between B@nahich means that % Thus

as we wanted to shew

V3

390 Example Prove that co%r =5 and that sing = %

Solution: » Reflect the point A= (cosg, sing) about the x-axis to the point € (cosg, —sing), as in figure

9.11 Observe that sinc DBA= /CBD= gthenACBA: 7—; ThusAABC is equilateral, and so AB: 3,
which implies that

sin—= = }
6 2
We deduce that
m m 1\? V3
CoS= = 1—sng 1—<§> =5
<
A A
i Y
Figure 9.9: siff and cos} Figure 9.10: sif§ and cosj Figure 9.11: siff and cosg

The student will do well in memorising the special valueswdssdi above, which are conveniently gathered in the tabtabel

X | sinx | cosx

0 0 1
m| 1 V3
6| 2 2
Tl v2 | V2
2| 2 2
m| V3 1
3 2 2

NIy
|_\
o
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391 Example Find co$—g) and sini—g).

Solution: » Since x— cosx is an even function, we have

_ V3

cos(—g) = cos(g) =

Since x— sinx is an odd function, we have

sin(—g):—sin(g):—:—zl.

<

392 Example Find cos%n and sin%n.

Solution: » By the reflexion about the origin identities

COS%T = cog T+ 7_6-[) = —cosg = —g
and
sin m_ sin(m+ n) = —sin m__1
6 6 6 2
<
393 Example
COS— = cos(n— 7—T) = —cos(——) = —C0S= = —

and

394 Example Find the exact value of

Solution: »
cos(—%m) = cos(3)
= cog10m+ &)
= cog¥)

NI

Aliter:

cos(—#m) = cos(3Z)
= coqlln—1%)
~ —cos-5)

= —cos(3)

NIl
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395 Example Find the exact value of

Solution: »
sin(-3m) = —sin(3})
= —sin(10m+ %)
= —sin(3)
—_ _\3
= 2
<

396 Theorem (Complementary Angle Identities) The following identities hold:

cos(g—x) =sinxvxeR (9.14)
T
sm(i—x) =coxxVxeR (9.15)

Proof: We will prove the result for x [0; Z[. The extension of these identities to all real numbers dépen
Theoren385and we leave it as an exercise. In figéré 2assume that arc MA (read counterclockwise)
measures x and that [0; 7[. Reflect point A= (cosx, sinx) about the line y= x, to point B= (sinx,cosx) as in
figure9.12 Arc BT (read counterclockwise) measures x, and so arc MA&ures] — x. This means that

B = (coq 7 —x),sin(5 — x)), from where the Theorem follows forf0; [. Assume now that& [7; Z[. Then
3 —x€[0;7[, and so we apply the result just obtained}e- x:

cos(g— ) :sin(g— (7—2T— )) = sinx,
sn(§ ) =cos( 3 (5 ) ~cos

2
So, we have established the result far j0; 7[. O A

(s

and

Figure 9.12: Complementary Angle Identities.

Using the complementary angle identities,

sin7—T— cos(7—T— E) = cos’—T— }
6 2 6/ 372
and /3
m /T LT 3
cosg _sm(i — 6) _sm§ =5

for instance.
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397 Example Prove that
. T
sinx = cos(x— E) , X eR.

Solution: » Since the cosine is an even function,

oo 2 ) e (2] ().

398 Example Prove that the following hold identically.

COSX = sin(x+ 7—T) , X e R.

2

—sinx = cos(x+ 7—2T) , VX eR.

Solution: » Using the fact the fact that the cosine is an even functiod,ing the complementary angle
identity for the cosine,

cosx = cog—X) = sin (g — (—x)) =sin (7—21+ x) :

Since the sine is an odd function,
sinx= —sin(—x) = —cos(g— (—x)) = —Cos(g”) .
<

399 Example Let0< 6 < 7. Given that sin® = cos 3 find sin 5.

Solution: » Sincesin20 = cos 3, these two quantities have the same sign. Sihee26 < 1, then both
% (28) and¥% (30) must be in quadrant |. By the complementary angle identitieshave
sin20 = cog  —26). Thuscog § —26) = cos P, and so0,5 — 26 = 36 or 560 = 7. Hencesin50 = 1. <

400 Example Write in the formasina + bsina:

sin(m—a) + cos(7—2T+ a) —coqm+a)

Solution: » By reflexion about the origirsin(rt— a) = —sin(—a). Since the sine is an odd function,
—sin(—a) = —(—sina) = sina. By the complementary angle identities, and since the siaa bdd function

m s . .
cos(i + a) = cos(z - (—a)) =sin(—a) = —sina.
Finally, by reflexion about the origiog m+ a) = —cosa. Upon collecting all of these equalities,
. s
sin(m—a) + cos(— + a) —coqm+a) = cosa.

2
<

401 Example Given that
3sinx+4cox =5,

find sinx and cos.
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Solution: » We have
5—-4cox

3sinXx+4cox =5+ sinx= 3

Putting this in the identitgos’ x + sir x = 1 we obtain

2
cogx+ <5_4%() =1

25— 40 cox+ 16 co¥x
9 =1

9co€x+ 25— 40coxX+ 16cogx =9
25c0¢x—40cox+ 16=0
(5cox—4)>=0

cog X+

ol b

COSX =

Substituting this value we obtain
5-4cox 5-%

SINX = 3 3

3

z
<

402 Example Findk such that the expression

(sinx+ cosx)? + ksinxcosx = 1

becomes an identity.

Solution: » We have

1 = (sinx+cosx)?+ ksinxcosx

= SiX+ 2SinXcosx+ cog X+ ksinxcosx

1+ (k+ 2)sinxcosx

We thus havék+ 2) sinxcosx = 0. This will hold for all real numbers x if k= —2. «

Homework

9.2.1 Problem Write in the formasinx + bcosx, with real constanta, b.

AX) = sin(g—x) + cog5m—X) +cos<37n—x) +sin<37n+x)

9.2.2 Problem True or False.

1. sinff =1/2. 7. ¥ € R, sin2x = 25sinx.

2. cog % +99) =sin99. 8. Ix € R such that cos = 2.

3. cog§—1993 = cos1993. 9. 3x € R such that co& = cosx?
4. sin—1993 = —sin1993. 10. (sinx+ cosx)? =1, ¥x € R.

5. If sinx= 1, thenx = 11/2. 11. cox=sin(x+ J), ¥xe R.

6. cogcosm) = cogcos0. 12. six=cogx— 7), ¥xe R.
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13. sink = cogXx+ ’—T), vx € R.
VXER
15. 1< —2co&2+3§ 5 ¥xeR.

14. -3 < cos2

9.2.3 Problem Given that sin = —0.8 and¥’ (t) lies in the fourth
quadrant, find cds

9.2.4 Problem Given that cosi = —0.9 and¥ (u) lies in the
second quadrant, find gin

9.2.5 Problem Given that sin = ‘/— and¥ (t) lies in the first
quadrant, find cas

9.2.6 Problem Given that cos = 43 and¥ (u) lies in the third
quadrant, find sin.

9.2.7 Problem Using the fact ’[haﬂT =m— g, find cos2! s%' and
sin3Z.
9.2.8 Problem Using the fact that?‘iT =mn— 4, find cos3T! s5¢ and

3
sin 7

9.2.9 Problem Find snr(—) and co$3£T)

9.2.10 Problem Find sir(%T) and CO$%T)-
R 4 17
9.2.11 Problem Find snr(Tn) and co{sTn).

5 ) and cosﬁ—%).

9.2.12 Problem Find sin —

9.2.13 Problem Find sir(gr) and co$¥r).

171

9.2.14 Problem Find sw(—) and c $—)

9.2.15 Problem If |sinf| < 1 and|cos8| > 0, prove that

cos@ cos8 2
1-sin@  1+sin@  cosf
holds identically.
9.2.16 Problem Given that
2 v/5-1
find sin3?, cos¥ and sin3Z

16. 3A € R such that the equation cos= A has exactly 7
real solutions.

17. cogx—sirfx=—1,¥xeR.

9.2.17 Problem Given that cos + sina = A and sina cosa = B,
prove thatA? —2B =1

9.2.18 Problem Given that cos + sina = A and sinx cosa = B,
prove that sifia +cos’ a = A— AB.

9.2.19 Problem Demonstrate that for all real numbegshe
following is an identity

(sinx+4cosx)? + (4sinx— cosx)? = 17

9.2.20 Problem Prove that cdbx — sin® x = co€x — siréx is an
identity.
9.2.21 Problem Prove that

Vv 1+ 2sinxcosx = |sinx+cosx|, ¥xe R.

9.2.22 Problem Prove thatvx € R,

sin® x+ cog x+ 2(sinxcosx)? = 1.

9.2.23 Problem Prove, by recurrence, that
sin(x+nm) = (—1)"sinx,

and

cos(x+nm) = (—1)"cosx.

9.2.24 Problem Prove thatvx € R,

sin® x+ cof x+ 3(sinxcosx)? = 1.

9.2.25 Problem Prove that

sinx+1
CcOsX

SinXx—cosx+1
sinx+cosx—1

¥x € R such that six+ cosx # 1 and cox # 0.

9.2.26 Problem (AHSME 1976) If sinx+cosx = £ andx €]0; 7],
find cosxand sirx.

9.2.27 Problem (AIME 1983) Find the minimum value of the
function
9X2sir? x+ 4
_—
XSinx
over the interval0; rif.
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9.3 The Graphs of Sine and Cosine

To obtain the graph of — sinx, we traverse the circumference of the unit circle, stariog (1,0), in a levogyrate
(counterclockwise) sense, recording each time the alasofdbie point visited. See figufe13

Figure 9.13: The graph= sinx for x € [0; 2r.

Sincex — sinx is periodic with period Zrand an odd function, we may now graph- sinx for all values ofx. See figure

|

1 1 1 1
—5m / —3n -
= —2n = - =z

Figure 9.14: The graph of— sinx.

AN | N

-1

403 Example (Jordan’s Inequality) Give a graphical argument justifying the inequalﬁy <sinxfor0<x< 7.

Solution: » The equation of the straight line joinin@,0) and (5,1) isy= %x. From the graphs below, the
graph of y= %x lies below that of y= sinx in the intervall0; 7. See figuré).15 <

NIy 4
|

|

- =
S
NIy
=]

omr
1 .
2+
Figure 9.15: Jordan’s Inequality. Figure 9.16: The graph ofi— 2 sinx.

404 Example Graphx — 2 sinx.

Solution: » Recall that if y= f(x), then y= 2f(x) is a distortion of the graph of ¥ f(x), in which the
y-coordinate is doubled. The graph ofx2sinx is shewn in figur®.16 Observe that-2 < 2sinx < 2, so the
least value that = 2 sinx could attain is—2 and the largest value i2. «
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405 Definition The average between the least value and largest value ofefadft function itsamplitude.

R — [-1;1 R — [-1;1 T
406 Theorem Let A€ R\ {0}. Then and have period%'.

X +—  SinAX X +— COSAX

Proof: Since x— sinx and x— cosx have perio®m, then, if Ac R\ {0} is constant, we have

SinA (x+ %) = Sin(Ax= 271) = SinAX,
and
2n
COSA | X+ Al = COAX= 27T) = COSAX,

whence %- sinAx and x— cosAx have period at mo%.

. . 2 21 .
Could the period of x> sinAx, A # 0 and x— cosAx, A = 0 besmallerthan |KT|[? Assumé® < P < WT'[ isa
period for these functions. Thé&n P|A| < 2imrandsinAx= sinA(x+ P) andcosAx= cosA(x+ P). In
particular,

0 =sin0=sin+AP.

This means thgfA|P is a zero of ¥ sinx. Since0 < |A|P < 21T, we must haveA|P = 1. Now
1= cos0= costAP = cos|A|P = cosT= —1,

21

a contradiction. Thus the period of>¢ sinAx, A # 0 and x— cosAx, A #£ 0 is preciselyIAI

shew.O

, as we wanted to

407 Example Graphx — sin2x.

Solution: » Since—1 < sin2 < 1, the amplitude of x- sin2 is # = 1. The period of x> sin2 is

2m+2 = m. Recall that if y= f(2x), then y= f(2x) is a distortion of the graph of ¥ f(x), in which the
x-coordinate is halved. The graph ofx sin2x is shewn in figuré

<
1 - i
' ; 1 — l ‘ 1
-1 A -1+
-2 24
Figure 9.17: The graph of— sin 2x. Figure 9.18: The graph of— cosx.

408 Example Graphx— sin (x+ 7—2-[)
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Solution: » Recall that if a> 0 the graph of x— f(x+ a) is a translation a units to the left of the graph
x— f(x). Now, the cosine is an even function, and by the complemeateyle identities, we have

COSX = 0§ —X) = sin(g - (—x)) = sin(7—2T+x) )

and so this graph is the same as that of the cosine functioa gidph of y=sin(x+ J) = cosx is shewn in in
figure . <

409 Example Give a purely graphical argument (no calculators allowg@adjifying cos 1< sin 1

Solution: » Atx= 7, the graphs of the sine and the cosine coincide. Fer§; 7], the values of the sine

increase from%2 to 1, whereas the values of the cosine decrease @m) 0. Since’zT <1< ’—27 we have
cosl<sinl «

410 Example Graphx — —2 cosg +3

Solution: » Since—1 < cosj < 1, we havel < —2cos; 4+ 3 < 5. The amplitude of x> —2cos; +3is

. .2 . e
thereforeS%l = 2. The period of - —2005)—2( +3is Trr = 411. The graph is shewn in figu#219 <«
2

411 Example Draw the graph ok — —3sin}. What is the amplitude, period, and where is the first pasitaal zero of this
function?

Solution: » Since—3 < —3sinx < 3, the amplitude of x> —3sinJ is 3’(2’3> = 3. The period i+ ;11 =8,
and the first positive zero occurs whgr= 11, i.e., at x= 471. A portion of the graph is shewn in figufe?(. <«

[ N B
|
1

Figure 9.19: The graph of— —2cosj + 3. Figure 9.20: The graph of— —3sin.

412 Example For which real numbersis log,, X @ real number?

Solution: » If log,t is defined and real, thena 0,a# 1 and t> 0. Hence one must hawesx > 0,cosx # 1
and x> 0. All this happens when

3 5
Xe ]O;g[U]7”+2nn;2n(n+1)[U]2n(n+1);?n+2nn[,
forn>0,ncZ. «

413 Example For which real numbersis log, cosx a real number?

Solution: » In this case one must havex0,x # 1 andcosx > 0. Hence
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3 5
Xe ]O;l[u]l;—[u]§+2rm;7n+2nn[,

forn>0,neZ.
<

414 Example Find the period ok — sin2x+ cos X.

Solution: » Let P be the period of x> sin 2+ cosX. The period of - sin2x is 1T and the period of

X+ cosX is %” In one full period of length P, boths sin2x and x— cos % must go through an integral
number of periods. ThusP siT= %’“ for some positive integers s and t. But ti8sn= 2t. The smallest positive
solutions of this is s= 2,t = 3. The period sought is thenP sT= 2711. <

415 Example How many real numberssatisfy

X
i =7
SIinx 100°

Solution: » Plainly x= 01is a solution. Also, if x> 0is a solution, so is-x < 0. So, we can restrict ourselves
to positive solutions.

If x is a solution thenx| = 100 sinx| < 100. So one can further restrict x to the intery@t 10J. Decompose
]0;100 into 2m-long intervals (the last interval is shorter):

10;10Q =]0; 2rjU) 27T, 41U 41T, 671 U - - - U] 2871, 3071 U] 3077, 100

From the graphs of ¥ sinx,y = x/100we see that that the intervi; 2r1] contains only one solution. Each
interval of the formi2nk; 2(k+1)m],k=1,2,...,14 contains two solutions. A3l < 100, the interval

13071, 100 contains a full wave, hence it contains two solutions. Cqusetly, there ard +2- 144 2= 31
positive solutions, and hence, 31 negative solutions. &fbee, there is a total 631+ 31+ 1 = 63 solutions.«

Homework
9.3.1 Problem True or False. Use graphical arguments for the | 9.3.3 Problem Find the period ok — sin 3x+ cos X
numerical premises. No calculators!
1. x— cosXhas period 3. 9.3.4 Problem Find the period ok — sinx+ cos 5
2. cos3>sinl.
3. The first real zero of — 2sinx+ 8 occurs ak = 11 9.3.5 Problem How many real solutions are there to
4. There is a real numberfor which the graph of
X — 84 cos{g touches thec-axis. sinx = loggx ?
9.3.2 Problem Graph portions of the following. Find the 9.3.6 Problem Letx > 0. Justify graphically that
amplitude, period, and the location of the first positived o, if
there is one, of each function. sinx < X.
1. x+— 3sinx 7. X— %cosx Your argument must make no appeal to graphing software.
2. X sinX 8. X+ COS3X
3. X+ sin(—3x) 9. Xis —2003%x+ 13 9.3.7 Problem Letx € R. Justify graphically that
4. X 3sinX 10. X+ % cosix—10 X2
1- - <cosx.
5. X+— 3cosx 11. x+— |siny| 2
6. X+— cosX 12. X+ sin|x| Your argument must make no appeal to graphing software.
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9.4 Inversion

R — [-1;1
Since is periodic, it is not injective, and hence it does not havemarse. We can, however, restrict the
X ~—  sinx
domain and in this way obtain an inverse of sorts. The chditlesorestriction of the domain is arbitrary, but the intdrva
[—7; 3] is customarily used.

NIy 4

1 A
/]
2

-1 +

Figure 9.21y = Sinx Figure 9.22yy = arcsirnx

. n .
7= L+

T
416 Definition ThePrincipal Sine Function 2’ is the restriction of the functiorn— sinx to the
X

— Sinx
interval [— 7—2-[; 7—2-[]. With such restriction
T
=55l — [FL+1
X — Sinx
is bijective with inverse
T 7T
[FL+1] = [=5i5]
X —  arcsirx
T T
FL4Y -5l . [2ig) — [ty
The graph of 22 isthus symmetric with the graph o 22 with respect to the
X —  arcsimx X — Sinx

liney=x. See figure§.21and for the graph ofy = arcsirx. The notation sin? is often used to represent arcsin. The
functionx — arcsirnx is an odd function, that is,

arcsin(—x) = —arcsirx, ¥x € [—1;1].

Also, [-7; 7] is the smallest interval containing 0 where all the values+ef Sinx in the intervall—1; 1] are attained.
Moreover\Y(x,y) € [-1;1] x [~ F; J], y = arcsirk <= x = siny.

@

1. Whilst it is true thasinarcsink = x, Vx € [—1; 1], the relationarcsinsinc = x is not always true. For

examplearcsinsin’f = arcsir(—3) = — 7 # 2.
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R — R
2. is a 2r-periodic odd function with

X +— (arcsinesin)(x)

o X if x e [0;7]
(arcsimosin)(x) =
n—x ifxe[F;m].

The graph of x— (arcsinosin)(x) is shewn in figur®.23

)

\
Nl
Nl

Y ulisale

vulsdole —1u

Figure 9.23y = (arcsino sin)(x) Figure 9.24: The equation sin= A

417 Theorem The equation
sinx=A

has (i) no real solutions {fA| > 1, (i) the infinity of solutions
x=(—1)"arcsirA+nm, n€ Z,
if |A <1

Proof: Since—1 <sinx< 1 for x € R, the first assertion is clear.

Now, let|/A| < 1. In figure9.24 (where we have chosén< A < 1, the argument for-1 < A < 0 being similar),
the first two positive intersections ofyA with y= sinx occur at x= arcsinA and x= 1— arcsirA. Since the
sine function is periodic with perio@lr, this means that

X=arcsilA+2m, n€ Z

and
X = mm—arcsilA+ 2rm= —arcsiml+ (2n+ 1), ne Z

are the real solutions of this equation. Both relations carsbbmmarised by writing
x= (—1)"arcsilA+nm, n € Z.

This proves the theoreril

418 Example Find all real solutions to sin= —3, and then find all solutions in the interjaRrr, 277].
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Solution: » The general solution teinx = —% is given by

x = (-1 arcsin(—3)+nm
= (-)"(-F) +nm

= ()™ Z+nm

Now, if

12m< (-1)™LD < 27

- 6 2
then 1 27 1
12— (-1)™1Z <n< = — (—1)™1Z,

D)™ gsns5 - (=)
The smallest2— (—1)"1% canbeisl2— % = 2 > 11 The larges/ — (—1)™1% canbeisd + 1 = 4 < 14,
So possibly,

1ll<n< 14,

which means that g 120or n=13.

Testing n= 12, x = — T 4 12 = 77, which falls outside the interval and=x ¥ + 13m= 27, which falls in the
interval. So the only squt|on in the intervil2r, 227 is 2. <

419 Example Find the set of all solutions of
sinE =
X

Are there any solutions in the interval; 3] ?

Solution: » We have

T (C1)arcsins + = (—1)" T
Xz_( 1) arc5|n§+nn_( 1) 6+nn
1 1
;—(_1)'154'”
= 1
(—1)"E+n
6
2 S —
= CDhren

The expression on the right is negative for integets 1. Therefore
X=d+ 7n,n:0,1,2,3,....

The set of all solutions is thus

6 6
{_\/(—1)”+6n’ \/(_1)n+6n n=o,1,2,3,...},

then
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o
6 (
2
3

<én+(-1)"< 6,

2 n n
§_(_1) <bn<6—(—1)"

The smalles§ —(=1)"can be is—% and the larges6 — (—1)" can be is7. Hence we must test n such that

—1<6n< 7 thatis, n=0and n=1. If n =0, then x= v/6 €]1;3]. If n = 1, then x= \/é €]1;3[. So the
solutions belonging t¢i; 3] are x= /6 and x= \/é. <

420 Example Find the set of all real solutions to

2 V2

Moxr1~ 2
Solution: » We have
2 (V2
= —1 n —_— Z
1 (-1) arcsm< 5 >+rm,n€ ,

which is equivalent to each of the following equations

2 n Tt
x+1 (=) 2 m
x+1 1

2 ()" Tm’

1 1
X+ =

whence the solution set is

<

421 Example Find the set of all real solutions to

2sirx — sinx— 1= 0.
Solution: » Factoring,

0 = 2sirfx— sinx— 1 = (2sinx+ 1)(sinx— 1)
Hence eithesinx = —3 and so

.1
X= (~1)"arcsing + m = (~1)"(~) + m = (~1)" < 4 m,
or sinx=1and so

x=(—1)"arcsin 14+ m= (—1)“7—2T+ m.
The solution set is therefore

{(—1)"+1g+ m, (—1>”7§T+ mnez}.
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0 — [-1;1]
422 Definition ThePrincipal Cosine Function is the restriction of the function— cosx to the

X +— Cosx
interval [0; 1. With such restriction

is bijective with inverse

X — arccox

1. The notatiortos ! is often used to represeatccos

2. Whilst it is true thatosarccos = x, Vx € [—1, 1], the relationarccoscog = X is not always true. For
examplearccoscodZ — arccog— ) = 5T I

3. x— arccox is neither an even nor an odd even function.

R — R
4, is a 2r-periodic even function with

X +— (arcco®cog(x)

x ifxe[0;m]
(arcco® cog)(x) =
—x if xe[-m0].

5. Y(x,y) € [-1;1] x [0; 1], y = arccox <= X = cosy.
6. The graphs of x> Cosx and x— arccox are symmetric with respect to the linexyx.

The graph ok — arccos is shewn in figurée

For convenience, we provide the following table.

X | arcsirx | arcco X arcsirx | arccos
T
0 0 2
T 7T

1 2 0 -1 -3 m
1 I s _1 _n 2n
2 6 3 2 6 3
V2 by by _ V2 _m 3n
2 1 1 2 1 1
V3 n m _V3| _nm 5m
2 3 6 2 3 6

423 Theorem The equation
cosx=A
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has (i) no real solutions {A| > 1, (i) the infinity of solutions

X= £arcCoA+2nm, n€ Z,

if |A < 1.

Proof: Since—1 < cosx< 1forx € R, the first assertion is clear. Now, I18%| < 1. In figure (where we

have chose@ < A <1, the argument for-1 < A < 0 being similar), the two intersections ofyA with
y = cosx closest to x= 0 occur at x= arcco and x= — arccoA. Since the cosine function is periodic with

period 271, this means that
X=arcCoA+2rm, ne Z

and
X= —arcCoA+2m, ne 7

are the real solutions of this equation. Both relations carsbbmmarised by writing

X = tarcco+2nm, n€ Z.

This proves the theorernl

" .- solidy = arccox
\ . dashed/ = cosx
N
1] +1
-3 3
Q (@]
3 8
o £
$
Figure 9.25y = arccox Figure 9.26: The equation crs- A

424 Example Find the set of all real solutions to

2sirfx+3cox—3=0.

Solution: » Since the equation has a cosine to the first power, we writedlo@tion in terms of cosine only,
obtaining

0 =2sirfx+3cox—3

= 2(1-co€x)+3cox—3
= 2co€x—3cox+1

= (2cosx—1)(cosx—1)

Thus eithercosx = % in which case

1
x:iarccosé+2nn:i7—;+2nn
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or cosx = 1in which case
X = t+arccos i 2rm = 2mm.

The solution set is

{ig+2nn,2nn, neZ}.

<

425 Example Find the solutions of the equation

109 /5 gi (1 +COX) = 2

in the interval0; 2r1).

Solution: » If the logarithmic expression is to make sense, th@sinx > 0, v/2sinx # 1 and1+ cosx > 0.
For this we must have
XG}O'I—T{U I 3m U 3—”'7‘[
"4 4’ 4 47
Now, if X belongs to this set
09, /5 giny (14 COSX) = 2 <= 2irfx = 1+ cOsx.
Usingsir’x = 1 — co€x, the last equality occurs if and only if
(2cosx—1)(cosx+1)=0.

If cosx+1=0, then x= m, a value that must be discarded (why?)cdfx = % then x= %, which is the only
solution in[0; 2r7] «

426 Example Find the set of all the real solutions to
zsin2x+ 5(Zcos’-><) -7
Solution: » Observe that
oS’ x + 5(2c052><) _7 = Zsin2x+ 5(21—sin2><) _7

_ zsin2x+5(21.275inz><)_7

Sin? x 10
2 + <25ir|2x> —7

10
= u+—-"7.
u

with u= 25X, From this,0 = u? — 7u+10= (u—5)(u— 2). Thus either u= 2,, meanings™ = 2 which is to
saysinx=+1orx=(—1)"(Zf)+nm. When2si™x — 5 one sees thati?x = log, 5. Since the sinistral side of

the last equality is at most 1 and its dextral side is greatant1, there are no real roots in this instance. The
solution set is thus

{(—1)“(17”) +nm, ne Z} :

<

427 Example Find all the real solutions of the equation

co000y _ gijpP000y — 1.
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Solution: » Transposing
co000 — 5?90 4 1.

The dextral side i$> 1 and the sinistral side i< 1. Thus equality is only possible if both sides are equdl,to
which entails thatosx = 1 or cosx = —1, whence x= rm,n € Z. «

428 Example Find all the real solutions of the equation
co0y — sirP%01x = 1.

Solution: » Since|cosx| < 1and|sinx| < 1, we have

1 = cog00lx_siP%0x
— CoSOY —x) + sirP2Y—x)
< 1cog%0N —x)| + | sinPOY —x)|
= |cog999(—x)|coF(—x) + | sint¥9—x) | sin?(—x
< coZ(—X) +sirf(—x)
= 1
The inequalities are tight, and so equality holds throughdte first inequality above is true if and only if

cog—x) > 0 andsin(—x) > 0. The second inequality is true if and only oy —x)| = 1 or |sin(—x)| = 1.
Hence we must have eitheng —x) = 1 or sin(—x) = 1.This means x 2n7ror x= — 7 + 2nitwhere nc Z. <

429 Example What is sin arcco%?
Solution: » Putt= arcco§ Then4 =cog withte | . In the interval[0; 7], sint is positive. Hence

2
sint =+/1—coy= — §

<

430 Example What is sinarccas- %)?

Solution: » Putt= arcco$——) Then—— = cogt withye [Z; . In the interval[ ; 1], sint is positive. Hence
2
sint=v1—cogt=1/1— —§ 2\/_0

431 Example Letx €] — %; 0[. Express sinarccos&s a function ok.

<

Solution: » First notice thatdx €] — 1;0[, which means tharccos % €] 7; 71, an interval where the sine is
positive. Put t= arccosX&. ThenSx = cog. Finally,

sint = /1 — co@t = /1 — 25x2.
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432 Example Prove that

arcsirk+ arccox = g,VX e[-11.

Solution: » By the complementary angle identity for the cosine,

m . . .
cos(E - arcsmx) = sin(arcsirx) = x.

Since—7J < arcsirx < 7, we have] — arcsirx € [0;71]. This means that

T X T .
COS(— — arcsmx) = X <= = — alCSINK = arccog,

2

whence the desired result followa.

Homework

9.4.1 Problem True or False.
1. arcsing = 1.
. Ifarccosx= —3, thenx = — 1.
. Ifarcsink > 0 thenx € [0; 5].
. arccos cas-§) = %.
. arccos cos-¢) =—3.

. arcsinygy +arccosy;ky = 7.

Jx € R such that arcsin> 1.
. —1<arccox <1 VYxeR.

. sinarcsix=x, Vx € R.

=
o

. arccofcosx) = x, Vx € [0;1].

9.4.2 Problem Find all the real solutions to 2sint-1 =0 in the
interval [— 1T, 7).

9.4.3 Problem Find the set of all real solutions to
T
sin( 3x— —) =0.
(-3
9.4.4 Problem Find the set of all real solutions of the equation

—2sirfx—cosx+1=0.

9.4.5 Problem Find all the real solutions to six3= —1. Find all
the solutions belonging to the inter&B8rt; 1007

9.4.6 Problem Find the set of all real solutions to

5c0€x—2coxX—7=0.

9.4.7 Problem Find the set of all real solutions to

sinxcosx = 0.

9.4.8 Problem Find the set of all real solutions to

4
cosa<_§.

2

9.4.9 Problem Find the set of all real solutions to
4sirf2x—3=0.

9.4.10 Problem Find all real solutions belonging to the interval
[—2;72], if any, to the following equations.

1. 4sirfx—3=0

2. 2sifx=1
2x _ /3
3. cos3 =%
03
4. sing =1
5 1+sinx
" 1—cosx

9.4.11 Problem Find sinarccog.
9.4.12 Problem Find cosarcsif-3).

9.4.13 Problem Find sinarccog-3).
9.4.14 Problem Find arcsirgsin5); arccogcos 10

9.4.15 Problem Find all the real solutions of the following
equations.

1
1. cox+—— = 3.
cosx

2co$ x+cox—2cosx—1=0.

6cog (5x— g) —cos(5x— g) =2
4coéx—2(v2+1)cosx++/2 =0.
4c0éx—17cogx+4=0.

(2cosx+ 1) — 4cog x+ (sinx)(2cosx+1) +1 = 0.
4sirfx—2(v/3—/2)sinx = /6.
—2sirfx+19sinx| +10= 0.

© N~ WD

9.4.16 Problem Demonstrate that
arccosx+arccog—x) =1, vxe [—1;1],

arcsirk = —arcsin—x), vxe[-1;1.
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9.4.17 Problem Shew that

arcsink = arccosy/1—x2, ¥x € [0; 1],

arccox = arcsiny/1—x2, ¥x € [0;1].

9.4.18 Problem Let 0< x < % Find cos arcsin8and

cos arccosas functions ok.

9.4.19 Problem Let f% < X< 0. Find sin arcsinand

sin arccos? as functions ok.

9.5 The Goniometric Functions

9.4.20 Problem Find real constanta, b such that

Lo 99rr 101
(arcsirosin)(x) = ax+b, ¥x e [Tn; T],
R — R
9.4.21 Problem Prove that isa
X +— (arccos cos)(x)

2m-periodic even function and graph a portion of this function
X € [—2m,2m].

We define theangent, secant, cosecaamdcotangendf x € R as follows.

The circles below have all radius 1.

-
N

sinx

m
tanx = — —+m,ne’Z 9.16
X= oo X # 5 T, NEZ, (9.16)
secx—i x;«é7—T+nn nez (9.17)
" cosx’ 2 ’ ’ '
CcSCX = ! X#£m, nez (9.18)
"~ sinx’ ’ ’ '
cotx—i—% X#Tm, neZ (9.19)
" tanx  sinx’ ’ ’ '
cosine [0) sine ®
secant @)|| tangent @
cosecant@)|| cotangent )

1. The image of x> tanx over its domaiR — { 7 4 m, n€ Z} isR.

2. The image of x> cotx over its domaiR — {rm, n€ Z} isR.

3. The image of x> secx over its domaiiR — {7 + m, ne€ Z} is | — 00; —1] U [1;400[.

4. The image of x> cscx over its domaiiR — {rm, n€ Z} is | — co; —1] U [1;+00].
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433 Example Given that taxx = —3 and% (x) lies in the fourth quadrant, find sirend cos.

Solution: » In the fourth quadransinx < 0 andcosx > 0. Now —3=tanx= gggi entailssinx = —3cox. As

Si’x+ cogx = 1, One gather® cogx+cogx = 1 or co¥x = 1. Choosing the positive rootpsx = ﬂ’

Finally,
SinX = —3CoX = —3—\/_0.

<

434 Example Given that cok = 4 and% (x) lies in the third quadrant, find the values of fasinx, cosx, cscx, secx.

Solution: » Fromcotx = 4, we havecosx = 4 sinx. Using this anain’ x+ co$ x = 1, we gather
si’x+ 16sirfx = 1, and since?’ (x) lies in the third quadramsinx_ ﬁ Moreover,

 dsing— AT _ Vi — VI
COSX = 4sinX = — =5 Fmally,tanx_m , CSCX = m 7andsecx_m -7 . <

R—{g+nn,neZ} -~ R

435 Theorem The function is an odd function.
X —  tanx
Proof: If x# 7+m,neZ
sin(—x) sinx
tan(—x) = =— = —tan
(=) cog—x) COSX %

which proves the assertionl

R—{E+nn, nezZ} — R
436 Theorem The function 2 is periodic with periodr.

X — tanx

Proof: Since ) )
sin(x4+7m)  —sinx

tan(x+ 1) = =
x+m) COgX+T) —COSX

the period is at mosir.
Assume now thdt < P < rtis a period for x— tanx. Thentanx = tan(x+ P) ¥x € R and in particular,

sinP

O=tanO=tanP = ——
cosP’

which entails thasinP = 0. But then P would be a positive zero ofxsinx smaller tharvt, a contradiction.
Hence the period of x> tanx is exactlyrt, which completes the prodil

How to graphx— tanx? We start withx € [0; Z[ and then appeal to theorefi5and theoremi36to extend this construction
forallxe R.

In figure , chooseB such that the measure of &8 (measured counterclockwise) kePointA = (1,0), and point
B = (sinx,cosx). Since point8 and(1,t) are collinear, the gradient (slope) of the line joiniy0) andB is the same as that
joining (0,0) and(1,t). Computing gradients, we have

sinx—0 _t-0
cosx—0 1-0’

whencet = tanx. We have thus produced a line segment measuring thwe let x vary from 0 tort/2 we obtain the graph
of x— tanx for x € [0; J[.
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Since cox =0 atx = 7(2n+ 1), n € Z, x+— tanx has poles at the points= 7(2n+ 1), n€ Z. The graph ok — tanx s
shewn in figure).28

—_—— =

-——— =

Figure 9.27: Construction of the graphof- tanx for x € [0; Z[.

Figure 9.29y = arctarx

Figure 9.28y = tanx

We now define the Principal Tangent function and the arctantfan.

437 Definition ThePrincipal Tangent Functioyx — Tan x is the restriction of the functior— tanx to the interval

- 7_21; g[. With such restriction
T
— == R
] 2 ? 2 [ -
X — Tan X
is bijective with inverse
T
R -

X +— arctarx
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The graph ok — arctarx is shewn in figure).29 Observe that the lings= +7 are asymptotes to— arctarx.

1. Vx e R, tan(arctarx)) = x.

R—{Zinmnez) — R
2 is an oddr-periodic function.
X — (arctarvtan)(x)
438 Theorem The equation

tanx=A, AeR

has the infinitely many solutions
Xx=arctaPA+nm,ne Z.

Proof:  Since the graph of % tanx is increasing i — 7; 7|, it intersects the graph of3 A at exactly one
point,
tanx = A= x = arctam

if x €] — 7, 3. Since x— tanx is periodic with periodt, each of the points
X=arctalA+nmne Z

is also a solution]

439 Example Solve the equation
tarfx =3

Solution: » Eithertanx = /3 or tanx = —/3. This means that x arctan/3+ mm= Z + rm or
x = arctarf—v/3) + = — J -+ rm. We may condense this by writing=xtZ + rm,n € Z. <«

440 Example Solve the equatioftanx)S"™ = (cotx)%°s,

Solution: » For the tangent and cotangent to be defined, we must hg&&xn € Z. Then

1

tanx)S™ = (cotx)° =
(tanx) (cotx) e

implies
(tanx)sinercosx -1

Thus eithetanx = 1, in which case x= ’ZT+ Nn1T, n € Z or sinx+ cosx = 0, which implieganx = —1, but this
does not give real values for the expressions in the origigalation. The solution is thus

m
X:Z—i—nn, nez.

<
441 Example Find sinarctas§.
Solution: » Putt= arctan. Then3 = tant,t €]0; J[ and thussint > 0. We have} sint = cogt. As
1=cogt+sirft = ZsinzH—sirFt,

we gather thasin’t = -%. Taking the positive square rosint = 2,. <
13 13
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442 Example Find the exact value of tan arcc(es%).

Solution: » Putt=arcco§—3). As the arccosine of a negative numbeg, tJ, ri. Now,cost = —£, and so

sint=4/1— (—2)2:\/%:2—\5{6.

We deduce thaant = 3 — _2,/6. <

cost

443 Example Letx € [0;1]. Prove that
arcsink = arctanL.

V1—x2

Solution: » Since xe [0; 1], arcsirnx € [0; Z[. Put t= arcsirx, thensint = x, andcost > 0 since te [0; Z[. Now,

cost = v/1—sirft = v1—x2, and

Since te [0; 7] this implies that

X
t=arctan—,

V1

from where the desired equality followa.

444 Theorem The following Pythagorean-like Relation holds.

T

tarfx+1=seéx, Vxe R\ {(2n+1) >

,nez}. (9.20)

Proof: This immediately follows fromir? x4 cog x = 1 upon dividing through bgog x. [

445 Example Given that tax + cotx = a, write tar’ x+ cof x as a polynomial ira.

Solution: » Using the fact thatanxcotx = 1, and the Binomial Theorem:

(tanx+cotx)® = tarPx+ 3tarf xcotx+ 3tanxcot x+ cot' x
= tar’x+ sim x+ 3tarxcotx(tanx 4 cotx)
= tarPx+ s x+ 3(tanx + cotx)

It follows that
tar? x+ cot x = (tanx + cotx)® — 3(tanx+ cotx) = a° — 3a.

Aliter: Observe that 4= (tanx+ cotx)? = tar? x+ cof x+ 2, hencetar? x + cof x = a — 2. Factorising the
sum of cubes

tar’ x+ cof x = (tanx+ cotx) (tar x— 1+ cof x) = a(a® — 1 — 2)
which equals &— 3a, as before .«
446 Example Prove that

2siny+3

2tany + 3seq — o,

whenever the expression on the sinistral side be defined.
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Solution: » Decomposing the tangent and the secant as cosines we obtain,

2siny+3

2siny+3

2tany+ 3seq

siny , 3
2cosy + cosy

2sinycosy+ 3cosy

2siny+3
(cosy)(2siny+ 3)
2siny+3

= Cosy,

as we wished to shew

447 Example Prove the identity
tanA+tanB  secA+sedB

secA—sed tanA-—tanB’
whenever the expressions involved be defined.

Solution: » We have

tanA+tanB tanA+tanB\ /tanA—tanB\ [/ secA+sed
secA—sed (seoA—secB) (seoM— secB) (tanA—tanB)
_ [tarPA—tarPB)\ /secA+sed
N (se@A—se@ B) <EtanA—tanB)
(se@A—1)— (seéB— 1)) (secAJr secB)

se@A—seéB tanA — tanB
secA+sedB

tanA—tanB’

as we wished to shewa

448 Example Given that sitA+ cscA = T, express sihA+ cs¢ A as a polynomial ifT .

Solution: » First observe that
T2 = (sinA+ cscA)? = sir? A+ cs@ A+ 2 SiNACSCA,

hence
SiPA+csGA=T2-2.

By the Binomial Theorem

(sinA+ cscA)?
= sin*A+4sirP AcscA+ 6SirFAcs@A + 4sinAcsGA + cs¢A
= siffA+cs¢A+6+4(sifA+cs@A)

= sinftA+cs¢A+6+4(T?—2),
whencesin* A+cs¢A=T4—4T +2. «

Homework
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9.5.1 Problem True or False.
1
1. tarx = coty, Yxe R\ {0}.

2. 3x€ R such that sex= 3.

arcsinl
arccos

4. x— tanX has periodt.

3. arctan=

9.5.2 Problem Given that cs& = —1.5 and% (x) lies on the fourth
quadrant, find sir,cosx and tarx.

9.5.3 Problem Given that tax = 2 and¢ (x) lies on the third
quadrant, find sir and cox.

9.5.4 Problem Given that six =t and% (x) lies in the second
quadrant, find casand tarx.

9.5.5 Problem Letx < —1. Find sinarcse& as a function ok.
9.5.6 Problem Find cosarctaf--3).
9.5.7 Problem Find arctaritan(—6)), arccot(cot(—10)).

9.5.8 Problem Give a sensible definition of the Principal
Cotangent, Secant, and Cosecant functions, and theiseser
Graph each of these functions.

9.5.9 Problem Solve the following equations.
1. seéx—sex—2=0
tanx+-cotx = 2
tank=1
2seéx—+tarfx—3=0
2cox—sinx=0
tanx+§) =1
3colx+5csex+1=0
2seéx = 5tanx
tarf x+se@x =17
. 6cox+sinx—5=0

© ® N o g A~ wDd

[EnY
o

9.5.10 Problem Prove that

tanx — cot<g7x> ,

cotx = tan( m X)
= 5 .

9.6 Addition Formulae

We will now derive the following formulee.

co§a + 3) = cosa cosB F sina sin

sin(a + ) = sina cosP £ sin cosa

9.5.11 Problem Prove that ifx € R then
1
arctarx+arccot; = Esgr(x),

where sgix) = —1if x < 0, sgnx) = 1 if x> 0, and sgii0) = 0.
9.5.12 Problem Graphx — (arctarptan)(x)

9.5.13 Problem Let x €]0; 1]. Prove that

2

arcsinx = arccot

9.5.14 Problem Let x €]0; 1[. Prove that

V1-x2
arccox = arctan-—-_—~ = arccot

X
Vi-xZ
9.5.15 Problem Letx > 0. Prove that

arctarx = arcsin = arccos

1+ x2 1+x2

9.5.16 Problem Let x > 0. Prove that

arccotx = arcsin

= arccos

1 X
V12 V1t

9.5.17 Problem Prove the following identities. Assume, whenever
necessary, that the given expressions are defined.

1.
sinxtanx = sex — cosx

2. tar'x+ 1= (tanx+ 1)(seé x—tanx)
1 1

3. l+tarfx= 2723inx+2+23inx
4 Sewsina o
tana -+ cota
5 l-sina  cosa
" cosa  l+sina
1+ 3co€x)?
6. 75e8x76tanzx+90052x:u
coZ X
1—tarft
7. =% = codt —sinft
1-+tarét
1+tanB+ se®dB
8 ——————=(1 B)(1 cB
1i B _se® L1 SeB)(1+CscB)

(9.21)

(9.22)
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tana +tanf
t tB)=——""— 9.23
an(a +p) 1 tanatang ( )
B a—b
Bl
A
a—b
b N
Figure 9.30: Theorem49, Figure 9.31: Theorent
We begin by proving
449 Theorem Let (a,b) € R?. Then coga— b) = cosacosb + sinasinb.
Proof: Consider the points &osb, sinb) and B(cosa, sina) in figure9.3Q Their distance is
/(cosb—cosa)2+ (sinb—sina)2 = +/cofb—2coshcosa+ cofa+ sirb— 2sinbsina+ sirfa

= /2—2(cosacosb+ sinasinb).

If we rotate A b radians clockwise td(4,0), and B b radians clockwise td @oga— b),sin(a— b)) as in figure
, the distance is preserved, that is, the distance’ a6, which is

\/(coga—b) — 1) +sirf(a—b) = \/1— 2coga—b) + cog(a—b) +sirf(a—b) = /2— 2coga—b),

then equals the distance of A to B. Therefore we have

\/2—2(cosacosb+ sinasinb) = /2—2cofa—b) => 2-—2(cosacosb+ sinasinb) =2—2coga—b)
= coga—b)=cosacosb+ sinasinb.

O

450 Corollary coga-+b) = cosacosb — sinasinb.

Proof: This follows by replacing b by-b in Theoremi49, using the fact that x> cosx is an even function and
socog—h) = cosh, and that x— sinx is an odd function and ssin(—b) = — sinb:

coga+b) =coga— (—b)) = cosacoq —b) + sinasin(—b) = cosacosb — sinasinb.

O

451 Theorem Let (a,b) € R2. Then sirfa+ b) = sinacosb + sinbcosa.
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Proof: We use the fact thainx = cos(7—2T — x) and thatcosx = sin (7—2T — ) Thus

sin(a+b) = cos(g—(aer))

oo (3-2) -5

cos 7—T—a cosb+sin 7—T—a sinb
(-9 (-9

sinacosb + cosasinb,

proving the addition formula. For the difference formulae have
sin(a— b) = sin(a+ (—b)) = sinacog—b) + sin(—b) cosa = sinacosb — sinbcosa.

O

t +tanb
452 Theorem Let (a,b) € R2. Then tafa+b) = %'

Proof: Using the formulee derived above,

sin(a+b)
coga+b)
sinacosb+ sinbcosa
cosacosb F sinasinb’

tanat+b) =

Dividing numerator and denominator lzpsacosb we obtain the result]

By lettinga+ b= A ,a— b= Bin the above results we obtain the following corollary.

453 Corollary

COSA+CcosB = 2cos<%8) cos<A%B) (9.24)
COSA—cosB = —25in<A;B) sin<%3) (9.25)
SinA+sinB = Zsin(A—; B> cos(%) (9.26)
sinA— sinB = Zsin(A; B> cos(#) (9.27)

454 Example Giventhatcoa=—.1andn<a< 37" and that sih = .2 and 0< b < 7, find coga+ b).

Solution: » Since? (a) is in the third quadrantsina= —+/1— (.1)2 = —/0.99. As% (b) is in the first
quadrantcosb = /1 — (.2)2 = +/0.96. By the addition formula for the cosine

coja+b) = cosacosb—sinasinb
= (-.1)(+/0.96) — (—1/0.99)(.2)
= .2//.99-.1/.96.
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455 Example Write sin5xcosx as a sum of sines.
Solution: » We have
sin6x = sin(5x+ X) = sin 5xcosx+ sinxcos X
sin4x = sin(5x — x) = sin Xxcosx — sinxcos X

Adding both equalities and dividing [2y we gather,
. 1. 1.
sin5xcosx = = sinbx+ = sin4x.
2 2
<

456 Example Solve the equation
sinBx+ sin4x = 0.

Solution: » Assin&X 4 sin4x = 2 sin 5xcosx we must have eithesin 5x = 0 or cosx = 0. Thus

x—’Tn x—in+7mneZ
T 57 7T T2 ’ '

<

457 Example Write sinxsin2x as a sum of cosines.

Solution: » We have
C0S X = COg2X+ X) = COS XCOSX — Sin2SinX,

COSX = €O 2X — X) = COS XCOSX+ Sin SinX.

Subtracting both equalitiesos X — cosx = —2 sin Xsinx, whence

. . 1 1
sin2xsinx = — > cosX+ > COSX.

<

458 Example Find the exact value of ccg.

Solution: » Observe that17—2 = %—i— %. Using the addition formulae

m T T
cos?? = cos(Z+7)
= cosjcosy—singsing

= DD -(HCP
S B

S

6

<

459 Example (i) Write v/3cosx+ sinx in the formAcogx — 8), with — 2 < 6 < 7. (ii) Use the preceding identity in order
to solve the equation
V3cosc+ sinx = —1.

(iii) Find all the solutions in the interva0; 2.
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Solution: » First observe that A4 0, sincey/3cosx+ sinx is not identically0. We have
Acogx— 6) = Acosxcosb + Asinxsiné.

If the expression on the dextral side of the above equality i equal to,/3 cosx+ sinx then Acosf = /3 and
Asin@ = 1. This entails thatanf = @ and sof = §. This in turn yields A= 2. Hence

. m
V3 cosx+ sinx = Zcos(x— E) .
Now, if2cos(x— 3) = —1, then

1
X— 7—(; = iarcco$—§) +2nm, neZ,

T, 2n
X==+—+2nm, ne’Z,
6 3 +
which is the same family as=x %" + 2nm,x= —J + 2nmrand the solutions if0; 271] are clearly x= %" and

_3n
X—2.

Aliter: Write the equation ag/3cosx+ 1 = — sinx and square
3cogx+2v3cosx+ 1 = sirx.
Usingsir’x = 1 — co€x we obtain
3co€x+2v/3cox+ 1= 1—cogx,

or
(cosx)(4cosx+2v/3) = 0.

This equation has solutionsx=+Z + 2nmand x= i%"—i— 2n. Testing x= 7 in the original equation

V/3cosx+ sinx = —1 we see that it is not a solution, hence the famity % -+ 2nmtis not part of the solution set
of the original equation. The same happens when we t&‘%xreﬂ, so we must also discard this family. The two
remaining families, x= %" + 2nm, x = —J + 2nragree with our previous solutiore

460 Example Obtain a formula for cdg+ b+ c) in terms of cosines and sinesat, andc.

Solution: » Using the addition formula twice

coga+b+c) cosacogb+ c) —sinasin(b+c)

= cosa(coshcost — sinbsinc)—
—sina(sinbcosc+ sinccosb)

= cosacoshcosc— cosasinbsinc—

—sinasinbcosc — sinacosbsinc

<

461 Example (Canadian Mathematical Olympiad 1984)Given any 7 real numbers, prove that there are two of them, say
x andy, such that
Xy

0< !
“1+xy~ /3
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Solution: » Letthe numbers beak=1,2,...,7. There exists psuch g = tanby, since
-2 5l
S BN
22 is a bijection. Divide the intervdl— J; Z[ into six subintervals, each of lenggh Since
X —  tanx

we haver by’s and6 subintervals, two of theds, say kh and h, must lie in the same subinterval. Assuming
bs > by we then hav® < bs— b < ’—67. Since x— tanx is an increasing function,

tan0< tan(bs — by) < tan7—6T,

which is to say,

tanbg — tanb i
~ 1+tanbstanby — /3’

A

This implies that

as— & 1
< <,
~l4+aa ~ V3

which completes the proo#

462 Example Prove that if
a-b b-c c-a

=0
1+abJr 1+chr l+ca
for real numbers, b, c, then at least two of the numbeash, c are equal.

Solution: » 3u,v,w with —7 < u,v,w < 7 such that a= tanu, b = tanv, c = tanw (why?). The given equation
becomes

tanu — tanv tanv — tanw tanw — tanu .

Tttanutany | It tanviarw | 1+ tamwtand
Using the addition for the tangents, the preceding relat®aquivalent to

tan(u—v) +tanv—w) +tan(w—u) = 0.
ApplyingtanX +tanY = (tan(X +Y))(1—tanXtanY) with X = u—v and Y= v—w, we obtain

(tan(u—w))(1—tan(u—v)tanv—w)) +tanw—u) = 0.
Factorising the above expression,
(tan(u—w))(tan(u—v))(tanlv—w)) = 0.
This implies that one of the tangents in this product musl.t&ince
—MT<U—WU—V,V—W< T,

this means that one of these differences must be eXaatiigich in turn implies that two of the numbersac
are equal.«

463 Example Prove that

arctan®th if ab< 1,
arctara + arctarb = 7_27 (sgn(a)) if ab=1,

arctan@t8 + T(sgn@)) if ab>1.

Solution: » Put x= arctara,y = arctarb. If (x,y) €] — J;

;T2 and x+y# EHUT 0 e 7, then

_ tanx+tany  a+b
tan(x-+y) = 1—tanxtany 1—ab’
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Now,— 1T < x+Yy < 1. Conditioning on x we have,

L exty< I =
2 ¥<3

The above choices hold if and only if

a=0

x=0
orx>0andy < J —x

orx<Oandy>—7 —x

0ra>0andb<%1 .

ora<Oandb> 1

Hence, if ab< 1, then x+y €] — 7; Z[ and thus

X+y=arctarftan(x+y)) = arctanilo .

If ab > 1and a> O then x+y €]7; i and thus

1-ab

a+b
X+y= arctan—a + 1.

Ifab > 1and a< 0, then x+y €] — 1, — §[ and thus

1—ab

a+b
X+y=arctan—— — 1.

The case ab- 1is left as an exercised

1-ab

464 Example Solve the equation arccrs- arcsin% + arccos}l.

Solution: » Observe thaarccox € [0; 1] and that since botb < arcsin% < ’—ZTandO < arccos}1 < g we have
0< arcsin% + arccos}1 < 1. Hence, we may take cosines on both sides of the equationtaith o

coqarcco)

= cogarcsin + arccos;)

= (cosarcsi)(cosarccog) — (sinarcsing)(sinarccos)

_ V2 _ V15
= 6 12

<

465 Example (Machin’'s Formula) Prove that

T_ 4arcta . arctani
7= "5 239
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Solution: » Observe that
darctart = 2arctar} +2arctart

1,1
= 2arctan15f5
I

[

= 2arctan

= arctang; +arctans;

o
T
Jon

|

= arctan1%1%
1- 2T

= arctani2d.

ol

N
N

Also
20 1 15— 739
arctanl—119 —arctang, = arctan%
= arctanl
— I
= 7

Upon assembling the equalities, we obtain the resalt.

Homework
9.6.1 Problem Demonstrate the identity

sin(a+ b)sin(a— b) = sirfa—sirfb = cob— cofa
9.6.2 Problem Prove that for all real numbers
cos(Zx— 4?71) +CcoSX+ cos(2x+ 4?71) =0.

9.6.3 Problem Using the fact thatll—2 = % — %, find the exact value| 9.6.11 Problem Write sinxsin 2xsin3x as a sum of sines.
of the following.

1. cosm/12 9.6.12 Problem Given real numbera,b with 0 < a < 17/2 and
2. sinm/12 m< b < 3m/2 and given that sia=1/3 and cob = —1/2, find
coga—h).

9.6.4 Problem Write cot{a+ b) in terms of cotand cob. )
9.6.13 Problem Solve the equation cast cos X =0..

9.6.5 Problem Write sinxsin2x as a sum of cosines. .
9.6.14 Problem Solve the equation

9.6.6 Problem Write cosxcos 4 as a sum of cosines. arcsir(tanx) = x.

9.6.7 Problem Write using only one arcsine: arcchs- arccos;. 9.6.15 Problem Solve the equation

arccox = arcsinl—x).
9.6.8 Problem Write using only one arctangent:

1 1
arctanz —arctan. 9.6.16 Problem Solve the equation

s
9.6.9 Problem Write using only one arctangent: arctark+-arctanX = .
arccot(—2) — arctar{—3).
9.6.17 Problem Prove the identity

9.6.10 Problem Write sinxcos X as a sum of sines.

1
cod' x = 5(cos&+4cosx+3).
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9.6.18 Problem Prove the identities

_ sin(a+b)
tana-tanb = (Cosa) (cosh)’

_sin(a+b)
cota+ cotb = W

9.6.19 Problem Given that 0< a, 8,y < 7 and satisfy

sina = 12/13 cosP = 8/17,siny = 4/5, find the value of

sin(a + B —y) and cosa — 3 +2y).

9.6.20 Problem Establish the identity

sinfa—b)sin(a+b) .
T tar? acolh co asirb.

9.6.21 Problem Find real constanta, b, c such that
sinX — v/3cos X = asin(bx+c).
Use this to solve the equation

sin&—v/3cos X = —v/2.
9.6.22 Problem Solve the equation
sinx+cosX= -1

— . 17 2
9.6.23 Problem Simplify: sm(arcsec§ - arctar(—g)).

9.6.24 Problem Shew that if cofa+b) = 0 then
sin(a+ 2b) = sina.

9.6.25 Problem Leta+b+c = g Write cosacosbcosc as a sum
of sines.

9.6.26 Problem Shew that the amplitude of— asinAx+ bcosAx
is vaZ +b2.
9.6.27 Problem Solve the equation

cosx—sinx=1.

9.6.28 Problem Leta+ b+ ¢ = . Simplify

sinfa+ sin? b+ sin? c— 2 cosacosbcosc.

9.6.29 Problem Prove that if
cota+ cscacosbseca = cotb+ cosacschsec,
then eithem—b =km, ora+b+c =+ 2mror
a+b—c = m+ 2nmrfor some integerk, m,n.
9.6.30 Problem Prove that if
tana+ tanb -+ tanc = tanatanbtanc,

thena+ b+ c = kit for some integek.

9.6.31 Problem Prove that if any oh+b+c, a+b—c, a—b+c
ora—b—cis equal to an odd multiple of, then

cos a+ cos’ b+ cos ¢+ 2cosacoshcose = 1,

and that the converse is also true.
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A.1 Arithmetic of Complex Numbers

One uses the symboto denote thémaginary unit i= v/—1. Theni? = —1.
466 Example Find \/—25.

Solution: » —25=5i. «

Sincei® = 1,it =i,i?= —1,i®= —i,i* = 1,i° =i, etc., the powers dfrepeat themselves cyclically in a cycle of period 4.
467 Example Findit®34,
Solution: » Observe thall934= 4(483) +2and so 1934 =i? = —1. <

468 Example For any integrabtr one has

i@ ot et e e 2 %) =i9(1+i—1—i)=0.

If a,b are real numbers then the object bi is called acomplex numbelOne uses the symb@l to denote the set of all
complex numbers. & b,c,d € R, then the sum of the complex numbers bi andc + di is naturally defined as

(a+bi)+ (c+di)= (a+c)+ (b+d)i (A1)
The product ok + bi andc + di is obtained by multiplying the binomials:
(a+ bi)(c+di) = ac+ adi+ bci+ bdi? = (ac— bd) + (ad+ bo)i (A.2)

469 Example Find the sum4+ 3i) + (5— 2i) and the product4 + 3i) (5 — 2i).

Solution: » One has
(4+3i)+(5-2)=9+i

and
(4+3i)(5—2i) = 20— 8i + 15 — 61> = 20+ 7i + 6= 26+ 7i.

<

470 Definition Letzc C,(a,b) € R? with z= a+ bi. Theconjugatez of zis defined by
z=a+bi=a—bi (A.3)

471 Example The conjugate of §- 3i is 5+ 3i = 5— 3i. The conjugate of 2 4i is 2 —4i = 2+ 4i.

The conjugate of a real number is itself, that is, €&, thena = a. Also, the conjugate of the conjugate of
a number is the number, that &= z

472 Theorem The functionz: C — C, z+ zis multiplicative, that is, iz, zo are complex numbers, then

=725 (A.4)

189
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Proof: Letz =a+ bi,z =c+diwhere ab,c,d are real numbers. Then

7iz; = (a+bi)(c+di)

= (ac—bd)+ (ad+bc)i

= (ac—bd) — (ad+ bo)i
Also,

7'z = (at+bi)(c+di
—  (a—bi)(c—di)
= ac—adi— bci+ bdi?

= (ac—bd)— (ad+ bo)i,
which establishes the equality between the two quantifies.
473 Example Express the quotiertiﬁ—:: in the forma+ bi.
—5i
Solution: » One has

243 _2+3 345 _—9+10 9 19
3-5 3-5 3+5 34 34 34

<

474 Definition Themodulusia+ bi| of a+ biis defined by

la+ bi| = \/(a+ bi)(@a+ bi) = /a2 + b2 (A.5)

Observe that — |Z] is a function mapping to [0;+oo].

475 Example Find |7 + 3i].

Solution: » |7+ 3i|=/(7+3i)(7—3i) = V72 + 32 = /58, «

476 Example Find [v/7 + 3i|.

Solution: » [v/7+3i = /(v7+31)(V7 - 3i) = VT + Z =4 <
477 Theorem The functionz+— |z|, C — R is multiplicative. That is, ifz, z» are complex numbers then

12122| = |21 |22 (A.6)
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Proof: By Theorem!72, conjugation is multiplicative, hence

lzz| = Vzazazn
= Vazna-z
= Vazzzn
= Vaavzn

|21|| 22|

whence the assertion follows.

478 Example Write (22 +32)(52 + 72) as the sum of two squares.

Solution: » The idea is to write?? + 32 = |2+ 3i|?, 52+ 72 = |5+ 7i|2 and use the multiplicativity of the
modulus. Now

(2243)(5°+7%) = [2+3iP5+7i]?
= |(2+3i)(5+7))?
= |-11+29
= 117429

<

A.2 Equations involving Complex Numbers

Recall that ifux? 4+ vx4w = 0 with u # 0, then the roots of this equation are given by @eadratic Formula

2 _
K=Y YV duw (A7)
2u 2u

The quantityw? — 4uw under the square root is called ttliscriminantof the quadratic equatiom? 4 vx+w= 0. If u,v,w
are real numbers and this discriminant is negative, onéreht@mplex roots.

Complex numbers thus occur naturally in the solution of qaidequations. Sing8 = —1, one sees that= is a root of
the equation® + 1 = 0. Similary,x = —i is also a root ok? + 1.

479 Example Solve 2%+ 6x+5=0

Solution: » Using the quadratic formula

<

In solving the problems that follow, the student might prsfim the following identities.

& —t? = (s—t)(s+1) (A.8)

Kt = (& —th)(+tK), ke N (A.9)
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S —t3= (s—t)(P+st+t?) (A.10)

S 413 = (s41) (£ —st+t?) (A.11)
480 Example Solve the equatior* — 16=0.

Solution: » One has X—16= (x> — 4)(x> + 4) = (x— 2)(x+ 2)(x>+4). Thus either x= —2,x= 2 or
x? 44 =0. This last equation has roots2i. The four roots of X— 16 = 0 are thus
X=-2X=2X=-2i,x=2i. <

481 Example Find the roots ok® — 1 = 0.

Solution: » x3—1= (x—1)(x®+x+1). If x # 1, the two solutions to%+ x+ 1 = 0 can be obtained using the

V3

quadratic formula, getting x —% ii?' <

482 Example Find the roots ok®+8 = 0.

Solution: » X34 8= (x+ 2)(x? — 2x+4). Thus either x= —2 or x? — 2x+ 4= 0. Using the quadratic
formula, one sees that the solutions of this last equatienar 1+i/3. <

483 Example Solve the equatior® + 9x%+ 20= 0.

Solution: » One sees that
X+ 9 +20= (X +4)(x*+5)=0

Thus either X+ 4 = 0, in which case x= +2i or x2+ 5= 0in which case x= +i+/5. The four roots are

X = +2i,+i/5 <
Homework
A.2.1 Problem Perform the following operations. Write your A.2.4 Problem Prove that{1+i)? = 2i and that(1—i)% = —2i.
result in the forma+ bi, with (a,b) € R?. Use this to write
1 \/3—6 % (l+i)2004
' tvo (1—1)2000
2. (4+8)—(9-81)+5(2+10) 8 in the forma-+bi, (a,b) € R?.
3. 445 +6i2+7i3
4. i(1+1)+2i%(3—4i) A.2.5 Problem Prove tha(1+iv/3)% = 8. Use this to prove that
5. (8—09i)(10+11i) (1+iv/3)30 =230,
6. {1990 {1991 {1992 {1993
, 27 A.2.6 Problem Find |5+ 7i, |v/5+7i, |5+iv7| and|v5+iv/7|.
C 24
1—i 1+i o .
8 — 4+ A.2.7 Problem Prove that ik is an integer then
tra 12 (8K+1)i% 4 (4k+2)i%HD 4 (4k4-3)i %2 1 (4k+-4)i% 3 = 2 2i
9. (5+2i)2+(5-2i)? '
10. (1+i)3 Use this to prove that
142 +3i2 + 43 + - +19951994 1 1996199 = 998 994.
A.2.2 Problem Find real numbers, b such that
_ _ A.2.8 Problem If zandZ are complex numbers with eithig = 1
(a—2)+(5b+3)i=4-2i or|Z| =1, prove that
-7 |
A.2.3 Problem Write (22 +32)(3% 4-72) as the sum of two squareg. 1-22
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A.2.9 Problem Prove that ifz,Z andw are complex numbers with| A.2.11 Problem Find all the roots of the following equations.
|7 =|Z| = |w|] = 1, then )
1. x*+8=0
v4 Zw| = v 4
|zZ +zw+Zw| = |24+ Z +w| 2 2449=0
2 _
A.2.10 Problem Prove that ifn is an integer which is not a 3. X —4x+5=0
multiple of 4 then 4. %2 —3x+6=0
1n+in+i2n+i3n:0. 5. 5_1-0
Now let 6. x*+2x2-3=0
f(X) = (14 x+x2)19%0= a5+ ax+ - - + apooox®*®. 7.x3-27=0
By consideringf (1) + f (i) + f(i2) + f(i%), find 8 x6-1=0
ao+as+ag+--+az000 9. x5-64=0

A.3 Polar Form of Complex Numbers

Complex numbers can be given a geometric representatitve frgjand diagranisee figure
carries the real parts and the vertical axis the imaginaegon

O
O
N

), where the horizontal axis

-1~ a+bi °
e \\ \'v (%
\ _
// \ N
I 0 \ O 6
\ a |2 cos 0
\ /
N /
\\ //
Figure A.1: Argand’s diagram. Figure A.2: Polar Form of a Complex Number.

Given a complex number= a+ bi on the Argand diagram, consider the anle] — 1, r1] that a straight line segment
passing through the origin and througinakes with the positive real axis. Considering the polardioates oz we gather

z=7|(cosf +isin@), 0 €|—mm,

(A.12)

which we call thepolar formof the complex numbez The angled is called theargumenif the complex numbez.

484 Example Find the polar form of/3—i.

Solution: » First observe thaty/3—i| = \/v/3" + 12 = 2. Now, if
V3—i=2(cosf +isinf),
V3

we needos =

V3—i= 2(003(—7—(;) +isin(—g)

is the required polar form

5> sin = —%. This happens fob €] — 1, 1] whenf = —7—6T. Therefore,

We now present some identities involving complex numbees.us start with the following classic result. The proof riegsi

Calculus and can be omitted.
If we allow complex numbers in our MacLaurin expansions, eedily obtain Euler’'s Formula.
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485 Theorem (Euler's Formula) Letx € R. Then

X = cosx+ i sinx.

Proof: Using the MacLaurin expansion’s ofx €, x+— cosx, and x— sinx, we gather

(ix)"

Cae Ek 0
7 (IX)Zn (ix)2n+l
= T Gy T 20 n )
( 1)nX2n ( l)nx2n+1

= o S G
= CcOSX+isinx.
O

Taking complex conjugates, S
e % = €X = cosX+isinX = cosx — i Sinx.

Solving for sinx we obtain
X efix

inNxX= ——4—— A.13
sinx 5 ( )
Similarly, _ _
elX _|_ eflx
== - A.l4
COSX 5 ( )

486 Corollary (De Moivre’'s Theorem) Letn € Z andx € R. Then

(cosx+isinx)" = cosnx+ i sinnx

Proof: We have _ .
(cosx+isinx)" = ()" = & = cosnx+isinnx,

by theorem

Aliter: An alternative proof without appealing to Euler’s identibflows. We first assume thatn0 and give a
proof by induction. For = 1 the assertion is obvious, as

(cosx+isinx)! = cos1 x+isinl-x.
Assume the assertion is true for+1 > 1, that is, assume that
(cosx+isinx)" ! = cogn—1)x+isin(n— 1)x.
Using the addition identities for the sine and cosine,
(cosx+isinx)" = (cosx+isinx)(cosx+isinx)"?
= (cosx+isinx)(cogn— 1)x+isin(n—1)x).
= (cosx)(cogn— 1)x) — (sinx)(sin(n — 1)x) +i((cosx)(sin(n — 1)x) + (cogn — 1)x)(sinx)).
= cogn—1+1)x+isin(n—1+1)x

= cosnx+isinnx,
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proving the theorem for + 0.

Assume now that &t 0. Then—n > 0 and we may used what we just have proved for positive integetsave

1
(cosx+isinx)—"
1
cog—nx) +isin(—nx)
1
cosnx—isinnx
cosnx+isinnx
(cosnx—+ i sinnx)(cosnx— i sinnx)
cosnx+isinnx
co nx+ sir? nx

(cosx+isinx)" =

= cosnx+isinnx,

proving the theorem for r: 0. If n = 0, then sincesin andcosare not simultaneously zero, we get
1= (cosx+isinx)® = cos &+ isin0x = cos & = 1, proving the theorem for & 0.

O

487 Example Prove that
cosX=4coSx—3cox,  sin3x = 3sinx—4sirrx.

Solution: » Using Euler’s identity and the Binomial Theorem,

cosX+isinx = e
= (&%) = (cox+isinx)®
= coSx+ 3icogxsinx — 3coXsir x — i sirx
= co$x+ 3i(1—sirfx)sinx—3cosx(1— cogx) —isirx,
we gather the required identities

The following corollary is immediate.

. . . : 2nk . . 27k
488 Corollary (Roots of Unity) If n> 0 is an integer, tha numbers?/n — cosT +1 smT, 0<k<n-1,areall
different and satisfye?™/Mn = 1.

Figure A.3: Cubic Roots of 1. Figure A.4: Quartic Roots of 1. Figure A.5: Quintic Roots of 1.
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489 Example Forn = 2, the square roots of unity are the roots of

¥—-1=0 = xe{-1,1}.

—1+iv3

> . Hence the cubic

Forn=3we have® — 1= (x—1)(x®+x+1) =0 hence ik # 1 thenx> +x+1=0 = x=
roots of unity are

1—1—i\/§—1+i\/1_3
T2 2 ‘

Or, we may find them trigonometrically,

e2mo/3 cos—zg 04 sin—zg 0 _ 1,
. 2m-1 . . 2m1 1 .3
e? cos—— +isin— 2+|\/2_
; 212 212 1 3
3 cos—— +isin— 51

Forn= 4 they are the roots oft — 1 = (x— 1)(x3+x? +x+ 1) = (x— 1)(x+1)(x2+ 1) = 0, which are clearly

(~1,1,-ii}.
Or, we may find them trigonometrically,
e2mi-0/4 coszri 0 +i sinzrz 0 _ 1,
e2ml/4 — 005271 1 sinzq 1 _
a4 — coszri 2 +i sinzrz 2 _ 4
i34 — coszri 3 +i sinzrz 3 _

Forn =5 they are the roots of — 1= (x—1)(x* +x3 +x2 +x+1) = 0. To solvex* +x3 +x% + x+ 1 = 0 observe that since
clearlyx # 0, by dividing through by?, we can transform the equation into

1 1
X+ S +Xx+=+1=0.
X X

1 1
Put nowu = X+ o Thenu? —2=x2+ 2 and so

—14++5

1 1
¥t S+Xx+41=0 = W¥-2+u+1=0 = u=
X X 2

Solving both equations

i —
xploZl=vs 1 Z1rve
X 2 X 2

we get the four roots

{—1—\/&‘3_i\/10—2\/§ ~1-V5 ,V10-2v56  V5-1 .v2/5+10 \/§—1+i\/2\/§+10}
4 4 4 4 ’

4 4 4 4
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or, we may find, trigonometrically,

emo/5  — cos? +i sin? = 1,

@15 — cos?Th qgn2TL v5-1 +i V2: V545 :
5 5 4 2

@25 — cost2 | qsin?T 2 —v5-1 +i V2:V5- V5 ,
5 5 2 2

e = cos——+isin— = |[——|-i|—F——"],
5 5 4 4

a5 2m-4 . . 2m-4 Vv6-1\ . [(V2./5+5

e = cos——fisin—/— = | ——|-i|——F— |,

See figures\.3 through

By the Fundamental Theorem of Algebra the equatiba 1 = 0 has exactlyn complex roots, which gives the following
result.

490 Corollary Letn> 0 be an integer. Then

491 Theorem We have,

LT+X+X0+-x" =

Proof: Since R — 1= (x—1)(x"14x""2+... 4+ x+ 1), from Corollary490, if x # 1,

n-1 _
X x 1= |_|1(x— e?Tik/my).
k=

If £ is a root of unity different from, thene = ?™/" for some ke [1;n— 1], and this proves the theorem.

Alternatively,
n
ny €'-1

=0.
e—-1

1+e+e2+e+ - +e
This gives the resulf]

We may use complex numbers to select certain sums of coetaid polynomials. The following problem uses the fact that
if kis an integer
iKp ikl ik k8 ik i+i2+i%) =0 (A.15)

492 Example Let
(1+x*+x8)1%0 = ag + agx+ ax? + - - - + agoo®®.

Find:
0 ag+ay+az+az+---+agoo
0 ap+az+as+as+ - +asoo.
0 &g +ag+as+az+---+arge
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0 ap+a4+ag+az+-- -+ agoo.
0 ay+as+ag+az+---+aror.

Solution: » Put
p(X) = (1+x*+x8)19 = ay+ arx+ ap@ + - - - + agooE®.

Then
O
80+a1+a+a3+- - +agoo= p(1) = 3'°,
. 1 1
80+ 80+ a4+ g+ -+ aggo = PP )+2p(_ ) g
. 1 1
a1+a3+a5+a7+~~~+a799:7p( )_Zp(_ ):0.
U 1 1 . .
Q-+ 84+ 8+ A1zt - + Bs00 = p(1)+p(— ):p(')+p(—|):2.3100_
U 1 1) infi) L ip(_i
—p(=1)—ip(@i)+ip(—i
a1 t+as+agtayzt---+azgr= P(L) — p( )4 P()+ip( )ZO-
<
|Homework|
A.3.1 Problem Prove that A.3.2 Problem Prove that

1 3 15 5
codox = 3—200312<+ Ecossur 3—Zcos4<+ 16

m LT
3=tan— +4sin—.
V3 9+ i 5
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B.1 Pascal’s Triangle

It is well known that
(a+b)? = a’ + 2ab+ b? (B.1)

Multiplying this last equality bya+ b one obtains
(a+b)3 = (a+b)%(a+b) = a+ 3a’b+ 3ab? + b1

Again, multiplying
(a+b)®=a’+3a’b+ 3ab? + b3 (B.2)

by a+ b one obtains
(a+b)* = (a+b)*(a+b) = a* + 4a®b + 6a%b? + 4ab® + b*

Dropping the variables, a pattern with the coefficients gyegra pattern calldéascal’s Triangle.

Pascal’s Triangle

1 10 45 120 210 252 210 120 45 10 1

Notice that each entry different from 1 is the sum of the twiglhbours just above it.
Pascal’s Triangle can be used to expand binomials to vapowers, as the following examples shew.

493 Example
(4x+5)* = (40)°+3(4%)%(5) +3(4x)(5)*+5°
= 64+ 240 +300x+ 125
494 Example
(=) = (29 +4(203(—y2) +B(22(—y?)?+
+4(20(—y?)3 + (—y)*
= 16¢—323y2 4 2424 — 8xyP + B
495 Example

(2+0)° = 2545(2)4i)+10(2)%(i)%+
+10(2)2(i)2 +5(2) (i)* +i°
= 32+80i —80—40i + 10+i

= —38+39

199
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496 Example
(V3+vB)* = (V3)'+4(v3)73(V5)
+6(v/3)%(v5)* +4(v/3)(v5)* + (v5)*
= 9+12V/15+ 90+ 20v15+ 25
= 124+32/15
497 Example Given thata— b= 2,ab= 3 finda® — b®.
Solution: » One has
8 = 28
= (a—b)?
= a®—3a’b+3a’—b®=a®—b3—3ab(a—Db)

= a’—b3 -

whence &— b3 =26

Aliter: Observe thatt = 22 = (a—b)? = a® + b? —

a®—bd=

as before .«
B.2 Homework

B.2.1 Problem Expand
(x—4y)

3 4y?)4
2+3x)3

2i—3)*
2i4+3)*+(2i-3)*
2i43)*—(2i-3)*
V3-2)3
V3+V2)3+(v3-v2)?
V3+V27 - (V3-v2)?

© ©No g wDdh PR

(
(
(
(
(
(
(
(

B.2.2 Problem Prove that
(a+b+c)? = a4 b? +c? +2(ab+ be+ca)

Prove that

(a+b+c+d)% =a? +b? + 2 +d? + 2(ab+ ac+ ad+ bc+ bd+ cd)

Generalise.

2ab=a?—b?—

(a—b)(a®+ab+b?) =

6, whence 4+ b? = 10. This entails that

(2)(10+3) = 26,

B.2.3 Problem Compute(x+ 2y + 32).

B.2.4 Problem leen thata+2b = —8, ab=4, find (i) a2 + 4b?,

(i) a3+ 8b3, (ii)) = + 271b

B.2.5 Problem The sum of the squares of three consecutive
positive integers is 21170. Find the sum of the cubes of ttiose
consecutive positive integers.

B.2.6 Problem What is the coefficient af*y® in
(xv2-y)1?
Answer: 840.

B.2.7 Problem Expand and simplify

(V1-x2+1)7—(V1-x-1).
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C.1 Sequences

498 Definition A sequence of real numbers is a function whose domain is theff satural numbers and whose output is a
subset of the real numbers. We usually denote a sequencesliyf tre notations

a07a17a27""

or
{an}n 0 -

Sometimes we may not start atrD. In that case we may write

amaam+173m+27---a

or
{an}ﬁ;:mm )
where m is a non-negative integer.
We will be mostly interested in two types of sequences: secggethat have an explicit formula for theith term and
sequences that are defined recursively.

499 Example Leta,=1— 2—1“, n=0,1,.... Then{an}%, is a sequence for which we have an explicit formula forrtth
term. The first five terms are

a = 1-% = 0,
R
& = 1-4 = 32
- 13 - 4
-1 - B

500 Example Let
1
Xo =1, xn:(l—i—ﬁ)xnl, n=212....

Then{x,} %, is a sequence recursively defined. The texms,, ..., xs are
X1 =
X2 =

)(4:

(1+1)
(1+3)
x3 = (1+3)x = 4
(1+3)
(

X5 =
You might conjecture that an explicit formula fay is x, = n+ 1, and you would be right!

201
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501 Definition A sequencean}.*, is said to bencreasingif a, < a,;1 ¥n € N* andstrictly increasingf
ah < apr1VneN

Similarly, a sequencéan} 1%, is said to belecreasingf a, > an1 Vn € N” andstrictly decreasingf a, > an 1 Vn€ N

A sequence isnonotonidf is either increasing, strictly increasing, decreasimggtrictly decreasing.

502 Example Recallthat0=1,1!1=1,2!=1-2=2,3!=1.2-3=6, etc. Prove that the sequenge=n!,n=0,1,2,...
is strictly increasing fon > 1.

Solution: » Forn> 1we have
Xn=nl=n(n—1)! =nX_1 > Xp_1,

since n> 1. This proves that the sequence is strictly increaskag.

1 . : :
503 Example Prove that the sequengg=2+ —,n=0,1,2, ... is strictly decreasing.

2n’
Solution: » We have
1 1
X1 —Xn = (24—@)—(24-?)

1 1
- ol on

1

= _ﬁ

< 0

whence
Xnt1— %0 <0 = Xny1 < Xn,

i.e., the sequence is strictly decreasirg.

2
n“+1 . . . .
504 Example Prove that the sequengg= : ,n=1,2,...is strictly increasing.
21 1
Solution: » First notice thatn + =n+ o Now,
X = n+1+ 1 n+1
n+1—Xn = i1 n
1 1
= 1 _—
+n+1 n
o, 1
B nin+1)
> 0,

since froml we are subtracting a proper fraction less thanHence
Xnt1—X%n >0 = Xny1 > Xn,

i.e., the sequence is strictly increasing.

1Some people call these sequentes-decreasing.
2Some people call these sequeniteseasing.
3Some people call these sequentes-increasing.
4Some people call these sequendesreasing.




Homework 203

505 Definition A sequencex,}, %, is said to beboundedf eventually the absolute value of every term is smallentha
certain positive constant. The sequenceriboundedf given an arbitrarily large positive real number we canapw find a
term whose absolute value is greater than this real number.

506 Example Prove that the sequengg=n!.n=0,1,2,...is unbounded.

Solution: » Let M > 0 be a large real number. Then its integral pai! | satisfies the inequality
M—-1<|M|<Mandso/M]|+1>M.We have

X o1 = ([M]+1)! = ([M]+2)([M])([M] = 1)---2:1> M,
since the first factor is greater than M and the remainingdastare positive integers.

<

n+1 .
507 Example Prove that the sequeneg = %, n=12,...,is bounded.

. n+1 1 .. 1 .
Solution: » Observe that g= % =1+ o Slnceﬁ strictly decreases, each term gf becomes smaller

. . 1 .
and smaller. This means that each term is smaller thatd + > Thus @ < 2for n > 2 and the sequence is

bounded <
Homework
C.1.1 Problem Find the first five terms of the following sequenc¢sare bounded or unbounded.
1 % =1+(-2)"n= 4.xn:W11)n,n: 1. X =nn=0,12,... n=0,12,...
0,1,2,... FT =
e 1 2,3,4,... 2. Xn=(=1)"n, 6. Xn=(—1)",
2. % =1+(=3)"n= n=012... n=0,12,...
0,1,2,... 1\" 1 s s 1
3. xp=nl+1,n= 5-Xn:(1+ﬁ> = 3. ¥n=-,n=012.. 7 %=1,
0,1,2,... 12,..., n n=0.1.2
4. Xn=—-—, T
n+1
C.1.2 Problem Decide whether the following sequences are n=012... 8. Xn=1+ on’
eventually monotonic or non-monotonic. Determine whethey 5. Xy =n%—n, n=0,12,...

C.2 Convergence and Divergence

We are primarily interested in the behaviour that a sequéagk.*, exhibits as gets larger and larger. First some
shorthand.

508 Definition The notatiom — -+ means that the natural numbeincreases or tends towardso, that is, that it
becomes bigger and bigger.

509 Definition We say that the sequenér,},*, convergesto a limit L, writtenx, — L asn — +oo, if eventually all terms
after a certain term are closerltdy any preassigned distance. A sequence which does notrgerigesaid taliverge.

To illustrate the above definition, some examples are inrorde

5This definition is necessarily imprecise, as we want to keafters simple. A more precise definition is the following: say that a sequena@g,n =
0,1,2,... convergeso L (writtenc, — L) asn — +oo, if Ve > 03N € N such thatc, —L| < € ¥n > N. We say that a sequendg,n=0,1,2,... diverges to+o
(written dp — +) asn — +o, if YM > 0 3N € N such thatd, > M Vn > N. A sequence,,n=0,1,2,... diverges to— if the sequence-f,,n=0,1,2,...
converges teto.
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510 Example The constant sequence
1,111...

convergesto 1.

511 Example Consider the sequence

: 1 1
We claim thatﬁ — 0 asn — +oc. Suppose we wanted terms that get closer to 0 by at 18@801= —-. We only need to

100

1 1
look at the 100000-term of the sequenge: =15 Since the terms of the sequence get smaller and smalleteany

after this one will be within00001 of 0. We had to wait a long time—till after the 20000Q@eitm—but the sequence
eventually did get closer thaB0001 to 0. The same argument works for any distance, no inettesmall, so we can
eventually get arbitrarily close to0.

512 Example The sequence
0,1,4,9,16,....n°%,...

diverges to+ o, as the sequence gets arbitrarily large.

513 Example The sequence
1,-1,1-11,-1,....(-1)",...

has no limit (diverges), as it bounces back and forth freinto +1 infinitely many times.

514 Example The sequence
0,-1,2,—-3,4,—5,...,(=1)"n,...,

has no limit (diverges), as it is unbounded and alternatek &ad forth positive and negative values..

Figure C.1: Theorem

When is it guaranteed that a sequence of real numbers hagaWa have the following result.

6A rigorous proof is as follows. 1§ > 0 is no matter how small, we need only to look at the terms after L% +1] to see that, indeed, if > N, then

o 1.1 1
N 1
: 1

n N_L <E.

Here we have used the inequality
t—1<[t] <t, VteR.
A rigorous proof is as follows. IM > 0 is no matter how large, then the terms after [v/M] + 1 satisfy (> N)
th=n?>N?=(|VM] +1)2> M.
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515 Theorem Every bounded increasing sequereg},.*, of real numbers converges to its supremum. Similarly, every
bounded decreasing sequence of real numbers convergegtfirtum.

Proof: The idea of the proof is sketched in figurel. By virtue of Axion??, the sequence has a supremum s.
Every term of the sequence satisfigsas. We claim that eventually all the terms of the sequencelasercto s
than a preassigned small distanee> 0. Since s- € is not an upper bound for the sequence, there must be a
term of the sequence, say,avith s— & < a,, by virtue of the Approximation Property Theorén Since the
sequence is increasing, we then have

S—fganoﬁano+1§ano+2§ano+2§---Ssa

which means that after theyfth term, we get to withig of s.

To obtain the second half of the theorem, we simply applyt$tehfalf to the sequence-an}, . O

Homework
C.2.1 Problem Give plausible arguments to convince yourself tHat 6. (%)” — +00 asn — +o
1
1.z —0asn— 4o 7. the sequence-2)",n=0,1,... diverges ag — -+oo
2. ' — 4o asn— 4o .
1 8. o — 0asn— 4o
3. 5y —~0asn— 4w
4. ™1 .1 asn— to 9. £~ +wasn— tw
5. (%)n — 0ash— 4o 10. the sequence1(—1)",n=0,1,... diverges as — +o

C.3 Finite Geometric Series
516 Definition A geometric sequena® progressioris a sequence of the form
a, ar,ar?, ar®, ar?,.. .,

that is, every term is produced from the preceding one byipiyilhg a fixed number. The numbeis called thecommon
ratio.

1. Trivially, if a= 0, then every term of the progressiorisa rather uninteresting case.
2. If ar # 0, then the common ratio can be found by dividing any term bintiéch immediately precedes it.

3. The n-th term of the progression
a, ar,ar’, ar®, ar®,...,

is ar"—1,

517 Example Find the 35-th term of the geometric progression

1 5 8
75 BV A
Solution: » The common ratio is-2 + % = —2v/2. Hence the5-th term is
1 34 _ 251 _
ﬁ(—2\/§) == 11258999068426242. «

518 Example The fourth term of a geometric progression is 24 and its gbvenm is 192 Find its second term.
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Solution: » We are given that ar= 24 and af = 192 for some a and r. Clearly, a# 0, and so we find

6
£:r3:£2:8
ar3 24 ’

whence = 2. Now, §2)2 = 24, giving a= 3. The second term is thus ar 6. <

519 Example Find the sum

2422423424 . 4 2%

Estimate (without a calculator!) how big this sum is.

Solution: » Let
S=2422428 424 4 2%

Observe that the common ratio2s We multiply S b and notice that every term, with the exception of the last,
appearing on this new sum also appears on the first sum. WeastiBt from2S:

S = 2 + 22 4+ 28 4 22 4 . 4 2%
2S = 22 + 2 + 22 + . 4 2% 4 2
2S—-S = —242%

Thus S= 25— 2. To estimate this sum observe tB4t = 1024~ 10°. Therefore
255 — (210)6.(25) = 32(219)6 ~ 32(10%)° = 32x 1018 =3.2 x 10'°.
The exact answer (obtained via Maf@®), is
255 2 = 36893488147419103230
My pocket calculator yield8.689348815« 10'°. Our estimate gives the right order of decimal placas.

1. If a chess player is paii2 for the first square of a chess boaf# for the second squar&g for the third
square, etc., after reaching tigzl-th square he would be paBB689348814741910323Query: After
which square is his total more th&100000Q

2. From the above example, the sum of a geometric progregsthmpositive terms and common raticr 1
grows rather fast rather quickly.

520 Example Sum

2 2 2 2
3+32+33+ --—|—@.
Solution: » Put
s=242,2,., 2
3 3 39
Then
1 2 2 2 2
§S_ 32 T3 33 + 34+ + 3100
Subtracting,

It follows that
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The sum of the first two terms of the series in exaraplds %—i— 3—22 = g, which, though close tis not as
close as the sum of the fii89 terms. A geometric progression with positive terms and commatioO <r < 1

has a sum that grows rather slowly.

To close this section we remark that the approximatith=21000 is a useful one. It is nowadays used in computer lingo,

where a kilobyte is 1024 bytes—“kilo” is a Greek prefix m

eanithousand.”

521 Example Without using a calculator, determine which number is larg&° or 3°%°.

Solution: » The ideais to find a power @close to a power 63. One readily sees th& = 8 < 9 = 32. Now,

raising both sides to th250-th power,

2750: (23)250<

The inequality just obtained is completely useless, i

However, we may go around this with a similar idea.

(32) 250 _ 3500'

t doésnswer the question addressed in the problem.
Obsere¢3hc 81/2: for, if 9 > 81/2, squaring both sides

we would obtair81 > 128 a contradiction. Raising < 8v/2 to the250-th power we obtain
3500 _ (32)250 - (g,/2)250 — 2875 _ 2900

whence2®@Pis greater. <

You couldn’t solve exampl&? 1 using most pockets calculators and the mathematical tamishave at

your disposal (unless you wereally clever!). Later in
logarithms.

Homework

C.3.1 Problem Find the 17-th term of the geometric sequence

2 2 2
~ 317 316 RIS

C.3.2 Problem The 6-th term of a geometric progression is 20 &
the 10-th is 320. Find the absolute value of its third term.

C.3.3 Problem Find the sum of the following geometric series.

1.
143+ 433 4...43%9

2. Ify£1,
1+y+y +y3 4+ -yt
3. Ify£1,
1oy +y? =y 4y -y -y oyt
4. lfy#1,

Ty Y HyP 4o yt00

C.3.4 Problem A colony of amoebasis put in a glass at 2 : 00
PM. One second later each amoeba divides in two. The nextde
the present generation divides in two again, etc.. Afterraimaute,
the glass is full. When was the glass half-full?

C.3.5 Problem Without using a calculator: which number is

this chapter we will see how to solve thistiem using

C.3.6 Problem In this problem you may use a calculator. Legend
says that the inventor of the game of chess asked the Emgeror o
China to place a grain of wheat on the first square of the cbasdb
2 on the second square, 4 on the third square, 8 on the fourdhesq
tc.. (1) How many grains of wheat are to be put on the lastl{p4-
r'gquare’?, (2) How many grains, total, are needed in ordetitfysa
the greedy inventor?, (3) Given that 15 grains of wheat weigh
approximately one gramme, what is the approximate weighkgij
of wheat needed?, (4) Given that the annual production ofiilse
350 million tonnes, how many years, approximately, are edéa
order to satisfy the inventor (assume that production ofavktays
constantj.

C.3.7 Problem Prove that

99. 5101 5101_ 1

14+2.54+3.52+4.5%4...499.5100 _
+2.5+ + 4ot y 6

C.3.8 Problem Shew that

EA X4 X2 X023 = (1) (1452) (1) - - (14 x28) (14-x°12).

C.3.9 Problem Prove that

1 x+32 430 = (64 T+ 1) (8450 +1) 6 +53 +1) 0P +-x+ 1).

greater 30 or 3(%?

8Why are amoebas bad mathematicians? Because they divideltiplyh
9 Depending on your ethnic preference, the ruler in this mwbiight be

an Indian maharajah or a Persian shah, but nev@narican businessman!!!
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C.4 Infinite Geometric Series

522 Definition Let
ss=a-+ar4ar’+---4ar"!

be the sequence of partial sums of a geometric progressiersaythat thénfinite geometric sum
atartar’4---+a" tqar"+ ..

convergeso a finite numbesif |s, —s| — 0 asn — 4. We say that infinite sum
atar+ar’+.--+ar"trar ..

divergedf there is no finite number to which the sequence of partiaisaonverges.
523 Lemma If 0 < a< 1thena” — 0asn— 0.

Proof: Observe that by multiplying through by a we obtain
O<a<l— O<a’<a— O0<a®<a® = ...

and so

n—1

O<..<d<a l<. . <al<a?<a<i,

that is, the sequence is decreasing and bounded. By Théarathe sequence converges to its infimum
info>pd” =0. 0

524 Theorem Leta, ar, ar?, ... with |r| # 1, be a geometric progression. Then

1. 1 I e sun Of |tS firSh terms iS
2 n—-1 a—ar"
a. ar ar M a.r —_—

1-r’
2. If Ir| < 1, the infinite sum converges to
a
atar+ar’+. .. =—,
1-r
3. If |r| > 1, the infinite sum diverges.
Proof: Put
S=a+tartar’+-.-+ar"
Then
rS=ar+ar’+ar’+---+ar".
Subtracting,

S—-rS=S(1-r)=a—ar".
Sincelr| # 1 we may divide both sides of the preceding equality in ordett@in

_a—ar"

S 1—-r’

proving the first statement of the theorem.

Now, if|r| < 1, then|r|" — 0 as n— +oo by virtue of Lemm&23 and ifr| > 1, then|r|" — + as n— +oo.
The second and third statements of the theorem follow frienth

We have thus created a dichotomy amongst infinite geomeiris sif their common ratio is smaller thdn
in absolute value, the infinite geometric sum convergesei@iise, the sum diverges.
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525 Example Find the sum of the infinite geometric series

3 3 3 3
B 55 5

Solution: » We have a= 3,r = —1 in Theoren24 Therefore

3 3 3 3

B e s T

3

=
- (-5 5
<

526 Example Find the rational number which is equivalent to the repegatiecimal 02345.

Solution: »
23 45 45 23 {3 23 1 129

0Pt TIe T T @ T L T 1007 220 550

<
The geometric series above did not start till the second tefrthe sum.

527 Example A celestial camel is originally at the poif®,0) on the Cartesian Plane. The camel is told by a Djinn that if it
wanders 1 unit right, A2 unit up, ¥4 unit left, 1/8 unit down, 116 unit right, and so, ad infinitum, then it will find a houris.
What are the coordinate points of the houris?

Solution: » Let the coordinates of the houris I0%,Y). Then

ol 1t 1.1 4
4R C1-(-1) %
and L
1 1 1 1 5 2
Y=S-mtm -y =t =&
2 22 26 2 1-(-3) 5
<
528 Example What is wrong with the statement
1
142422428 4+... = ——_ =17
+2+2°4+2°+ 15

Notice that the sinistral side is positive and the dextrd $§ negative.

Solution: » The geometric sum diverges, as the common &itio> 1, so we may not apply the formula for an
infinite geometric sum. There is an interpretation (calbedvergence in the sense of Apelhere statements
like the one above do make sense.

Homework
C.4.1 Problem Find the sum of the given infinite geometric serigs. 3.
3+2V2 3-2V2
1. +1+ 4
8 5 3-2V2 3+2V2
e R
5 8 4,
2 V3, V2 vz,
0.9+ 0.03+0.001+ - V2 3 9/3
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1+

vB-1 vVB-1
2 +< 2

)Z...

1+104+ 10 +103+---

1-x4x% -3+, X <1

V3 V3

V3+1 343

R A A

Xi - -
y+ X x2+x3

Y

x4

with |y| < [x].

C.4.2 Problem Give rational numbers (that is, the quotient of two
integers), equivalent to the repeating decimals below.

1.

S

03

06

025
21235
0428571

C.4.3 Problem Give an example of an infinite series with all
positive terms, adding to 666.
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D.1 Multiple-Choice

10.

D.1.1 Real Numbers

. The infinite repeating decimall02102 .. = 0.102 as a quotient of two integers is

15019 34 51 101
@ 147098 ® 333 500 999 (E) none of these

. Express the infinite repeating decimad®4242 .. = 0.42 as a fraction.

é—é e ;—g 115 % @ none of these

. Write the infinite repeating decimal as a fractiort 21212 .. = 0.12.

% e 235 @ % ;—gg @ none of these

. Letae Q andb € R\ Q. How many of the following ar@ecessarilyrrational numbers?

l:a+b, Il:ab, ll:14+a+b, IV:1+a®+b?

@ exactly one exactly two @ exactly three @ all four @ none

. Leta e Z. How many of the following ar@ecessarilytrue?
VA ER\Q,  I1:Vaez, Il %IaI €Q, IV:V/1+a2eR\Q

@ exactly one exactly two @ exactly three @ all four @ none

D.1.2 Sets on the Line

=320 N [1;3 =

®]_3;1[ ]_3?1] @ (12 @]—3;3] @ none of these

. L . . 2
. Determine the set of all real numbersatisfying the |nequallt)2((+—1 <1

@]1;+oo[ ]—2;1[ @]—oo;l[ @]—oo;l] @ none of these

.]-3;8 N [-8-3 =

@‘[_3} @ @]—&8] @]—8;8[ @ none of these

. Write as a single interva)-2;4] U [1;5].

@ 1-2;1] ]1;4[ @ 1-2;5] @ [1;4) @ none of these
Write as a single interval the following interval diféerce: |-5;2 \ [-3;3.

@]—5;—3[ [-5;-3] @ [-5;-3] @]—5;—3] @ none of these

211
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11, 1 2L S o thenxe

X(x—1)

J =0, 0] U [1; 400
[=1;0[U]L;+oof
[~L UL 4o
]_

0;0[U]0; 1]

none of these

@@@@@

12. Ifi—lglthenxe
-1 XX

®x

D.1.3 Absolute Values

Situation: Consider the absolute value expressiofx+ 2| + x| — x. Problems13through

13. Write|x+ 2|+ x| — x without absolute values in the intenjaleo; —2].

(A) x-2 (®)x+2 (©) -3-2 (D)2-x
14. Write|x+ 2|+ |x| — X without absolute values in the interal2; 0].

(A) —x-2 (B)x+2 (©)-3-2 (D)2-x
15. Write |x+ 2|+ x| — x without absolute values in the interjak +oo|.

(A) x-2 (®)x+2 (©)-3-2 (D)2-x

16. If [x+ 2|+ |x| —x= 2, thenx €

OF (-2} (©1-20 ©) {0

17. If [x+2|+|x —x= 3, thenx e

(A) (0.1 (®) {10} © 111 ©) -1y
18. ||V2—2|-2|=

(»)v2 ®)vz-4 (©)4-v2 (®)1+v2
19. If X+ 1| =4 then

(A)xe(-5.3) (B)xe (4.4 (©xe(-35 (D)xe {-5.5)
20. If -1 <x< 1lthenx+1|—|x—1|=

(A)2 () -2 (©) _2x
21. The sef{x € R : |x+ 1] < 4} is which of the following intervals?

(&)1 ®)1-53 ©1-3s (@)-14
22. If X2 —2x| = 1 then
xe{1-v2,1+v2,2}
xe{1-v2,1+v2,—1}
xe {—v2,v/2}
xe{1-v2,1+v21}

none of these

@E@EE®

|—o0:—2]U]0; 1] ®)1-21 (©) 20U+ (D) ]—ew;+oo[

@ none of these

refer to it.

@ none of these
@ none of these
@ none of these

@ none of these
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Situation: Consider the absolute value expressiofx| + [Xx— 2|. Problems23through 24 refer to it.
23. Which of the following assertions is true?

2x—2  ifx€]—;0]
W M+x-2=1 2 fxe [0;2

—2X+2 ifxe[2;40]
—2X+2 ifx€]—o;0]
B+ k-2=1 2 fxe [0;2

2x—2  ifxe 2,40
—2X+2 ifxe]—o0;-2]
©X+x-2=1 2 it xe [-2;0
2x—2  ifxe[0;+]
—2X+2 ifx€]— ;0]
@ K+x-2={ 2 itxe[0:2

2x—2  ifxe 2,40

@ none of these

24. If |x|+|x—2| =3, thenx €

@@ [0;2] @{%,—g} @{—%,g} @noneofthese

D.1.4 Sets on the Plane.

25. Find the distance betweéh —1) and(—1,1).

@ 0 V2 @ 2 @ 2V/2 @ none of these
26. Find the distance betweem —a) and(1,1).

@x/ 1-a)? ‘\/1 a)+(1+a)? @2\/(1—51)2 @a\/i+2 @noneofthese
27. What is the distance between the poi@atd) and(—a, —b)?

@ 0 VaZ+b2 @ V22 + 2b2 @ 2V/a2 + ? @ none of these
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28. Which one of the following graphs best represents the set

{(xy) eR?: X% +y? <4 x2>1}7?

Notice that there are four graphs, but five choices.

A
-

Figure D.1: A Figure D.2: B Figure D.3: C

A OL ©c¢ OL

29. Which one of the following graphs best represents the set
{(xy) €eR?Z:X%+y? > 1, (x—1)2+y?<1}?

Notice that there are four graphs, but five choices.

Figure D.4: D

@ none of these

S

/d

D &

Figure D.5: A Figure D.6: B Figure D.7: C

€

1

Figure D.8: D

@ none of these
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30. Which one of the following graphs best represents the set
{(xy) eR?:X°+y* <16, y>-x}?

Notice that there are four graphs, but five choices.

LA

Figure D.9: A Figure D.10: B Figure D.11: C Figure D.12: D

@A B @ C @ D @ none of these

31. Which of the following graphs represents the set

{(xy) eR?: X% +y> <4, |x>1}?

Figure D.13: A Figure D.14: B Figure D.15: C Figure D.16: D

@A B @ C @ D @ none of these
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32. Which of the following graphs represents the set

{(xy) eR?:0<x<2, 3<y<4}?

| ] /
/
Figure D.17: A Figure D.18: B Figure D.19: C Figure D.20: D
@A B @ C @ D @ none of these

D.1.5 Lines

33. The lines with equatiorex+ by= c anddx+ ey= f are perpendicular, wheeeb, c,d, e, f are non-zero constants.
Which of the following must be true?

@ad—bezo ad+be: -1 @ae+bd:—1 @ae+bd:0 @ad+be:0

34. Ifa,b are non-zero real constants, find the equation of the lingipgshrough(a, b) and parallel to the line

XY
L:o—2=1

@y:gx—a y:—%x—b @y:%m—a @y:gx @noneofthese

35. If a,b are non-zero real constants, find the equation of the linsipgithrough(a, b) and perpendicular to the line

A
L:Z-p=1

a
@y:_gx+b+%2 y:—%x—b @y:gx—l—a @y:gx+a @noneofthese

36. If the pointg1,1), (2,3), and(4,a) are on the same line, find the valuesof

@ 7 -7 @ 6 @ 2 @ none of these

37. IfthelinesL: ax—2y=candl’: by—x=aare parallel, then
a 1 a 1 a a
®§:B 5:—5 ©§:b @Ez_b @noneofthese
38. IfthelinesL: ax—2y=candl’: by—x=aare perpendicular, then
a 1 a 1 a a
®§:5 z:—B ©§:b @E:—b @noneofthese
39. Find the equation of the line parallelyte= mx+ k and passing througfi, 1).

@y:mx+1 y:mx+1—m @y:mx+m—1 @y:mx @noneofthese
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40. Find the equation of the line perpendiculayte mx-+ k and passing througi, 1).

O
y:—%+1+%‘
O+

Problems41 through 44 refer to the two points (a, —a) and (1, 1).

41. Find the slope of the line joinin@g, —a) and(1,1).
l-a l+a l1+a
1ra 1a @ a1 @ -1 @ none of these
42. Find the equation of the line passing throygh-a) and(1,1).
@ _(1l+a Xt 2a
Y=\1== 1-a
_(1l+a X
Y=\1-a
l+a 2a
@y— (1—a) R
®©y-(233)r
Y=\at1
@ none of these

43. Find the equation of the line passing thro@f0) and parallel to the line passing throu@h—a) and(1,1).
@ _(1l+a Xt 2a
y=\1=2 1-a
_(1l+a «
y=\1=2
l+a 2a
@y— (1—a) *tac1
©r- (%)~
Y=\a+1
44. Find the equation of the line passing throg@}0) and perpendicular to the line passing throggh-a) and(1,1).
l1-a
@ y= ( 1+ a) X
_(1l+a «
y=\1=2
l1+a 2a
@y— (1—a) e
©r- (%)~
Y=\a+1
none of these

Problems!5through48refer to the following. For a given real parameteconsider the family of linek, given by
Lu: (u+1)y+(u—2)x=u.

45. For which value ofiis L horizontal?

@u:—l u:2 @u:% @u:% @noneofthese
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46. For which value ofiis L, vertical? L )

@u:—l u:2 @u:é @u:é @noneofthese
47. For which value ofiis L, parallel to the lingy = 2x — 1?

2

@u:o u:2 @u:S @u:é @noneofthese

48. For which value ofiis L, perpendicular to the ling=2x—1?
1
@u:—S u:O @u:—é @u:S @noneofthese
For a real number parameteconsider the ling, given by the equation
Ly: (u—2)y=(u+21)x+u.

Questionsi9to 54 refer toLy,.
49. For which value ofi doesL, pass through the poirit-1,1)?

A)l B) -1 C)2 D)3 E) none of these
50. For which value ofi is L parallel to thex-axis?

A) -2 B) 2 C)-1 D)1 E) none of these
51. For which value ofi is L parallel to they-axis?

A) -2 B) 2 C)-1 D)1 E) none of these
52. For which value ofi is L, parallel to the line —y =27

A)5 B) 0 C)-3 D) = E) none of these
53. For which value ofi is L, perpendicular to the linex2-y = 2?

1 1

A)5 B) O C) 3 D) ~3 E) none of these
54. Which of the following points is on every lirig, regardless the value af?

A) (-1,2) B) (2,-1) C)(3,-%) D) (-4,3) E) none of these
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D.1.6 Absolute Value Curves

Situation: Problemss5and56 refer to the curve y= [x— 2| + [x+ 1.

55. Writey = [x— 2|+ |x+ 1] without absolute values.

—2x+1
Ay={ 3

2x—1

—2X+3

2Xx+3

@ none of these

56. Which graph most resembles the cuyve |[x— 2| + [x+ 1|?

if x< -1
if —1<x<2

if x>2

ifx<-1
if —1<x<2

if x>2

ifx< -1
if —1<x<2

if x>2

if x< -1
if —1<x<2

if x>2

T

\ |/

S N
Figure D.21: A Figure D.22: B Figure D.23: C Figure D.24: D

®

©

©

@ none of these
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57. Which graph most resembles the cuyve |[x— 2| — |x+ 1|?

Figure D.25: A Figure D.26: B Figure D.27: C Figure D.28: D

@ @ @ @ none of these

D.1.7 Circles and Semicircles

58. The pointA(1,2) lies on the circles : (x+ 1)+ (y— 1)? = 5. Which of the following points is diametrically opposite
toAon%?

@ (-1,-2) (=3,0 @ (0,3) @ (0,v5+1) @ none of these

59. A circle has a diameter with endpointg a2, 3) and(6,5). Find its equation.
(A) (x+2?+(y-37 =68
(x—4)%+ (y—8)2 =61
(©) x—22+(y-42=17
(D) (x— 22+ (y-4? = VI7

@ none of these

60. Which figure represents the circle with equation
X2 —2X+y*+6y=—67?

Again, notice that there are four figures, but five choices.

1 ] , ,

T ¢ o & I T

+ s ol e

1 i (b & ;
RS W NS N AR EEEER 4 SRR EEEEN EEEEEEEEE b oSN
I BB RS SR O I L e O I L e O I L e

.};. T T T

T 1 1 1

Figure D.29: A Figure D.30: B Figure D.31: C Figure D.32: D

@A B @ C @ D @ none of these
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61. Which figure represents the semicircle with equation

X=1—+/-y2—6y—5?

Again, notice that there are four figures, but five choices.

\?\
INLT T T T

\\\\\\\‘\\44\\\\\\\\

I P SN
\‘\

Figure D.33: A Figure D.34: B Figure D.35: C

®)a ®s ©c OL
62. Find the equation of the circle with centrg atl, 2) and passing througl®, 1).
(x—1)2+(y+2)2=10
(x+1)2+(y-2?=2
(x+1)2+(y—2)?=10
X—1)2+(y+2)2=2

none of these

@@@@@

63. Leta andb be real constants. Find the centre and the radius of theaiith equation
X% 4 2ax+y? — 4by=1.

@Centre (—a,2b), Radius:v/a2 + 4b?
‘ Centre (a,2b), Radius:v/1 + a2+ 4b2
@ Centre:(a, —2b), Radius:v/1+ a2+ 4b2
@ Centre:(—a, 2b), Radius:v/1+ a2+ 4b2

none of these

@

64. A circle has a diameter with endpoidtth, —a) andB(—b, a). Find its equation.
@ (x—b)?+ (y+a)? = a®+b?
(Xx—b)2+ (y—a)2 = a2+ b?

X2 4+y? =a?+b?

©
@x2+y =VaZ+h?
®

none of these

R EEEEEE A SR

Figure D.36: D

@ none of these




222 Appendix D

65. Find the centr€ and the radiuf of the circle with equation? + y? = 2ax— b.

(A)c(0,0,R=v2a—b

C(a,—g) ,R= \/a2+%2
(©)c(-a.0.R=vaZ b
(D)c(a0).R=vaZ—b

@ none of these

D.1.8 Functions: Definition

66. Which one of the the following represents a function?

Figure D.37: A Figure D.38: B Figure D.39: C Figure D.40: D

@A B @ C @ D @ none of these
67. How many functions are there from the §atb, c} to the set{1,2}?

@ 9 8 @ 6 @ 1 @ none of these

D.1.9 Evaluation of Formulae

Figure shews a functional curwe= f(x), and refers to problen&3 to

Figure D.41: Problems8to

68. The domain of the functional curve in figure4 lis
@ none of these

(A)-5:5 [-5;-1[U]2;5] ©-s-guzg  (D)[-5-1u[s
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69. The image of the functional curve in figure4 lis

@[—5;5] [-5:—3uj2;5] ©-s-3u2s  (D)[-5-3uj25
70. f(3

@1 (®2 ©s OF
71. f is

@an even function increasing @ an odd function @ decreasing

Problems/2 through72 refer to the functional curve in figuiie.42.

-09 8 7 6 5 4 -3 -2 -10 1 2 3 4 5 6 7 8 9 10

Figure D.42: Problems2 through72.

72. The domain of the functiofiis
A)[-7:5 [-7:-2[U] - 25 (©)]-7:5] (D)]-7:5

73. The image of the functiohis

(A -3:4 ~3:4\ {2} (©1-39 (D) [-3;2(]2;5

74. 1(2) =
®)2 ®s ©4 ©s
75. f(-2) =

@2 .3 @ 5 @ undefined
76. Letf(x) = 1+x-+x% Whatisf(0)+ f(1) + f(2

(A)10 (®)11 @ 7 @3
77. Letf : R — R with the assignment rube— (x— (x— (x— 1)?)?)2. Find f(2

OF (8)4 @ 16 @o
78. Letf(x) = % Find f(2).

®o ®; ©3 ®;
79. Consider a functiofi : R — R such thatf( )—9x Find f (x).

®3x g @Q @27x

(E) none of these

(@ none of these

@ none of these
@ none of these
@ none of these
@ none of these

@ none of these
@ none of these
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80. Considerf (x) = :—; for x #£ 0. How many of the following assertions are necessarilyarue
: f(ab) = (3= 1@ _ (N _ L
| : f(ab) = f(a)f(b), Il .f(b)_ e @D =@+ (), IV.f(a) =@

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

@ exactly one exactly two @ exactly three @ all four @ none of them

D.1.10 Algebra of Functions

Letf(x) = 2x+ 1. Find(f o f o f)(1).

@ 8 3 @ 9 @ 15 @ none of these

Letf(x) =x—2 andg(x) = 2x+ 1. Find
(fog)(1)+(go f)(2).

@ -1 1 @ 0 @ 2 @ none of these

Letf : R — R be such thaf (2x— 1) = x+ 1. Find f (—3).

@—2 1 @—1 @O @ none of these

Letf(x) =x+1. Whatis(fo---of)(x)?
——
100 fs

@ x4+ 100 x1004 1 @ x1904+ 100 @ x+99 @ none of these

Letf : R — R satisfy f(1—x) = x— 2. Find f (X).
@—1—x x+1 @x—l @1—x @noneofthese

Questions36 through90 refer to the assignment rules given b{x) = x—xl andg(x) =1—x.

Determind f o g)(2).
®o ®-2 = ©
Determindgo f)(2).

®o ®-2 -1 ©
Determindgf)(2).

(Ao -2 =

Determindg+ f)(2).

@ none of these
(M1 ® -2 -1 ©

@ none of these
If (f +9)(x) = (go f)(x) thenx €

@ (=11} {-3,0} @ {-3,3} @ {0,3} @ none of these

Problems27 through101refer to the functiong andg with

@ none of these
@ none of these

NI =

NI =

Q

NI =

2 X—2 2X—2

f(x) = 2% 9x) = — h(x) =

f(—1) =

@4 % @ 1 @ g @ none of these




Multiple-Choice

225

92. Findgl;gh)(—l).
5
93. Findg7+g+h)(—1). ,
6 §
94. (fog)(x)
a(x)

@ f(x)
) g(x)

(
95. (goh)(x)
f(
96. (ho f)(x) =
f

®
O g(x)

wIinN
NI w

(©hx
(©hx)

X

@x

Problems

97. Find(fg)(2).

through

(A)a (®)2 (©)v5+v3 (o) vis
98. Find(f +g)(2).

(R4 (B)2 (©+v5+v3 (®vis
99. Find(f og)(2).

(A)a (®)2 (©)v5+v3 (o) vis
100. Find(go )(2).

(R4 (B)2 (©v5+v3 (®vis

101. Find(go f ogo fogo f ogo f)(2).
oL ®:2 ©vs
102. A functionf : R — R satisfiesf (2x) = x?. Find (f o f)(x).
x* x4 x*
Ok 7 16 &
D.1.11 Domain of Definition of a Formula
VX2 —1

103. What is the natural domain of definition of the assignimele x — |x7—1?
Ar-uy ()] - -PUuLi+e|

()] @i ~1ULi+oo]
104. What is the natural domain of definition of the assignmele x —

Vx2,
O ®r\{2) (©)-wi-2

R\ {£1}

¥3
(D) 21+

refer to the functiong andg with f(x) = vx2+ 1 andg(x) = vx2 — 1.

@ none of these

@ none of these
@ none of these
@ none of these
@ none of these

@ none of these
@ none of these
@ none of these

@ none of these
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Questions.05throughl08are related.

105. Consider the assignment rule- iii Find its domain of definition.

AR\ {1)
11
©Or\{-11
@r\{-1)
@ none of these

106. Consider the assignment rule- ,/%):. Find its domain of definition.

(A)1-eo -1 U J1+oo]

107. Consider the assignment rale> +/1+ x+ +/1—x. Find its domain of definition.

(A)1-eo =1 U J1+oo]
11

108. Consider the assignment rule- 4/ %): — 1. Find its domain of definition.

®)o:1

0:1]

© v

® oy

@ none of these

109. What is the domain of definition of the formula- v1—x2 ?

@1y Ol ©1-= Olas
110. Find the natural domain of definition - /—x-++/1+ X.

® 10 0;1 ©-11 @r\[-11

X
X2 —X—6

W23 @zl (©1-20usi+el  (D)]-3i+el

111. Find the natural domain of definition f—

@ none of these
@ none of these

@ none of these
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D.1.12 Piecewise-defined Functions

)—1(+1 if X €] — c0; —1]

112. Which one most resembles the grapgef f(x) = ¢ 1-x2 ifxe]—1;1] 2
1y [1;4-00]
X

Figure D.43: A Figure D.44: B Figure D.45: C Figure D.46: D

@A B @ C @ D @ none of these

(x+3)2—5 ifx€]—o0;—1]

113. Which one most resembles the graph gf= f(x) = ¢ 3 if xe]—1;1] ?

5—(x=3)? [L+oo]

Figure D.47: A Figure D.48: B Figure D.49: C Figure D.50: D

@A B @ C @ D @ none of these

D.1.13 Parity of Functions

114. Which one of the following functionf: R — R with the assignment rules given below, represents an evenifun?
@f(x):x|x| f(x):]x—x2] @f(x):xz—x4+1—x QD)f(x):|x|3 @noneofthese

115. How many of the following are assignment rules of evercfions?

lrax)=x%  H:bx)=x%x, Hl:c(x)=x—x,  IV:d(x)=|x+1]

@ exactly one exactly two @ exactly three @ all four @ none
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116. Letf be an odd function and lgtbe an even function, both with the same domain. How many ofche@ving
functions are necessarily even?

[:x— f(X)g(x) I :x— f(x)+g(x) I x— (F(X))%+ (g(x))? IV :x— f(x)|g(x)]

@ exactly one exactly two @ exactly three @ all four @ none of them

117. Letf be an even function and Igtbe an odd function, withi (2) = 3 andg(2) = 5. Find the value of

f(=2)+9(=2) + (fg)(-2).
@ -17 23 @ 13 @ 7 @ none of these

118. Letf be an even function and Igtbe an odd function, both defined over all reals. How many ofdiewing
functions are necessarily even?

[:x—= (f4g)(x) :ix— (fog)(x) Hl :x—(gof)(X) IV :ix— [f(X)]+]g(X)|

@ none exactly one @ exactly two @ exactly three @ all four

119. Letf be an odd function defined over all real numbers. How manyefdhowing are necessarily even?
L:2f;  W:|fl;  W:f% IV:ifof.

@ Exactly one Exactly two @ Exactly three @ All four @ none is even

120. Letf be an odd function such th&f—a) = b and letg be an even function such thgfc) = a. Whatis(f og)(—c)?

@b —b @—a @a @ none of these

D.1.14 Transformations of Graphs

-1 . . . . . .
121. The curve = §+—1 experiences the following successive transformationsa feflexion about thg axis, (2) a
translation 1 unit down, (3) a reflexion about thaxis. Find the equation of the resulting curve.

@y:%( y:z—ix CC)y:XTZ1 QDDy:X%2 @noneofthese

122. What is the equation of the resulting curve ajterx® — x has been, successively, translated one unit up and reflected
about they-axis?

@y:xz—erl y=x2+x+1 @y:—x2+x—1 @y=(x+1)2—x—1 @noneofthese

. . . 1 . .
123. What is the equation of the curve symmetric to the cyr#eg + 1 with respect to the ling=0?

@y:—x—13+1 ‘y——— @y_rll)?» @y (x— 1)1/3 @y = x1/3

124. What is the equation of the resulting curve after theeue= x|x+ 1| has been successively translated one unit right
and reflected about theaxis?

@y: (x—1)|x] y=—(x+ 1)|x] @y:—x|x| @y:—x|x|—1 @ none of these

125. The curveg = |x| + x undergoes the following successive transformations: {dgreslation 1 unit down, (2) a reflexion
about they-axis, (3) a translation 2 units right. Find the equationhaf tesulting curve.

=|x—2|—x+1 y:|x—2|—x—1 @y:|x+2|—x—3 @y:|x—2|+x—1 @noneofthese
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There are six graphs shewn below. The first graph is that ddriigenal curvey = f(x), and the other five are various
transformations of the original graph. You are to match amelph letter below with the appropriate equation i
through130below.

Figure D.51y = f(x). Figure D.52: A. Figure D.53: B.

Figure D.54: C. Figure D.55: D. Figure D.56: E.

126.y=f(—x) is

®
®
©
©
@

127.y=—f(x) is

128.y=f(|x|) is

129. y=|f(x)| is

130.y=f(—|x|) is
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There are six graphs shewn below. The first graph is that afitigtnal curvef : R — R, wheref (x) = ¥, and the
other five are various transformations of the original graydu are to match each graph letter below with the
appropriate equation in31throughl35below.

—
Figure D.57:y = f(x). Figure D.58: A. Figure D.59: B.
|
|
| | ———
h‘__
' —
|
|
Figure D.60: C. Figure D.61: D. Figure D.62: E.

131 y=f(x)+1is

® © © ®

132. y=f"1(x)is

® © © ®

133.y=—f(x)+1is

® © © ®

134. y=|f(x)|is

135.y=f(—x) is

® © © ®
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D.1.15 Quadratic Functions

136. Find the vertex of the parabola with equatjoa x* — 6x+ 1.
(A)3.10 (—3,10) (©(-3.-8 (®) -8 (E) none of these

137. Find the equation of the parabola whose axis of symnepgrallel to the/-axis, passes throudR, 1), and has vertex
at(—1,2).
@x: 3(y—232-1

(B)y=—9(x+1)2+2

138. Leta, b,c be real constants. Find the vertex of the paralgetacx’ + 2bx+ a.
b 3b? b b? b b? b b?
@ <—%,a— I) <—E,a— €> @ <—E,a+€> @ (E,a+3?> @noneofthese
139. A parabola has vertex t, 2), symmetry axis parallel to theaxis, and passes through 1,0). Find its equation.

(A)x= —LZZ)ZH
(B)x=-2(y-2?+1
@y:_(x—21)2+2
(D)y=—2(x-1?2+2
(E) none of these

140. The graph in figur®.63 below belongs to a curve with equation of the foyr A(x+ 1)? + 4. FindA.

G h b N B o PN W ~a

@A:% A:—l @A:—% @A:—Z @noneofthese
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Problemsl41throughl43refer to the quadratic functial: R — R with assignment rule given by

q(x) = x* — 6x+5.

141. How many of the following assertions is (are) true?

(a) gis convex.

(b) qis invertible overR.

(c) the graphy has verteX—3,—4).

(d) the graph ofy hasy-intercept(0,5) andx-intercept{ —1,0) and(5,0).

@ none exactly one @ exactly two @ exactly three @ all four

142. Which one most resembles the graply®Notice that there are four graphs but five choices.

A
\/ \/ M

Figure D.64: A Figure D.65: B Figure D.66: C Figure D.67: D

@A B @ C @ D @ none of these

143. Which one most resembles the grapl efq(|x|)? Notice that there are four graphs but five choices.

|l
I

VIV

Figure D.68: A Figure D.69: B Figure D.70: C Figure D.71: D

@A B @ C @ D @ none of these




Multiple-Choice

233

144. Find the equation of the parabola shewn below.
coordinates.

You msyras that the points marked with a dot have integer

)

m;;
o 4
g

S & A ob o n e s
e
*
. B
N B
w
g B

Figure D.72: Problem

y: —2(x+2)2+1
@y: (x+2)2+1
@y: —(x+2)2+1
@none of these

D.1.16 Injections and Surjections

145. How many injective functions are there from the{seb, c} to the set{1,2}?

OL OF

@ 8 @ 0 @ none of these

146. How many surjective functions are there from the{agh, c} to the se{1,2}?

@ 0 6 @ 9 @ 8 @ none of these

147. How many invertible functions are there from the{seb, c} to the set{1,2}?

@ 0 6 @ 9 @ 8 @ none of these

D.1.17 Inversion of Functions

. . . 1 . .
148. What is the equation of the curve symmetric to the cyr#eg + 1 with respect to the ling=x?

1 1 1 1 1
@y:—g+l y:—g—l @y:(x_l)s @y:(x_l)m <E>y:(l—x)1/3
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Figure shews a functional curve

f:[-59—[-36, y=f(x),
and refers to problemis19to
y
X
Figure D.73: Problem$49to

149. f(-2)+f(2) =

(B

150. f(—3) belongs to the interval
(®-10 B2y

®3

()

(©)2
©-3-2
(©)2
(©)e

153. The graph of 1is
y

@none of these
@ none of these
@none of these

@undefined @none of these

Figure D.74: A

OF OF ©c

154. Letf(x) x—s—il Findg(x) such that f o g)(x) = x.

W=7  @®w-1

Figure D.75: B

155. Letf(x) = 1X+21X Thenf-1(x) =
1-—x 1+x x—1
®1+2x 1—2x ©1+2x

O

X

Figure D.76: C

Figure D.77: D

@none of these
@ none of these

(©p
@ o0 =-1~

1-—x
1-2x

@ @ none of these
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Problemsl56throughl159refer to the functiorf with assignment rule

x 10

373 if xe [-5;-2]
y=1(Xx) =4 2x if xe [-2;2]
x 10 . i
3t3 if x€]2;5
156. Which one most resembles the grapli ®f
Figure D.78: A Figure D.79: B Figure D.80: C Figure D.81: D

@A B @ C @ D @ none of these

157. Find the exact value ¢f o f)(2).
14
@4 e 3 @ 8 @ 3 @ none of these

158. Which one could not possibly be a possible valud far--- o f)(a), wheren is a positive integer ana € [—5;5]?.
——

n compositions

@0 -5 @ 5 @ 6 @ none of these

159. Which one most resembles the grapli of?

Figure D.82: A Figure D.83: B Figure D.84: C Figure D.85: D

@A B @ c @ D @ none of these

x— 2 andg(x) = 2x+ 1. Find(fLog1)(x).

):
@izl i23 @2)(—3 @2x—1 @noneofthese
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161. Which of the following graphs represents an invertiblection?

\/ ~ |

e

\

./

Figure D.86: A Figure D.87: B Figure D.88: C

oL ®s ©c¢
162. Letf(x) = (5 - 1)3+2. Thenf~1(x) =
(A)3dxT2-3 (B)3vx—2-3 (©)3tx—2+3

163. Letf(x) — %‘1 Find f(x).

X+1 X x—2
@7 e X—2 X
164. Letf(x) = (x+1)°—2. Find f~1(x).

A xri-2 (B)¥x—2+1 @Wl)s_z
165. Letf(x) = —g +1. Find f1(x).
@5—1 (®) 2«1 (© -1

166. Letf(x) = XTX1 andg(x) = 1— x. Determing(go f)~%(x).
x—1 1-x 1
X e X x—1

167. Letf(x) = ixl Determinef ~1(x).

(A) 1w = X%l
F1(x) = Fll
(©t1w= le1
O =5
(E) none of these

O

(D)3ixT2+3

X
2—X

@m—l

(D) —2x+2

1
1-x

Figure D.89: D

@ none of these
@ none of these

@ none of these
@ none of these

@ none of these
@ none of these
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D.1.18 Polynomial Functions

168. Letp be a polynomial of degree 3 with roots»at 1,x = —1, andx = 2. If p(0) = 4, find p(4).

@ 0 ‘ 4 @ 30 @ 60 @ none of these

169. A polynomial of degree 3 satisfipg0) = 0, p(1) = 0, p(2) = 0, andp(3) = —6. What isp(4)?
@ 0 1 @ —-24 @ 24 @ none of these

170. Factor the polynomiaf — x> — 4x+ 4.
(A) (x+ D(x—2)(x+2)

(B) (x— 1) (x+ 1)(x—4)
(©) (x-Dx—2)(x+2)
(D) (x— D(x+1)(x+4)

@ none of these

171. Determine the value of the parametao that the polynomiaf® + 2x? + ax— 10 be divisible byx — 2.

@a:B a:—3 @a:—Z @a:—l @noneofthese

172. A polynomial leaves remainderl when divided by — 2 and remainder 2 when divided ky- 1. What is its
remainder when divided by — x— 2?

@x—l 2x—1 @—x—l @—X—i—l @noneofthese

Questionsl 73throughl 76 refer to the polynomiap in figure . The polynomial has degree 5. You may assume
that the points marked with dots have integer coordinates.

AN

N N I - e = e

-7 6 5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Figure D.90: Problems73through

173. Determine the value @{0).
@0 —1 @4 @—2 @ none of these

174. Determine the value @f—3).

@ 0 -1 @ 4 -2 @ none of these
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175. Determing(X).
@ (X—3)(x+2)(x+4)(x—1)?
24

(X— 3)(X+2) (X +4) (x— 1)2

@ (X—3)(x+2)(x+4)(x—1)
24

(D) (x—3)(x+2)(x+4)(x~ 1)

@ none of these

176. Determine the value ¢po p)(—3).

@4 18 @ 20 @ 24 @ none of these

177. The polynomiap whose graph is shewn below has degree 4. You may assumedhatitits marked below with a dot
through which the polynomial passes have have integer auates. Find its equation.

oA DN PO kN W Ao
I T
L 4

(A) p(x) = x(x+2)2(x~3)

X(X+2)2(x— 3)
PX) = =g

@ none of these
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Problemsl 78through180refer to the polynomial in figur®.91, which has degree 4. You may assume that the points
marked below with a dot through which the polynomial passe®thave integer coordinates.

o

I I I = T e S . -

7 6 5 -4 -3 -2 101 2 3 45 6 7

Figure D.91: Problems7&hrough

178. Determing(—1).
@1 —1 @3 @—3 @ none of these

179. p(x) =

@ X(X+2)%(x— 2)
X(X— 2)%(x+2)
f

@ X(X+2)%(x—2)
3

(D) x(x+2)(x—2)2

@ none of these

180. Determinépo p)(—1).

@ 1 3 @ -3 @ -1 @ none of these
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D.1.19 Rational Functions

181. Which graph most resembles the ctyve%[ +27?

N .

— D ™

a |

Figure D.92: A Figure D.93: B Figure D.94: C Figure D.95: D

@ @ @ @ none of these

182. Which graph most resembles the cuyve } lel +2|?

B [ —

Figure D.96: A Figure D.97: B Figure D.98: C Figure D.99: D

@ @ @ @ none of these

183. Which graph most resembles the cqrweL +27?

X-1

Figure D.100: A Figure D.101: B Figure D.102: C Figure D.103: D

@ @ @ @ none of these
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X2 4+ X

Situation: Problemsl84throughl88refer to the rational functiom, with f(x) = L

184. Asx — 400,y —
1 1
@+§ _E @0 @1 @noneofthese
185. They-intercept off is located at

@ (0,-1) 0,3) @ (0,1) @ (0,0) @ none of these

186. Which of the following is true?
@ f has zeroes at= 0 andx = —1, and poles at = 1 andx = —2.

f has zeroes at= 0 andx =1, and poles at =1 andx = 2.
@ f has zeroes at= 0 andx= —1, and poles at = —1 andx = 2.

@ f has no zeroes and no poles

@ none of these

187. Which of the following is the sign diagram f6?

|—0;=2[ | |-2;-1]
®

1—=2;00 | ]0;1] | ]1;+]

+ - + - -
J—oo;=2[ | |=2;-1[ | |-L;00 | ]0;1] | ]1;+00
- - + + +

1—=2;0 | ]0;1] | ]1;+o]

J—o0;=2[ | ]-2,-1]
©

+ + - + -
@ |—oo;=2[ | |=2;=1[ | |=1;00 | ]0;1] | ]1;+0o]
+ - + - +

@ none of these

188. The graph of = f(x) most resembles

) » L »
R : : |

Figure D.104: A Figure D.105: B Figure D.106: C Figure D.107: D

@ @ @ @ none of these
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2(y
Situation: Problems?? through193refer to the rational functiof, with f(x) = (x+1)%x=2)

189. Asx — 400,y —
1 1
®+3 ®-3 ©o OF
190. They-intercept off is located at

(A)(©0,-1) (0,1) © -} (©)©.3)

191. Which of the following is true?
@ f has zeroes at= —1 andx = 2, and poles at = 1 andx = —2.

f has zeroes at=1 andx = —2, and poles at = —1 andx = 2.
@ f has zeroes at=1 andx = 2, and poles at = —1 andx = —2.

@ f has no zeroes and no poles

@ none of these

192. Which of the following is the sign diagram f6?

@ |—ooi=2[ | |=2;-1[ | |-L3;10 | ]1;2] | |2;+0o]
+ - + - -
J—oo;=2[ | |—2;=1] | ]=1;4 | ]1;2[ | ]2;409[
- - + + +
@ J—ooi=2[ | |=2,-1[ | |-L;1] | ]1;2] | ]2;+00]
+ + - + -
@ |—ooi=2[ | |=2;-1[ | |-L3;1] | ]1;2] | |2;+0o]
+ + + - +

@ none of these

193. The graph of = f(x) most resembles

F

(x—1)(x+2)2°

@ none of these
@ none of these

D [ [

-

Figure D.108: A Figure D.109: B Figure D.110: C Figure D.111: D

® © ©

@ none of these
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Situation: Problemsl94throughl96refer to the rational functiof whose graph appears in figu?@ The functionf

is of the form
(x—a)(x— h)?

x—0f

whereK, a, b, c are real constants that you must find. It is known tha) — 4o asx — 1.

12

f(x) =K

-12-11-10-9 8 7 6 5 4 3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

Figure D.112: Problem®?through??.

194. Which of the following is true?

@azl,b:—l,c:Z
a:—l,b:2,c:1
(©a=-1b=1c=2
(D)a=2,b=-1,c=1
@none of these

195. What is the value df?
@ 10 20 @ -20 @ 1 @ none of these

196. Asx — +oo, f(x) —

@ 0 1 @ +00 @ —00 @ none of these
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X3

X2 —4'

Situation: ProblemslL97through201refer to the rational functio, with f(x) =

197. AsXx — 400,y —

@ 400 —o0 @ 0 @ 1 @ none of these

198. Asx — —oo,y —

@ 400 —o0 @ 0 @ 1 @ none of these

199. Where are the poles 6P

@x:Zandx:—Z x:—landx:—Z @x:Oandx:2 @x:Oandx:—Z @noneofthese

200. Which of the following is true?
@ x = 0 is the only zero of

X = —2 andx = +2 are the only zeroes df

@ Xx=0,x=2, andx= —2 are all zeroes of

201. The graph of = f(x) most resembles

AN L7
vl

Figure D.113: A Figure D.114: B Figure D.115: C Figure D.116: D

@ @ @ @ none of these
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Situation: Problems202through206refer to the rational functiofi, with f(x) = %

202. Which of the following is a horizontal asymptote fis?

@y:—l y:l @y:O @y:2 @noneofthese

203. Where are the poles 6?

@x:landx:—z x:—landx:—Z @x:—landx:2 @x:landx:Z @noneofthese

204. Where are the zeroes ©0f

@x:landx:—z x:—landx:—Z @x:—landx:2 @x:landx:Z @noneofthese

205. What is thg-intercept off ?
@ (0,1) (0,2) © (0,-1) @ (0,-2) @ none of these

206. The graph of = f(x) most resembles

Figure D.117: A Figure D.118: B Figure D.119: C Figure D.120: D

@ @ @ @ none of these




246

Appendix D

D.1.20 Algebraic Functions

207. The graphin figur®

®+-

below belongs to a curve with equation of the foym Ay/x+ 3— 2. FindA.

pal

hoA b v bk o kN w s o

Figure D.121: Probleri

(®)A=1

(©a=-2 (D)a=2

208. Which one of the following graphs best represents tineegu= —+/—x?

@ none of these

Figure D.122: A

(A)A

Figure D.126: A

®

Figure D.123: B

(®)8

209. Which graph most resembles the cuyve —y/x—1?

©c

Figure D.127: B

Figure D.124: C

(®o

©

Figure D.128: C

©

Figure D.125: D

@ none of these

Figure D.129: D

@ none of these
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210. Which graph most resembles the cuyve /1 —x?

T~ >

1%

Figure D.130: A Figure D.131: B

®

Situation: Problems?11through214refer to the assignment rule given agx) =

@ ]—oo; —1] U]l;—l—oo[
@ undefined

211. What is the domain of definition af
11 11

212. What isa(2)? )
A3 7

213. a (x) =

_y2 2
®i ® (i)

214. The graph o most resembles

Figure D.132: C

]—00; —1]U[1;+0o[

Figure D.133: D

@ none of these

@ none of these

@ none of these

@ none of these

Figure D.134: A Figure D.135: B

Figure D.136: C

Figure D.137: D

@ none of these
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D.1.21 Conics

215. Find the equation of the ellipse in figuive

L ]
L ]

O U b b A b S o kN W A N ®

8 7 6 5 4 3 -2 10 1 2 3 4 5 6 7 8

Figure D.138: Probleri

216. Find the equation of the hyperbola in figire

L I S T R R - N S R S R S NN BRI

8 -7 6 5 -4 -3 -2 10 1 2 3 4 5 6 7 8

Figure D.139: Probler
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D.1.22 Geometric Series

217. Find the sum of the terms of the infinite geometric pregian

1_}+}_i+
3 9 27 '

Wl
>
o
>
@
o
=
—
>
@
)
(¢}

OF ®; ©: ®
D.1.23 Exponential Functions

218. Which of the following best resembles the graph of theey=2-X?

Figure D.140: A Figure D.141: B Figure D.142: C Figure D.143: D

@A B @ C @ D @ none of these

219. 1f 3¢ = 81, then

@ xe {—4,4} xe {-9,9} @ xe {-2,2} @ xe {-3,-3} @ none of these

220. If the number #%is written out (in decimal notation), how many digits doelsave?

(A)1307 1398 @ 1396 (D) 2000 (E) none of these
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D.1.24 Logarithmic Functions

221. Which of the following best resembles the graph of theew= log, ;,x?

\ S -
S~ [

J

Figure D.144: A Figure D.145: B Figure D.146: C Figure D.147: D

@A B @ C @ D @ none of these

222. Find the smallest integafor which the inequality 2 > 4n? + n will be true.

@n:4 n:7 @n:S @n:Q @noneofthese
223. Solve the equatiorf9-3*— 6= 0.

@ x € {1,log;2} x € {logz 2} only @ x € {1} only @ x € {log, 3,095 2} @ none of these
224. Find the exact value of 1ggs729.

@ :—é % @ 9 @ 4 @ none of these
225. Letaandb be consecutive integers such that logs100< b. Then

@a=1;b=2 a:2;b:3 @azs;b:4 @a:4;b:5 @noneofthese

226. Find all real solutions to the equation jdog;log,x = 1.

@x:512 x:81 @x:256 @x:lz @noneofthese

227. Which of the following functions is (are) increasingts (their) domain of definition?

1
X 55 I:x— 2% X — logy 5 x.

@I and Il only Il only @ [l and Il only @ Il only @ none of these

228. Which of the following assertions is (are) true for #tlicdly positive real numbers andy?

I :logyx+log,y =log,(x+Y); I1': (log,x)(log,y) = log, xy; 1 ;209X — x.
@I and Il only Il only @ [l and Il only @ Il only @ none of these
229. log2=
1 1
@ 2 3 @ 3 @ 4 @ none of these
230. log 8=

@2 3 @4 @5 @ none of these
231. (log, 3)(logz4)(log, 5)(logs 6)(logs 7) (log; 8) =

@2 3 @4 @5 @ none of these
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232. Iflog,5=2then
@ x € {—V/5,V/5} x € {+/5} only @xe {2} only @ x € {1,2} @ none of these
233. Iflog,2x= 2 then

@xe {0,2} xe {0} only @xe {2} only @xe {1,2} @ none of these

234. Giventhaa > 1,t > 0,s> 0 and that
log,t*=p,  log 8" =q,
find log, st in terms ofp andq.

§p+g §p+g ©3p+4q @§p+q @noneofthese

235. Giventhaa>1,s>1,t > 1, and that
log,vi=p,  logsa®=2p?,
find logst in terms ofp.
@ pd é @ 2p° @ %2 @ none of these

236. What is the domain of definition of
x— log,(1—x?)?

@ [-1:4] ]0;1] @]0?1[ @]—1;1[ @ none of these

D.1.25 Goniometric Functions
1
2

@ 0 1 @ 2 @ 3 @ none of these

238. How many of the following assertions are true for all rranbers<?

237. How many solutions does-IcosX = = have in the closed intervg 7; r1]?

| :cs@x+seéx=1; Il:|csex| > 1, I : |arcsink| <1, IV : sin(2rm+ Xx) = sinx
@ none exactly one @ exactly two @ exactly three @ all four
239. Which of the following is a solution to the equation @s-1)= %?
7_g+} g+% g_% @7_3-[—% @noneofthese

240. Iftand = = and¥ 6 is in the third quadrant, find sth

®_T\/1_7 _\/%7 ©_\/%7 @\/%7 @noneofthese

241. Find arcsifsin 10.

@ 10 10— 3m @ 3m—10 @ 10— 77” @ none of these

242. Find sitfarcsin4.

@4 \/E ©\/1_7 @4—n @notareal number

243. seéx+ csEx =

@ (seéx)(cséx) (sex)(csex) @seO<+ CSCX @ tar? X+ cof x @ none of these

INGIF )
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Situation: Let sinx = % and siry = 711 wherex andy are acute angles. Problemé4through
244. Find cos.
2 2V/2
OF ®%

© -2 ©)- 22
3 3
245. Find cos&
V2 V2
®3 ®% ©s ®%

246. Find|cos3|.
®;  ©F ©OfF  Oni¥
247. Find cogy.
/15
®3 ©-; ©-

248. Find sitix+Y).

V15
®%

7 1 2v/2 /15 V154242
12 1—2 ©T+F @712
249. Find co§+Y).
V30 1 V30 1 V30 1 V30 1
®T+1_2 ?‘1—2 EVIEY. @T‘l—z

250. Which of the following is a real number solution {62 = 3?

refer to this situation.

@ none of these
@ none of these

@ none of these
@ none of these
@ none of these
@ none of these

@ arccos(::—g) arccos(ln g) @ arccos(::—g) @ arccogIn6) @ there are no real solutions

251. (cosX)(cosy) =
@ 3sin3x— 3 sin3x
$sin3x+ 3 sindx
@ $cos3x+ 3 cosix
@ 1cos3x— 3 cosix

@ none of these

252. Itis known that co&® = \/32_ ! Find cosy.
VvB—1 VB+1 V1++/5 V145
@ 4 2 @ B 2 @ 2
253. Itis known that co& = \/52_ 1. Find cos?".

3-5
©=
®;
OF;

@5 @2 @3
254. Find the smallest positive solution to the equation€es0.

®o ®F ©7

255. cogZ =
®3 ®- ©-

@ none of these

@ none of these

@ none of these
@ none of these
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256. If 2co$x+cosx— 1= 0 andx € [0;71] then

@xe{’—;,n} xe{g,n} @xe{g,g} @xe{g,g} @noneofthese

257. 1f 2sirfx— cosx— 1 = 0 andx € [0; 71 then

@xe{’—;,n} xe{g,n} @xe{g,g} @xe{g,g} @noneofthese

D.1.26 Trigonometry

Situation: Questions?58through262refer to the following. Assume that andf are acute angles. Assume also that

tana = % and that seff = 3.

258. Find simo.

@ % %;_0 @ %) @ %) @ none of these

259. Find sirf.

@ % @ @ 2—\3/? @ g @ none of these

260. Find cos.

@ % %(i—o g) @ %) @ none of these

261. Find cog.

@ % @ @ 2_\?? @ g @ none of these

262. Find coéa + ).

V10 25 V10 2V5 2v5 V10 25 V10
®W_f WJFF ©?—¥ @T—FW @noneofthese
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Situation: Questions263through268refer to the followingAABCis right-angled af\, a= 4 and se8 = 4. Assume
standard labelling.

263. Find sirC.

VIS V5
®; ®% ©%

264. FindZC, in radians.

@ arcsin%1 arccoséli @ arcsin@3

265. Findb.

OF OXe ©4

266. FindR, the radius of the circumscribed circle f0ABC.

(A)2 g5 (©)2vis

267. Find the area of ABC.

oL ®% ©as

268. Findr, the radius of the inscribed circle t"ABC.

V15 V15 V15+5
@ 215+ 10 V15+5 V15

415
O

(D) 16

@ none of these

@ none of these

@ none of these
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Situation: Questions269through272refer to the following. In figuré , aregular hexagonis inscribed in a

circle of radius 1.

A

B

Figure D.148: Problem&69through

269. Find the area of the hexagon.

®? ® a2 O OE=

270. Find the perimeter of the hexagon.

OF (®)6v3 (©)3v3 (D)3

271. Find the length of the line segmeXxB.

(A)2 (®)v5 (©)3v3 (©)v3

272. Find the shaded area outside the hexagon but insidé&the= ¢

@n—g 7T—3\/§ @n—sT\/é @7‘[—3—\2/§

@ none of these

@ none of these

@ none of these
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D.2 Old Exam Match Questions

Match the equation with the appropriate graph. Observettieae are fewer graphs than equations, hence, some blank
spaces will remain blank.

1. x—y?=3, 4.2 —x2=09, 8. X°+y?=09,
5 x2+y=3,
D O a  F— 2 _
y 6. X+y2 =3, 9. y—x-=3,
N N
3'Z+§_1' 7'§+Z_1’ 10. x+y=3,
e map e e = wa e e e BRRAR
Figure D.149: Allan Figure D.150: Bob Figure D.151: Carmen Figure D.152: Donald

Figure D.153: Edgard Figure D.154: Frances Figure D.155: Gertrude Figure D.156: Harry
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FigureD.157shows a functional curve= f(x). You are to match the letters of figures158to D.168with the
equations orr throughu below. Some figures may not match with any equation, or vicgve

Figure D.1

.LJ\\\\\\
H
(2]
©
v9)
I
«
c
=
D
_LJ\\\\\\
|_\
(2]
Q
(@)

é?y: f(x) Figure 5.158: A Figure

———— / —
Figure D.161: D Figure D.162: E Figure D.163: F Figure D.164: G

L

—

Figure D.168: K

Figure D.165: H Figure D.166: |
ay=f(x= - By=-f(x=—— yvy=f-x)=
S.y=fx+)+2=_ ey=[f-X)l=—  {y=—[f(X)|=
ny=[f(x/= By=If(-Ix/2)|=— 1Ly=F(x2)=

Ky=—|fx)|=__ Ay=3fx=__ py=f(x—1)+1=
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You are to match the letters of figures169to D.180with the equations on 13 through 24 below. Some figures may

not match with any equation, or viceversa. (0.5 mark each)

Figure D.170: B

Figure D.171: C

Figure D.172: D

Figure D.173: E

Figure D.177: |

13.y=(x—1)2-1=

16.y=|x—-1-1=

Figure D.174: F

b

Figure D.176: H

—

Figure D.178: J

Figure D.179: K

14.y=(x-1)°-1=

17y=|(x—13>%-1=____

1
2.y=—-1=
X

20y=°-1=___

23.y:‘)—];—1‘:

Figure D.180: L
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D.3 Essay Questions

1. Find the solution set to the inequality
(x=1)(x+2)
(x=3) —
and write the answer in interval notation.
2. For the point®(—1,2) andQ(2,3), find:

(a) the distance betweéhandQ,
(b) the midpoint of the line segment joinifiyandQ,
(c) if PandQ are the endpoints of a diameter of a circle, find the equatidinecircle.

3. Show that if the graph of a curve hasxis symmetry ang-axis symmetry then it must also have symmetry about the
origin.

4. Consider the graph of the curye= f(x) in figure . You may assume that the domainfo€an be written in the
form [a;b[U]b; c], wherea, b, ¢ are integers, and that its range can be written in the form, with u andv integers.
Finda,b,c,uandv.

Figure D.181: Problen.

5. Ifthe points(1,3), (—1,2), (2,t) all lie on the same line, find the value tof

6. An apartment building has 30 units. If all the units areaibited, the rent for each unit is $700 per unit. For every
empty unit, management increases the rent of the remaieirants by $25. What will be the proR{x) that
management gains whemnunits are empty? What is the maximum profit?

7. Draw a rough sketch of the graphyf x— || x||, where| x|| is the the floor ok, that is, the greatest integer less than or
equal tox.

8. Sketch the graphs of the curves in the order given. Expbgimvhich transformations (shifts, compressions,
elongations, squaring, reflections, etc.) how one grapbtgined from the preceding one.

@y=x-1
(6) y=(x—17
(@) y=x—2x
(A y=pe—2x
R

[x2 — 2
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1
(f) y= _|X2_2X|
1

@) y= 22|

9. The polynomial
px) =x* -3+ 4x2 -1

has a local maximum &f.,0) and local minima at0, —1) and(2, —1).

(a) Factor the polynomial completely and sketch its graph.
(b) Determine how many real zeros the polynongigd) = p(x) + ¢ has for each constant

10. The rational function in figure has only two simple poles and satisftgg) — 1 asx — +c. You may assume
that the poles and zeroesaére located at integer points. Problenisto refer to it.

Figure D.182: Problem&0ato

(a) Findq(0).

(b) Findq(x) for arbitraryx.

(c) Findq(-3).

(d) Find lim_. 2, q(x).
11. Find the solution to the absolute value inequality

X2 —2x—1|<1,
and express your answer in interval notation.

12. Find all values o for which the point(x,x+ 1) is at distance 2 fronj—2,1).

13. Determine any intercepts with the axes and any symrseifithe curve

y2 = +1].

14. Letf(x) = x2. Find
f(x+h)—f(x—h)
h
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15. Situation: Questions.5ato refer to the straight lingé, given by the equation
Ly: (u—2)y=(2u+4)x+2u,
whereu is a real parameter.

(a) Forwhich value otiis L, a horizontal line?

(b) For which value ofiis L a vertical line?

(c) For which value ofiis L parallel to the lingy = —2x+1?

(d) Forwhich value ofiis L, perpendicular to the ling= —2x+1?

(e) Isthere a point which is on every lihg regardless the value of If so, find it. If not, prove that there is no such
point.

16. The polynomiap in figure has degree 3. You may assume that all its roots are integeislefhsl6ato
refer to it.

o

Figure D.183: Problem&6ato

(a) Findp(—2), assuming it is an integer.
(b) Find a formula fop(x).

17. A rectangular box with a square base of lengéimd height is to have a volume of 203t The cost of the material for
the top and bottom of the box is 20 cents per square foot. Algocost of the material for the sides is 8 cents per
square foot. Express the cost of the box in terms of

(a) the variableg andh;
(b) the variablex only; and
(c) the variablén only.

18. Sketch the graph of the curye= 4 / >1<T_)1( and label the axis intercepts and asymptotes.

19. Find all the rational roots of + 4x* + 3x3 — x2 — 4x— 3=0.

20. Givenf(x) = Fll graph

@ y=1fl,
(b) y= f(|x)),
(© y=I[f(x),

(d) y = f(=[x).
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21. Graphy = (x— 1)%/3 4 2 noting any intercepts with the axes.
Problems22through 29 refer to the curve with equationy = [x+ 2| + |x— 3.

22. Write the equatiog = |[x+ 2| + |x— 3| without absolute values ¥ < —2.

23. Write the equatiogi = |[x+ 2| + |x— 3| without absolute values if2 < x < 3.

24. Write the equatiog = |x+ 2| + |[x — 3| without absolute values ¥ > 3.

25. Solve the equatiox+ 2|+ [x—3|=7.

26. Solve the equatiox+ 2| + [x— 3| =4.

27. Graph the curve = |x+ 2|+ |x— 3| on the axes below. Use a ruler or the edge of your ID card to thewstraight
lines.

28. Graph the curve = 4 on the axes below.

29. Graph the curve =7 on the axes above.

10 4
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Questions30through
in figure below.

refer to the circles” having centre a®(1,2) and passing through the poii(5,5), as shewn

i
o
I T I I A |

PN WA OO~ ® ©

KR
o
o

30. Find the equation of the circi&.

m;;
.
& 4
o
+ L
o

NAA
& o e |
-
LI
-
N
w
~ -+
oNT
o
N
©
©,
5]

S bdUdh b O
I I |

N

Figure D.184: Problem30 through

31. Ifthe point(2,a) is on the circleg’, find all the possible values of

32. Find the equation of the linethat is tangent to the circlg’ atA. (Hint: A tangent to a circle at a pointis
perpendicular to the radius passing through that point.)

Problems34 through

refer to the graph of a functiofiis given in figure

1

I N I - L = e

Figure D.185: Problems4 through

G N I - L = e

33. Give a brief explanation as to whyis invertible.

34. Determinddom(f).

Figure D.186: Problem34 through
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35

36.
37.

. Determindm (f).
Draw the graph of 1 in figure

Determinef (—5).

38. Determingf ~1(3).
39. Determingf ~1(4).
Figure has the graph of a curye= f(x). Draw each of the required curvesry carefully

: ]

A 2 2

1 1

A : :

\ . .

2 2

3 -3

4 4

Figure D.187y = f(x).

Figure D.190y = f(—|x|).

h A b v bk o kN 0w o »~ o

Figure D.188y = f(x) + 1.

b A b v b o kN e o~ o

Figure D.191y = |f(—|x|)|-

Figure D.192y = —f(—x).
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40. Figure has the graph of a curye= f(x), which is composed of lines and a pair of semicircles. Draghed the
required curvesery carefully Use a ruler or the edge of your id card in order to draw theslirBhapes with incorrect
coordinate points will not be given credit.

b A b Nk o kN oW oA~ oo
h A b v Bk o kN oW o~ o

-5

X ]
/

4 3 2 -

Figure D.193y = f(x). Figure D.194y = f(—x). Figure D.195y = —f(x).

1S N N T S I S|
h A b v s o kN w s o

Figure D.196y = |f (X)|. Figure D.197y = f(—|x|). Figure D.198y = f(|x|).
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41.

Use the following set of axes to draw the following curiresuccession. Note all intercepts.

S I N N N T * RN
h A b v B o kN e o~ o

Figure D.199y = x— 2. Figure D.200y = |x—2|. Figure D.201y = |x| — 2.

S N I R S ST R N

b A b v b o kN e o~ o

Figure D.203:

Figure D.202y = ||x| — 2|. y=1|—|x—2|. Figure D.204y| = x— 2.

42.
43.
44,
45,

46.

47.
48.

49,

50.

Situation: AABCis right-angled afA, andAB= 2 and tarvB = % Problems!2 through45 refer to this situation.

FindAC.

FindBC.

Find sin/B.

Find tarrC.

Using the standard labels for'sABC, prove thato— b _ SinA—sinB

a+b  sinA+sinB’
A triangle has sides measuring@24. Find the cosine of the angle opposite the side measuring 3.

Find the area of a triangle whose sides meas|8&l2Find the radius of its circumcircle.

IfinaAABC a=>5,b=4, and coA—B) = 3—; prove that co€ = % and thatt = 6.

A triangle with vertice#\ B,C on a circle of radiu, has the side opposite to vert&of length 12, and the angle at
A= 7. Find diameter of the circle.
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51

52.

53.
54.

55.

56.

57.

58.

59.

60.

61.
62.

63.

64.

65.
66.
67.

68.

69.

70.
71.
72.
73.
74.
75.

. AABChas sides of length, b, c, and circumradiuR = 4. Given that the triangle has area 5, find the prodict

Find, approximately, the area of a triangle having twdesimeasuring 1 and 2 respectively, and angle between these
sides measuring 35What is the measure of the third side?

Find the area and the perimeter of a regular octagonilirestin a circle of radius 2.

Two buildings on opposite sides of a street are 45 m apeoin the top of the taller building, which is 218 m high, the
angle of depression to the top of the shorter building iF%3 Find the height of the shorter building.

A ship travels for 3 hours at 18 mph in a direction RR8From its current direction, the ship then turns through an
angle of 95 to the right and continues traveling at 18 mph. How long witeke before the ship reaches a point
directly east of its starting point?

Let tarx+ cotx = a. Find tarfx+ co x as a polynomial ira.

If cosn = g, find the exact value of ¢ A and 0052—7T in terms ofa.
72 %t 7 ‘
Given that cse= —4, and¥% x lies in quadrant I11, find the remaining trigonometric fuiocts.

Graph the curvg=2— cos)—z(.

Graph the curve= ‘2 — cosg ‘

Find the smallest positive solution, if any, to the egquag®°s* = 2. Approximate this solution to two decimal places.
Find all the solutions lying ifD; 271 of the following equations:

(@) 2sifx+cosx—1=0
(b) sin2 = cosx
(c) sinZX = sinx
(d) tanx+ cotx=2cscX

Find the exact value of sﬁqiﬂ.

Find the exact value of ta(rarcsin%) .

Is sirfarcsin30 a real number?
Find the exact value of arc$sin 30).

Find the exact value of arc$oons 30.

1 3.
If x andy are acute angles and Séxn: 3 and coy = 7 find the exact value of tdr—y).

Find the exact value of the product

P—cos7—T 0032—7T cos4—n
o 7 7 7

How many digits does?8°931000 haye?

What is 590931900 gpproximately?

Leta>1,x>1,y> 1. Iflog,x® = N and |0%1/3Y4 = M, find log,2 xy in terms ofN andM. Also, find logy.
Graphy=37*-2.

Graphy =31 —2.

Graphy =[37%-2|.
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76.
77.
78.
79.

80.

81.

82.

83.

84.

Graphy =In(x+1).
Graphy = In(|x| + 1).
Graphy = |In(x+1)|.
Graphy = |In|(x+ 1)||.

Solve the equation‘3- % =12.

The expression
(log,3) - (log34) - (10945) --- (109511 512)
is an integer. Find it.

The expression
log(tanI’) +log(tan2) + log(tan3) + - - - + log(tan 89

is an integer. Find it.

Prove that the equation

has only 4 solutions lying in the intervi; 2r].
Prove that the equation
cogloggx—2) = %,

has only 2 solutions lying in the intervil; 2.




||% Maple

The purpose of these labs is to familiarise you with the bagerations and commands of Maple. The commands used here
can run on any version of Maple (at least V through X).

E.1 Basic Arithmetic Commands

Maple uses the basic commands found in most calculatefsr addition,— for subtractionx for multiplication, / for
division, andA for exponentiation. Maple also has other useful commakédskpand andsimplify . Be careful with
capitalisation, as Maple distinguishes between capitdl@wer case letters. For example, to expand the algebraiession

(v/8—2%2)2, type the following, pressing ENTERafter the semicolon:
> expand((sqrt(8)-27(1/2))"2);

If you desire a decimal approximation of the above, eithégpdecimal point after the numbers, or use the command
evalf . Notice that on the first one Maple is dealing with two appneaiions and hence, it outputs an error!

o QAR E PRy

Now, prove thata+ b+ c)(a?+ b? 4 ¢? — ab— bc— ca) = a4 b® 4 ¢ — 3abcby expanding the expression on the sinistral
side:

> expand((atb+c) =*(a"2+b"2+c"2-a  *b-b *c-c *a));

To simplify a(a— 1) + (a— 2)(a+a+ 2) use the commansimplify
> simplify(a *(a-1)+(a-2) =*(a2+at+2));

The absolute value of a real quantity is found using the fonabsolute valueabs()
> abs(-5);

529 Example Factorx!? —x8 — 2x” — x8 — x* 4+ x? 4- 2x + 1 using Maple.

Solution: » The required command line is
> factor(x"10-x"8-2 * X 7-X"6-X"4+X"2+2 * X+1);
(X—1)(X+ 1) (%2 —x+ 1) (%2 —x— 1) (X% +x+1)?
<

530 Example Obtain the partial fraction expansion %%L using Maple.

Solution: » The required command line is
> convert(x/(x"3-1), parfrac,x);
1 1 1 x-1
3’ x—1 3 x+x+1

269
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531 Example Reduce the fraction;%.

Solution: » The required command line is
> simplify((x-1)/(x"4-1));
1
B X1
<

Homework

E.1.1 Problem Write the exact command line to compi# — 67)(8-(3(2) and give the output (result) obtained.

E.1.2 Problem Expand using Maple:
(a+b+c)®—3(a+b)(b+c)(c+a).

E.1.3 Problem Use Maple to verify that

(X+Y)° =X —y° = BXy(X+y) (€ + Xy+y?)

and
(x4a)" —x’ —a’ = 7xa(x+ a) (x* + xa+ a?)2.

E.1.4 Problem Write Maple code to verify that a product of sums of squareslk@written as a sum of squares, that is,
verify that
(a® 4 b?)(c? 4 d?) = (ac+ bd)?+ (ad — bc)?.

E.2 Solving Equations and Inequalities

Maple can be used to solve equations and inequalities. hgfotlowing, pressing ENTERafter the semicolon:

so|ve(x"2- +2=0 :
2 2 3e )a(lbs x-1 :&Js X+2 )é)4 X);
> solve(abs(x-1)+abs(x+2)=3, X);
> solve((x+1)/( * (x-1))>=0," x);
Homework

E.2.1 Problem Write the exact command line to find the solutions of the equaf + [x— 1| = 5 and name all the solutions.

E.3 Maple Plotting Commands

Although there is no direct Maple commartd expres$2x| + |x+ 2| without absolute values, we can graph the curve
y = |2x| 4 |x+ 2|. To do so, we must first load the plot library.

> with{plots ;
> plot(abs( * X)+abs(x+2),
> x=-10..10,y=-10..10);

Plot now the curveg = |x+ 1|+ |x—1].

> plot(abs(x+1)+abs(x-1),
> x=-10..10,y=-10..10);

1To my knowledge, that is.
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Notice the difference between the above curveyaadx+ 1| — [x— 1|, andy = |[x— 1| — |x+1].

plot(abs(x+ 1) abs(x-1),

plot(abs(x 1) abs(xﬂzl)
x=-10..10,y=-10..10);

V VV V

The equation of a circle with centre @t1,2) and radius 5 igx+ 1)2 + (y — 2)2 = 25. To graph it, type the following
commands:

> implicitplot((x+1)"2+(y-2)"2=25, x=-7..5,
> y=4.8);
What is the main difference between the commanids andimplicitplot ? Since we haven't discussed functions yet,

let us just say that you ug#got when you can solve uniquely fgr In this casey does not appear in the equation of the
command (other than for stipulating ranges). If you can¥sainiquely fory, then usémplicitplot

Homework

E.3.1 Problem

3
. . i . L X
1. Write the exact command line to find the solution set to tieguality "

X
> —1.
5=

2. Write the exact command line to graph the cirole- 1) 4 (y — 2)? = 4. Pick as small ranges as possiblexXandy
that shew the whole graph.

E.4 Assignment Rules in Maple

Let us define the assignment rfleR — R, f(x) = x> —x2+ 1 and evaluate at a few points.

> fi=x->X"3-X"2+1;

> f 1;

> )

We now wish to plotf. For this type:

> with(plots);
> plot(f(x), X=-10..10,y=-10..10);

Let us plot various transformations 6f

> plot f?-x;, x=-10..10,y=-10.. 10é

> plot(-f(x). x=-10..10.y=-10..10

> plot -fg- j, x=-10..10,y=-10..10};

> plot fgabs(x) x=-10.710,y=-10..10);
> plot(f-abs(x)), x=-10.,10,y=-10..10);
> plot(abs(f(x)), x=-10. 10,y— -10..10);

> plot(abs f abs(x))),

>  x=-10..10,y=-10..10);

> plot(abs(f( “abs(x))),

> x=-10..10,y=-10..10);

> plot(f(x+5},

>  x=-10..10,y=-10..10);

> plot(f(x-5),

> x=-10..10,y=-10..10);

> plot(f(x)+5,

> x=-10..10,y=-10..10);

> plot(f(x)-5,

> x=-10..10,y=-10..10);
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Homework
E.4.1 Problem You are to match the following transformations with the esponding equation, given the original curve
y = f(x).
y=f(—=x) A. moves the original graph five units down
—_—Yy=—f(—X) B. moves the original graph five units up
—_— Y = f(X—5) C. moves the original graph five units left
—_—y = f(x+5) D. moves the original graph five units right
—_—y=f(X)+5 E. a reflexion about the-axis of the original graph
—_—y=f(X)—5 G. a reflexion about thg-axis of the original graph
—_—y=—f(x) H. a reflexion about0, 0) of the original graph
—_—y=f(—|x) I. everyy-coordinate of the original graph becomes positive
— = | f(X)] J. recognises only < 0 of the original graph, and it's an even graph.
—_—y=1(x) K. recognises onlx > 0 of the original graph, and it's an even graph.

E.5 Polynomials Splitting in the Real Numbers

We will use Maple in order to graph polynomials all whose &srare real numbers.

V VVVVVVVVVVVVVVYV

Wlth(plots)
a=x>x (1)
ot(a(x) 5 y=-5..5);

DISXEE xon D) el

Ci=X->x_ * (x-1)2 Y x+1):
ﬁc(x), x=-5.5, y=-5..5);
>X X

* (x+1);

U{‘m

=x-> § L 2¥1 =, * X 2+1)
2);

Homework

E.5.1 Problem Answer the following questions. In all itemp,: R — R refers to a polynomial all whose zeroes are real
numbers.

1.

2
3.
4

If the multiplicity of a zero ofp is one, then does the graphptross thex-axis, or is it tangent to it?

. If the multiplicity of a zero ofp is even, then does the graphméross thec-axis, or is it tangent to it?

If the multiplicity of a zero ofp is odd and at least three, then does the graghabss thex-axis, or is it tangent to it?

. Does the graph of+— g(x) above cross the-axis? Doeg have any real zeroes?

E.6 Sets, Lists, and Arrays

Maple has a rich variety of data structures, among themlgstts,and arrays. Roughly speakingsetcorresponds to a set in
combinatorics: the order of the elements is irrelevant,repetitions are not taken into account. Sets are definediby us
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curly braceq }. In alist, the order of the elements is important and repetitionsakertinto account. Lists are defined by
using square brackefs ]. Arrays are a generalisations of matrices. They can be neddifid are declared with the
commandarray()

We will first consider sets and set operations. In order tdifaie our presentation, we will give names to the variobgots
we will define. In order to attach a name, we need the assighopemator.= , where there is no space between the colon
and the equal sign. Maple is able to perform set operatiotistive commandsnion , intersect , andminus . To check
whether two sets are equal we may use the commaath() (evaluate boolean).

532 Example Consider the sets
A={1,23,a,b,c.d}, B={3,4,54ab,e f}.

Use Maple to obtain
AUB, ANB, A\B,

and to verify that
(A\B)U(B\A)=(AUB)\ (ANB).

Solution: » We first define the sets and then perform the desired opegafidre following command lines
accomplish what is required.

> A:={1,2,3,ab,cd 1

A:={1,2,3,a,b,cd}
> B:={3,4,5,ab,ef 1

B:={3,4,5ab,e f}
> A union B

{1,2,3,4,5, f,a,b,c,d,e}
> A intersect B;

{3,a,b}

> A minus B;

{1,2,¢,d}
evalb((A union B) minus (A intersect B)=(A
minus B) union (B minus A));

true
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Answers

1.1.1 Thisisthe se{—9,-6,-3,0,3,6,9}.

1.1.2 We have
X2 ox=6=> 2 —x—6=0 = (x—3)(x+2) =0 = x& {-2,3}.

Since—2 ¢ N, we deduce that
{xeN:xz—x:G,}:{:%}.

1.1.3 We have X
2< 5 <3 = 12<x<18 = x€ {13,14,15,16,17}.

1.1.4 AuB={ab,cde f,iou},AnB={ae},A\B={b,cd,f},B\A={iou}
115 (i) {2}, (i) {—2,2}, (i) @, (v) | — 44, (v) {~3,—-2,-1,0,1,2,3},(vi) | — 1; 1], (vii) {0}, (viii) &
1.1.6 {-32 33 -34,-35-36, —37,—38 -39, —40,—41,—42 —43 44}

1.1.7 Observe that applyingtimes the second rule+ 5kis in S Similarly, *.2isin Sby applyingk times the third
rule. Since 2isir§ 2+ 5kis in S, that is, numbers that leave remainder 2 upon division bye5res. This means that

{2,7,12,--20022007 C S

Since 32=61isinS then the numbers-6 5k = 1+ 5(k+ 1) are in§, that is, numbers 6 or higher that leave remainder
upon division by 5. Thus the numbers
{6,11,16,---2001 2006} C S

Since 36=18isinS then the numbers 185k = 3+5(k+3) are inS, that is, numbers 18 or higher that leave remaing

3 upon division by 5. Thus the numbers
{18,23,28,---2003 2008} C S

Since 3 18="54isinS then the numbers 545k = 4 5(k+ 10) are inS that is, numbers 54 or higher that leave
remainder 4 upon division by 5. Thus the numbers

{54,59,64,.--2004 C S

Now, we claim that there are no multiples of 58nFor by combining the rules every numberShas the form 8.2+ 5b,
with a>0,b > 0 integers. Since®. 2 is never a multiple of 5, this establishes the claim. Hehedargest element of

{1,2,3,...,2008;
not in Sis 2005.
119 |-1;5]]-5;+e[, ]-5;~1], [5; 4]
1.1.10 &,]-5;3[U[4;+e[, ]-5;3], [4;+oo]
1111 [-05,-2+ V3], [71;\/27 1}, [~1;-0.5], [72+ VA 1}
1.1.13 Hint: Consider the\ + 1 numbersx— |tx|,t =0,1,2,...,N.

1.2.1 If x=0.123123123..then 100& = 0.123123123. . giving 1000k — x = 123, since the tails cancel out. This
41

results inx = 999 ~ 333

1.2.2 If v/8=2y/2 were rational, then there would exist strictly positiveunal numbers, b such that /2 = g, which

. a ) -
entails thaty2 = 2 2 rational number, a contradiction.

1.2.3 If \/2+ /3 were rational, then there would exist strictly positiveunal numbers, b such that/2+ /3 =
which entails that

a
b’
a2 NG NG a2
— = 2+2V6+3= = Vb= —
02 2p2

The dextral side of the last equality is a rational numbettibe: sinistral side is presumed irrational, a contradictio

@

(V2+v3)2 = 2

_S
=

1.2.4 Yes! There multiple ways of doing this. An idea is to take thetfilecimal digits of/2, remove them, and suppla
them with the given string. For example, for 12345 we proceetbllows:

V2

V2~ 1.414213562.. = 16 ~0.000001414213562..

Then the number

V2
Y2 10.12345
106

is an irrational number whose first five digits after the desdipoint are 12345.

Another idea is to form the number
0.1234501234500123450000123450000000012345

where one puts'?zeroes between appearances of the string 12345.

Solutions

1.2.5 There are infinitely many answers. Sing€ < 1.5 and 17 < v/3, we may take, say,.&. Of course, using the
mentioned inequalities we may take alsé1, 1601, 152, etc.

1.2.6 There are infinitely many answers. One may take the aven%M .

127 Since%j =0.1and 0111< igl =, we may take, say.010100100001000000001, where there are
Zk, k=1,2,...0's between consecutive 1's. Another approach can be takihg 1.314, sincey/2 — 1.314< 0.1003.

1.3.1 We have,
2. x\2 (2 x\2 (a4 @) (4 2
x 2 x 2 - X2 4 X2 4
= 4.
1.3.2 We have
1=(x+y)2 =R 42+ oy=x8+y2 4 = 242 =5,
Hence,

(x=y)2 =x2 +y2 —2xy=5-2(~2) =9 = x—y= 3.
b
In the first case,

X+y=1x-y=3 = x=2, y=-1

lerin the second case,
X+y=1x-y=-3 = x=-1, y=2

1.3.3 We have
7= 13 = (x4 9) 0@ —xy+y2) =2 —xy+y2.
Also,
1= (x+y)2 =¥ +y2 +2xy.
This gives

6= (xz —xy+y2) - (xz+2xy+y2) =3y = —2=xy.

Hence we have the system

X+y=1 xy=-2,

which was already solved in problem3.2.

1.34 We have

12-22432- 4244921002 = (1-2)(1+2)+(3-4)(3+4)+ -+ (99— 10099+ 100)

—(14+2+3+4+---+99+100)

To compute the sum of the arithmetic progression2+ 3+ 4+ - - -+ 994 100, use GauR 's trick: if
S=1+2+3+4+---+99+100, therS= 100+ 99+ ---+2+ 1. Hence

2S= (14100 + (2+99) + -+ -+ (99+2) + (100+ 1) = 101-100 — S=5050

This means that
122232 424499 ~100% = —5050

1.35 Sincend3 —8= (n— 2)(nz+2n+4), for it to be a prime one needs either 2=1 = n=3 orn? +2n+4=1,
but this last equation does not have integral solutionscelé® — 8 = 19 is the only such prime.

1.3.6 Putx=1234567890. Then
1234567898 — 1234567889123456789% X2 — (x— 1) (x+1) =x2 — (& —1) = 1.
1.3.7 If the numbers arg,y thenx+y = 3 andxy = 9. This gives

x+y 3
xy

X1

+

E
y 9

1.3.8 We have
101242.108+1

(106+1)2

1, 000, 002 000, 001

(20?)3+1)2
(102 +1)2((102)2 102 +1)2

101299012,

whence the prime sought is 9901.

274
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1.3.10 One can expand the dextral side and obtain the sinistral side 1317 PutS=1+a+a2+-..+a1 ThenaS=a+a2+...+a"14a Thus
S—as=(1+a+a+-+a" h_@+al+ 4 lial =1-a",
><3+y3 = (x+y)3 —3Xy(x+y)
and from(1—a)S= S—aS= 1—a" we obtain the result.
twice: . _— y A .
By making the substitutioa= g in the preceding identity, we see that
B+p3+B3-_3abc = (a+b)3+c3—3ab(a+b)—3abc
= (a+b+c)3—3(a+b)c(a+b+c)—3ab(a+b+c)
= (a+b+c)((a+b+c)2—3ac—3bc—3ab)
we obtain
= (a+b+c)(az+bz+cz—ab—bc—ca).
or equivalently,
1.3.11 From problent.3.9
36=(a+b+0)2 =a? + b2+ 2 +2(ab+bet ca) = a2+ b2+ P +4 = a? 1 b2+ 2 =32 Multiplying by x" both sides,
From probleml.3.10
B33 (a+b+c)(a2+b2 +c2—ab—bc— ca) 6—(—6)(32-2) which is
abc= = =62
3 3
yielding the result.
1.3.12 Putx=1000000=10°. Then
1.3.18 Observe that
X(X+1)(x+2)(x+3) = X(x+3)(x+1)(x+2) = (xz +3><)(><2 +3x+2). (ac+ bd)2 +(ad— bo)2 = a2c2 + b2d2 + a2d2 + b2c2 = (az + bz)(cz +d2).
i —x2
Again, puty = x= +3x. Then 141
2 1. Observe tha? —x—6= (x—3)(x+2). Hence, in a neighbourhood ®f= —2 andx = 3, we have:
XX+ 1) (X+2)(x+3) +1= 0@ + 3@ +3x+2) +1=y(y+2) +1= (y+ 12
xe ]—e[-2 1-2;3 ]3;+oo[
All this gives,
X+2 - + +
VX(X+1)(X+2)(x+3)+1 = y+1
5 x-3 - - +
= X“43x+1
X+2)(x—3, + - +
= 101243.200+1 (x+2)(x-3)
= 1000003 000 001 2. From the diagram we deduce that the desired getds3).
3. From the diagram we deduce that the desired getds —2[U [3;+oo].
1.3.13 We have,
142 {xeR:xe€]-0e;-3[U]-2;2/U]3;+oo}.
51 2/6=\/2+26+3= (V21 VB =v2+ 13 ! e
1.4.3 Asthe ec|ua'[ic>rx2 —x—4= 0 does not have rational roots, we complete squares to finodts:
1.3.14 Transposing, 2 A7 /T
2 2 2 dar VY-SV DI (VIR R A (VIR % R I (VS 14
a2 —ab+b? —be+ 2 —de+d? —da=0, R _x—4=x +3-32 4=(x 3 2 x=3 2 x=z+— |
or 5 w2 5 2 @ 2 > 5 Therefore
a b d¢ d a 1 V17 1 V17
a _ T, R i a _ 2 _x_ _-_ ¥t _op ¥
2ab+2+2 bc+2+2 dc+2+2 da+2 0. xx420<:><x2 > xz > >0.
Factoring,
9 ‘We may now form a sign diagram, puncturing the real Iinnal:fl - @ and atx = 1 -+ £7:
Lan2: o021 202+ ta-a?-0 22 22
2 2 2 2 o
1 VI7 1 V7.1 V17 1, V17,
As the sum of positive quantities is zero only when the qui@stthemselves are zero, we obtain b,b=c,c=d,d=a, xe T 2 "2 '2 + 2 2 + 2 o
which proves the assertion. . T v . N
2 2
1.3.15 We have 1
x- 1. Y0 - - +
2 2
1 V17 1 V17
(x+¥)2 = (x=1)(y+1) = (X=14y+1)2 = (x-1)(y+1) (X*E*T) (X*§+T> + - +
2 2
X—1 2(x—1, 1 1)e=(x-1 1
= D242 D+ D+ D2 = (D) e deduce that
= x-DZH(x-Dy+ 1)+ (y+ 12 =0 {xek:xz—x—420}:}—w, % - g {u %+ g;w .
2 2
1 3 1
= <x—1+ —yz ) + 7()/: ) =0.
144 [-2,-1]
This last is a sum of squares, which can only be zero if 145 [3i+of
121
1.4.6 } i —}
x,1+y;2rl:0, y+1=0 = x=1y=-1 252

Thus(x,y) = (1,—1) is the only solution.
1.3.16 Observe that

a24b?  b2ic?  2ial a2+b?  b2+c?  2ia?
+ — 4
a+b b+c c+a —C —a —b

= —az(%Jr%)—bz(%Jrg)—cz =
- () () ()

a b

bc ' ca  ab’

as was to be shewn.

{3

1.4.8 Fromthe identity(2 —yz = (x—Y)(x+y) and using the fact thayn < v/n+ 1, we obtain

1

n+l-n=1= (Vn+l-yn)(Vn+1l+yn)=1= Vn+l-yn= m > ST

Hence,
1

1
= =
2y/n+1 " 10
Since 512 = 26.01> 26, we have,/26 < 5.1. Hence,

= 5<vn+1= 25<n+1= n>24

V26-V25<51-5= 1%,

and son = 25 fulfills the inequality.




276

Appendix F

1.4.9 The quadratic equation will not have any real solutions ag ks its determinant be strictly negative:
2 (t-1)(t) <0 = te]-w;0[.

HenceAt = @ <= te|—w;0
The set will have exactly one element either whenl = 0, which means that the equation reduces to a linear one, or
the quadratic equation has a repeated root, which occurs itddiscriminant vanishes:

2 (t-1)t)=0 = t=0.
Thus the set has exactly one element whenl and whert = 0, and it is seen that
Ag ={xeR—x2 =0} = {0}.

1 1
Alz{XERXJrZ:O}:{—Z}.

The quadratic equation will have exactly two real solutinten its discriminant is strictly positive:
t-1£02—(t—1)(t) >0 = t €]0;1U]1;+oo].

In this case,

I-\;:{xe]]l{:(l—1)><2+r><+;l :0}:{4¥:84‘.%}.

1410 {~1,0,1,2,3,4,56,7,8,9}

1.4.11 The inequality is obtained at once from

2
2362+ 171><+1>:><<(\/§><— %) +1)+1.

1.4.12 Eitherx € |—;0], orx € ]0;1], orx € ]1;+o[. In the first case the inequality is obvious, sincexer 0
20,8 >2002>0-x20 = B+ -x+1>0.
In the second case we regroup
x8—><5 +x2—x+1:x8+x2(1—x3)+(1—x) >0.

In the third case we have

xs—x5+x2—><+1:x5(x3—1)+x(x—1)+1>0
1413 25

151 V3-VVI5-2

152 Forx> %.we have{l—2x| = 2x— 1. Thus|x— |1 —2x|| = [x— (2x—1)| = | —=x+1|. I x> 1 then
| =x+1] =x—1. In conclusion, for alk > 1 (anda fortiori x > 2, we havex—|1—2x|| = x— 1.

153 If x< —2then+x < —1and hencgl+x = —(1+X) = =1 —x. Thus|1—[14X]| = [1—(-1-X)| =[2+Xx|. But
sincex < —2,x+2 < 0 and sg2+ x| = —2—x. We conclude thal — [1+X|| = —2—x.

157 Setiene
[1-2¢ <3 <= —3<1-2K<3 = —4<-2X<2 <> —1<x<2+= xe]-1,2,

en donde ha of recordarse que el dividir a una desigualdadr@gocantidad negativa, se invierte el sentido of la
desigualdad.

1.5.8 Four. Eitherx — 4x = —3 o2 — 4x = 3. Thusx € {1,3,2— 7,2+ V/7}.

1.5.9 We know that

[x=3|=+(x-3) and that [X+2| = £(x+2).

We puncture the real line at= 3 and atx = —2, that is, where the absolute value terms change sign. We hav

xe 2.3 | 18i+el
[x=3/= 3-x 3-x x—3
[x+2| = —X-2 X+2 X+2
[x=3|+[x+2|= —2x+1 5 2x-1
Therefore ,
—2x+1  if x< -2,
[x=3[+|x+2[=§ 5 if —2<x<3,
l -1 if x>3.
1. To solvelx—3|+|x+2| =3, we need
—2x+1=3 ifx<-2, 5=3 if —2<x<3, 2x-1=3 ifx>3.

The first equation gives= —1. As—1 ¢ |—o0; —2], this is a spurious solution. The second equation is a
contradiction. In the third equationx2 1 =3 = x =2, which is also spurious sinceg2(3;+|.
Therefore the equation — 3| + |x+ 2| = 3 does not have real solutions.

2. Tosolvex— 3|+ |x+2| =3, we need

—2x4+1=5 ifx< -2, 5=5 if —2<x<3, 2x-1=5 ifx>3.

The first equation gives= —2. As —2 € |—w; —2], which is a legitimate solution. The second equation is a
tautology, which means that all the elements in the interval 3 are solutions. In the third equation
2x—1=5 = x= 3, which is also a legitimate solution, since=33;-+c|. Therefore the equation

[x—3|+[x+2| = 5 has an infinite number of real solutions, all in the intefva?; 3.
3. Tosolvex— 3|+ |x+2| =7, we need
—2x+1=7 ifx<-2, 5=7

if —2<x<3, A-1=7 ifx>3

The first equation gives= —3. As -3 € | —w; 2], this is a legitimate solution. The second equation is a
contradiction. In the third equatiorx2 1=7 = x=4, which is also a legitimate solution since
4 € [3;4[. Therefore the equatigm — 3| + [x+ 2| = 3 has exactly two real solutions:

{XeR:|x=3|+|x+2|=7} ={-3.4}.

1510 xe{-2,1+V5}

1.5.11 We have

[5x—2| = [2x+1| Ed (5x—2=2x+1) or (5x—2 = —(2x+1))
— (x:l)or(x:%)
Ed xe{%.l}

1.5.12 The first term vanishes when= 2 and the second term vanishes wixen 3. We decomposE into (overlapping)
intervals with endpoints at the places where each of thesssons in absolute values vanish. Thus we have

R=]-0;2] U [2;3 U[3;+0][.

We examine the sign diagram

X€ ]-;2] 2,3 [3;+o0]
[x=2|= —X+2 X—2 x—2
[x=3|= —X+3 —X+3 X-3
x—2/+x=3/= | —2x+5 | 1 %-5

Thus on|—; 2] we need-2x+5 = 1 from wherex = 2. On|2; 3 we obtain the identity & 1. This means that all the
numbers on this interval are solutions to this equation[3#e[ we need —5 = 1 from wherex = 3. Upon assembling
all this, the solution set i§x: x € [2;3]}.

1513 {31 3y

22
1.5.14 {xx<€[0;1]}
1515 {-1}
1.5.16 [1;+0o]
1517 |00 2]
15.19 {g+ﬁ\/;7.gf @.1.2}
1520 {-1,1}
1521 {-3,-223}
1522 {-6,1,2,3}
1.5.23 We have
—X-3 if x+3<0, —X+4 if x—4<0,
x+3|= |x—4] =
X+3 if x+3>0. X—4 if x—4>0.

This means that when< —3
[X+3| = [x— 4| = (—x—3) = (—x+4) = -7,

aconstant. Since at= —3 we also obtain-7, the result holds true for the larger interxal —3.
1.5.24 There are four solutioni—1— v2, -1+ v2,1-v2, -1+ v2}.
1.5.25 |—eo;—1].

1.5.26 Clearly, maxx,y) + min(x,y) = x-+y. Now, eitherx—y| = x—y and sox >y, which signifies that
max(x,y) —min(x,y) = x—y, or [x—y| = —(x—y) = y—x, which means that > x and thus ma,y) —min(x,y) =y—x.
At any rate, magx, y) —min(x,y) = [x—y|. Solving the system of equations

max(x,y) +min(x,y) = X+y

max(x.y) —min(xy) = [x=y|,
for max(x,y) and mir{x,y), we obtain the result.
1527 {xeR:|x—1|[x+2| >4} =]—e0; -3 U [2;+0o]

15.28 |-4;,-1[U]2;5]

2.1.2 4.5 square units.
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2.1.3 TFTFTTF

2.1. False.(]{{\{o})2 consists of the plane minus the axBd \ {(0,0)} consists of the plane minus the origin.

i

221 2V10

222 V2b-a

223 /(a2 -b)2+ (b2 —a)2

2.2.4 We have,

st (332258 (o (52)) " - (5 - 52 (57

Also,

225 /42 +(a+b)2t2

2.2.6 Cisthe pointthat divideABin the ratio 3 : 2. By Joachimstal's formula,

c_(2:1+34 254310\ (14
N 3+2 ° 3+2 “\57°)°

2.2.7 We have

Vx=02+(1-22=2 — @+1=2 = @ +1=4 — 2 =3 — x==£3,

2.2.8 The bug should travel along two line segments: first filend, 1) the origin, and then from the origin {@. 1)
avoiding quadrant Il altogether. Foraf> 0,b > 0 then the line segment joinir{g-b, 0) and(a, 0) lies in quadrant Il, it is

vV a2 + b2 long, and the bug spends an amount of time equ &

(—b,0) to (a,0) isa-+ b units long and the bug spends an amount of time equadttb there. Thus as long as

on this line. But a path on the axes from

2
a+b< #

the bug should avoid quadrant Il completely. But by the Arighic-Mean-Geometric-Mean Inequality we have
2ab<a? +b2 — (a+hb)2 =a?+2ab+b? < 282+ 262 — a+b< v2\/a2+b2,

which means that as long as the speed of the bug in quadrant IL\;L;—é then the bug will better avoid quadrant Il. Since]
1 1 . .

> < —=, thisfollows in our case.
2 V2

229 (0,-3/4)

2210 (2b—a2a—b)

2.2.11 Without loss of generality assume that the recta#®€D has vertices ah(0, 0), B(u,0), C(u,v) andD(0, V). Its
diagonals aré\C andBD, which results in

AC=1/(u-02+(v-02=1/u2+2,
and
BD=/(u-0)2+(0-v)2 = \/u2 +2,

demonstrating their equality.

2.2.12 Without loss of generality, assume that the parallelogh®@D has vertices aA(0,0), B(u, 0), C(u+w,v) and
D(w,v). The coordinates of the midpoint of the segma6tare < # % ) , which are the coordinates of the midpoint

of BD, demonstrating the result.

2.2.13 Itsxcoordinate is

111 3 2
27832 T 1§
==
Itsy coordinate is
P 4
4716 ~ 5

Therefore, the fly ends up in
24
5'5)"
Here we have used the fact the sum of an infinite geometriapssipn with common ratin with |r| < 1 and first terma

1S
2, 0%, 2
1-r

a+ar+ar
2214 (32fb 3bra,

2.2.15 (ab);(-a,—b);(a,—b)

2.2.16 Itis enough to prove this in the case wheem, c,d are all positive. To this end, p@= (0,0), L = (a,b) and
M = (a+c,b+d). By the triangle inequalitpM < OL + LM, where equality occurs if and only if the points are collinea

But then
V/(@+0)2+ (b+d)2 =OM < OL+LM = \/a2 + b2 +/c2 +d2,

and equality occurs if and only if the points are collinebanisg = g .

2.2.18 Use the above generalisation of Minkowski's Inequality &meifact that 17 -+ 1442 = 1452 The desired value is

S12-
232 (x-2)2+(y-32=2

2.3.3 We must find the radius of this circle. Since the radius is fbtadce from the centre of the circle to any point on
the circle, we see that the required radius is

(-1-1)2+(1-22=V5~2236

The equation sought is thus
(x+1)2 +(y— 1)2 =5.

234 (1)x+(y-1)2=36,C=(0,1),R=6. (2)(x+2)2 +(y—1)2 = 25C= (-2,1),R=5, (3)
(x+2)2+(y—1)2 =10,C = (—2,1),R= /10, (4)(x—2)2 +y2 = 12,C = (2,0),R= 23 (5)

32 y-32= o= (-3 HR=/F @0+ 2+ y- R2- §o- R vaR-\§
236 (x-1)2+(y-32=5

237 (x— )2+ (- )2 =2

2.3.9 Thisis asking to draw the circle€ +y2 = 100, (x+4)2 +y2 = 4, (x—4)2 +y2 = 4,52 + (y+4)2 = 4, allin the
same set of axes.The picture appears in figure

Figure F.1: Problem.3.9

2.4.2 Thisis asking to draw the circlé +y2 =100, and the semicirclgs= /4 — (x+4)2, y=/4— (x—4)2,

y=—4— \/ﬁi all in the same set of axes.The picture appears in figtire

253 ——

254

255

256
25.7 y=(a+b)x—ab

258 m

Il
N
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2.5.10 Let(x,0) be the coordinates & Since the slope of the line segmé&iis % , we have

whenceSis the point(1,0). Let (a,0) be the coordinates @. SinceSM= MA, we have

V0@-22+0-22=/1-22+(0-22 — (a-22+4=5 — ac {13}.

This means thad is the point(3,0). Let B be point(0,y). SinceA, B,M are collinear, we may compute the slope in two
different ways to obtain,

2-0

573 = y-2=4 = y=6.

y-2 _

-2

ThusB is the point(0, 6).

2.5.11 Letrequired point béx,y). The distance of this point to its projection on thexis is|y| and similarly, the
distance of this point to its projection on tkexis is|x|. We need

=X = [6-2¢ =[x = 6—-2x=Xx or 6—2x=—X.
The first case gives= 2 and the pointi$2, 2), and the second case gives: 6 and the point i$6, —6).
2512 x=3

2.5.13 This is asking to graph the lines= —1,x=1,y= —1,y =1,y = —x, andy = x, all on the same set of axes. Th
picture appears in figurie 3.

Figure F.3: Problem.5.13

2.6.1 y=4x—14

262 y=-x

263 y:%w?
2.6.4 y:—gx+b+§
265 y=3x-9

266 y=—3x+16

2.6.7 Notice that there is a radius of the circle connectiig) and( % @ ). The line passing through these two poin|

isy= v/3x. Hence, since the tangent line is perpendicular to the saatithe point of tangency, the line sought is of the

formy= ;x+k. To findk observe thaé = 7% +k = k= 3—\4/5 Finally, the desired line is
NENEIE]
Y=gt
o o X a+b+1
2.6.8 Ly:y=(atbx+l-a-bly:y= 7a+b+ aib

269 (1)t=4/3, (Qt=6/7, @)t =1/2, ()t =3, B)t = 7, (6)t = 7/9, ()t = 7/4, (8)(3, 1)

2.6.10 We have

1. If Lt passes through-2,3) then
(t—2)(-2)+ (t+3)(3) + 10 -5=0,
from wheret = — % In this case the line is
- 3£x+ ij— 185 =0.
11 11 11

2. Lt will be parallel to thex-axis if thex-term disappears, which necessitates2 = 0 ort = 2. In this case the
line is
y=-3

s

3. Lt will be parallel to they-axis if they-term disappears, which necessitates3 = 0 ort = —3. In this case

theline is
X=—7.

4. The linex—2y—6=0 has gradien% andLt has gradien

ort =1/3. In this case the lineis
510, 5,
33y 3=

5. Theliney=— %x—s has gradient % andLt has gradiemtzfé. The lines will be perpendicular when
tzfé =4ort=-2. Inthis case the line is

—4x+y—25=0.

6. If such a point existed, it would pass through the horiabad vertical lines found above, thus
(Xp,Yg) = (=7, —3) is a candidate for the point sought. Ttat7, —3) passes through every ling, no
matter the choice dfis seen from

(t—2)(=7)+ (t+3)(~3) + 10t —5= —7t + 14-3t —9+ 10 ~5=0.
2612 V2
2613 Vita2

2.6.14 The radius of the circle is the distance from the centre tdahgent line. This radius is then

| 32ars | 2
J12+(-22| VB

The desired equation is

(x=3)2+(y—4)2 = g.

2.6.15 LetMp ( % %) Mg ( g, %) Mc (QJZLD,O) be the respective midpoints of the sids, CAandAB. The

equations of the straight line containing the medians ag th

c

e ca c ca
AMAT Y= BT Xt b T b2 Za b
2
BMg : 3—% i B Oy P
B V" T " Bma a-B  B-a
and
— c 2c
CMc: y +C=———x+C
ath a+b
b

Since we are supposing the triangle to be non-degenerategtiit isn't “flat’), AMa andBMg must intersect. Then

_C
b-2a

L_ca _
2a-b

c

o aib
a—2b 2b— -

To find the value of the coordinagewe substitutex = %b in any of these three lines, say the first:

ca _ c X
2a-b b-2a

ca ¢
3

a+b
Y2 b

3

=% x+
Y=b 2

To conclude, we must shew that the po(n%b g) lies on the line€Mc, that is, we must verify that

which we leave to the reader.

2.6.16 LetHp, Hg andHc be the feet of the altitudes frofto BC, from B to CAand fromC to AB, respectively. As the

altitudes are perpendicular to the sides, the respectymeslofAHp , BHg, CHc, will be the opposite of the reciprocals of
the slopes of the straight lin&C, CA, AB. We then find the equations

ab
=

PN
AMp :

-
BMg :

and

0.

—r
CMc: x

Since we are supposing the triangle to be non-degeneratigtiit isn't “flat’), AMa, BMg must intersect. Hence= 0

and

a

Sx—

b
—x— = =
c c

— = x=0,
c

c

. . . b . b . .
and since the triangle is non-degeneratg, b. Hencey = — % . Obviously (0. - % ) is also orLCMC , demonstrating
the result.
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e e
2.6.17 LetA'B’,B'C/, C'A be the perpendicular bisectorsA8, BC andCA Then

—
AB: x= —a+b.
—
B'c/ y= =X
'’
A y=2x
— e
SinceA’B’, B'C/ must intersectx = Lzb and
_ bla+b)
Y=

since[ 21D ab+e?
2 2

—
also lies orC’ A, the result is obtained.

2.6.18 Suppose, without loss of generality, that the squeBEDhas vertices ah(0,0), B(a, 0), C(a,a) andD(0, a). The
slopes of the straight ingsD andBC are 1 and-1, from where the result is achieved.

271
1. Thisisy=(—Xx+1) = (—X)+(—x—1) = —x.
2. Thisisy=(—x+1) — (—X) + (x+1) =x+2.
3. Thisisy= (—x+1) — (+%) + (x+1) = —x+2.
4. Thisisy= (Xx—1) — (+3) + (x+1) =x.

5. The graph of¢ appears in figure.4.

Figure F.4: Problem.7.1.

2.7.2 The graph appears in figufes.

Figure F.5: Problem.7.2

2.7.3 Thisis the curve

X +x X if x>0,

0 ifx<0.

The graph appears in figuFes.

8-76-5-4-3-2-11.1234567

Figure F.6: Problem.7.3

2.7.4 The setis composed of four segments of a circle inside tiskeaif equa\liom2 +y2 = 16 and bounded by the
lines of equatiory = x+4,y = x— 4,y = —x+4 andy = —x— 4. The graph appears in figure’.

Figure F.7: Problem.7.4

2.8.2 By the preceding exercise the focug %.0) and the directrix ix = — %

2.8.3 If (x,y) is an arbitrary point on this parabola we must have

X 12 12

\/1+(-1)2

Squaring and rearranging, the desired equation is

x2+y2—2xy—4x—4y+4: 0.

2.85 The distance ofx,y) to (2,3) is 1/ (x—2)2 + (y—3)2. The distance ofx,y) to the linex = —4 is
[x—(—4)| = [x+4|. We need

[(x—2)2 4 (y—3)2 = 2, (y_32— 2 Yy ¥y 2
(x=2)2+(y—3)¢ = [x+4] <= (x=2)°+(y—3)° = (x+4)° <= x= 5 3 3

from where the desired curve is a parabola.

Y

2
286 Putx>0andA=(0,0),B= <x. %) yCc=

2 2 2 2\2 2
AB:BC:J(X—O)ZJr(%—O) :%#(4))%(%3‘7) :>x2<1+%):4x2:>x:2\/§.

The points aré\(0,0), B(2/3,6) andC(—2v/3,6).
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3.1.1 We have 3.1.13 Consider the functiop: R — R, with

0-1  1-1  2-1 1 4

FO)+F)+F2) = o + o+ o = 1404z = —=.

0241 1241 2241 575 12003 o

Also, p() = (1—x2 +x4)2003_ 4y 1 aix+ ap@ +- - +aggy 28012
' 3-1 1
01142 =18)= 57— = 5. Then

Clearly thenf (0) + f(1) + f(2) # f(0+1+2).

Now,
f(x):; = ><2—><:x2+1 = Xx= -1

Also,

fx)=x = X—1=34x = B =—1= x=-1

3.1.2 There are 3 = 8 such functions:
1. f1givenbyfy(0)=fy(1)=f1(2) =1
2. fpgivenbyfp(0) =1, fp(1) = fp(2) = —1
3. fagivenbyfa(0) = f3(1) = —1,f3(2)=1
4. fpgivenbyfg(0)=—1,f4(1) =1,fs(2) =-1
5. fggiven byfg(0) = f5(1) = f5(2) =1
6. fggivenbyfg(0) = -1,fg(1) = fg(2) =1
7. fzgivenbyfs(0)=f7(1)=1,f7(2)=-1

8. fggivenbyfg(0)=1,fg(1)=-1fg(2)=1

3.1.3 There are 8 = 9 such functions:
1. fygivenbyfy(-1)=f1(1)=0
2. fpgivenbyfy(-1)=fp(1)=1
3. fzgivenbyfz(-1) = f3(1)=2
4. fagivenbyfg(-1)=0,fs(1) =1
5. fggivenbyfg(-1)=0,f5(1) =2
6. fggivenbyfg(—1) =1 fg(1)=2
7. fzgivenbyfs(—-1)=1,f7(1)=0
8. fggivenbyfg(—1)=2 fg(1)=0
9. fggivenbyfg(—1)=2 fg(1)=1

3.14 4x-2

315 62 +2h2-6

3.1.6
ay 1 b 1 1 f(
1 True.f(E)fz;,a,aT,W_
b b

2. False. For exampld,(1+1) = f(2) = % but f(1)+ f(1) = % + % =2.

2
3. True.f(a?) = aTlZ = (g) = (f(a))2.

317 a(3) =632 +x—6; 24— 11x— 10 + 23 +>#
318 7,2 —2x—1, ¢~ 434 8x+2

3.1.9 We must look for alik € Dom(f) such thas(x) = x. Thus

X - 23+ 2x=x
B —234x=0

x(x4—2x2+1):0

S(x) =x

X2 -1)2=0

Ll

X(x+1)2(x—1)2 = 0.

The solutions to this last equation gre 1,0, 1}. Since—1 ¢ Dom(s), the only fixed points of arex =0 andx = 1.
3.1.10 h(x—1)= —114 x> h(x) = —5+5x—x2; h(x+1) = —14+3x—x2

3111 F(x) =X —2x+1; f(x+2) =x +2x+1; f(x—2) =x2 —6x+9

3.1.12 Rename the independent variable, Bay— s) = 2s. Now, if 1 —s= 3x thens= 1— 3x. Hence

h(3x) =h(1—5)=2s=2(1—3x) =2—6x.

1. ag=p(0) = (1-024042003_ 1,

2. ag+ap+ag+--+agorp=p(1) = (1-12+242003- g,

ag-ai+ap—ag+--—agor1tagoiz =  P(-1)
— (1= (~1)24(-1)%)2003

= 1

4. The required sumi (1)+2p(—1) =1

5. The required sum i (1)72‘)(71) =0.

3.1.14 We have

321

(2

1. d(-2) €23
2. d(-3)is undefined.
3. d(0) is undefined.

4. d(100 =4.

3.2.2 The graph appears in figuFes.

323

324

325

326

327

328

5 -4-3-2-101 2 3 4°5

Figure F.8: Problens.2.2 d.

Dom(ld) =R andim (Id) = R.

Dom(AbsVal) = R andim (AbsVal) = [0;+co[.
Dom(Sq) = R andim (Sq) = [0;+eo].
Dom(Rt) = [0;+eo[ andIm (Rt) = [0;+oo].
Dom(S¢) = [—1; 1] andIm (S¢) = [0; 1].

Dom(Rec) =R\ {0} andim (Rec) =R\ {0}.
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3.2.9 The graph appears in figufed.

Figure F.9: Problenms.2.9

3.2.10 The first line segment?; has slope

_1-(-3 4
slopeZy = ey R
4
4 7 3 7
1=- 3t kg = k1= 350 this line segment is contained in the line 3%t 3 The second line segmerst’s has
slope

and so the equation of the line containing this line segmeeat the formy = > x+k; . Since(-1,1) is on the line,

1-1

PR T

slope £ =
and so this line segment is contained in the yire 1. Finally, the third line segment’3 has slope

—5-1
slope£3 = 7= = -3

and so this line segment is part of the line of the fgrm —3x+kp. Since(1,2) is on the line, we have
2= -3+ky = kp =5, and so the line segment is contained on theyire-3x+5. Upon assembling all this we see
that the piecewise function required is

if xe [-4,-1]
ifxe[-1;2
ifxe[2:4

f(x) =

332 1L R 6. R

7. J—oe;-1[U]-1;0

8. ]-1;1]

5. ] —o0;1—v3[UJ1+ v/3; 400 9. {0}

334 [-2V3;0U[2V3;+ol.

3.35 x€]—o0;1—3[UJ1+ /3;+oo|.

3.3.6 Theyare

1. {-1} 5. ] —o0;—3[U] — 2;0[U]0; 2[U]3; +oo]

2. @
6. ]—3;—2[U]0; 2[U]3;+oo[
3. [0;20U]3; 400

4. 13;4e] 7. R\{-3,-223}

34.1 1

7. 0

8. undefined

10.

SIS

342 1){-4,-2,0,2,4}2){0,1,4}3){0,1}. 4){0,2}.
3.4.3 (1)13, (2)5981, (3) 10, (4) 1995
3.4.4 Observe that+b = f(1) = 8. We havef (50) = 50a+ b, g(50) = 50b+aand

f(g(50)) = f(50b+a) = 50ab+a2+b,  g(f(50)) = g(50a+b) = 50ab-+b%+a,

whence
28= f(g(50)) — g(f(50) = a2 — b2 — (a—b) = (a—b)(a+b—1)= 7(a~b) — a—b=4.
Therefore,

2_(a_p)?2 _
abe (a+b) 4(a b) :64 16:12

4
3.4.6 1)[0;+%]2)[0;2 3){0}. 4)[2:6]. 5)\/ V4—x2 —2. 6)VE—x.
347 1)[0;v2)2)] - ;0] 3)[~2;0. 4) {~v2,V2}. 5) VZFXx 6) —\/ ~V2—x2.

V2
349 =

3.4.10 8

3411 x=1/3.

3.4.12 (fof)(x)=4x2 — 43 +x4.

3413 c=-3

3.4.14 If y=0thenf(x+g(0)) = 2x+5. Hence

() = f(x—9(0) +9(0))2(x—g(0) +5) = 2x—2g(0) +5.

We deduce that (0) = —2g(0) + 5 and hence,
—29(0)+5=f(-g(y) +9(y)) = 2(-=9(¥)) +y+5 = 9(y) =9(0) + % .

This gives
x+f(y)

gx+f(y) =9(0)+ ——= =9(0) +

X+2y+5
> —Z

X+2y—-29(0)+5
2 - 2

351 We havefl? (X) = f(x+1) = (x+1)+1=x+2 13 (x) = f(x+2) = (x+2)+1=x+3 and so, recursively,
() = x+n.

352 We havefl2 x) =f(2)= 22 1[3] x) = f(22><) =23xand so, recursivelyf n] () =2"x

3.5.3 Letx=1. Thenf(y) =yf(1). Sincef(1) is a constant, we may l&= f(1). So all the functions satisfying the
above equation satisff(y) = ky.

3.5.4 Fromf(x) +2f(§) = xwe obtainf (%) = 2 - % f(x). Also, substituting Ix for x on the original equation we
get

f(1/%) +2f(x) = 1/x.
Hence

f(x):Z—t—%f(l/x):%(—%(%—%f(x)).

X

which yieldsf (x) = % -3

3.5.5 We have
()2 f (%) =64,
whence
ot (1(22))) o220
Substitutex by %%E Then
f <%)2f(x) :64(%). )

f(x)3:64x2<ﬂ),

1-x

Divide (1) by (I1),

from where the result follows.
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3.5.8 We have
1(2) = (-121-21(1) = 1-2f(1)
(3) = (—132-21(2) = —2-2f(2)
f(4) = (-1)%3-2f(3) = 3-2{(3)
1(5) = (-1)54-21(4) = -4-2((4)
(999 = (~1)99%g98- 2f(998) = -998-2f(998)
f(1000 = (~1)100099_ 2f(999 = 999-2f(999)
f(1009) = (-1)100%000-2f(1000 =  —1000- 2f(1000

Adding columnwise,

£(2)+ £(3)+ -+ F(100D) = 1— 2+ 3— -+ 999— 1000 2(f (1) + (2) + - + (1000).

This gives
2f(1)+3(f(2) + f(3) +---+ f(1000) + f(1001) = —500.
Sincef (1) = f(1001) we have Z(1) + f(1001) = 3f(1). Therefore
f(1)+f(2)+---+ (1000 = —5—20‘
359 1

35.10 Seta=b=0. Then(f(o))2 = f(0)f(0) = f(0+0) = f(0). This givesf(o)2 = f(0). Sincef(0) > 0 we can
divide both sides of this equality to géf0) = 1.

Further, seb= —a. Thenf(a)f(—a) = f(a—a) = f(0) = 1. Sincef(a) # 0, may divide byf (a) to obtain
1

f(-a) = @

Finally takinga = b we obtain(f(a))2 = f(a)f(a) = f(a+a) = f(2a). Hencef (2a) = (f(a))z

3.6.1 Assumeg(s)) = g(sp). Then

gs1)=9() = 25+1 = 29+1
= 25 = 2s)
= S1 = 2

We have shewn thaf(s)) = g(sp) = s1 = S, and the function is thus injective.

To prove thag is surjective, we must prove thét b € R) (Ja) such thag(a) = b. We choose so thata = b;zl . Then

g(a):g(%) :Z(b%l>+1:b—1+1:b‘

Our choice ofa works and hence the function is surjective.

3.6.4 We must shew that there is a solutiofor the equatiorf (x) = b,be R\ {2}. Now

X
=b = x=—.

b
f=b= 333 76

Thus as long ab # 2 there isx € R with f(x) = b. Since there is na such thag(x) = 2 and 2¢ Target(g), gis not
surjective.

3.6.5 1. neither,f(—1) = f(1) so notinjective. There is n@with f(a) = —1, so not surjective.

2. surjectivef(1) = f(—1) so not injective.

3. surjective, not injective.

4. injective, as proved in text, there is awith f(a) = —1, so not surjective.

5. neither)1| = | — 1| so not injective, there is n@with |a| = —1, so not surjective.
6. injective, non-surjective since, say, there isanwith —|a| = 1.

7. surjective, non-injective since, say: 1| = |1/ but—1# 1.

8. bijective.

—1
371 Sincec(c’l(x)):xwehave e
-

G x 2
1x+2 1-x

= x. Solving forc 1 (x) we obtainc=1(x) = =2+ -t
The inverse ot is therefore

R\(-2}
2
21

1 B -

X —

372 1R reals f1(x) =

373 f:R\{1} - R\ {1}, f~ =22

B2
3-1

374 (fogt@W=(g tof H) =g (1) =0"1@) =2
3.7.5 Sincex? —4x+5= (x— 2)2 +1, considel) = |—;2] andly = [2;+oo[.
3.7.6

1. The first piece of is a line segment with endpoints(at5,5), (0, —1), and whose slope is g Thus the
equation off osf(x) = — gx— 1. Puttingy = — g x— 1 and solving fox we obtainx = — gy— g . We

deduce thaf’l(x) =- §x— g Forxe [-5;0, -1 < f(x) <5, and hence the formula forLis only

6
valid for -1 < x < 5.
2. The second piece is a line segment with endpoin(8,at1), (5, —3), which has slope- é . The equation of
is f(x)=— gx— 1. Puttingy = — g x— 1 and solving fox, we obtainx = —gy— g We deduce that
f’l(x) =— gx— g Forxe [0;5, -3 < f(x) < -1, and so this formula fof ~1 is only valid for

—-3<x< 1.

3. The graph of—1 appears in figure. 10,

-4

|
1
5-43-2101234567809

Figure F.10: Probleri.7.6

3.7.7 We have
1. The expression under the cubic root must not be 0. erﬁee 1 and the natural domain i\ {1}.

2. Put

Now exchangex andy and solve fory:

3
=B -1)=1 = y= EV’/T;l'

Hence

f
1, 5841
f (x)f\/73 .

3. AsxvariesinR\ {1}, the expression% assumes all positive and negative values, but it is never 0.
Vd -1
Thusim (f) =R\ {0}. The expression fof’l(x) is undefined whes = 0. Hence the natural domain of
f~Lisr\{0}.

4. The function

R\{1} - R\ {0}

1

X T~

x2 -1

is a bijection with inverse

B0 - R\
’ " . 5341

x3

3.7.8 Sincex>0, f(x) = X2 % has inversd’l(x) =1/x+ 1 The graphs of andf~1 meet on the ling = x.
Hence we are looking for a positive solution to

2

1
4 2
3.7.9 1) Yes, f is a bijection.f ~1(f(h(4))) = h(4) = 1,2) No

37.10 3

| —ooi1]

1-x2

3711 t71: el =

X —

3.7.12 Eithera=1,b=0ora= —1 andb arbitrary.
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3.7.18 We havef ~1:R — R, with

ifx<0
ifx>0

Vi

The graph off 1 appears in figuré. 11

Figure F.11: Probler3.7.18

3.7.20 The inverse of

( (O] = [054eo]
x - 2
is
L. [0+ = [0;+eo]
x - VX

) . ) 3 3 Nt
In diagramr.12, each rectangéj has its lower left corner &0, f))' base,/ 10 and helghtIo. Each rectanglei, has

lower left corner af Tko'o)' base%J and height 1‘—<0)2. The collective area of these rectangles is

e (E R SRS EN ERYEN SWEY

Since these grey rectangles do not intersect with the gapearas on the corners, their collective area is less thaartze
We thus conclude that

of the unit square minus these smaller squares: — 100°

100

1 12+/1+22+/2+32+/3++92+/9<95
10\\10 10 "\ 10 10 "\ 10 10 10 10 100°

100

Vo
\G)
V7
Ve
Vs
Va
V3
V2
Vi

Hy Hp Hz Hy Hs Hg Hy Hg Hg

Figure F.12: Probler.7.20

Y

412 y=f(x-2)-1=(x-2)2— =3

4.1.3 Yes.

4.2.3 Observe thaf is the function

—

a(x)

-
s

i
o

©
mo-.

PNWDOON®

5-4-3-2-10123456738091011

Figure F.13y = 2f(x).

22 - [-24

Let b be the function with curvg = f(2x). Thenb:

X —

b(x)

i
=

=
o

©

P NWAO O N ®

V

5-4-3-2-101234567 891011

Figure F.14y = f(2x).

[-48

[-2:2

X —

Let ¢ be the function with curvg = 2f(2x). Thenc:
o(x)

-
s

._.
© o
o ———

PNWAO O N ©

5-4-3-2-1012345¢678 91011
Figure F.15y = 2f (2x).

4.3.1 Proceeding successively:
1. Areflexion about the-axis gives the curve

y=—f(x)=|x-2=a(x),

4.2.2 The required equation is= T];Z -1

say.
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2. Atranslation 3 units up gives the curve
y=a(X)+3=[x+1=b(x),
say.

3. Ahorizontal stretch by a factor (g gives the curve

o(3)-

say. Observe that the resulting curve is

4x

4
3 +1= é\lefc(x).

y:c(x):b(%x) :a(gx>+3:—f (gx>+3.

432 (1)y=—-(x+1)(x+2)-2 Qy=-2x-7 )y=|1-x-1

4.3.3 Hereisthe graph of— f(x+1).

Figure F.16y = f(x+1).

Here is the graph of — f(—x+1).

Figure F.17y = f(1—Xx).

Here is the graph of — —f(—x+1).

Figure F.18y = —f(1—X).

4.4.1 Here is the even completion.

Figure F.19: Even completion.

Here is the odd completion.

Figure F.20: Odd Completion.

4.4.2 Sincef is even,f(2) =3, f(—3) = 2. Sinceg is 0dd,g(2) = —2,g(—3) = —4. Thus
(F+9)(2=1(2+92)=3+(-2)=1, (9o f)(2)=9(f(2) =9(3) =4

4.4.3 Sincef is odd,f(—0) = —f(0). But f(—0) = f(0), giving f(0) = —f(0), that is, Z (0) = 0 which implies that
(0)=0.

4.4.4 The constant functioR — {0} with assignment rulé : x— 0 is both even and odd. Itis the only such function,
for if g were both even and odd agéx) = a # 0 for some real numbet; then we would have
a=g(x) =g(—x) = —g(X) = —a, implying thata = 0.

4.45 We will shew thatA = {0} and consequentl{3 = { f(0)}. Letx € A. If x # 0 then—x must also be i becausef

is even. Thus ther+# —x andf(x) = f(—x), which means that in not injective and hence not invertible, a contradiction.
This means that the only elementAfs x = 0. In turn, sincef is surjectiveB must have exactly one element, which
perforce must bé (0).
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4.5.1 Here are the graphs af— 2f (x) andx+— f(2x).

N s b A b N slor v s 0

Lo
e

N s b A b N slo kv ow s 0 e

e s a3 0123 A s e 7

Figure F.21: y =
2f(x)

Here are the graphs af— f(—x) andx— —f(x).

E

6 5 4 3 2 Afo 17273 as e 7

Figure F.22: y =
f(24)

N e b A b N slor v ow s 0 e

o

N T

AN R B MR (R R A B R R A 4

Figure F.23: y =
fF(—=x)

Here are the graphs af— — f(—x) andx+— f(|x]).

7

6 5 4 -3 2 Afo 17273 a6 7

Figure F.24: y =
—f(x)

| i

N s b A b N bforvow s 0 e~

N
i
N s b A b N bfor v ow s o e~

e s a3 0123 A e 7

Figure F.25: y =
—f(=x)

7

6 5 4 -3 2 Ao 17273 as e 7

Figure F.26: y =
F(Ix)

Here are the graphs a&f— |f(x)| andx— f(—|x|).

i
A
>

4

N T
g

N s b A b N klor v w0 e

e s 4 32 o123 as

Figure F.27: y =
(X

4.5.2 The graphs appear below.

67 e s a4 32 0123 A s e 7

Figure F.28: y =
f(=1x))

Figure F.29:

y = 9(x) =
x2—1

4.5.3 The graph appears in figure31.

Figure F.30:

y = l9x)| =
X2 —1]

Figure F.31:

Probleri.5.3




286

Appendix F

45.4 Observe thay = v/x2 +2x+ 3 is an upper semicircle and that

Y=\ +2x+3 = 2 -2x+y2 =3 = (x-1)2+y2 =4,

from where the semicircle has radius 2 and centfd A2), as appears in figure 32,

Figure F.32: Probleni.5.4

The graph ofy = —x2 4 2|x| + 3 appears in figure.33

Figure F.33: Probleri.5.4

The graph of ofy = {/—x2 — 2|x| -+ 3 appears in figure.34

Figure F.34: Probleni.5.4

455 Hereisthe graph of = (x— 1)2 -2

Figure F.35y = (x— 1) — 2.

Here is the graph of = |(x— 1)2 -2|.

Figure F.36y = |(x—1)°—2|.

Here is the graph of = (|x| — 1)Z —2.

Figure F.37y = (|x| — 1)> 2.

Observe that—[x| — 1)2 = (~1)2(]x| +1)2 = (|x| + 1)2. Here is the graph of = (x| +1)2 — 2.

Figure F.38y = (x| +1)2 2.
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4.5.10 Hereis the graphof=1—x.

Figure F.39y=1—x.

Here is the graph of = [1—X|.

Figure F.40y=|1—x].

Here is the graph of = 1 — |1 —x|.

Figure F.4ly=1—|1—X|.

Here is the graph of = [1— |1 —X|.

 —— Ll
T LI
54321012345

Figure F.42y=|1—|1—X]||.

Here is the graph of = 1—[1— |1 —X]|.

5
4
3
2
1

Figure F.43y=1—|1—|1—x]|.

Here is the graph of = |1— |1— |1 —X]|.

Figure F.A44y=|1—|1—|1—X||.

Here is the graph of = 1— [1— [1—[1—X||.

Now Ao

Figure F.45y=1—|1—|1—|1—X|||.

Here is the graph of = [1—[1—|1—[1—X]|||.

5
4
3
2

Figure F.46y=1|1—|1—|1—|1—xX||||.

4.5.12 Notice that the graph of = f(ax) is a horizontal shrinking of the graph = f(x). Putg(x) = f(ax). Since
9(4/3) =0 we must haved/3= -2 —> a= —3/2, so the poin{—2, 0) on the original graph was mapped to the point
(4/3,0) on the new graph. Hence the poi8t0) in the old graph gets mapped te2,0) and scC = —2.

2_
4.6.1 Forx+#1we havef(x) = %11 =x+1. Sincef(1-) =2 andf(1+) = 2 we neeca = f(1) = 2.

1
Bx

4.6.2 Take, among many possible examples, the functioft — R with f(x) =
f(~1) = f(0) = f(1) =0.

forx¢{-1.0,1} and
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4.6.3 We havef(1-) =0 andf(1+) = 2+ 3a. We need then & 2+ 3aora= — %

n_
4.6.4 Forx# 1we havef(x) = X1 =x=143=2 1.2 4 x4 1. Sincef (1-) = nand f (1+) = nwe need
x—1

a=f(1)=n.
4.6.5 Examine the assignment rute— {x3j.

4.7.1 Examine the assignment ruléx) = {; J,x#0.

x—1

4.7.2 Examine the assignment rute— |

]

4.7.3 Examine the assignment rute— | /[X[].
4.7.4 The function is periodic of period 1. ¥< [0; 1] then
|[X/[ = min(x,1—x).

Its graph appears in figufe47.

Figure F.47: Probleni.7.4

4.7.5 Its graph will jump each timex2= n, an integer, that is, when= g which means it jumps at every fraction with
denominator 2. Its graph appears in figuré.5

eo
eo
4+ eo
34+ eo
2 4+ eo
1 4eo

Figure F.48: Probleni.7.5

4.7.6 The assertion is false. For examplexif 2.1 then{Z.l}Z =012 =001 bul{z.lz} ={4.41} =041

4.7.8 The formulax — is not defined fox € Z. If xe R\ Z then = 1. Thus the graph

__1 __1
1T — LLx1l 1T = LLx1l

consists of the horizontal line of equatipr- 1 but with punctures at the points, 1), n € Z.

4.7.9 Firstconsiden € Z. We have

n—-1  asx—n-
Ix]f =
n asx— N+
Then
n—1+,/n—(n-1) = n asx— n—
Lx]) +v/x—= [[x]] —
n+yh=n = n  asx—n+

We deduce that is continuous at the integers. Sintés clearly continuous at non-integral points, we conclut f is
everywhere continuous.

5.2.1 To prove thak — |x| is convex, we use the triangle inequality theoréfrand the fact thaiA | = A, [1—A|=1—-A
for A € [0;1]. We have

Absval(da+(1-A)b) =  |Aa+(1-A)b|

< Ad+|(1-A)b|

= Aal+(1-A)b|

= AAbsVal(a) + (1—A)AbsVal(b),
whencex — |x| is convex. AsAbsVal(—x) = | —x| = |x| = AbsVal(x), the absolute value function is an even function. For
a<b<0,

AbsVal(b) — AbsVal(a) _ |b] —|a] _ —b—(-a) _

b-a b-a b-a -1<0,

x— |x| is a strictly decreasing function far< 0. Similarly, for 0O<a<b

AbsVal(b) —AbsVal(a) _ |b|—|a] b-a
b-a " b-a  b-a

1>0,

and sax+— |X| is a strictly increasing function for> 0. Also, assume thate Im (AbsVal). Then3x € R with

y= AbsVal(x) = |x|, which means that > 0 and sdm (AbsVal) = [0;+co][.

To obtain the graph of — || we graph the ling = —x for x < 0 and the ling/ = x for x > 0.

5.4.2 (i)y=(x+3)2 vertex at(—3,0), (i) y = (x-+6)2 — 1 vertex at(—6, —1), (jii) y = (x+1)2 — 16, vertex at
(-1,-16) (iv) y=—(x— %)2 + % vertex at( % %) wvy= Z(x—3)2 +5, vertex at(3,5), (vi) 3(x— %)2 + g , vertex
at(%. g) (vii)y= % (><+5)2 +8, vertex at —5,8)

543 (3,-9)

544 y=22-1

545 y=-2(x+3)(x—4)

5.4.6 Observe that(1—x) = % —(x— %)2 < % and that foix € [0,1],0< x(1—x). Thus if all these products are %
we obtain[%3 <a(l-b)b(1-c)c(l—a)=a(l-a)b(l-b)c(l-c)< % , a contradiction. Thus one of the products

1
must be< 7
547 P(x)=21025-25x—1)2; $21025

5.4.8 We have

o2 =P+l = (P-x=x+1)or(P+2x=—x2—1)

=  (-2x-1=0)or(22+2x+1=0)
1 1
= <x:—2)or<x:—zi§).
. [ 1
whence the solution set r%— 5 } .
5.4.9 We have

(02 +2x—3=2) or (@ +2x—3=—/2)

C42x-32=2

= (@+2x=3-v2=0)or ( +2x—3+ V2 =0)
_ (X —21«/4—:(—3—@))

o [ 721‘/47241(73“@))
- (X: —21\/26+4\/§

( —2i\/16—4\f2>

or | x= ———5——

— (x=-1=V4+v2)or (x=-1+V4-2).

Since each of 4 /2 > 0, all four solutions found are real. The set of solulion%i'sli Vat \/2} .

5.4.10

B -9x+9=0 R (x-1)-9(x~1) =0
(x=1)(%-9)=0

(X—1)(x—3)(x+3) =0

r1ri1

xe{-31,3}.
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5.4.11

B -22 —11x+12=0 333 2 4 x—12%+12=0
X2 (x—1) —X(x—1) — 12(x— 1) =0
(x=1)(@ —x—12) =0

(x=1)(x+3)(x—4) =0

I A

xe {-3.1,4}.

5412 X3-1= (x— 1)(x2 +x+1). If x# 1, the two solutions ta2 +x+1 =0 can be obtained using the quadratic

formula, gettingc = 1/2+i \/§/2. There is only one real solution, namely- 1.
5.4.13 The parabola has equation of the foxm: a(y— k)2 +h=ay— 2)2 +1. Since wherx= 3 we gety = 4, we have,
2 1
3=a4-2)°+1= 3=4a+1= a= 3

The equation sought is thus

! 2
X= E(y—z) +1

5.4.14 Observe that
x4 12 49=(x2-9)(x2-1).

Thus R 9 aﬂdi =1, whencex=+ % andx=+1.
2 2 3

5.4.15 Rearranging,

(t2—81)x=3(t—9) = (t—9)(t+9x=3(t—09). (F1)

If t =9, (~.1) becomes 8= 0, which will be true for all values of. If t = —9, (~.1) becomes 8= —54, which is clearly
nonsense. if € R\ {-9,9}, then

o 3
T t+9
is the unique solution to the equation.

5.4.16 Letxand 50-x be the numbers. We seek to maximise the proéhict = x(50— x). But

P(x) =50x— X2 = —(xz —50x) = —(xz —50x+ 625) + 625= 625— (x— 25)2, We deduce tha(x) < 625, as the square|
of any real number is always positive. The maximum produttis 625 occurring wher= 25.

5.4.17 If b,hare the base and height, respectively, of the rectangle wieehave 20= 2b+ 2h or 10=b+ h. The area of

the rectangle is theA(h) = bh=h(10—h) = 10h— h2 =25- (h— 5)2. This shows thaf(h) < 25, and equality occurs

whenh = 5. In this caseb = 10— h = 5. The height is the same as the base, and so the rectanglengiehdiximum area is|
asquare.

5.4.18 1. The current production is 26600= 15000 fruits.

2. If xmore trees are planted, the production of each tree will ife-6TBx.

3. LetP(x) be the total production after plantixgnore trees. Then
P(x) = (254 x)(600— 15x) = —15@ 4 225+ 15000 A good function modelling this problem is

{xeN|x> 25} —

N

X —

~15& + 225¢-+ 15000

This model assumes that the amount of trees is never fewe2ha

4. We maximis@(x) = —15x2 + 225+ 15000= 15000 15(x2 — 15x) = 1584375~ 15(x— 7.5)2. The
production is maximised if either 7 or 8 more trees are aditedahich case the production will be
1584375 15(7 — 7.5)2 = 15840 fruits.

5.9.1 Such polynomial must have the fomix) = a(x+ 1)(x—2)(x— 3), and so we must determirae But
—24=p(1) =a(2)(—1)(—2) = 4a. Hencea = —6. We thus findp(x) = —6(x+ 1)(x— 2)(x— 3).

5.9.2 There are ten such polynomials. They aggx) = —2(x— 1)3, p2(%) —2()(—2)3, p3(x) —2()(—3)3,
Pa(X) = —2(x=1)(x=2)2, p5(x) = —2(x—1)?(x=2), P(x) = ~2(x—1)(x=3)2, p7(x) = —2(x—1)?(x3),
Pg(X) = ~2(x—2)(x~3)2, pg(x) = ~2(x~2)2(x~3), p1o(X) = ~2(x—1)(x~2)(x~3).

5.9.3 This polynomial must have the forofx) = a(x— 1)(x+ 3)2. Now 10= c(2)=a2-1)(2+ 3)2 = 25a, whence
a= g . The required polynomial is thuegx) = 5 (x=1)(x+ 3)2.

5.9.4 Putg(x) = p(x) —x2. Observe thag is also a cubic polynomial with leading coefficient 1 and tfah = O for
x=1,2,3. This means thaj(x) = (x— 1)(x— 2)(x— 3) and hencep(x) = (x—1)(x—2)(x—3) + X2 This yields

P4) = (3(@)(1) +42 =22

5.9.5 The polynomialy(x) = p(x) — 7 vanishes at the 4 different integer valaeb, c, d. In virtue of the Factor Theorem,

90 = (x=a)(x—b)(x—)(x—d)q(x),

whereq(x) is a polynomial with integral coefficients. Suppose théj = 14 for some integer. Then
g(t) = p(t) — 7= 14—7=17. It follows that

7=g(t) = (t-a)t-b)t—c)t-d)a(t),

that is, we have factorised 7 as the product of at least 4rdiffdactors, which is impossible since 7 can be factorised &
7(—1)1, the product of at most 3 distinct integral factors. Frois tontradiction we deduce that such an integéwes not

exist.

5.9.6 By the Factor Theorem, we must have
0=t(-4) = (-4)3 ~3a(-4)2 + 40
<= 0=-24-48a
a1
2
5.9.7 Observe thaf (x)(x—1) = X°—1and
f(><5) =x20 15, 10,5 1 (xzo—1)+(x15—1)+(x10—1)+(x5—1)+5,
Each of the summands in parentheses is divisiblnsoy 1 and, a fortiori, byf (x). The remainder sought is thus 5.
5.9.8 Putg(x) = p(x) — x, thenp(6) = 16.
5.9.10 (x—2)(x+2)(x—3)
5.9.11 (x—3)(x+3)(x+5)(3x—-2)
5.9.12 a=-7,b=-60

5.9.13 Letp(x) = anx" +an_1x" "1+ +-ajx+ag withan #0,n > 1. Then

2
16p() = (p(20))? = 16(@n +an_1x2" 2+ +apx@ +ag) = (Z"anx” T L +Zalx+a0)
Since the coefficients on both sides of the equality musteagve must have

1630 = 22Mad — 2% = 22,

sincean # 0. Asan is an integer, we must have the following cases: 1,an = 4,n = 2,an = 1. Clearly we may not
haven > 3. Thus such polynomials are either linear or quadratico Afsr x = 0, 16p(0) = (p(O))Z and therefore either
p(0) =0orp(0) = 16.

Forn =1 we seelp(x) = 4x+a. Solving

16(4x2 +a) = (8x+a)2 = a=0,

whencep(x) = 4x.

Forn=2, letp(x) = 2

+ax+b. Solving
16{)(4 +a +b)= (4><2 + 2ax+ b)2 = a=0.

Sincep(0) = 0 or p(0) = 16, we must tesp(x) = X2 andp(x) = X2 +16. Itis easy to see that onyx) = 2 satisfies the
desired properties.
In conclusion, 4 andx2 are the only two such polynomials..

721 FERFRTFRT

$
732 S

734 (Dax < 22573 achieved ak = %
(2)b(x) < 113 achieved ak = 3,
@)e(x) < % achieved ak = &, (Hint: Considerd ¢(x) = ($x)(3x)(1-%3)

811 T,T,T,FT,T,FF
812 ()-5,(-50)-3.@-3.6 % ©®6M3Z @-4.©-3 101
813 W2.@-3.0-3. W26 {%

82.1 (1) V3, (2)81, (3) 64 (4)5, (52, (6) Iogp32, (7) log 3, logz 2, 0, (8) logy 7,1, (9) 0, (10) logs 2, (11) logs 2,
(12) logs 4,logs 3, (13) 81, (14) 5

831 1

832 FFT
833 (1)14,(2)3,3) 5.4 §
534 31000
8.35 10

1
836 3
b
837 3

~33 41024253

31
32

8.3.8
8.3.9
8.3.10 (YN—IBY/S, (2)0,(3)1(4) 2, (BN, (6) 0, (7) 1373
8.3.11 (1) About 107.37 km (2) 42 times.

8.3.12 2083
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8.3.13 a=4,b=3,c=24
17
8.3.14 s

911 FTRRETT

9.1.2 1. %ﬂ,quadramll; 8. 1, quadrantl;
2. 7, quadrantiil; 9. 2, quadrantll;

3. %T quadrant Il; 10. 3, quadrant Il;

8 11. 4, quadrant lIl; (xii) 5, quadrant IV;
4. —,quadrantl;
57
12. 6, quadrant1V;
5. 9%r,quadrantlll;

13.  100-30m, quadrant IV;

6. s uadrant I;

- 79 : 14. 27-3.14, quadrant Il;
8

7. 7,quadrant|l: 15. 2m—3.15, quadrant II

913 () §F, In Yx

3m 19"'(ii)—17" _13m _9m . m -1
200 20 %200 20720 20

9.1.4 Yes; No.

922 FFRT,T,RTFRETFRTTRTFF
9.2.3 cost=0.6

9.2.4 sinu=+/19

925 cost= 3—\5/2

9.2.6 sinu=— ?

9.27 cos%}ﬂr — V3 inST_

z
9238 cos%’rr = Y2 and sin3T = V2

929 sin(3LT) ~ —1 and cos 3T — — 13

9.210 sin(200) = 33 and cos 2001) - - }
9211 sin( 1) = 2 and co 12T) = 32
9.2.12 sin(%i") = @ and co$%57") = @
9.243 sin(2927) = ~ 33 and co$ 2027 — -

9.214 sin( 1210 = ¥2 and cog 1T — — 32

9.2.27 Hint: Use the Arithmetic-Geometric-Mean Inequaliggfb > \/ab, for non-negative real numbeasb.
931 F,FFF

941 RETTRETTRTF

942 (- -1

943 {f5+ W nez}

944 {+ %’J +2m,2m.ne Z}.

945 {(-)™1 T+ 0 nezp ()™ I+ O n= 295 296 297,298 299 300}
9.46 {(2n+1)mneZ}

9.4.7 {Y nez}

948 0

949 (- +nm Z 4nmy

9.410 (1){— g g} @1 %‘, %‘ }: (3) No solutions in this interval; (4) All the solutions belg to this interval

(@n%mem:@)(f%%}

2y2
9411 242

9.4.12

S

9.4.13

S

9.4.14 5-2m 41— 10

951 F,FFF

9.5.2 sinx:—%,cos(: @,lanx:—%‘/g.

9.5.3 sinx= Z‘ég_coyzfé

2

954 cosx=—V1-thtax= - A
Vi-t4

[

9.5.5 sinarcsex = —

3y10
956 =YF°

957 2m-6; 4710
9.6.3 cogm/12) = 4(\/@1). sin(m/12) = 4(\/2—1).

9.6.4 Ccotacotb—1
% “cotatcoth

9.6.5 %cosx— :zl cos&X
9.6.6 % cosX+ % cosx
9.6.7 —a\rcsin‘li‘/gj&—3
1

9.6.8 arctanys.
969 mrarctang

1 1
9.6.10 3 sin&— 5 sinx
9.6.11 % sin2x+ %sinzv— %sin&
9612 —(Y2+43)
9613 x==J+nmx=+F+2nm nez

9.6.14 x=0.

9.6.15 x=0o0rx=1.
_ Vi7-3

96.16 x= V1I=3

A.3.1 Using the binomial theorem and Euler's formula,

32c0f2x = <92i><+e—2ix)6

_ (8)812ix+(g)e10ixe—2ix+(g)esixe—llix+(g)eﬁixe—ﬁix+(g)ellixe—six+(g)62ixe—lﬂ'x+(g)e—12ix

= elAx geBiX 154X 4 20 4 156 4X | peBIX | g~ 12X
= (elPX e 12X) | g(eBX 1 e BX) 4 15(efiX 1 e 4iX) 4 20

= 2c0s1x+12cos&+30cos4+ 20,

from where we deduce the result.

A32 From

cos X =4c0$ x—3cosx, sin3 = 3sinx—4sir x,

we gather, upon using the double angle and the sum identities

3sinx—4simx
4co$x— 3co

3—4sin2x>
= tamnx

tan&

4codx-3
_ tanx 3—4sirfx
1-4sirx
2
= tanx 1+7>
( 1-4si?x
2sinx
cosx— 4sir? xcosx
2sinx
Cosx— 2sinxsin 2
2sinx

<cos< cosB()
cosx—2( — —

= tanx+

= tanx+

= tanx+

2 2

Finally, upon lettingx = g we gather,

2sin”
us m 9 m LT
\/é:tangzlanf+ ,? =tang +4sing,
cos

9 9 9’

as it was to be shewn.
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C1l1 (1)2,-1,5,-7,17:(2) 2, ¥2,5/4,7/8,17/16;(3) 2, 2, 3, 7, 25; (4) 13, 1/5, 1/25, 1/119, Y721, (5) 2, 94,
64/27, 625256, 77763125

C.1.2 (1) Strictly increasing, unbounded (2) non-monotonic,aunided (3) strictly decreasing, bounded (4) strictly
increasing, bounded (5) strictly increasing, unbound&dy¢n-monotonic, bounded, (7) strictly increasing, bathd8)
strictly decreasing, bounded

2
C31 - 3

C.32 Oneis given thaarS = 20 andar® = 320. Hencdar?| = %

50 01 01 4 02
€33 (1) 3,71 = 358948993845926294385124, (%%{17.(3) lﬁﬁlT ) Lyy_r

C.3.4 At2:00:59 PM (the second just before 2: 01 PM.)
c35 230

C.3.6 (1) 253 =9223372036854775808, (252 — 1 = 18446744073709551614, (321x 1015 kg, or 1200 billion
tonnes (4) 3500 years

cal ()8 (2) 8] . (2) MOEOV2 (4) 2IVELIBVZ (6 3415 () diverges, (7); 1y ) 3. (9) 1y

caz W1 . @308 @B 53

E.l1

E13

E1l4

The command line follows:

> (82 - 67)(8 - (3) *(2));

The required command line follows.
> expand((atb+c)'3-3  *(ath) *(b+c) *(c+a));

a3+b3+4c3
The required command lines are
> factor((x + y)'5 - X5 - y'5);

Sxy(x+Y) (¥ +xy+32)
> factor((x + y)'7 - X7 - y'7);

TxY(X-+Y) (2 +xy+x2)2

Here is one possible answer

> is((@2 + b2)  *(c2+ d2)= (@ *c + bxd)2 +
> (a*d - b*c)2);
true
The command line follows:
> solve(x"2+abs(x-1)=5, x);
1 1
2,5-5V17
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