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GNU Free Documentation License

Version 1.2, November 2002
Copyright © 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice

grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member of the public
is a licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document’s

overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by
some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the
Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies

to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section
3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you must

enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly
identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or

with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of
the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the

Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified
Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
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D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there
is no section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties–for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the
old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all

of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same

name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledge-
ments”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy

that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this

License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the

copyright resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License
does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special

permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of
this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices
and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is

void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as
such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may

differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the

option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify

a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.



Preface

These notes were created because I saw a need to them. There are four main topics that we will cover
in the class:

1. Closed forms for sums and recurrences.

2. Estimates for sums and recurrences.

3. Basic programming algorithms and their complexity.

4. Graph theoretic methods.

Topic 1 is classic, as I learned from [Boo], [HaKn] and [Chr]. The more recent [KGP] and [Wil] have
also become instant classics on the subject.

Topic 2 is very well explained in analytic number theory books (see reference [MoVa]) and computer
science books (once again, refer to [KGP]). The approaches to asymptotics are somewhat different in
the two fields, but nevertheless, both have produced extraordinary methods for dealing with asymptotic
estimates. The classic [DeB] is also worth noting.

There is an abundance of advanced books for topic 3, with [CLRS] and [Knu] being standard ref-
erences. There are very few books, however, that explain basic algorithmic constructs at a level un-
derstandable to a novice, with the notable exceptions [Ser] and [She]. Their examples are in Pascal or
pseudocode, which, for our purposes, will not do. Hence, I have translated many of their examples into
Maple code, and also added many problems of my own.

I haven’t included any material on topic 4 here. There is no shortage of good books, both at the
elementary and advanced level in graph theory. My favourites are [BoMu] and [HaRi]. As the semester
progresses, I will write some Maple labs that will include graph theory, and then I will add them here.

Some of the material here uses Calculus, although Calculus is not part of the course prerequisites.
Most of the students taking this course, however, have seen one or two semesters of Calculus. Those of
you not having seen Calculus can skip over those parts. In some cases there are alternative derivations
for some of the results here that do not involve Calculus, but I didn’t want to write an encyclopaedic
work, and hence I used the most expedient methods available, in many cases using Calculus. Perhaps
some day I will include alternative proofs without Calculus, but I do not foresee having the time.

David A. SANTOS

dsantos@ccp.edu
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1 Sums and Recursions

1.1 Some Finite Sums and Products

Recall that by
n∑

k=1

ak we mean a1 +a2 +·· ·+an and that by
n∏

k=1

ak we mean a1a2 · · ·an. We will often write

this as ∑

1≤k≤n

ak = a1 +a2 +·· ·+an ,
∏

1≤k≤n

ak = a1a2 · · ·an .

Our interest is to obtain closed forms for some classic choices of the ak , that is, a formula for the sum
or the product that is a hopefully simpler expression involving n and not involving sums or products of
individual terms. The are many approaches for obtaining such sums in the simple cases that we will
investigate here. We will only provide a sample of them. The interested reader may consult the works
of [Chr], [HaKn], [KGP], or [Wil] for a more comprehensive treatment.

Perhaps the simplest cases are when we have

(a2 −a1)+ (a3 −a2)+·· ·+ (an −an−1) = an −a1,

and
a2

a1
· a3

a2
· · · an

an−1
= an

a1
,

in which case we say that the sum or the product telescopes.

We start by adding up a finite geometric series.

1 Theorem (Finite Geometric Series) Let x 6= 1. Then
∑

0≤k≤n

xk = 1+x +x2 +·· ·+xn = 1−xn+1

1−x
.

Proof: Put

S = 1+x +x2 +·· ·+xn .

Then

xS = x +x2 +x3 +·· ·+xn+1

shifts every exponent one unit. Subtracting,

S −xS = (1+x +x2 +·· ·+xn )− (x +x2 +x3 +·· ·+xn+1) = 1−xn+1 =⇒ (1−x)S = 1−xn+1 =⇒ S = 1−xn+1

1−x
,

since x 6= 1, obtaining the result. ❑

☞ More important than remembering the formula above is remembering the method of how this for-

mula was obtained. After many examples it will become clear that the same method applies to a wide

variety of problems: in Mathematics thus there are more problems than methods.

The above closed form is obtained readily using Maple . You must press ENTER after entering
the semicolon.

> sum(x^k,k=0..n);

Putting N = n +1 in the above formula, we are provided with the following factorisation, which might
be useful in certain situations.

x N −1 = (x −1)(x N−1 +x N−2 +·· ·+x +1). (1.1)

1



Some Finite Sums and Products

For example,

x2 −1 = (x −1)(x +1), x3 −1 = (x −1)(x2 +x +1), x4 −1 = (x −1)(x3 +x2 +x +1),

etc. The above simple formula gives rise, upon differentiation, to other few well known formulæ.

2 Corollary Let x 6= 1. Then
∑

1≤k≤n

k xk−1 = 1−xn+1

(1−x)2
− (n +1)xn

1−x
.

Proof: By Theorem 1 we may set for x 6= 1,

f (x) = 1+x +x2 +·· ·+xn = 1−xn+1

1−x
.

Differentiating both sides,

f ′(x) = x +2x +3x2 +·· ·+nxn−1 = 1−xn+1

(1−x)2
− (n +1)xn

1−x
,

obtaining the result.

Aliter: This is an example of a so-called arithmetic-geometric sequence. We use the same trick

that we used for adding a geometric sum,

S = 1+2x +3x2 +·· ·+nxn−1 =⇒ xS = x +2x2 +3x3 +·· ·+nxn .

Subtracting,

S−xS = 1+(2x−x)+(3x2−2x2)+·· ·+(nxn−1−(n−1)xn−1)−nxn = (1+x+x2+·· ·+xn−1)−nxn = 1−xn

1−x
−nxn ,

upon adding the geometric sum. This reduces to

(1−x)S = 1−xn

1−x
−nxn

= 1−xn −nxn +nxn+1

1−x

= 1−xn −nxn + (n +1)xn+1 −xn+1

1−x

= 1−xn+1

1−x
+ −(n +1)xn + (n +1)xn+1

1−x

= 1−xn+1

1−x
−xn

(
(n +1)(1−x)

1−x

)

= 1−xn+1

1−x
− (n +1)xn ,

from where we get the result. ❑

The Maple commands to obtain this sum are

> sum(k*x^(k-1),k=0..n);

3 Corollary
∑

1≤k≤n

k = n(n +1)

2
.

Proof: We will provide three essentially different proofs for this classic result. The first proof

can be simply obtained by letting x = 1 in Corollary 2, whence

∑

1≤k≤n

k = lim
x→1

(−xn n +xn+1n −xn +1

(1−x)2

)
= n(n +1)

2
,

Free to photocopy and distribute 2



Chapter 1

upon using L’Hôpital’s Rule twice.

Our second proof is known as Gauß ’s trick. It depends on the fact that any sum can be added

the same forwards as backwards, and since we are adding an arithmetic progression, the

terms at the beginning compensate the terms at the end to obtain equal quantities. If

S = 1+2+3+·· ·+n

then

S = n + (n −1)+·· ·+1.

Adding these two quantities,

S = 1 + 2 + ·· · + n

S = n + (n −1) + ·· · + 1

2S = (n +1) + (n +1) + ·· · + (n +1)

= n(n +1),

since there are n summands. This gives S = n(n +1)

2
, as was to be proved.

For our third proof we convert the given sum into a telescoping sum. Observe that

k2 − (k −1)2 = 2k −1.

From this

12 −02 = 2 ·1−1

22 −12 = 2 ·2−1

32 −22 = 2 ·3−1

...
...

...

n2 − (n −1)2 = 2 ·n −1

Adding both columns,

n2 −02 = 2(1+2+3+·· ·+n)−n.

Solving for the sum,

1+2+3+·· ·+n = n2/2+n/2 = n(n +1)

2
.

❑

4 Corollary
∑

1≤k≤n

k2 = n(n +1)(2n +1)

6
.

Proof: We will provide two essentially different proofs for this classic result, which essentially

resemble the first and third proofs of Corollary 3. If in Corollary 2 we put

g (x) =
∑

1≤k≤n

k xk−1 = 1−xn+1

(1−x)2
− (n +1)xn

1−x
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then put

h(x) = x g (x) =
∑

1≤k≤n

k xk = x −xn+2

(1−x)2
− (n +1)xn+1

1−x

and differentiating,

h′(x) =
∑

1≤k≤n

k2xk−1 =−−2 xn n −xn +1+x −xn+1 −xn n2 +2 xn+1n2 −xn+2n2 +2 xn+1n

(−1+x)3
,

and letting x = 1 we obtain

∑

1≤k≤n

k2 = lim
x→1

(
−−2 xn n −xn +1+x −xn+1 −xn n2 +2 xn+1n2 −xn+2n2 +2 xn+1n

(−1+x)3

)
= n3

3
+n2

2
+n

6
= n(n +1)(2n +1)

6
,

using L’Hôpital’s Rule three times.

For the second proof, observe that

k3 − (k −1)3 = 3k2 −3k +1.

Hence

13 −03 = 3 ·12 −3 ·1+1

23 −13 = 3 ·22 −3 ·2+1

33 −23 = 3 ·32 −3 ·3+1

...
...

...

n3 − (n −1)3 = 3 ·n2 −3 ·n +1

Adding both columns,

n3 −03 = 3(12 +22 +32 +·· ·+n2)−3(1+2+3+·· ·+n)+n.

From the preceding example 1+2+3+·· ·+n = ·n2/2+n/2 = n(n +1)

2
so

n3 −03 = 3(12 +22 +32 +·· ·+n2)− 3

2
·n(n +1)+n.

Solving for the sum,

12 +22 +32 +·· ·+n2 = n3

3
+ 1

2
·n(n +1)− n

3
.

After simplifying we obtain

12 +22 +32 +·· ·+n2 = n(n +1)(2n +1)

6
,

as desired. ❑

The alert reader will note that the leading term in
∑

1≤k≤n

k is
n2

2
and the leading term in

∑

1≤k≤n

k2 is

n3

3
. This is analogous to

∫n

0
xdx = n2

2
and

∫n

0
x2dx = n3

3
. This is no coincidence, since an integral is

essentially a sum. The Calculus of Finite Differences develops a “discrete derivative” and a “discrete
integral” whereby our sums can be obtained by a process akin to integration.

The method above of writing a sum as a telescopic sum is the basis for the Calculus of Finite
Differences. A good reference for this is [Boo]. We present a few more examples using this method.

Free to photocopy and distribute 4



Chapter 1

5 Theorem
∑

2≤k≤n

1

(k −1)k
= 1

1 ·2
+ 1

2 ·3
+ 1

3 ·4
+·· ·+ 1

(n −1) ·n
= n −1

n
.

Proof: Observe that
1

(k −1)k
= 1

k −1
− 1

k
.

Thus

1

1 ·2
= 1

1
− 1

2

1

2 ·3
= 1

2
− 1

3

1

3 ·4
= 1

3
− 1

4

...
...

...

1

(n −1) ·n
= 1

n −1
− 1

n

Adding both columns,

1

1 ·2
+ 1

2 ·3
+ 1

3 ·4
+·· ·+ 1

(n −1) ·n
= 1− 1

n
= n −1

n
.

❑

The alert reader will see how to generalise the method above. For example, to sum
∑

1≤k≤n

1

k(k +1)(k +2)(k +3)
,

write the general term as the difference

1

k(k +1)(k +2)(k +3)
= 1

3k(k +1)(k +2)
− 1

3(k +1)(k +2)(k +3)
.

This gives

∑

1≤k≤n

1

k(k +1)(k +2)(k +3)
=

∑

1≤k≤n

(
1

3k(k +1)(k +2)
− 1

3(k +1)(k +2)(k +3)

)

= 1

3 ·1 ·2 ·3
− 1

2 · (n +1)(n +2)(n +3)

= 1

18
− 1

3 · (n +1)(n +2)(n +3)
.

Again, observing the difference

k(k +1) = k(k +1)(k +2)

3
− (k −1)k(k +1)

3
,

we find

1 ·2+2 ·3+3 ·4+·· ·+n(n +1) =
(

1 ·2 ·3

3
− 0 ·1 ·2

3

)
+

(
2 ·3 ·4

3
− 1 ·2 ·3

3

)
+·· ·+

(
n(n +1)(n +2)

3
− (n −1)n(n +1)

3

)

= n(n +1)(n +2)

3
− 0 ·1 ·2

3

= n(n +1)(n +2)

3
.

The preceding identities were obtained by telescoping cancellation. The idea can be extended to
some products. Here is a classic result.
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6 Theorem Let n ≥ 1 be an integer. Then

n∏

k=1

cos
x

2k
= sin x

2n sin
x

2n

.

Proof: Using sin 2θ = 2 sinθcosθ, and letting P =
n∏

k=1

cos
x

2k
, we have

(
sin

x

2n

)
P =

(
cos

x

2

)(
cos

x

22

)
· · ·

(
cos

x

2n

)(
sin

x

2n

)

=
(
cos

x

2

)(
cos

x

22

)
· · ·

(
cos

x

2n−1

)(
1

2
sin

x

2n−1

)

=
(
cos

x

2

)(
cos

x

22

)
· · ·

(
cos

x

2n−2

)(
1

22
sin

x

2n−2

)

=
(
cos

x

2

)(
cos

x

22

)
· · ·

(
cos

x

2n−3

)(
1

23
sin

x

2n−3

)

...
...

= 1

2n
sin x

From where
n∏

k=1

cos
x

2k
= sin x

2n sin
x

2n

.

❑

For the next discussion we will need the following notation. For integers 0 ≤ k ≤ n, we define the

symbol

(
n

k

)
(read n choose k) as follows:

(
n

0

)
= 1,

(
n

k

)
= n(n −1)(n −2) · · ·(n −k +1)

k !
= n!

(n −k)!k !
.

For example, (
10

4

)
= 10 ·9 ·8 ·7

4 ·3 ·2 ·1
= 210,

(
10

5

)
= 10 ·9 ·8 ·7 ·6

5 ·4 ·3 ·2 ·1
= 252.

7 Theorem (Binomial Theorem) (1+x)n =
∑

0≤k≤n

(
n

k

)
xk .

Proof: We will give the following Calculus based proof, which essentially computes the

MacLaurin expansion of x 7→ (1+ x)n . It is clear that (1+ x)n is a polynomial of degree n, hence

put

(1+x)n = a0 +a1x +a2x2 +·· ·+ak xk +·· ·an xn .

We will prove that ak =
(

n

k

)
. Differentiating k times both sides of the above equality,

n(n−1)(n−2) · · ·(n−k+1)(1+x)n−k = k !ak+(k+1)k(k−1) · · ·2ak+1x+·· ·+n(n−1)(n−2) · · ·(n−k+1)an xn−k .
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Setting x = 0 and noticing that every term after the first vanishes on the dextral side of the last

equality,

n(n −1)(n −2) · · ·(n −k +1) = k !ak =⇒ ak = n(n −1)(n −2) · · ·(n −k +1)

k !
=

(
n

k

)
,

as was required.❑

Setting x = 1 in the identity above we obtain the following corollary.

8 Corollary

(
n

0

)
+

(
n

1

)
+·· ·+

(
n

n −1

)
+

(
n

n

)
= 2n .

Since there are

(
n

k

)
subsets of {1, 2, . . . , n} with exactly k elements, both sides count the number of subsets

of the set {1, 2, . . . , n}.

9 Example How many subsets of {1, 2, 3, . . . , 100} have an even number (zero included) elements? How
many have an odd number of elements.

Solution: Ï Recall that {1, 2, 3, . . . , 100} has 2100 = 1267650600228229401496703205376 subsets.

Hence, doing a search of them one by one would be silly! The quantity

(
100

0

)
+

(
100

2

)
+

(
100

4

)
+·· ·+

(
100

98

)
+

(
100

100

)

counts the number of subsets of {1, 2, 3, . . . , 100} with an even number of elements, and similarly

(
100

1

)
+

(
100

3

)
+

(
100

5

)
+·· ·+

(
100

97

)
+

(
100

99

)

counts the number of subsets of {1, 2, 3, . . . , 100} with an odd number of elements. Set

f (x) = (1+x)100 =
(

100

0

)
+

(
100

1

)
x +

(
100

2

)
x2 +

(
100

3

)
x3 +·· ·+

(
100

99

)
x99 +

(
100

100

)
x100.

Then

2100 = f (1) =
(

100

0

)
+

(
100

1

)
+

(
100

2

)
+

(
100

3

)
+·· ·+

(
100

99

)
+

(
100

100

)
,

and

0 = f (−1) =
(

100

0

)
−

(
100

1

)
+

(
100

2

)
−

(
100

3

)
+·· ·−

(
100

99

)
+

(
100

100

)
.

Whence,
(

100

0

)
+

(
100

2

)
+

(
100

4

)
+·· ·+

(
100

98

)
+

(
100

100

)
= f (1)+ f (−1)

2
= 299 = 633825300114114700748351602688,

and
(

100

1

)
+

(
100

3

)
+

(
100

5

)
+·· ·+

(
100

97

)
+

(
100

99

)
= f (1)− f (−1)

2
= 299 = 633825300114114700748351602688.

Incidentally, we have proved that {1, 2, 3, . . . , 100} has as many subsets with an even number of

elements as with an odd number of elements. Try the Maple sequences
> sum(binomial(100,2*k),k=0..50);> sum(binomial(100, 2*k-1), k = 1 .. 50)

Î
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10 Example Find the exact value of the sum

(10
1

)

2
+

(10
2

)

3
+·· ·+

(10
10

)

11
.

Solution: Ï Put

f (x) = (1+x)10 =
(

10

0

)
+

(
10

1

)
x +

(
10

2

)
x2 +·· ·+

(
10

10

)
x10.

Integrating both sides on the interval [0; 1] we obtain,

2047

11
=

∫1

0
(1+x)10dx =

(10
0

)

1
+

(10
1

)

2
+

(10
2

)

3
+·· ·+

(10
10

)

11
,

whence (10
1

)

2
+

(10
2

)

3
+·· ·+

(10
10

)

11
= 2047

11
−

(10
0

)

1
= 2047

11
−1 = 2036

11
.

Î

Homework
11 Exercise Here is a standard interview question
for prospective computer programmers: You are
given a list of 1, 000, 001 positive integers from the
set {1, 2, . . . , 1, 000, 000}. In your list, every member of
{1, 2, . . . , 1, 000, 000} is listed once, except for x, which
is listed twice. How do you find what x is without
doing a 1, 000, 000 step search?

12 Exercise Find the sum of all the integers from 1

to 1000 inclusive, which are not multiples of 3 or 5.

13 Exercise Find the sum of all integers between 1

and 100 that leave remainder 2 upon division by 6.

14 Exercise The odd natural numbers are ar-
ranged as follows:

(1)

(3, 5)

(7, 9, 11)

(13, 15, 17, 19)

(21, 23, 25, 27, 29)

...............................

Find the sum of the nth row.

15 Exercise Shew that

1+3+5+·· ·+2n −1 = n2.

16 Exercise Prove using the binomial theorem that
(k+1)4 = k4+4k3+6k2+4k+1. Then use the difference

(k +1)4 −k4 = 4k3 +6k2 +4k +1

and the results of Corollaries 3 and 4 to prove that

13 +23 +·· ·+n3 =
(

n(n +1)

2

)2

.

17 Exercise A palindrome is a positive integer
whose decimal expansion is symmetric and does
not end in 0. For example, 1, 99, 100123321001, are
all palindromes. Find the sum of all palindromes
of five digits, that is, find

10001+10101+·· ·+99999.

18 Exercise Find a closed formula for

Dn = 1−2+3−4+·· ·+ (−1)n−1n.

19 Exercise Find a closed formula for

Tn = 12 −22 +32 −42 +·· ·+ (−1)n−1n2.

20 Exercise Find a closed form for
∑

1≤k≤n

3k .

21 Exercise Let n ≥ 1. Find a closed form for
∑

0≤k≤n

(
n

k

)
(−1)k .

22 Exercise Find a closed form for
∑

1≤k≤n

(
n

k

)
3k .

23 Exercise Evaluate the double sum
∑

1≤i≤n

∑

1≤k≤n

1.
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24 Exercise Evaluate the double sum
∑

1≤i≤n

∑

1≤k≤i

1.

25 Exercise Evaluate the double sum
∑

1≤i≤n

∑

1≤k≤i

k.

26 Exercise Evaluate the double sum
∑

1≤i≤n

∑

1≤k≤n

i k.

27 Exercise Legend says that the inventor of the
game of chess, Sissa ben Dahir, asked the King
Shirham of India to place a grain of wheat on the
first square of the chessboard, 2 on the second
square, 4 on the third square, 8 on the fourth
square, etc..

1. How many grains of wheat are to be put on
the last (64-th) square?,

2. How many grains, total, are needed in order
to satisfy the greedy inventor?,

3. Given that 15 grains of wheat weigh approxi-
mately one gramme, what is the approximate
weight, in kg, of wheat needed?,

4. Given that the annual production of wheat
is 350 million tonnes, how many years, ap-
proximately, are needed in order to satisfy the
inventor (assume that production of wheat
stays constant)

28 Exercise Factor

1+x +x2 +·· ·+x80

as a polynomial with integer coefficients.

29 Exercise Prove that
n∏

k=2

(
1− 1

k2

)
= n +1

2n
.

30 Exercise Find integers a, b so that

(2+1) ·
(
22 +1

)
·
(
222

+1
)
·
(
223

+1
)
· · ·

(
2299

+1
)
= 2a +b.

31 Exercise Prove that

(log2 3)(log3 4)(log4 5) · · ·(log1023 1024) = 10.

32 Exercise Evaluate
1000∑

k=1

Tlog2 kU.

33 Exercise Obtain a closed formula for
∑

1≤k≤n

k ·k !.

Hint: (k +1)! = (k +1)k !.

34 Exercise Prove, by differentiating x 7→ (1 + x)n,

that
∑

1≤k≤n

k

(
n

k

)
= n2n−1.

35 Exercise Prove that

∑

1≤k≤n

k2

(
n

k

)
= 2n−2n2 +2n−2n.

36 Exercise Prove that

∑

0≤k≤Tn/2U

(
n

2k

)
=

(
n

0

)
+

(
n

2

)
+

(
n

4

)
+·· · = 2n−1,

and that

∑

0≤k≤Tn/2U

(
n

2k +1

)
=

(
n

1

)
+

(
n

3

)
+

(
n

5

)
+·· · = 2n−1.

(The first sum goes over all binomial coefficients
with even index, the second, over the odd indices.)

37 Exercise Find the sum of all the coefficients
once the following product is expanded and like
terms are collected:

(1−x2 +x4)109(2−6x +5x9)1996.

38 Exercise Consider the polynomial

(1−x2 +x4)2003 = a0 +a1x +a2x2 +·· ·+a8012x8012.

Find

➊ a0

➋ a0 +a1 +a2 +·· ·+a8012

➌ a0 −a1 +a2 −a3 +·· ·−a8011 +a8012

➍ a0 +a2 +a4 +·· ·+a8010 +a8012

➎ a1 +a3 +·· ·+a8009 +a8011

39 Exercise Let f satisfy

f (n +1) = (−1)n+1n −2 f (n), n ≥ 1.

If f (1) = f (1001) find

f (1)+ f (2)+ f (3)+·· ·+ f (1000).

40 Exercise Prove the following identity of Catalan:

1− 1

2
+ 1

3
− 1

4
+·· ·+ 1

2n −1
− 1

2n
= 1

n +1
+ 1

n +2
+·· ·+ 1

2n
.

41 Exercise Find

(123456789)2 − (123456787) · (123456791),

mentally.
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42 Exercise Given that 1002004008016032 has a
prime factor p > 250000, find it.

43 Exercise Shew that

csc2+csc 4+csc 8+·· ·+csc2n = cot 1−cot 2n .

44 Exercise Find the exact value of the product

P = cos
π

7
·cos

2π

7
·cos

4π

7
.

45 Exercise Shew that

1

2
· 3

4
· 5

6
· · · 9999

10000
< 1

100
.

46 Exercise Let a1, a2, . . . , an be arbitrary numbers.
Shew that

a1 +a2(1+a1)+a3(1+a1)(1+a2)

+a4(1+a1)(1+a2)(1+a3)+·· ·

+an−1(1+a1)(1+a2)(1+a3) · · ·(1+an−2)

= (1+a1)(1+a2)(1+a3) · · ·(1+an )−1.

47 Exercise Shew that

tan
π

2100
+2 tan

π

299
+22 tan

π

2298
+·· ·+298 tan

π

22
= cot

π

2100
.

48 Exercise Shew that

n∑

k=1

k

k4 +k2 +1
= 1

2
· n2 +n

n2 +n +1
.

49 Exercise (Lagrange’s Identity) Let ak , bk be real
numbers. Prove that

(
n∑

k=1

ak bk

)2

=
(

n∑

k=1

a2
k

)(
n∑

k=1

b2
k

)
−

∑

1≤k< j≤n

(ak b j −a j bk )2.

50 Exercise The sum of a certain number of con-
secutive positive integers is 1000. Find these inte-
gers. (There is more than one solution. You must
find them all.)

1.2 Some Infinite Sums and Products
The material of this section will be treated formally, that is, without much rigor. We present here
without proof, the following MacLaurin expansions, which we hope the reader has encountered in his
Calculus courses.

51 Theorem The following expansions hold:

1.
1

1−x
=

+∞∑
n=0

xn = 1+x +x2 +x3 +·· · , |x | < 1

2. sin x =
+∞∑
n=0

(−1)n x2n+1

(2n +1)!
= x − x3

3!
+ x5

5!
−·· ·+ (−1)n x2n+1

(2n +1)!
+·· · , x ∈R.

3. cos x =
+∞∑
n=0

(−1)n x2n

(2n)!
= 1− x2

2!
+ x4

4!
−·· ·+ (−1)n x2n

(2n)!
+·· · , x ∈R.

4. ex =
+∞∑
n=0

xn

n!
= 1+x + x2

2!
+ x3

3!
+·· ·+ xn

n!
+·· · , x ∈R

5. log(1+x) =
+∞∑
n=1

(−1)n+1xn

n
= x − x2

2
+ x3

3
−·· ·+ (−1)n+1 xn

n
+·· · , |x | < 1.

6. (1+x)τ =
+∞∑
n=0

(
τ

n

)
xn = 1+τx + τ(τ−1)

2!
x2 +·· ·+ τ(τ−1)(τ−2)(τ−3) · · ·(τ−n +1)

n!
xn +·· · , |x | < 1.
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The idea of the preceding section of finding a general function and then evaluating it a particular
value extends to infinite sums, but care must be taken with convergence. We state the following without
proof.

52 Theorem (Abel’s Limit Theorem) Let r > 0, and suppose that
∑

n≥0

an r n converges. Then
∑

n≥0

an xn con-

verges absolutely for |x | < r , and

lim
x→r −

∑
n≥0

an xn =
∑

n≥0

an r n .

53 Example Find the exact numerical value of the alternating harmonic series

∑
n≥1

(−1)n−1

n
= 1− 1

2
+ 1

3
− 1

4
+·· · .

Solution: Ï This alternating series converges by Leibniz’s Test. Consider more generally the

MacLaurin expansion of x 7→ log(1+x):

f (x) =
∑

n≥1

(−1)n−1xn

n
= log(1+x).

We see that f (1) = log2. Thus

1− 1

2
+ 1

3
− 1

4
+·· · = log 2,

by Abel’s Limit Theorem. The Maple commands to obtain this sum are

> sum(((-1)^(k+1))/(k),k=1..infinity);

Î

We now consider an infinite product. Letting n →+∞ in the product of theorem 6, we deduce the
following result.

54 Theorem
+∞∏

k=1

cos
x

2k
= lim

n→+∞

n∏

k=1

cos
x

2k
= lim

n→+∞
sin x

2n sin
x

2n

= sin x

x
.

Letting x = π

2
we obtain one of the earliest formulas form π.

55 Corollary (Vieta’s Formula for π)

2

π
=

(p
2

2

)(√
2+

p
2

2

)


√
2+

√
2+

p
2

2


 · · · .

Some infinite sums can be recognised as being Riemann sums, and hence, allowing one to sum
them. In general, ∫b

a
f (x)dx = lim

n→+∞
b −a

n

n∑

k=0

f

(
a + k(b −a)

n

)
, (1.2)

if f is Riemann-integrable function on [a; b].

56 Example Find lim
n→+∞

n∑

k=0

n

n2 +k2
.
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Some Infinite Sums and Products

Solution: Ï We have,
n∑

k=0

n

n2 +k2
=

n∑

k=0

1

n

1

1+ k2

n2

→
∫1

0

dx

1+x2
= π

4
,

If f (x) = 1

1+x2
, a = 0, b = 1, by (1.2). Î

Homework
57 Exercise A fly starts at the origin and goes 1

unit up, 1/2 unit right, 1/4 unit down, 1/8 unit left,
1/16 unit up, etc., ad infinitum. In what coordi-
nates does it end up?

58 Exercise Find the exact numerical value of

∑
n≥0

(n +1)2

n!
.

59 Exercise Find the exact numerical value of the

sum
+∞∑
n=1

n21−n.

60 Exercise Find the exact numerical value of the

sum
+∞∑
n=1

n221−n.

61 Exercise Let S be the set of positive integers
none of whose digits in its decimal representation

is a 0. Prove that the series
∑

n∈S

1

n
converges.

62 Exercise Find the exact numerical value of the

sum
+∞∑
n=0

arctan
1

n2 +n +1
.

63 Exercise Using sin 3θ = 3 sinθ − 4 sin3θ deduce
that

sin x

x
=

+∞∏
n=1

4 cos2 x

3n
−1

3
.

64 Exercise Find the sum of the series
+∞∑
n=1

1

4n2 −1
.

65 Exercise Prove that
+∞∏
n=2

(
1− 1

n2

)
= 1

2
.

66 Exercise Find the exact numerical value of the
infinite sum

+∞∑
n=1

p
(n −1)!

(1+
p

1)(1+
p

2)(1+
p

3) · · ·(1+
p

n)
.

67 Exercise Find

1+ 1

2
+ 1

3
+ 1

6
+ 1

8
+ 1

9
+ 1

12
+ 1

16
+ 1

18
+·· · ,

which is the sum of the reciprocals of all positive
integers of the form 2n 3m for integers n ≥ 0, m ≥ 0.

68 Exercise (Deus Numero Impare Gaudet) Prove
that

π

4
= 1− 1

3
+ 1

5
− 1

7
+ 1

9
−·· · =

∑
n≥1

(−1)n+1

2n −1
.

69 Exercise Prove that

1− 1

4
+ 1

7
− 1

10
+·· · = 1

3

(
log 2+ π

p
3

)
.

(Hint: Expand (1+ x3)−1) into a power series. Inte-
grate (1+ x3)−1 using partial fractions. Use Abel’s
Limit Theorem.)

70 Exercise Let 0 < x < 1. Shew that

∞∑
n=1

x2n

1−x2n+1
= x

1−x
.

71 Exercise Evaluate

(
1 ·2 ·4+2 ·4 ·8+3 ·6 ·12+·· ·

1 ·3 ·9+2 ·6 ·18+3 ·9 ·27+·· ·

)1/3

.

72 Exercise Prove that

lim
n→+∞

n∑

k=1

1
p

n2 +k2
= log(1+

p
2).

73 Exercise (Gram’s Product) Prove that

+∞∏

k=2

k3 −1

k3 +1
= 2

3
.
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Chapter 1

1.3 Some Identities with Complex Numbers

We use the symbol i to denote the imaginary unit i =
p
−1. Then i 2 =−1. Since i 0 = 1, i 1 = i , i 2 =−1, i 3 =−i ,

i 4 = 1, i 5 = i , etc., the powers of i repeat themselves cyclically in a cycle of period 4.

74 Example For any positive integer α one has

iα+ iα+1 + iα+2 + iα+3 = iα(1+ i + i 2 + i 3) = iα(1+ i −1− i ) = 0.

75 Definition If a, b are real numbers then the object z = a +bi is called a complex number. We use the
symbol C to denote the set of all complex numbers. a =ℜz is the real part of z and b =ℑz is the imaginary

part of z.

If a, b, c , d ∈R, then the sum of the complex numbers a +bi and c +d i is naturally defined as

(a +bi )+ (c +d i ) = (a +c)+ (b +d )i (1.3)

The product of a +bi and c +d i is obtained by multiplying the binomials:

(a +bi )(c +d i ) = ac +ad i +bci +bd i 2 = (ac −bd )+ (ad +bc)i (1.4)

Complex numbers can be given a geometric representation in the Argand diagram (see figure 1.1),
where the horizontal axis carries the real parts and the vertical axis the imaginary ones.

b
a +bi

b

b

θ

a

b

ℑ

ℜ

b

Figure 1.1: Argand’s diagram.

b
z

|z |

b

|z
|s

in
θ

|z |cosθ

θ

ℑ

ℜ

b

Figure 1.2: Polar Form of a Complex Number.

76 Definition Let z ∈C, (a, b) ∈R
2 with z = a +bi . The conjugate z of z is defined by

z = a +bi = a −bi (1.5)

☞ The conjugate of a real number is itself, that is, if a ∈ R, then a = a. Also, the conjugate of the

conjugate of a number is the number, that is, z = z .

77 Theorem The function z : C→C, z 7→ z is multiplicative, that is, if z1, z2 are complex numbers, then

z1z2 = z1 · z2 (1.6)
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Some Identities with Complex Numbers

Proof: Let z1 = a +bi , z2 = c +d i where a, b, c , d are real numbers. Then

z1z2 = (a +bi )(c +d i )

= (ac −bd )+ (ad +bc)i

= (ac −bd )− (ad +bc)i

Also,

z1 · z2 = (a +bi )(c +d i )

= (a −bi )(c −d i )

= ac −ad i −bci +bd i 2

= (ac −bd )− (ad +bc)i ,

which establishes the equality between the two quantities. ❑

78 Definition The modulus |a +bi | of a +bi is defined by

|a +bi | =
√

(a +bi )(a +bi ) =
√

a2 +b2 (1.7)

Observe that z 7→ |z | is a function mapping C to [0;+∞[.

Given a complex number z = a +bi on the Argand diagram, consider the angle θ ∈]−π;π] that a
straight line segment passing through the origin and through z makes with the positive real axis.
Considering the polar coordinates of z we gather

z = |z |(cosθ+ i sinθ), θ ∈]−π;π], (1.8)

which we call the polar form of the complex number z. The angle θ is called the argument of the complex
number z.

79 Example Find the polar form of
p

3− i .

Solution: Ï First observe that |
p

3− i | =
√p

3
2 +12 = 2. Now, if

p
3− i = 2(cosθ+ i sinθ),

we need cosθ =
p

3

2
, sinθ =−1

2
. This happens for θ ∈]−π;π] when θ =−π

6
. Therefore,

p
3− i = 2(cos

(
−π

6

)
+ i sin

(
−π

6

)

is the required polar form. Î

80 Theorem The function z 7→ |z |, C→ [0;+∞[ is multiplicative. That is, if z1, z2 are complex numbers then

|z1z2| = |z1||z2| (1.9)
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Proof: By Theorem 77, conjugation is multiplicative, hence

|z1z2| =
√

z1z2z1z2

=
√

z1z2z1 · z2

=
√

z1z1z2z2

=
√

z1z1

√
z2z2

= |z1||z2|

whence the assertion follows. ❑

81 Example Write (22 +32)(52 +72) as the sum of two squares.

Solution: Ï The idea is to write 22 +32 = |2+3i |2, 52 +72 = |5+7i |2 and use the multiplicativity

of the modulus. Now

(22 +32)(52 +72) = |2+3i |2|5+7i |2

= |(2+3i )(5+7i )|2

= |−11+29i |2

= 112 +292

Î

We now present some identities involving complex numbers. Let us start with the following classic
result.

If we allow complex numbers in our MacLaurin expansions, we readily obtain Euler’s Formula.

82 Theorem (Euler’s Formula) Let x ∈R. Then

ei x = cos x + i sin x.

Proof: Using the MacLaurin expansion’s of x 7→ ex , x 7→ cos x, and x 7→ sin x, we gather

ei x =
+∞∑

k=0

(i x)n

n!

=
+∞∑

k=0

(i x)2n

(2n)!
+

+∞∑

k=0

(i x)2n+1

(2n +1)!

=
+∞∑

k=0

(−1)n x2n

(2n)!
+ i

+∞∑

k=0

(−1)n x2n+1

(2n +1)!

= cos x + i sin x.

❑
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Some Identities with Complex Numbers

Taking complex conjugates,

e−i x = ei x = cos x + i sin x = cos x − i sin x.

Solving for sin x we obtain

sin x = ei x −e−i x

2i
(1.10)

Similarly,

cos x = ei x +e−i x

2
(1.11)

83 Corollary (De Moivre’s Theorem) Let n ∈Z and x ∈R. Then

(cos x + i sin x)n = cosnx + i sin nx

Proof: We have

(cos x + i sin x)n = (ei x )n = ei xn = cosnx + i sin nx,

by theorem 82.

Aliter: An alternative proof without appealing to Euler’s identity follows. We first assume that

n > 0 and give a proof by induction. For n = 1 the assertion is obvious, as

(cos x + i sin x)1 = cos1 ·x + i sin 1 ·x.

Assume the assertion is true for n −1 > 1, that is, assume that

(cos x + i sin x)n−1 = cos(n −1)x + i sin(n −1)x.

Using the addition identities for the sine and cosine,

(cos x + i sin x)n = (cos x + i sin x)(cos x + i sin x)n−1

= (cos x + i sin x)(cos(n −1)x + i sin(n −1)x).

= (cos x)(cos(n −1)x)− (sin x)(sin(n −1)x)+ i ((cos x)(sin(n −1)x)+ (cos(n −1)x)(sin x)).

= cos(n −1+1)x + i sin(n −1+1)x

= cosnx + i sin nx,

proving the theorem for n > 0.

Assume now that n < 0. Then −n > 0 and we may used what we just have proved for positive
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integers we have

(cos x + i sin x)n = 1

(cos x + i sin x)−n

= 1

cos(−nx)+ i sin(−nx)

= 1

cos nx − i sin nx

= cosnx + i sin nx

(cosnx + i sin nx)(cosnx − i sin nx)

= cos nx + i sin nx

cos2 nx +sin2 nx

= cosnx + i sin nx,

proving the theorem for n < 0. If n = 0, then since sin and cos are not simultaneously zero, we

get 1 = (cos x + i sin x)0 = cos0x + i sin 0x = cos0x = 1, proving the theorem for n = 0.

❑

84 Example Prove that

cos3x = 4 cos3 x −3 cos x, sin 3x = 3 sin x −4 sin3 x.

Solution: Ï Using Euler’s identity and the Binomial Theorem,

cos3x + i sin 3x = e3i x

= (ei x )3 = (cos x + i sin x)3

= cos3 x +3i cos2 x sin x −3 cos x sin2 x − i sin3 x

= cos3 x +3i (1−sin2 x) sin x −3 cos x(1−cos2 x)− i sin3 x,

we gather the required identities. Î

The following corollary is immediate.

85 Corollary (Roots of Unity) If n > 0 is an integer, the n numbers e2πi k/n = cos
2πk

n
+ i sin

2πk

n
, 0 ≤ k ≤ n −1,

are all different and satisfy (e2πi k/n )n = 1.

86 Example For n = 2, the square roots of unity are the roots of

x2 −1 = 0 =⇒ x ∈ {−1, 1}.

For n = 3 we have x3−1 = (x −1)(x2+x +1) = 0 hence if x 6= 1 then x2+x +1 = 0 =⇒ x = −1± i
p

3

2
. Hence the

cubic roots of unity are {
−1,

−1− i
p

3

2
,
−1+ i

p
3

2

}
.
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Some Identities with Complex Numbers

Or, we may find them trigonometrically,

e2πi ·0/3 = cos
2π ·0

3
+ i sin

2π ·0

3
= 1,

e2πi ·1/3 = cos
2π ·1

3
+ i sin

2π ·1

3
= −1

2
+ i

p
3

2

e2πi ·2/3 = cos
2π ·2

3
+ i sin

2π ·2

3
= −1

2
− i

p
3

2

For n = 4 they are the roots of x4 −1 = (x −1)(x3 +x2 +x +1) = (x −1)(x +1)(x2 +1) = 0, which are clearly

{−1, 1,−i , i }.

Or, we may find them trigonometrically,

e2πi ·0/4 = cos
2π ·0

4
+ i sin

2π ·0

4
= 1,

e2πi ·1/4 = cos
2π ·1

4
+ i sin

2π ·1

4
= i

e2πi ·2/4 = cos
2π ·2

4
+ i sin

2π ·2

4
= −1

e2πi ·3/4 = cos
2π ·3

4
+ i sin

2π ·3

4
= −i

For n = 5 they are the roots of x5 −1 = (x −1)(x4 +x3 +x2 +x +1) = 0. To solve x4 +x3 +x2 +x +1 = 0 observe
that since clearly x 6= 0, by dividing through by x2, we can transform the equation into

x2 + 1

x2
+x + 1

x
+1 = 0.

Put now u = x + 1

x
. Then u2 −2 = x2 + 1

x2
, and so

x2 + 1

x2
+x + 1

x
+1 = 0 =⇒ u2 −2+u +1 = 0 =⇒ u = −1±

p
5

2
.

Solving both equations

x + 1

x
= −1−

p
5

2
, x + 1

x
= −1+

p
5

2
,

we get the four roots
{
−1−

p
5

4
− i

√
10−2

p
5

4
,

−1−
p

5

4
+ i

√
10−2

p
5

4
,

p
5−1

4
− i

√
2
p

5+10

4
,

p
5−1

4
+ i

√
2
p

5+10

4

}
,

or, we may find, trigonometrically,

e2πi ·0/5 = cos
2π ·0

5
+ i sin

2π ·0

5
= 1,

e2πi ·1/5 = cos
2π ·1

5
+ i sin

2π ·1

5
=

(p
5−1

4

)
+ i

(p
2 ·

√
5+

p
5

4

)
,

e2πi ·2/5 = cos
2π ·2

5
+ i sin

2π ·2

5
=

(
−
p

5−1

4

)
+ i

(p
2 ·

√
5−

p
5

4

)
,

e2πi ·3/5 = cos
2π ·3

5
+ i sin

2π ·3

5
=

(
−
p

5−1

4

)
− i

(p
2 ·

√
5−

p
5

4

)
,

e2πi ·4/5 = cos
2π ·4

5
+ i sin

2π ·4

5
=

(p
5−1

4

)
− i

(p
2 ·

√
5+

p
5

4

)
,

Free to photocopy and distribute 18



Chapter 1

See figures 1.3 through 1.5.

b

b

b

Figure 1.3: Cubic Roots of 1.

b

b

b

b

Figure 1.4: Quartic Roots of 1.

b

b

b

b

b

Figure 1.5: Quintic Roots of 1.

By the Fundamental Theorem of Algebra the equation xn −1 = 0 has exactly n complex roots, which
gives the following result.

87 Corollary Let n > 0 be an integer. Then

xn −1 =
n−1∏

k=0

(x −e2πi k/n ).

88 Theorem We have,

1+x +x2 +·· ·+xn−1 =





0 x = e
2πi k

n , 1 ≤ k ≤ n −1,

n x = 1.

Proof: Since xn −1 = (x −1)(xn−1 +xn−2 +·· ·+x +1), from Corollary 87, if x 6= 1,

xn−1 +xn−2 +·· ·+x +1 =
n−1∏

k=1

(x −e2πi k/n ).

If ǫ is a root of unity different from 1, then ǫ= e2πi k/n for some k ∈ [1; n −1], and this proves the

theorem. Alternatively,

1+ǫ+ǫ2 +ǫ3 +·· ·+ǫn−1 = ǫn −1

ǫ−1
= 0.

This gives the result. ❑

89 Theorem Let n ≥ 1 be an integer. Then
n

2n−1
=

n−1∏

k=1

sin
kπ

n
.

Proof: Differentiating both sides of the equality

xn −1 =
n−1∏

k=0

(x −e2πi k/n ),
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and letting x = 1,

n = (1−e2πi /n )(1−e4πi /n )(1−e6πi /n ) · · ·(1−e2(n−1)πi /n )

= e(1+2+3+···+(n−1))πi /n (e−πi /n −eπi /n )(e−2πi /n −e2πi /n )(e−3πi /n −e3π/n ) · · ·(e−(n−1)πi /n −e(n−1)πi /n )

= e(n−1)πi /2
(
−2i sin

π

n

)(
−2i sin

2π

n

)
· · ·

(
−2i sin

(n −1)π

n

)

= e(n−1)πi /2(−i )n−12n−1
n−1∏

k=1

sin
kπ

n

= (eπi /2)n−1(−i )n−12n−1
n−1∏

k=1

sin
kπ

n

= i n−1(−i )n−12n−1
n−1∏

k=1

sin
kπ

n

= (−i 2)n−12n−1
n−1∏

k=1

sin
kπ

n

= 2n−1
n−1∏

k=1

sin
kπ

n
,

giving the result. ❑

90 Example Prove that the improper integral I =
∫π

0
logsin xdx =−π log2.

Solution: Ï We will deduce this in two ways. From Theorem 89,

n−1∑

k=1

logsin
kπ

n
= log n − (n −1) log2.

By (1.2), we see that

∫π

0
log sin xdx = lim

n→+∞
π

n

n−1∑

k=1

log sin
kπ

n
= lim

n→+∞
π

n

(
log n − (n −1) log2

)
=−π log2,

as claimed.

Aliter: From sin x = 2 sin
x

2
cos

x

2
we get

I =
∫π

0
log2dx +

∫π

0
log sin

x

2
dx +

∫π

0
log cos

x

2
dx

= π log2+2

∫π/2

0
log sin ydy +2

∫π/2

0
log cos ydy.

Setting y = π

2
−u and using sin(π−u) = sin u = cos

(π
2
−u

)
we see that

∫π/2

0
log sin ydy =

∫π/2

0
logcos ydy =⇒ 2

∫π/2

0
logsin ydy =

∫π/2

0

(
log sin u + log sin(π−x)

)
du =

∫π

0
logsin udu = I ,

from where

I =π log 2+2I =⇒ I =−π log2.

Î

91 Example Justify that
+∞∑
n=1

sin n

n
= π−1

2
.
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Solution: Ï We start by assuming that
+∞∑
n=1

ei zn

n
= − log(1− ei z ) for z ∈ R, in analogy to the

MacLaurin expansion of x 7→ log(1+x) for real x. Then letting z = 1,

+∞∑
n=1

cos n + i sin n

n
=

+∞∑
n=1

ei n

n

= − log(1−ei )

= − log ei /2(e−i /2 −ei /2)

= − log ei /2 − log2i

(
−sin

1

2

)

= − log(−2i )− i

2
− log

(
sin

1

2

)

Since −2i = 2e−πi /2, − log(−2i ) =− log 2+ πi

2
. Thus we get

+∞∑
n=1

cos n + i sin n

n
=− log 2− log

(
sin

1

2

)
+ i

(
π

2
− 1

2

)
.

Equating real and imaginary parts we verify our claim.

The formal argument above can be rigorously proved by means of Fourier Analysis, but this is

beyond our scope.

Î

Theorem 88 is quite useful for “multisecting” a power series.

92 Example Find the sum S =
9∑

k=0

(
27

3k

)
.

Solution: Ï We use the fact that for ǫ1 = −1/2+ i
p

3/2 and ǫ2 = −1/2− i
p

3/2 are cubic roots of

unity and hence satisfy

ǫ3
k = 1, and 1+ǫk +ǫ2

k = 0, k = 1, 2.

Thus

ǫs
k +ǫs+1

k +ǫs+2
k = 0, k = 1, 2, s ∈Z. (1.12)

From this

(1+1)27 =
(

27

0

)
+

(
27

1

)
+

(
27

2

)
+

(
27

4

)
+·· ·+

(
27

26

)
+

(
27

27

)

(1+ǫ1)27 =
(

27

0

)
+

(
27

1

)
ǫ1 +

(
27

2

)
ǫ2

1 +
(

27

3

)
ǫ3

1 +·· ·+
(

27

27

)
ǫ27

1

(1+ǫ2)27 =
(

27

0

)
+

(
27

1

)
ǫ2 +

(
27

2

)
ǫ2

2 +
(

27

3

)
ǫ3

2 +·· ·+
(

27

27

)
ǫ27

2

Summing column-wise and noticing that because of (1.12) only the terms 0, 3, 6, . . . , 27 survive,

227 + (1+ǫ1)27 + (1+ǫ2)27 = 3

(
27

0

)
+3

(
27

3

)
+3

(
27

6

)
+·· ·+3

(
27

27

)
.

By DeMoivre’s Theorem, (1−1/2+ i
p

3/2)27 = cos 9π+ i sin 9π=−1 and (1−1/2− i
p

3/2)27 = cos45π+
i sin 45π=−1. Thus (

27

0

)
+

(
27

3

)
+

(
27

6

)
+·· ·+

(
27

27

)
= 1

3
(227 −2).

Î
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The procedure of example 92 can be generalised as follows. Suppose that

f (x) =
∞∑

k=0

ck xk .

If ω= e2πi i /q ,, q ∈N, q > 1, then ωq = 1 and 1+ω+ω2 +ω3 +·· ·+ωq−1 = 0. Then in view of

1

q

∑

1≤b≤q

ωkb =





1 if q divides k ,

0 else,

we have
∞∑

n=0
n≡a mod q

cn xn = 1

q

q∑

b=1

ω−ab f (ωb x). (1.13)

We may use complex numbers to select certain sums of coefficients of polynomials. The following
problem uses the fact that if k is an integer

i k + i k+1 + i k+2 + i k+3 = i k (1+ i + i 2 + i 3) = 0 (1.14)

93 Example Let
(1+x4 +x8)100 = a0 +a1x +a2x2 +·· ·+a800x800.

Find:

➊ a0 +a1 +a2 +a3 +·· ·+a800.

➋ a0 +a2 +a4 +a6 +·· ·+a800.

➌ a1 +a3 +a5 +a7 +·· ·+a799.

➍ a0 +a4 +a8 +a12 +·· ·+a800.

➎ a1 +a5 +a9 +a13 +·· ·+a797.

Solution: Ï Put

p(x) = (1+x4 +x8)100 = a0 +a1x +a2x2 +·· ·+a800x800.

Then

➊
a0 +a1 +a2 +a3 +·· ·+a800 = p(1) = 3100.

➋

a0 +a2 +a4 +a6 +·· ·+a800 = p(1)+p(−1)

2
= 3100.

➌

a1 +a3 +a5 +a7 +·· ·+a799 = p(1)−p(−1)

2
= 0.

➍

a0 +a4 +a8 +a12 +·· ·+a800 = p(1)+p(−1)+p(i )+p(−i )

4
= 2 ·3100.

➎

a1 +a5 +a9 +a13 +·· ·+a797 = p(1)−p(−1)− i p(i )+ i p(−i )

4
= 0.

Î

Homework

Free to photocopy and distribute 22



Chapter 1

94 Exercise Compute

(1+ i )2004

(1− i )2000
.

95 Exercise Let i 2 =−1. Evaluate

1+2i +3i 2 +4i 3 +5i 4 +·· ·+2007i 2006.

96 Exercise Prove that

cos6 2x = 1

32
cos12x + 3

16
cos8x + 15

32
cos4x + 5

16
.

97 Exercise Prove that
p

3 = tan
π

9
+4 sin

π

9
.

98 Exercise Let

(1+x +x2)n = a0 +a1x +a2x2 +·· ·+a2n x2n .

Find formulæ for

1.
2n∑

k=0

ak

2.
∑

0≤k≤n/2

a2k

3.
∑

1≤k≤n/2

a2k−1

4. a0 +a4 +a8 +·· ·

5. a1 +a5 +a9 +·· ·

99 Exercise Find the exact numerical value of

665∑

k=0

(
1995

3k

)
.

1.4 Iteration and Recursion
100 Definition Given a function f , its iterate at x is f ( f (x)), that is, we use its value as the new input.
The iterates at x

x, f (x), f ( f (x)), f ( f ( f (x))), . . .

are called 0-th iterate, 1st iterate, 2nd iterate, 3rd iterate, etc. We denote the n-th iterate by f [n].

In some particular cases it is easy to find the nth iterate of a function, for example

a(x) = x t =⇒ a[n](x) = x t n

,

b(x) = mx =⇒ b[n](x) = mn x,

c(x) = mx +k =⇒ c [n](x) = mn x +k

(
mn −1

m −1

)
.

The above examples are more the exception than the rule. Even if its possible to find a closed formula
for the n-th iterate some cases prove quite truculent.

101 Example Let f (x) = 1

1−x
. Find the n-th iterate of f at x, and determine the set of values of x for

which it makes sense.

Solution: Ï We have

f [2](x) = ( f ◦ f )(x) = f ( f (x)) = 1

1− 1
1−x

= x −1

x
,

f [3](x) = ( f ◦ f ◦ f )(x) = f ( f [2](x))) = f

(
x −1

x

)
= 1

1− x−1
x

= x.

Notice now that f [4](x) = ( f ◦ f [3])(x) = f ( f [3](x)) = f (x) = f [1](x). We see that f is cyclic of period 3,

that is,

f [1](x) = f [4](x) = f [7](x) = . . . = 1

1−x
,

f [2](x) = f [5](x) = f [8](x) = . . . = x −1

x
,

f [3](x) = f [6](x) = f [9](x) = . . . = x.

The formulæ above hold for x 6∈ {0, 1}. Î
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If there are functions φ and g for which
f ◦φ=φ◦g , (1.15)

then f =φ◦g ◦φ−1. If the iterates of g are easy to find, then1

f [n] =φ◦g [n] ◦φ−1, (1.16)

provides the nth iterate of f .

102 Example Let f (x) = 2x2 −1. Find f [n](x).

Solution: Ï Observe that since 2 cos2 y −1 = cos2y, we may take φ(x) = cos x and g (x) = 2x in

(1.15). Since g [n](x) = 2n x, by virtue of (1.16),

f [n](x) = cos(2n arccos x).

This formula is valid for |x | ≤ 1. Î

103 Example Let f (x) = 4x(1−x). Find f [n](x).

Solution: Ï Observe that since

4 sin2 y −4 sin4 y = 4 sin2 y(1−sin2 y) = (2 sin y cos y)2 = sin2 2y,

we may take φ(x) = sin2 x and g (x) = 2x in (1.15). Since g [n](x) = 2n x, by virtue of (1.16),

f [n](x) = sin2(2n arcsin
p

x).

This formula is valid for 0 ≤ x ≤ 1. Î

104 Definition Let c0, c2, . . . , ck be real constants and f : N → R a function. A recurrence relation of the
form

c0an +c1an+1 +c2an+2 +·· ·++ck an+k = f (n), n ≥ 0.

is called a linear difference equation. If f is identically zero, we say that the equation is homogeneous.

We begin by examining some simple recursions of first order.

105 Example Let x0 = 7 and xn = 2xn−1, n ≥ 1. Find a closed form for xn .

Solution: Ï We have

x0 = 7

x1 = 2x0

x2 = 2x1

x3 = 2x2

...
...

...

xn = 2xn−1

Multiplying both columns,

x0x1 · · ·xn = 7 ·2n x0x1x2 · · ·xn−1.

1The reader who has seen Linear Algebra will recognise that this is the same idea involving powers of similar matrices.
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Cancelling the common factors on both sides of the equality,

xn = 7 ·2n .

Î

106 Example Let x0 = 7 and xn = 2xn−1 +1, n ≥ 1. Find a closed form for xn .

Solution: Ï We have:

x0 = 7

x1 = 2x0 +1

x2 = 2x1 +1

x3 = 2x2 +1

...
...

...

xn−1 = 2xn−2 +1

xn = 2xn−1 +1

Multiply the kth row by 2n−k . We obtain

2n x0 = 2n ·7

2n−1x1 = 2n x0 +2n−1

2n−2x2 = 2n−1x1 +2n−2

2n−3x3 = 2n−2x2 +2n−3

...
...

...

22xn−2 = 23xn−3 +22

2xn−1 = 22xn−2 +2

xn = 2xn−1 +1

Adding both columns, cancelling, and adding the geometric sum,

xn = 7 ·2n + (1+2+22 +·· ·+2n−1) = 7 ·2n +2n −1 = 2n+3 −1.

Aliter: Let un = xn +1 = 2xn−1 +2 = 2(xn−1 +1) = 2un−1. We solve the recursion un = 2un−1 as we did

example 105: un = 2n u0 = 2n (x0 +1) = 2n ·8 = 2n+3. Finally, xn = un −1 = 2n+3 −1. Î

107 Example (Oval’s on the Plane) Let there be drawn n ovals on the plane. If an oval intersects each of
the other ovals at exactly two points and no three ovals intersect at the same point, find a recurrence
relation for the number of regions into which the plane is divided.
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Solution: Ï Let this number be an . Plainly a1 = 2. After the n−1th stage, the nth oval intersects

the previous ovals at 2(n −1) points, i.e. the nth oval is divided into 2(n −1) arcs. This adds

2(n −1) regions to the an−1 previously existing. Thus

an = an−1 +2(n −1), a1 = 2.

This is a non-homogeneous linear recurrence. To obtain a closed form, write

a2 = a1 +2(1),

a3 = a2 +2(2),

a4 = a3 +2(3),

...
...

...

an−1 = an−2 +2(n −2),

an = an−1 +2(n −1),

Add these equalities and cancel common terms on the left and right,

a2+a3+a4+·· ·+an−1+an = a1+a2+a3+a4+·· ·+an−1+2(1+2+·· ·+(n−1)) =⇒ an = a1+(n−1)n = n2−n+2,

upon using Corollary 3.

A Maple sequence for solving this recurrence is

> rsolve({a(k)=a(k-1)+2*(k-1), a(1)=2}, a(k));

Î

Suppose that an = ar n, r 6= 0, is a solution to the homogeneous differential equation

c0an +c1an+1 +c2an+2 +·· ·++ck an+k = 0.

Then

c0r n +c1r n+1 +c2r n+2 +·· ·++ck r n+k = 0 =⇒ r n (c0 +c1r +c2r 2 +·· ·++ck r k ) = 0 =⇒ c0 +c1r +c2r 2 +·· ·++ck r k = 0.

The equation
c0 +c1r +c2r 2 +·· ·++ck r k = 0

is called the characteristic equation of the difference equation.2 Clearly if bsn, s 6= r , is a solution, then
ar n +bsn is also a solution. This is the so-called superposition principle.

We will not discuss here a general theory of how to solve difference equations, we will only focus on
some examples that will be used later on. The interested reader may read [Boo] for the more general
case. Let us, however, discuss the case of the second order linear homogeneous difference equation

c0xn +c1xn+1 +c2xn+2 = 0.

The characteristic equation is a quadratic equation, say

p(x) := c0 +c1x +c2x2 = 0.

This equation has two roots r, s, and so

c0 +c1x +c2x2 = c2(x − r )(x − s).

2In olden days these used to be called the secular equation.
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If r 6= s, then by the superposition principle we have seen that an = ar n +bsn for some constants a, b.
What happens if r = s? In this case r is a double root and

p(x) = c2(x − r )2.

and also, p ′(x) = c1 +2c2x = 2c2(x − r ) Since p ′(r ) = 0, we must have c1 +2c2r = 0. Now, let us try nr n as
another solution to the difference equation. Then

c0nr n +c1(n +1)r n+1 +c2(n +2)r n+2 = 0 =⇒ nr n (c0 +c1r +c2r 2)+ r n+1(c1 +2c2r ) = nr n 0+ r n+10 = 0,

whence nr n is also a solution.

108 Example (Fibonacci Numbers) The Fibonacci sequence is given by f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3,
f5 = 5, and in general,

fn+1 = fn + fn−1, n ≥ 1.

Find a closed formula for fn.

Solution: Ï Suppose ar n , r 6= 0, is a solution, then

ar n+1 = ar n +ar n−1 =⇒ ar n−1(r 2 − r −1) = 0 =⇒ r = 1±
p

5

2
.

This means that

fn = A

(
1+

p
5

2

)n

+B

(
1−

p
5

2

)n

,

for some constants A and B that we must determine. Now

f0 = 0 =⇒ 0 = A +B , f1 = 1 =⇒ 1 = A

(
1+

p
5

2

)
+B

(
1−

p
5

2

)
.

Solving for A and B we find A = 1
p

5
=−B . Hence

fn = 1
p

5

(
1+

p
5

2

)n

− 1
p

5

(
1−

p
5

2

)n

.

This closed form is called the Cauchy-Binet Formula. To obtain the first 100 Fibonacci numbers

using Maple use the following commands. Notice that the double bars indicate Maple that it

is dealing with a sequence.

> f||0:=0; f||1:=1;
> for n from 2 to 100 do f||n:=f||(n-1)+f||(n-2); od;

Maple also has a command rsolve, that solves recursions. Let us use it to obtain the Cauchy-

Binet formula. We have to change slightly our notation because Maple reads f ||n differently

from, say, f (n).

> rsolve({f(k)=f(k-1)+f(k-2), f(0)=0, f(1)=1}, f(n));

The answer that Maple displays appears to be different than the one we obtained. Prove, by

rationalising the denominator of
1

1±
p

5
, that they are in fact equal. Î

109 Example Find a closed formula for the recursion an+2 = an+1 +6an, a0 = 3 and a1 = 1.

Solution: Ï Suppose ar n , r 6= 0, is a solution, then

ar n+2 = ar n+1 +6ar n =⇒ ar n (r 2 − r −6) = 0 =⇒ r ∈ {−3, 2}.
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Thus the solution must be of the form

an = A(−3)n +B 2n .

Using the initial conditions,

3 = a0 = A +B , 1 = a1 =−3A +2B =⇒ A = 1, B = 2.

Thus

an = (−3)n +2n+1.

Î

110 Example Find a closed form for the recursion an+2 = 6an+1 −9an, a0 = 2 and a1 = 15.

Solution: Ï Suppose ar n , r 6= 0, is a solution, then

ar n+2 = 6ar n+1 −9ar n =⇒ ar n (r 2 −6r +9) = 0 =⇒ r = 3,

a repeated root. Thus the solution must be of the form

an = A3n +B n3n .

Using the initial conditions,

2 = a0 = A, 15 = a1 = 3A +3B =⇒ A = 2, B = 3.

Thus

an = 2 ·3n +n3n+1.

To obtain the first 100 terms of this sequence and to obtain a closed form for it use the Maple
commands

> a||0:=2; a||1:=15;
> for n from 2 to 100 do a||n:=6*s||(n-1)-9*a||(n-2); od;
> rsolve({a(k)=6*a(k-1)-9*a(k-2), a(0)=2, a(1)=15}, a(n));

Î

111 Example Find the recurrence relation for the number of n digit binary sequences with no pair of
consecutive 1’s.

Solution: Ï It is quite easy to see that a1 = 2, a2 = 3. To form an , n ≥ 3, we condition on the last

digit. If it is 0, the number of sequences sought is an−1. If it is 1, the penultimate digit must be

0, and the number of sequences sought is an−2. Thus

an = an−1 +an−2, a1 = 2, a2 = 3.

This recurrence looks like the Fibonacci recurrence. It is called the Lucas sequence. We leave

to the reader to prove that its closed form is

an =
(

1+2
p

5

5

)(
1+

p
5

2

)n

+
(

1−2
p

5

5

)(
1−

p
5

2

)n

.

Î

112 Example Let an+2 −2an+1 +2an = 0 with a0 = 1 and a1 = 1. Find a close form for this recursion.

Solution: Ï The characteristic equation is r 2 −2r +2 = 0 =⇒ r ∈ {1− i , 1+ i }. Hence

an = A(1− i )n +B (1+ i )n .
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Using the polar forms

1− i =
p

2e−πi /4, 1+ i =
p

2eπi /4,

we may write

an =C 2n/2 cos
πn

4
+D2n/2 sin

πn

4
.

Now,

a0 = 1 =⇒ 1 =C .

Also,

a1 = 1 =⇒ 1 =C 21/2 cos
π

4
+D21/2 sin

π

4
=C +D =⇒ D = 0.

The general solution is thus an = 2n/2 cos
πn

4
. Î

Homework
113 Exercise Let f (x) = x2 − 2. Use the fact that(

x + 1

x

)2

−2 = x2 + 1

x2
to prove that

f [n](x) =
(

x +
p

x2 −4

2

)2n

+
(

x −
p

x2 −4

2

)2n

for |x | ≥ 2.

114 Exercise (Lines on the Plane) Find a recur-
rence relation for the number of regions into which
the plane is divided by n straight lines if every pair
of lines intersect, but no three lines intersect.

115 Exercise Solve the recursion an = 1+
n−1∑

k=1

ak for

n ≥ 2 and a1 = 1.

116 Exercise Let x0 = 1, xn = 3xn−1 −2n2 +6n −3. Find
a closed form for this recursion.

117 Exercise Find a closed form for xn = 2xn−1 +
3n−1, x0 = 2.

118 Exercise Solve the recursion an = 2an/2 +6n −1

for n ≥ 2, n a power of 2, and a1 = 1.

119 Exercise Let x0 = 2, xn = 9xn−1 −56n +63. Find a
closed form for this recursion.

120 Exercise Let x0 = 7 and xn = xn−1 +n, n ≥ 1. Find
a closed formula for xn .

121 Exercise Solve the recursion an = 2an−1 +n − 1

for n ≥ 2 and a1 = 1.

122 Exercise (Putnam 1985) Let d be a real num-
ber. For each integer m ≥ 0, define a sequence

am ( j ), j = 0, 1, 2, · · · by am (0) = d

2m
, and am ( j + 1) =

(am ( j +1))2 +2am ( j ), j ≥ 0. Evaluate

lim
n→∞

an (n).

123 Exercise A recursion satisfies u0 = 3, u2
n+1 =

un , n ≥ 1. Find a closed form for this recursion.

124 Exercise There are two urns, one is full of wa-
ter and the other is empty. On the first stage, half
of the contains of urn I is passed into urn II. On
the second stage 1/3 of the contains of urn II is
passed into urn I. On stage three, 1/4 of the con-
tains of urn I is passed into urn II. On stage four
1/5 of the contains of urn II is passed into urn I,
and so on. What fraction of water remains in urn
I after the 1978th stage?

125 Exercise (Towers of Hanoi) The French mathe-
matician Edouard Lucas furnished, in 1883, the
toy seen in figure 1.6 (with eight disks), along with
the following legend. The tower of Brahma had
64 disks of gold resting on three diamond needles.
At the beginning of time, God placed these disks
on the first needle and ordained that a group of
priests should transfer them to the third needle
according to the following rules:

1. The disks are initially stacked on peg A, in
decreasing order (from bottom to top).

2. The disks must be moved to another peg in
such a way that only one disk is moved at a
time and without stacking a larger disk onto
a smaller disk.

When they finish, the Tower will crumble and the
world will end. Prove that if there are n disks, then
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2n −1 are necessary and sufficient to perform the
task according to the rules.

Figure 1.6: Towers of Hanoi.

126 Exercise (Josephus’ Problem) In [HeKa] we
find the following legend about the famous first-
century Jewish historian Flavius Josephus:

In the Jewish revolt against Rome, Jose-
phus and 39 of his comrades were
holding out against the Romans in a
cave. With defeat imminent, they re-
solved that, like the rebels at Masada,
they would rather die than be slaves to
the Romans. They decided to arrange
themselves in a circle. One man was
designated as number one, and they
proceeded clockwise killing every sev-
enth man. . . . Josephus (according to
the story) was among other things an

accomplished mathematician; so he in-
stantly figured out where he ought to sit
in order to be the last to go. But when
the time came, instead of killing himself
he joined the Roman side.

In general, given a group of n men arranged in
a circle under the edict that every mth man will
be executed going around the circle until only one
remains, the object is to find the position L(n, m)

in which you should stand in order to be the last
survivor. The particular situation of Flavius Jose-
phus is asking for L(40, 7). The general Josephus’
Problem is very difficult. Prove, however, that

L(n, 2) = 1+2n −21+Tlog2 nU.

127 Exercise (Monkeys and Coconuts) N men and
M monkeys gather coconuts all day and then they
fall asleep. The first man wakes up, separates p

coconuts for each monkey, and then takes
1

N
of

what remains for himself and goes back to sleep.
The second man wakes up, separates p coconuts

for each monkey, and then takes
1

N
of what re-

mains for himself and goes back to sleep, etc. until
the Nth man wakes up and does the same. In the
morning everyone wakes up, and the men give p

coconuts to every monkey and
1

N
of what remains

for themselves. Given that each division was an
integer division, find the least amount of coconuts
needed.

128 Exercise (Derangements) An absent-minded
secretary is filling n envelopes with n letters. Find
a recursion for the number Dn of ways in which
she never stuffs the right letter into the right en-
velope.
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2 Some Maple Programming

In this chapter we will introduce some algorithmic constructs: looping, conditional expressions, etc. An
algorithm is a set of vividly clear instructions that must be executed in order to perform a well defined
task. We will avail from the software Maple in order to illustrate these points. Maple is easy to use,
and its basic syntax does not differ much from other programming languages like Pascal, C, or Java.

Our object here will be to study the logic of writing small programs. The topic of safeguarding our
program against errors in inputs, and of proving our algorithms correct, although important topics in
computer programming, will only distract us from our main goals, and hence we will not touched it
here. Most the algorithms here will be numeric, it would be a rare occurrence if we treat non-numeric
algorithms.

Programming is a difficult subject for a beginner and it requires practice and attention to detail.
Most of the exercises at the end of the section are solved. I urge you to attempt them without looking
at my solution. You should run each line through Maple. Since these notes were hastily put together,
the writing is somewhat cryptic.

2.1 Basic Operations
Although we now have versions past Maple IX, we will use the programming constructs of Maple IX in
our discussion. Our interest is to learn basic procedural programming and albeit the basic WYSIWYG
constructs are easier for the the oligophrenic, we will not make use of them here.

Maple uses + for addition, − for subtraction, ∧ (circumflex accent) for exponentiation, / for division,
! for the factorial. The usual algebraic precedence of operators (parentheses over exponents, over
multiplication and division, over addition and subtraction) is respected. Instructions are typed after the

[> prompt, and must always be ended with a semicolon, after which you must press the ENTER key.
Whitespace is ignored between characters. If a colon is used instead of a semicolon, the command is
executed silently, that is, Maple does not make visible the output. To obtain a decimal approximation,
either put a decimal point anywhere in the expression, or use the command evalf() (evaluate to
floating point).

129 Example Compute
11 +22 +33

(4!+5 ·6 ·7 ·8)9
. using Maple.

Solution: Ï The required command line is

> (1^1+2^2+3^3)/(4!+ 5*6*7*8)^9;

1

3785091090811379105075822592
> evalf((1^1+2^2+3^3)/(4!+ 5*6*7*8)^9);

.2641944344 10−27

> (1^1+2^2+3^3)/(4!+ 5.*6*7*8)^9;

.2641944344 10−27

Î

The power of Maple rests on its ability to perform symbolic computations in a straightforward manner.
To operate with complex numbers, use the imaginary unit I (capitalised). Maple is able to evaluate a
large list of common functions, among them sin(), cos(), tan(), log(), log[n]() exp(), max(),
min(), sqrt(), abs(), floor(), ceil(). Enter π as Pi.
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130 Example Evaluate the following using Maple.

sin
π

3
+ tan

π

6
, (1+ i )20 + (1−

p
2)20, max(T5.6U, log 100).

Solution: Ï The required command line is

> (sin(Pi/3)+tan(Pi/6);

5

6

p
3

> (1+I)^20+(1-sqrt(2))^20;

−1024+
(
1−

p
2
)20

> (max(floor(5.6),log(100));
5

Î

Maple has several libraries that have tailor-made commands for Linear Algebra, Calculus, Plotting,
Graph Theory, Number Theory, etc. Some combinatorial and number theoretic functions of use are the
following:

1. binomial(n,k) computes the binomial coefficient

(
n

k

)

2. gcd(a,b) finds the greatest common divisor of the integers a and b.

3. lcm(a,b) finds the least common multiple of the integers a and b.

4. isprime(x) determines whether the integer x is prime.

5. ithprime(k) gives the prime the k-th position, where p1 = 2 is the first prime, p2 = 3 is the second
prime, etc.

6. nextprime(x) finds the prime just above the integer x.

7. ifactor(x) gives the prime factorisation of the integer x.

8. iquo(a, b) finds the integral quotient when the integer a is divided by the integer b.

9. irem(a, b) finds the integral remainder when the integer a is divided by the integer b.

10. a mod b finds the integer a modulo the integer b.

131 Example Use Maple to find gcd

((
20

10

)
,

(
20

15

))
.

Solution: Ï The required command line is

> gcd(binomial(20,10), binomial(20,15));
1292

Î

132 Example Use Maple to determine whether 606371 is prime. Find the prime just above 60637.

Solution: Ï The required command line is

> isprime(60637);
t r ue

> nextprime(60637);

1A well-known zip code. . .

Free to photocopy and distribute 32



Chapter 2

60647

Î

Maple is able to operate symbolically. To multiply out an algebraic expression, use expand(). To
simplify an expression, use simplify(). This last command is rather limited and sometimes one
needs to refine it, perhaps with the the convert() command. The is command determines whether
two formulæ (involving numbers) are equal. To factor an expression use the command factor().

133 Example Multiply out (a +b +c)(a2 +b2 +c 2 −ab −bc −c a).

Solution: Ï The required command line is

> expand((a+b+c)*(a^2+b^2+c^2-a*b-b*c-c*a));

a3 +b3 +c 3 −3abc

Î

134 Example Factor x10 −x8 −2x7 −x6 −x4 +x2 +2x +1 using Maple.

Solution: Ï The required command line is

> factor(x^10-x^8-2*x^7-x^6-x^4+x^2+2*x+1);

(x −1)(x +1)(x2 −x +1)(x2 −x −1)(x2 +x +1)2

Î

135 Example Obtain the partial fraction expansion of
x

x3 +1
using Maple.

Solution: Ï The required command line is

> convert(x/(x^3-1), parfrac,x);

1

3
· 1

x −1
− 1

3
· x −1

x2 +x +1

Î

136 Example Use Maple to find the exact value of cos
π

30
.

Solution: Ï The required command line is

> convert(cos(Pi/30), radical);

1

8

p
2

√
5−

p
5+

(
1

8
+ 1

8

p
5

)p
3

Î

137 Example Reduce the fraction
x −1

x4 −1
.

Solution: Ï The required command line is

> simplify((x-1)/(x^4-1));

1

x3 +x2 +x +1

Î

Maple is able to differentiate and integrate functions symbolically with the commands diff()
and int(). It is also able to add or multiply numbers in sequence with the commands sum() and
product().

Free to photocopy and distribute 33



Basic Operations

138 Example Find a closed formula for the sum

∑

1≤k≤n

k2 = 12 +22 +·· ·+n2.

.

Solution: Ï The command line appears below. So that the formula appears in a familiar

shape, we factor the result.

> factor(sum(k^2,k=1..n));

1

6
n(n +1)(2n +1)

Î

139 Example Find the prime factorisation of the product

∏

1≤k≤50

(2k −1) = (1)(3)(5) · · ·(99).

.

Solution: Ï The command line appears below.

> ifactor(product(2*k-1,k=1..50));

(3)26(5)12(7)8(11)5(13)4(17)3(19)3(23)2(29)2(31)2(37)(41)(43)(47)(53)(59)(61)(67)(71)(73)(79)(83)(89)(97)

Î

140 Example Find the derivative and the integral of the function x 7→ x

x3 +1
with respect to x. Also, find

the definite integral

∫1/2

−1/2

xdx

x3 +1
.

Solution: Ï The command lines appear below.

> diff(x/(x^3+1),x);

1

x3 +1
− 3x3

(x3 +1)2

> int(x/(x^3+1),x);

−1

3
log(x +1)+ 1

6
log(x2 −x +1)+ 1

3

p
3 arctan

(
1

3
(2x −1)

p
3

)

> int(x/(x^3+1),x=-1/2..1/2);

−1

6
log 3− 1

6
log 7+ 1

3

p
3 arctan

(
2

3

p
3

)

Î

Homework
141 Exercise Find

(123456789)2 − (123456787) · (123456791)

using Maple.

142 Exercise Use Maple to verify that for any inte-
gers a and b it holds that gcd(a, b) · lcm(a, b) = ab.

143 Exercise Compute

(104 +324)(224 +324)(344 +324)(464 +324)(584 +324)

(44 +324)(164 +324)(284 +324)(404 +324)(524 +324)

using Maple. Then do this by hand.

144 Exercise Find

∫
dx

√
1+

√
1+

p
x

both by hand

and using Maple.
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145 Exercise Evaluate the definite integral∫2

−1
max(|x −1|, x2 +2)dx.

146 Exercise Find

∫p
tan x dx both by hand and

using Maple.

147 Exercise Compute

(1+ i )2004

(1− i )2000

using Maple.

148 Exercise Factor 1002004008016032 using Maple.

149 Exercise Use Maple to verify that

(x + y)5 −x5 − y 5 = 5x y(x + y)(x2 +x y + y 2)

and

(x +a)7 −x7 −a7 = 7x a(x +a)(x2 +x a +a2)2.

150 Exercise Write Maple code to verify that a
product of sums of squares can be written as a
sum of squares, that is, verify that

(a2 +b2)(c 2 +d 2) = (ac +bd )2 + (ad −bc)2.

151 Exercise Let i 2 =−1. Evaluate

1+2i +3i 2 +4i 3 +5i 4 +·· ·+2007i 2006

using Maple.

152 Exercise Give Maple code to compute
1000∑

k=1

Tlog2 kU.

153 Exercise Find the exact value of cos
π

5
using

Maple and by hand.

2.2 Sets, Lists, and Arrays
Maple has a rich variety of data structures, among them sets, lists, and arrays. Roughly speaking, a
set corresponds to a set in combinatorics: the order of the elements is irrelevant, and repetitions are
not taken into account. Sets are defined by using curly braces { }. In a list, the order of the elements
is important and repetitions are taken into account. Lists are defined by using square brackets [ ].
Arrays are a generalisations of matrices. They can be modified and are declared with the command
array().

We will first consider sets and set operations. In order to facilitate our presentation, we will give
names to the various objects we will define. In order to attach a name, we need the assignment
operator :=, where there is no space between the colon and the equal sign. Maple is able to perform set
operations with the commands union, intersect, and minus. To check whether two sets are equal we
may use the command evalb() (evaluate boolean).

154 Example Consider the sets

A = {1, 2, 3, a, b, c , d }, B = {3, 4, 5, a, b, e, f }.

Use Maple to obtain
A ∪B , A ∩B , A \ B ,

and to verify that
(A \ B )∪ (B \ A) = (A ∪B ) \ (A ∩B ).

Solution: Ï We first define the sets and then perform the desired operations. The following

command lines accomplish what is required.

> A:={1,2,3,a,b,c,d};
A := {1, 2, 3, a, b, c , d }

> B:={3,4,5,a,b,e,f};
B := {3, 4, 5, a, b, e, f }

> A union B
{1, 2, 3, 4, 5, f , a, b, c , d , e}

> A intersect B;
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{3, a, b}

> A minus B;
{1, 2, c , d }

> evalb((A union B) minus (A intersect B)=(A minus B) union (B minus A));
t r ue

Î

We do not need to write code in extenso in order to define a set whose elements are in sequence, as we
may use the the function seq().

155 Example To define the set
X := {1, 2, . . . , 100}

we type

> X:={seq(k,k=1..100)};

X := {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

51, 52, 53, 54, 55, 56, 57, 58, 59, 60,

61, 62, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72, 73, 74, 75, 76, 77, 78, 79, 80,

81, 82, 83, 84, 85, 86, 87, 88, 89, 90,

91, 92, 93, 94, 95, 96, 97, 98, 99, 100}

A list is more or less like a set, except that repetitions are allowed and the order of the ele-
ments is respected. The function nops() gives the number of elements of the list. To obtain the
i-th element of the list, we type name[i], enclosed in square brackets. We may also access an ele-
ment of the list by using the function op(i, name). We may also obtain elements in a range using
these operators, for example name[low..high] or, equivalently, op(low..high,name). The command
subop(index1=newvalue1,index2=newvalue2,...,name).

156 Example In this problem we perform various operations with lists.

1. Create the list L1 consisting of the elements 4, 4, 5, 5, 2, 3, 2 in that order.

2. Create the list L2 consisting of the elements a, b, b, c, c, a, d in that order.

3. Concatenate L1 and L2 into a list L3.

4. Create a list L4 consisting of the first three elements of L1 and the last three elements of L2.

5. Delete the first and last elements of L1 and substitute, respectively, with the values x and y. Shew
that L1 has not changed.
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Solution: Ï The required commands follow.

> L1:=[4,4,5,5,2,3,2];
L1 := [4, 4, 5, 5, 2, 3, 2]

> L2:=[a,b,b,c,c,a,d];
L2 := [a, b, b, c , c , a, d ]

> L3:=[op(L1),op(L2)];

L3 := [4, 4, 5, 5, 2, 3, 2, a, b, b, c , c , a, d ]

> L4:=[op(1..3,L1),op(-3..-1,L2)];

L4 := [4, 4, 5, c , a, d ]

> subsop(1=x,-1=y,L1);
[x, 4, 5, 5, 2, 3, y]

> L1;
[4, 4, 5, 5, 2, 3, 2]

Î

Before discussing arrays let us mention in passing a curious feature of Maple. Given a set or a
list ({. . .} or [. . .]), we can retrieve the members by appending [ ] at the end. Some examples follow.

> {2,3,4}[ ];
2, 3, 4

> max({2,3,4}[ ]);
4

> [1,2,3,4,5][ ];
1, 2, 3, 4, 5

> min([1,2,3,4,5][ ]);
1

An array is a more general data structure than a list, in fact, arrays are generalisations of the matrix
concept. Arrays are modifiable. Arrays are defined as array(index_function, ranges, initial_value_lists).
All these parameters are optional. The dimension of an array is the number of indices used to describe
it. A one-dimensional array is akin of a vector, and a two dimensional array is akin of a matrix. Thus
the one-dimensional array x with n elements essentially looks like

x := [x[1], x[2], . . . , x[n]]

and a two-dimensional array A with mn elements (with m rows and n-columns), essentially looks like

A :=




A[1, 1] A[1, 2] A[1, 3] · · · A[1, n]

A[2, 1] A[2, 2] A[2, 3] · · · A[2, n]

...
...

... · · ·
...

A[m, 1] A[m, 2] A[m, 3] · · · A[m, n]




In order to list the elements of an array we must use the command eval().

157 Example Define the one-dimensional array V := [5, 6, 7, 8, 9]. Then, change its third element to be x.

Solution: Ï The required code follows.

> V:=array([5,6,7,8,9]);
V := [5, 6, 7, 8, 9]

> eval(V);
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[5, 6, 7, 8, 9]

> V[3]:=x;
V3 := x

> eval(V);
[5, 6, x, 8, 9]

Î

158 Example Define a 2×3 array M with M11 = 1, M12 = 2, M13 = 3, M21 = a, M22 = b, and M23 = c. Then,
redefine M22 to be x. Also, define an uninitialised 3×2 array N .

Solution: Ï
The required code follows.

> M:=array([ [1,2,3],[a,b,c] ]);

M :=




1 2 3

a b c




> M[2,2]:=x;
M2,2 := x

> eval(M);



1 2 3

a x c




> N:=array(1..3,1..2);

N := ar r a y(1..3, 1..2, [])

> eval(N);



?11 ?12

?21 ?22

?31 ?32




Î

Homework
159 Exercise Consider the set of 100 integers X :=
{1, 2, . . . , 100}. Using Maple set operations, and
Inclusion-Exclusion, find the number of elements
of X which are neither multiples of 2 nor 3. Also,
list all such elements.

160 Exercise Consider the set of 1000 integers X :=
{1, 2, . . . , 1000}. Using Maple set operations, and

Inclusion-Exclusion, find the number of elements
of X which are neither perfect squares, nor perfect
cubes, nor perfect fifth-powers. Also, list all such
elements.

161 Exercise Write Maple code that will compute
the sum of the elements of a list of numbers.

2.3 Functions and Procedures
Recall that in mathematics we call a function the collection of the following ingredients:

Free to photocopy and distribute 38



Chapter 2

1. A set of inputs, called the domain of the function.

2. A set of possible outputs called the target set of the function.

3. A name for the function.

4. A name for a typical input (input parameter) of the function.

5. An assignment rule that assigns to every input a unique output.

The collection of all the above ingredients is summarised in the notation

f :
A → B

x 7→ f (x)

where f is the name of the function, A is the domain, B is the target set, x is the typical input, and f (x)

Such definition of a function is especially useful in Computer Science. For example, if we had
a function f : Z3 → R, we would write this in C code has float f(int, int, int){instructions},
where float refers to a floating (decimal) real number, and int refers to integer. This allocates sufficient
space in the memory to handle the inputs and outputs. Since memory is limited, we need to know
before hand how much of it to allocate. In most of your Precalculus and Calculus courses you have
been misinformed when calling functions simply by their name and the assignment rule. This is
unfortunate, because say talking of the “function” f with f (x) = 3x +1 does not tell you anything about
its domain and hence nothing about its image. It is also unfortunate because you cannot tell whether
the given function is injective, surjective, etc., simply by its assignment rule. On the other hand, this
simplifies matters when defining functions in Maple, we will simply have to be very careful that we
input the right kind of inputs in our functions. Assigning the wrong kind of input to a function where
no provisions have been done for type-checking can lead us to infinite loops or program crashes. Since
the programs we will write here are very simple, we will not engage in this kind of safeguarding, but
again, we insist that much care must be taken by the serious programmer to guard against possible
confusion and wrong inputs by the user.

There are at least two ways of defining functions in Maple. The ways we will explore are not com-
pletely equivalent and one has advantages over the other, but we will not fuss with this now.

The first way we will explore is through the arrow notation ->, which is obtained by a dash and a
greater than sign, with no spaces in between. This is reminiscent with the way functions are defined in
Precalculus and Calculus. To name the function f with f (x) = 3x +1 you type f:=x->3*x+1. The sum,
difference, product and quotient of functions is obtained in the expected way. To obtain f ◦ g we type
f@g. To obtain the output in a specific set or list we use the command map(x->f(x),X), where X is
the name of the set or list.

162 Example Consider the assignment rules f (x) = x2 −x and g (x) = 2x +1. Write Maple code

1. Defining both f and g .

2. Computing ( f +g − f g )(2).

3. Computing the set f (A), where A is the set A = {−3,−2,−1, 0, 1, 2, 3}.

4. Computing the set f (L), where L is the list L = [−3,−2,−1, 0, 1, 2, 3].

5. Computing ( f ◦g )(2).

6. Computing ( f ◦ f ◦ · · · ◦ f )︸ ︷︷ ︸
20 f ′s

(3).
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Solution: Ï The required commands appear below. Notice that since f is not injective on the

set A, there are fewer elements in f (A) than in A.

> f:=x->x^2-x;

f := x → x2 −x

> g:=x->2*x+1;
g := x → 2x +1

> (f+g-f*g)(2);
−3

> A:={-3,-2,-1,0,1,2,3};
A := {−3,−2,−1, 0, 1, 2, 3}

> map(x->f(x), A);
{0, 2, 6, 12}

> L:=[-3,-2,-1,0,1,2,3];
L := [−3,−2,−1, 0, 1, 2, 3];

> map(x->f(x), L);
[12, 6, 2, 0, 0, 2, 6]

> (f@g)(2);
20

> (f@20)(3);
380

Î

163 Example Write a function that takes a list of numbers as an input and outputs the average of the
elements of the list. Test the function with the list [−1, 2, 3, 3, 4].

Solution: Ï Here is a possible way.

> AVERAGE:=X-> sum(X[i],i=1..nops(X))/nops(X);

AV E R AGE := X →
∑nops(X )

i=1
Xi

nops(X )
> AVERAGE([-1,2,3,3,4]);

11

5

Î

For our next example we need the command coeffs(p,x). This returns the set of coefficients of the
polynomial p in the variable x. For example, the call coeffs(10*x^2-4*x+1,x) returns {10,-4,1}.

164 Example The height of a polynomial p(x) is the largest value of the absolute values of its coefficients.
Create a function HEIGHT that finds the height of a given polynomial.

Solution: Ï Here is a possible answer. The idea is the following. The input is a polynomial p

in the indeterminate x. map(abs, {coeffs(p,x)}) creates a set with the absolute values of

the coefficients of p, and appending [ ] at its end retrieves the numerical values which are then

able to be fed to the max function.

> HEIGHT:=(p,x)->max( map(abs, {coeffs(p,x)})[ ]);

HE IG HT := (p, x) → max(map(abs, {coe f f s(p, x)})[ ])

Î

Another way of defining function in Maple is by means of procedure declarations. We will actually
prefer this method rather than the arrow method, since this method is akin to the ones used by most
computer languages. To declare a procedure, we use the syntax name:=proc(inputs) instructions end;.
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For example, to declare the assignment rule f (x) = 3x +1 we write f:=proc(x) 3*x+1 end;. A proce-
dure usually returns its last evaluation, a behaviour which can be bypassed with the RETURN statement.
The values of the input parameters cannot be changed by the procedure, and hence, if they need to be
modified somehow one must first make copies of them.

165 Example Write a procedure SWAP(x,y) which takes two numbers x and y and exchanges them.

Solution: Ï This is a classic algorithm in introductory programming. A standard trick is

to create a temporary variable, store the contents of x there, store the contents of y in x, and

finally, store the contents of the temporary variable in y. Since we cannot change the values of

x and y because they are input parameters, we make copies of these variables into x1 and y1.

> SW AP := pr oc(x, y)

x1 := x; y1 := y ;

t emp := x1; x1 := y1; y1 := t emp;

RE T U R N (x1, y1);

end ;

Î

166 Example Write a Maple procedure I T HD IG I T (x, i ) that takes a positive integer x and gives its i-th
digit when read from right to left.

Solution: Ï The idea is the following. Consider a positive integer, for example 23456789785765,

and let us find its four digit from the left (it is obviously 5, but let’s forget that for a minute. The

trick is to move the decimal point four units left, obtaining 2345678978.5765. Now we delete the

integral part, obtaining .5765. We now move the decimal point one unit to the right, obtaining

5.765. The digit we want is the integral part of this last number, namely, 5. Here is the code for

that set of instructions.

> ITHDIGIT:= proc(x, i) b:=x*10^(-i); n:=b-floor(b); z:=10*n; RETURN(floor(z)); end;

We can write the code more succinctly as

> ITHDIGIT:= proc(x, i) RETURN(floor(10*(x*10^(-i)-floor(x*10^(-i))))); end;

but this makes it somewhat harder to read.

Î

For our next example we need to be able to find the number of digits used when writing a given positive
integer x. This can be found using the Maple command length(x).

167 Example Write a Maple procedure that will output the set of digits that appear in a positive integer.

Solution: Ï The idea is to use example 166 and find every digit. Since a set does not include

repetitions, we shew our output in a set.

SE T OF D IG I T S := pr oc(x)

RE T U R N ({seq(I T HD IG I T (x, i ), i = 1..l eng t h(x))});

end ;

In order to use this procedure, we must type the code of ITHDIGIT prior to it.

Î

Homework
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168 Exercise Let A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, and

f (x) = x

x2 +1
. Write Maple code that will find

f (A \ B )∪ f (B \ A) and f ((A \ B )∪ (B \ A)).

169 Exercise Given a list of data [x1, x2, . . . , xn ], their

variance is given by

∑n
k=1

(x −µ)2

n
, where µ is the av-

erage of the xk . Write Maple code to compute the
variance of a given list.

170 Exercise Without introducing a temporary vari-

able, write a procedure SWAP2(x,y) that swaps
the values of two variables. For example, if x = 1

and y = 2, then SWAP2(x,y). prints x = 2 and y = 1.

171 Exercise Using example 166 and the Maple
functions sum() and length(), write a procedure
SUMDIGITS(x) that computes the sum of the digits
of a given positive integer x.

172 Exercise Using example 166, write a proce-
dure PEELER(x) that will “peel out” the first
and last digit of a positive integer with at
least three digits. Leading zeroes are ignored.
For example, PEELER(1234) will return 23 and
PEELER(1023014) will return 23014 (ignoring the
leading 0 obtained).

2.4 Conditional Statements and the “for” Loop
A boolean expression is one that evaluates either true or false. We can form boolean expressions with
the relation operators

= equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

<> not equal to

☞ Do not confuse the assignment statement := with the equality checking operator =.

The standard logic rules hold for these operations.

The conditional statement in Maple takes various forms. The shortest is

if (condition) then (commands) fi;.

Other forms are

if (condition) then (commands) else (commands) fi;

and

if (condition) then elif (commands) elif (commands) ... else (commands) fi;.

173 Example Suppose you didn’t know anything about Maple’s maximum max function. Write Maple
code that will find the maximum of two numbers.

Solution: Ï Here is one possible answer.
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> M AX I := pr oc(x, y)

i f x >= y

t hen RE T U R N (x);

el se RE T U R N (y);

f i ;

end ;

Î

174 Example Write Maple code to evaluate the following piecewise assignment rule:

f (x) =





−2 if x ≤−3

x2 if −3 < x ≤ 2

2 if 2 < x < 4

1 if x > 4

Solution: Ï Here is one possible answer.

> f := pr oc(x)

i f x <=−3

t hen −2
el i f x <= 2

t hen x^2
el i f x < 4

t hen 2
el se 1

f i ;

end ;

Maple has a direct way of declaring a piecewise function, by means of the command piecewise().
> f:=x->piecewise(x<=-3,-2,x<=2,x^2,x<4,2,1);

Î

We now investigate our first looping statement. The for loop has the following syntax, where the
by (step) is optional.

for index from (low) by (step) to (high) do (instructions) od;.

“for” loops are particularly useful when all data in a certain range must be examined, as in checking
the maximum of list of numbers, or adding numbers in a set.

175 Example Suppose you didn’t know anything about Maple’s sum command. Write a Maple procedure
to find the sum

12 −32 +52 −72 +·· ·−992 +1012.

Solution: Ï We use a temporary variable to store the partial results. We must initialise it to

0, otherwise Maple will deposit garbage in it.

> SU M M M := pr oc()

t ot al := 0;

f or k f r om 1 b y 2 t o 101

d o t ot al := t ot al + (−1)^((k −1)/2)∗k^2 od ;

end ;
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This can be, of course, accomplished more succinctly with

> sum((-1)^(k+1)*(2*k-1)^2,k=1..51);

Î

176 Example Give Maple code that will compute the sum of all the integers in {1, 2, 3 . . . , 1000} which are
neither divisible by 3 nor 5.

Solution: Ï We use the technique of the preceding problem.

> SEC T ION SU M := pr oc()

t ot al := 0;

f or k f r om 1 t o 1000

d o i f k mod 3 <> 0 and k mod 5 <> 0

t hen t ot al := t ot al +k ;

f i ; od ;

RE T U R N (t ot al );

end ;

Î

177 Example (Linear Search) Write a Maple procedure MEMBER(D,w) that tests whether a given word
w is a member of a dictionary D. Test the program with L:=[abacus, number, algorithm] and the
words algorithm and ossifrage.

Solution: Ï Here is a possible answer.

> ME MB E R := pr oc(D, w )

f or k f r om 1 t o nops(D)

d o i f w = D[k] t hen RE T U R N (t r ue)

f i ; od ; f al se;

end :
> L:=[abacus, number, algorithm]; MEMBER(L,algorithm); MEMBER(L,ossifrage);

L := [abacus, number, al g or i t hm]

t r ue

f al se

Of course, this program must be refined to guard against idiotic inputs. Also, it is particularly

inefficient, since it searches word for word, and even if the word has been found, it continues

searching. We will see how to improve this later on with the while loop. Î

178 Example A Mersenne prime is a prime of the form 2p −1, where p is a prime. Thus 3 = 22 −1, 7 =
23 −1, 31 = 25 −1 are all Mersenne primes, but 211 −1 = 23 ·89 is not a Mersenne prime. Write a Maple
procedure that generates all Mersenne primes up to 2500 − 1. You may avail of Maple’s isprime()
function.

Solution: Ï Here is a possible answer.

> M AR I N ME RSE N N E := pr oc()

f or k f r om 1 t o 500

d o i f i spr i me(2^k −1) t hen pr i nt (2^k −1, "i s a Mer senne pr i me.")

f i ; od ; end :
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> MARINMERSENNE();

3, "i s a Mer senne pr i me."

7, "i s a Mer senne pr i me."

31, "i s a Mer senne pr i me."

127, "i s a Mer senne pr i me."

8191, "i s a Mer senne pr i me."

131071, "i s a Mer senne pr i me."

524287, "i s a Mer senne pr i me."

2147483647, "i s a Mer senne pr i me."

2305843009213693951, "i s a Mer senne pr i me."

618970019642690137449562111, "i s a Mer senne pr i me."

162259276829213363391578010288127, "i s a Mer senne pr i me."

170141183460469231731687303715884105727, "i s a Mer senne pr i me."

Î

179 Example Write a procedure MAXILIST(X) that determines the maximum entry in a given number
list L. The procedure must work from scratch, that is, using Maple’s max() function is not allowed.

Solution: Ï Here is a possible answer. Observe since at the beginning we had no way of

knowing what maxime was, we declare it to be the first element of the list. That is, we used

the first member of the array as a sentinel value.

> M AX I LI ST := pr oc(X )

maxi me := X [1];

f or k f r om 1 t o nops(X )

d o i f X [k] > maxi me t hen maxi me := X [k];

f i ; od ;

RE T U R N (maxi me);

end ;
> X:=[-10,-90,98,2]: MAXILIST(X);

98

Î

180 Example (The Locker-room Problem) A locker room contains n lockers, numbered 1 through n. Ini-
tially all doors are open. Person number 1 enters and closes all the doors. Person number 2 enters and
opens all the doors whose numbers are multiples of 2. Person number 3 enters and if a door whose
number is a multiple of 3 is open then he closes it; otherwise he opens it. Person number 4 enters and
changes the status (from open to closed and viceversa) of all doors whose numbers are multiples of 4,
and so forth till person number n enters and changes the status of door number n. Write an algorithm
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to determine which lockers are closed.

Solution: Ï Here is one possible approach. We use an array of size n to denote the lockers

so that we may modify the status of the entries. The value true will denote an open locker and

the value false will denote a closed locker. We first close all the doors.

> LOC K E RS := pr oc(n)

X := ar r a y([seq( f al se, k = 1..n)]);

f or j f r om 2 t o n

d o f or k f r om j t o n d o

i f k mod j = 0 t hen X [k] := not (X [k]); f i ; od ; od ;

f or k f r om 1 t o n d o i f not (X [k])

t hen pr i nt (k , "i s open."); f i ; od ;

end ;
> LOCKERS(100);

1, "i s open."

4, "i s open."

9, "i s open."

16, "i s open."

25, "i s open."

36, "i s open."

49, "i s open."

64, "i s open."

81, "i s open."

100, "i s open."

Notice that if d divides n so does
n

d
. Thus we can pair up every the different divisors of n, and

have an even number of divisors as long as we do not have d = n

d
. This means that the integers

with an even number of divisors will have all doors open, and those with an odd number of

divisors will all all doors closed. This last event happens when d = n

d
=⇒ n = d 2, that is, when

n is a square.

Î

Homework
181 Exercise Suppose you didn’t know anything
about Maple’s absolute value abs() function.
Write a Maple procedure AbsVal(x) that will find
the absolute value of a real number x.

182 Exercise Using Maple’s ithprime() function,
write a procedure that writes the first N primes.

183 Exercise Nest the MAXI procedure of exam-
ple 173 into a new procedure MAXI3(x,y,z) that
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finds the maximum of three real numbers.

184 Exercise A twin prime is a prime p such that
p +2 is also a prime. Write a Maple procedure to
count all the twin primes between 1 and 1000000.
You may use Maple’s isprime() function. 2

185 Exercise For n ≥ 1, set !n =
n−1∑

k=0

k !. Duro Kurepa

conjectured that gcd(!n, n!) = 2 for all n ≥ 2. This
has been verified for all n < 1000000. Using Maple’s
gcd(a,b) function write a procedure to verify this
up to n = 150. (For larger values, you may get a
compilation error depending on your processor.)

2.5 The “while” Loop
The while loop has syntax while (condition-true) do (statements) od;.

186 Example It is known that the harmonic series
∑

k≥1

1

k
diverges. Find the smallest N for which

∑

1≤k≤N

1

k
≥ 10.

Solution: Ï Here is one possible answer. We use a “while” loop to detect the very first time

that the sum exceeds 10.

> H AR MON IC := pr oc(n)

sum := 0; k := 0;

w hi l e sum <= n
d o sum := sum +1/(k +1); k := k +1 od ;

RE T U R N (k);

end ;
> HARMONIC(10);

12367

In Calculus II you learn that 1+ 1

2
+ 1

3
+·· ·+ 1

n
= log n +γ+O

(
1

n

)
. Here γ≈ 0.57721566490153286 . . .

is the Euler-Mascheroni constant.3 Hence we need l og n ≈ 10−γ =⇒ n ≈ e10−.577 ≈ 12620, not far

from the value Maple found.

Î

187 Example By availing of the Maple isprime() function, write a procedure that determines the first
prime greater than 1, 000, 000, 001.

Solution: Ï Here is one possible way.

> F I RST P R I ME := pr oc()

f or k f r om 1000000001 b y 2

w hi l e not (i spr i me(k)) d o od ;

RE T U R N (k)

end ;

Notice the flexibility of Maple’s for loop allowing a while loop as an upper bound.

Maple can accomplish this with just one line.

> nextprime(1000000001);

Î
2It is not known whether the number of twin primes is infinite. Viggo Brunn proved, however, that the infinite series

∑

p is a twin prime

1

p
converges.

3Another open problem, it not known whether γ is irrational.
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188 Example The numbers
1, 2, 3, . . . , 2003

are written on a blackboard, in increasing order. Then the first, the fourth, the seventh, etc. are erased,
leaving the numbers

2, 3, 5, 6, 8, 9, 11, 12, 14, . . .

on the board. This process is repeated, leaving the numbers

3, 5, 8, 9, . . . .

The process continues until one number remains on the board and is finally erased. What is the last
number to be erased?

Solution: Ï We first write a procedure SHRINKLIST() that is one iteration of the instruc-

tions. For example, if one is given the list X := [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], then SHRINKLIST(L)
returns [2, 3, 5, 6, 8, 9]. We then keep shrinking the array until we find the number we want.

SHRINKLIST() creates a new list L with the non-deleted elements. Here is the procedure

SHRINKLIST().

> SHR I N K LI ST := pr oc(A)

L := [ ]; new i nd ex := 1;

f or k f r om 1 t o nops(A)

d o i f k mod 3 <> 1

t hen C [new i nd ex] := A[k]; L := [op(L),C [new i nd ex]];

new i nd ex := new i nd ex +1; f i ; od ;

ev al (L);

end ;

We now complete the process by shrinking the initial list until it has only one element.

>COMPU T E L AST := pr oc(X )

Y := X ; w hi l e nops(Y ) > 1

d o Y := SHR I N K LI ST (Y ); od ;

RE T U R N (Y [1]);

end ;

Upon invoking COMPUTELAST([seq(k,k=1..2003)]), we see that the last integer left is 1598.

Here is how to solve this problem without programming. Let Jn be the first number remaining

after n erasures, so J0 = 1, J1 = 2, J3 = 3, J4 = 5, etc. We prove by induction that

Jn+1 = 3

2
Jn if Jn is even,

and

Jn+1 = 3

2
(Jn +1)−1 if Jn is odd.

Assume first that Jn = 2N . Consider the number 3N . There are initially N smaller numbers ≡ 1

mod 3. So after the first erasure, it will lie in 2N -th place. Hence, it will lie in first place after

n +1 erasures. Assume now that Jn = 2N +1. Consider 3N +2. There are initially N +1 smaller

numbers ≡ 1 mod 3. So after the first erasure, it will lie in 2N+1-st place. Hence, it will lie in first

place after n +1 erasures. That completes the induction. We may now calculate successively

the members of the sequence: 1, 2, 3, 5, 8, 12, 18, 27, 41, 62, 93, 140, 210, 315, 473, 710, 1065, 1598, 2397.

Hence 1598 is the last surviving number from 1, 2, . . . , 2003.

Î

189 Example A palindrome is a strictly positive integer whose decimal expansion is symmetric and
does not end in 0. For example, 2, 11, 3010103, 19988991 are all palindromes. Write a Maple procedure
ISPALINDROME(x) that determines whether the positive integer x is palindrome.
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Solution: Ï Trying to solve this problem by purely arithmetic functions one runs into the

trouble that Maple does not make any distinction between, say, the integer 11 and the integer

011. In order to respect repetitions and order, we first convert the integer into a list. The

algorithm below is self explanatory, and we are using the algorithm ITHDIGIT from example

166.

> M AK E ME I N T OLI ST := pr oc(x)

L := [ ];

f or k f r om 1 t o l eng t h(x)

d o L := [op(L), I T HD IG I T (x, l eng t h(x)−k +1)]; od ;

ev al (L);

end ;

Now, we can simply determine whether x is a palindrome by comparing L[k]with L[nops(L)-k+1].

> I SP ALI N DROME := pr oc(x)

L := M AK E ME I N T OLI ST (x);

f or k f r om 1 t o l eng t h(x)/2

d o i f L[k] <> L[nops(L)−k +1] t hen RE T U R N ( f al se); f i ; od ;

t r ue;

end ;

Î

190 Example An array X := (x1, x2, . . . , xn ) is given. Write a procedure that reverses the elements of X ,
that is, that returns (xn , xn−1, . . . , x1).

Solution: Ï The trick is to swap (x1, xn ), (x2, xn−1), etc.

> REV E RSE LI ST := pr oc(X )

Y := X ; l e f t := 1; r i g ht := nops(X );

w hi l e(l e f t < r i g ht ) d o

t emp := Y [l e f t ]; Y [l e f t ] := Y [r i g ht ]; Y [r i g ht ] := t emp;

l e f t := l e f t +1; r i g ht := r i g ht −1; od ;

ev al (Y );

end ;
> REVERSELIST([1,2,5]);

[5, 2, 1]

Î

Homework
191 Exercise (Digit Reversing) Write a Maple pro-
cedure REVERSEDIGITS that prints the digits
of a positive integer in reverse order. Thus
REVERSEDIGITS(123) will print 321. The program
interprets, say, 01230 as 1230 and so you should
have REVERSEDIGITS(1230) return 321.

192 Exercise By strictly arithmetic means, that is,
without using lists and without using example
166, write a Maple procedure FIRSTISLAST(x)
that checks whether the first and the last digit
of the integer x > 0 (with at least two digits), are

equal. The program interprets, say, 01230 as 1230

and so you should have FIRSTISLAST(01230) re-
turn false.

193 Exercise Using Maple’s rand(low..high)
function for producing a random number from
low to high, simulate the toss of a die n times.

194 Exercise Using example 189, find the sum of
all palindromes between M and N , with M < N .

195 Exercise (Goldbach’s Conjecture) It is an un-
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solved problem to shew that every even integer
n ≥ 6 can be written as the sum of two odd primes.
Using Maple’s isprime() function, write a Maple
program to verify Goldabach’s conjecture for any
even integer ≤ 1000000.

196 Exercise (Postage Problem) Suppose that you
have two types of postage stamps: one costing a

cents and the other b cents. We say that a postage
of h cents is realisable if there are positive inte-
gral solutions x, y to the equation ax+b y = h. Write
a Maple procedure POSTAGE(a,b,h) in which you
input three positive integers a, b, h and tell whether
the postage of h cents is realisable with stamps
costing a and b cents.

197 Exercise (Circle Problem) Given a positive in-
teger n write a Maple program that counts the
number of solutions to x2 + y 2 ≤ n where x, y are
both positive integers.

198 Exercise Write a Maple procedure that gives
the Roman numeral representation of any integer
between 1 and 3999.

199 Exercise A list

X := (x1, x2, . . . , xm , xm+1, xm+2, . . . , xm+n )

is given. Write a procedure SWITCHLIST(X,m,n)
that, for given subscripts m and n, it will return

(xm+1, xm+2, . . . , xm+n , x1, x2, . . . , xm ).

200 Exercise An array X = (x1, x2, . . . , xn ) is given,
sorted such that x1 ≤ x2 ≤ ·· · ≤ xn. Count the num-
ber of different xk .

201 Exercise Two given lists X := (x1, . . . xk ) and Y :=
(y1, . . . yl ) are sorted so that x1 < ·· · < xk and y1 < ·· · yl .
Find how many elements in common they have,
that is, find the cardinality of their intersection.

202 Exercise What is the smallest positive integral
power of 7 whose first three digits (from left to
right) are 222? In general, write a Maple proce-
dure that given strictly positive integers a and x

will compute the smallest positive integral power
of x that will begin with a. For a = 222, the least
power is k = 327. The program seems to take a long
time to compute various values.

2.6 Iteration and Recursion

A recursive procedure is one where future steps are computed and rely on entirely on previously com-
puted steps. An iterative procedure is one which is obtained by repetition of a code fragment. These
definitions are imperfect, but we hope they will become clearer with some examples.

203 Example (Fibonacci Numbers) The Fibonacci Numbers are defined recursively by

f0 = 0, f1 = 1, fn+1 = fn + fn−1, n ≥ 1,

so the sequence goes

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 . . .

Write a Maple program that computes the n-th Fibonacci number.

Solution: Ï Here is an iterative solution.

> F I BON E I := pr oc(n)

i f n <= 1t hen f := n;

el se f ol d := 0; f new := 1;

f or k f r om 2 t o n

d o f := f ol d + f new ; f ol d := f new ; f new := f ;

od ; f i ;

RE T U R N ( f );

end ;

Here is a recursive solution.
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> F I BON E I I := pr oc(n)

i f n <= 1 t hen n;

el se F I BON E I I (n −2)+F I BON E I I (n −1);

f i ;

end ;

It is worth to compare the running time between the two programs. For this, use Maple’s

time() command.
> time(FIBONEI(20));
> time(FIBONEII(20));

Observe that the recursive program is much slower. In fact, if I try to compute FIBONEIi(200),
my computer takes several minutes. This is because each time FIBONEIi() is called, Maple

has to recalculate the preceding values, without remembering them. If you use the option

remember, then the programm runs much faster.

> F I BON E I I I := pr oc(n)

opt i on r emember ;

i f n <= 1 t hen n;

el se F I BON E I I I (n −2)+F I BON E I I I (n −1);

f i ;

end ;
> time(FIBONEIII(2000));
> time(FIBONEI(2000));

Î

204 Example (Horner’s Method) Write an iterative algorithm Hor ner (p, x0) to evaluate a polynomial

p := x 7→ a0 +a1x +a2x2 +·· ·+an xn

at x = x0.

Solution: Ï Observe that we may successively compute

an , an x0 +an−1, x0(x0an +an−1)+an−2, x0(x0(x0an +an−1)+an−2)+an−3, . . .

each time multiplying the preceding result by x0 and adding a constant. We enter the coeffi-

cients of the polynomial in a list p := [a0, a1, . . . , an ], and carry out the instructions just described.

Observe that n +1 = nops(p) and that ak = p[k +1]. Here is the code.

> HOR N E R := pr oc(p, x0)

t ot al := 0;

f or k f r om 1 t o nops(p)

d o t ot al := t ot al ∗x0+p[nops(p)−k +1]; od ;

end ;

Î

205 Example (Collatz Conjecture) Consider the function f : N→N,

f (n) =





n

2
if n is even,

3n +1 if n is odd.

If one considers the sequence

n, f (n), f ( f (n)), f ( f ( f (n))), . . . ,

it is not known whether this sequence will ultimately end with a 1. Write a Maple program that com-
putes this sequence until it halts with a 1 (if at all).
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Solution: Ï Here is a possible solution.

>COLL AT Z := pr oc(n) x := n;

f or k f r om 1 w hi l e x > 1 d o pr i nt (x);

i f x mod 2 = 1 t hen x := 3∗x +1; el se x := x/2; f i ;

od ;

end ;

Î

Homework

206 Exercise Write two procedures, one iterative
and the other recursive, for computing n! for an

integer n ≥ 0. Your procedure cannot involve the
operator !.

2.7 Some Classic Algorithms
We now examine some classic algorithms. Among them we will find Eratosthenes’ Sieve, Euclid’s
Algorithm and several sorting algorithms. Maple has many of these algorithms as built-in functions,
but the question arises: how is Maple able to perform these feats? How are its functions written? Our
purpose is to learn to reinvent the wheel, but without trying to go overboard and get distracted by too
many details. We omit an important topic, to prove whether our algorithms are correct. The interested
reader may consult [CLRS] or [Knu] for this topic.

207 Example (Eratosthenes’ Sieve) Let n > 0 be a composite integer. Then we may factor n as n = ab with
positive integers 1 < a ≤ b < n. Let p be the smallest prime factor dividing n. Then p2 ≤ ab = n, and so
n has a prime factor p ≤

p
n. This means that if a positive integer has no divisor less than or equal its

square root, then it is a prime.

For example, to test whether 103 is prime, we divide 103 by every positive integer between 2 and
T
p

103U= 10. Since 103 is not divisible by any integer in the interval [2; 10] we conclude that 103 is prime.

Write a Maple program that tests for primality of a positive integer.

Solution: Ï Here is a possible approach.

T I SP R I ME := pr oc(x)

k := 2; f l ag := t r ue;

i f x = 1 t hen pr i nt ("1 i s a uni t .");

f l ag := f al se;

el se w hi l e k <= f l oor (sqr t (x)) and f l ag

d o i f x mod k = 0

t hen f l ag := f al se; f i ; k := k +1; od ;

f i ;

i f ( f l ag ) t hen pr i nt (x, "i s pr i me")

el i f x > 1

t hen pr i nt (x, "i s d i v i si bl e b y", k −1);

f i ;

end ;

Maple, of course, has its own internal function isprime() to test whether an integer is prime.

> isprime(60637);

Î
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208 Definition If a and b are two strictly positive integers, then their greatest common divisor, denoted
by gcd(a, b) is the largest positive integer dividing both a and b.

For example, gcd(20, 30) = 10, gcd(44, 45) = 1 and if p 6= q are primes then gcd(p, q) = 1.

Recall that by the Division Algorithm, for all positive integers a and b > 0, then we can find unique
integers q , r called the quotient and the remainder, respectively, such that

a = qb + r, 0 ≤ r < b.

For example, if a = 1004, b = 75 then
1004 = 13 ·75+29,

whence q = 13 and r = 29.

Let a, b be positive integers. After using the Division Algorithm repeatedly, we find the sequence of
equalities

a = bq1 + r2, 0 < r2 < b,

b = r2q2 + r3 0 < r3 < r2,

r2 = r3q3 + r4 0 < r4 < r3,

...
...

...
...

rn−2 = rn−1qn−1 + rn 0 < rn < rn−1,

rn−1 = rn qn .

(2.1)

The sequence of remainders will eventually reach a rn+1 which will be zero, since b, r2, r3, . . . is a mono-
tonically decreasing sequence of integers, and cannot contain more than b positive terms.

The Euclidean Algorithm rests on the fact that gcd(a, b) = gcd(b, r2) = gcd(r2, r3) = ·· · = gcd(rn−1, rn ) = rn .

We illustrate it with a = 1004, b = 75 then

1004 = 13 ·75+29,

75 = 2 ·29+17,

29 = 1 ·17+12,

17 = 1 ·12+5,

12 = 2 ·5+2,

5 = 2 ·2+1,

2 = 2 ·1,

whence gcd(1004, 75) = 1.

209 Example (Euclidean Algorithm) Write a Maple procedure that takes two strictly positive integers
and returns their greatest common divisor using the Euclidean Algorithm. You may only use the Maple
mod function to find remainders and various multiplications or divisions to find quotients.
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Solution: Ï Here is a possible solution.

EUC LI D ALGO := pr oc(a, b)

x := a; y := b;

w hi l e (x <> 0 and y <> 0) d o i f x >= y t hen x := x mod y

el se y := y mod x f i ; od ;

i f x = 0 t hen RE T U R N (y) el se RE T U R N (x) f i ;

end ;

Maple, of course, has its own internal function gcd(a, b) to find the greatest divisor of two

numbers.

Î

210 Example (Positive Integral Powers) Write a Maple procedure that will compute an, where a is a given
real number and n is a given positive integer.

Solution: Ï : Here is an approach which essentially reduces computing an n-th power to

squaring. We successively square x getting a sequence

x → x2 → x4 → x8 →···→ x2k

,

and we stop when 2k ≤ n < 2k+1. For example, if n = 11 we compute x → x2 → x4 → x8. We now

write 11 = 8+2+1 and so x11 = x8x2x.

POW E R := pr oc(x, n)

pr od uc t := 1; c := x; k := n;

w hi l e k <> 0 d o i f k mod 2 = 0

t hen k := k/2; c := c ∗c ;

el se k := k −1; pr od uc t := pr od uc t ∗c ; f i ; od ;

RE T U R N (pr od uc t );

end ;

Î

We now investigate some sorting algorithms. Sorting algorithms are ubiquitous in applications, for
example, alphabetising a list of names, or arranging a sequence of scores monotonically.

211 Example (Bubblesort) We now sort a list L := (x1, x2, . . . , xn ) of numbers into an increasing sequence.
We proceed naively as follows: we compare two items at a time and swap them if they are misplaced.
The pass through the list is repeated until no swaps are needed, thereby sorting the list. We utilise
imbricated two for loops, the first running with index i , 1 ≤ i ≤ nops(X)−1 and the second running with
index j , 1 ≤ j ≤ nops(X)− i . For example, to sort the list [3, 4, 5, 2, 1]:

1. The outer loop has four runs: 1 ≤ i ≤ 4.

2. The list is [3, 4, 5, 2, 1]. For i = 1, we start with 3 and 4. As they are rightly sorted we do nothing.
We now compare 4 and 5. Since they are rightly sorted, we do nothing. We continue and compare
5 and 2. Since they are wrongly sorted, we swap them, obtaining the new array [3, 4, 2, 5, 1]. We
compare now 5 and 1, and we swap them since they are wrongly sorted. We obtain the array
[3, 4, 2, 1, 5]. Notice that this moves the largest element to the last position.

3. The list is now [3, 4, 2, 1, 5]. For i = 2, we again start with 3 and 4. As they are rightly sorted we do
nothing. We now compare 4 and 5. Since they are rightly sorted, we do nothing. We continue and
compare 4 and 2. Since they are wrongly sorted, we swap them, obtaining the new array [3, 2, 4, 1, 5].
We compare now 4 and 1, and we swap them since they are wrongly sorted. We obtain the array
[3, 2, 1, 4, 5]. Notice that this moves the second largest element to the ante-penultimate position.

4. The list is now [3, 2, 1, 4, 5]. For i = 3, we compare 3 and 2. As they are wrongly sorted we swap
them, obtaining [2, 3, 1, 4, 5]. We now compare 3 and 1. Since they are wrongly sorted, we swap
them, obtaining [2, 1, 3, 4, 5].
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5. For i = 4, the list is now [2, 1, 3, 4, 5]. We compare 2 and 1 and swap them, obtaining the sorted list.
[1, 2, 3, 4, 5].

The steps of the outer for loops are thus

[3, 4, 5, 2, 1] → [3, 4, 2, 1, 5] → [3, 2, 1, 4, 5] → [2, 1, 3, 4, 5] → [1, 2, 3, 4, 5].

Solution: Ï Here is a Maple implementation.

> BU B B LE := pr oc(X )

Y := X ;

f or i f r om 1 t o (nops(Y )−1)

d o f or j f r om 1 t o (nops(Y )− i )

d o i f Y [ j ] > Y [ j +1] t hen t emp := Y [ j ]; Y [ j ] := Y [ j +1]; Y [ j +1] := t emp; f i ; od ; od ;

ev al (Y );

end ;

Î

212 Example (Quicksort) Quicksort is a “divide-and-conquer” algorithm for sorting data. One chooses
any one number, x say, from the list in question and then shoves the numbers in the list which are
greater than x into one end of the list, and the numbers which are smaller than x into the other end of
the list. This partitions the array into two smaller arrays and then one proceeds to carry out the same
instructions into these two smaller arrays, etc.

Solution: Ï Here is the implementation, directly quoted from [WM]:

> par t i t i on := pr oc(m, n) i := m;

j := n; x := A[ j ]; w hi l e i < j d o

i f A[i ] > x t hen A[ j ] := A[i ]; j := j −1; A[i ] := A[ j ]; el se i := i +1 f i ; od ; A[ j ] := x;

p := j ;

end :
>QU IC K I E := pr oc(A, m, n)

i f m < n t hen par t i t i on(m, n); QU IC K I E (A, m, p −1);

QU IC K I E (A, p +1, n); f i ;

ev al (A);

end ;

Î

Homework
213 Exercise Without using Maple’s isprime(),
ifactor() functions, etc., write a procedure that

prints the factorisation of a given integer n > 0 into
primes.
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3 Orders of Infinity

3.1 Big Oh and Vinogradov’s Notation

Why bother? It is clear that the sequences {n}+∞n=1 and
{

n2
}+∞

n=1 both tend to +∞ as n →+∞.
We would like now to refine this statement and compare one with the other. In other words,
we will examine their speed towards +∞.

Throughout we only consider sequences of real numbers.

214 Definition We write an = O (bn ) if ∃C > 0, ∃N > 0 such that ∀n ≥ N we have |an | ≤ C |bn |. We then say

that an is Big Oh of bn, or that an is of order at most bn as n →+∞. Observe that this means that

∣∣∣∣
an

bn

∣∣∣∣ is
bounded for sufficiently large n. The notation an << bn, due to Vinogradov, is often used as a synonym
of an =O (bn ).

☞ A sequence {an }+∞n=1 is bounded if and only if an << 1.

An easy criterion to identify Big Oh relations is the following.

215 Theorem If lim
n→+∞

an

bn
= c ∈R, then an << bn.

Proof: Since a convergent sequence is bounded, the sequence

{
an

bn

}+∞

n=+1

is bounded: so for

sufficiently large n,

∣∣∣∣
an

bn

∣∣∣∣<C for some constant C > 0. This proves the theorem. ❑

☞ The = in the relation an = O (bn ) is not a true equal sign. For example n2 = O

(
n3

)
since lim

n→+∞
n2

n3
= 0

and so n2 << n3 by Theorem 215. On the other hand, lim
n→+∞

n3

n2
=+∞ so that for sufficiently large n, and

for all M > 0, n3 > Mn2, meaning that n3 6=O

(
n2

)
. Thus the Big Oh relation is not symmetric.1

216 Theorem (Lexicographic Order of Powers) Let (α,β) ∈ R and consider the sequences
{

nα
}+∞

n=1 and{
nβ

}+∞
n=1

. Then nα << nβ ⇐⇒ α≤β.

Proof: If α ≤ β then lim
n→+∞

nα

nβ
is either 1 (when α = β) or 0 (when α < β), hence nα << nβ by

Theorem 215.

If nα << nβ then for sufficiently large n, nα ≤ C nβ for some constant C > 0. If α > β then this

would mean that for all large n we would have nα−β ≤ C , which is absurd, since for a strictly

positive exponent α−β, nα−β →+∞ as n →+∞.❑

217 Example As n →+∞,
n1/10 << n1/3 << n << n10/9 << n2,

for example.

1One should more properly write an ∈ O (bn ), as O (bn ) is the set of sequences growing to infinity no faster than bn , but one
keeps the = sign for historical reasons.
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218 Theorem If c ∈ R \ {0} then O (c an ) = O (an ), that is, the set of sequences of order at most c an is the
same set at those of order at most an.

Proof: We prove that bn = O (c an ) ⇐⇒ bn = O (an ). If bn = O (c an ) the there are constants C > 0

and N > 0 such that |bn | ≤C |c an | whenever n ≥ N . Therefore, |bn | ≤C ′ |an | whenever n ≥ N , where

C ′ = C |c |, meaning that bn = O (an ). Similarly, if bn = O (an ) the there are constants C1 > 0 and

N1 > 0 such that |bn | ≤C1 |an | whenever n ≥ N1. Since c 6= 0 this is equivalent to |bn | ≤
C1

c
(c |an |) =

C ′′ (c |an |) whenever n ≥ N1, where C ′′ = C1

c
, meaning that bn =O (c an ). Therefore, O (an ) =O (c an ).

❑

219 Example As n →+∞,

O
(
n3

)
=O

(
n3

3

)
=O

(
4n3

)
.

220 Theorem (Sum Rule) Let an =O (xn ) and bn =O
(

yn

)
. Then an +bn =O(max(|xn | ,

∣∣yn

∣∣)).

Proof: There exist strictly positive constants C1, N1,C2, N2 such that

n ≥ N1, =⇒ |an | ≤C1 |xn | and n ≥ N2, =⇒ |bn | ≤C2

∣∣yn

∣∣ .

Let N ′ = max(N1, N2). Then for n ≥ N , by the Triangle inequality

|an +bn | ≤ |an |+ |bn | ≤C1 |xn |+C2

∣∣yn

∣∣ .

Let C ′ = max(C1,C2). Then

|an +bn | ≤C ′(|xn |+
∣∣yn

∣∣) ≤ 2C ′ max(|xn | ,
∣∣yn

∣∣),

whence the theorem follows. ❑

221 Corollary Let an = k0nm +k1nm−1 +k2nm−2 +·· ·+km−1n +kn be a polynomial of degree m in n with real
number coefficients. The an =O

(
nm

)
, that is, an is of order at most its leading term.

Proof: By the Sum Rule Theorem 220 the leading term dominates.❑

222 Theorem (Transitivity Rule) If an =O(bn ) and bn =O(cn ), then an =O (cn ).

Proof: There are strictly positive constants C1,C2, N1, N2 such that

n ≥ N1, =⇒ |an | ≤C1 |bn | and n ≥ N2, =⇒ |bn | ≤C2 |cn | .

If n ≥ max(N1, N2), then |an | ≤C1 |bn | ≤C1C2 |cn | =C |cn | , with C =C1C2. This gives an =O (cn ). ❑

223 Example By Corollary 221, 5n4 −2n2 +100n −8 =O
(
5n4

)
. By Theorem 218, O

(
5n4

)
=O

(
n4

)
. Hence

5n4 −2n2 +100n −8 =O
(
n4

)
.

224 Theorem (Multiplication Rule) If an =O(xn ) and bn =O(yn ), then an bn =O
(
xn yn

)
.

Proof: There are strictly positive constants C1,C2, N1, N2 such that

n ≥ N1, =⇒ |an | ≤C1 |xn | and n ≥ N2, =⇒ |bn | ≤C2

∣∣yn

∣∣ .

If n ≥ max(N1, N2), then |an bn | ≤C1C2

∣∣xn yn

∣∣=C
∣∣xn yn

∣∣, with C =C1C2. This gives an bn =O
(
xn yn

)
. ❑
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225 Theorem (Lexicographic Order of Exponentials) Let (a, b) ∈R, a > 1, b > 1, and consider the sequences{
an

}+∞
n=1 and

{
bn

}+∞
n=1. Then an << bn ⇐⇒ a ≤ b.

Proof: Recall that if r ∈R, then r n → 0 if |r | < 1 and if |r | > 1 then
{

r n
}+∞

n=1 diverges. Put now r = a

b
and use Theorem 215. ❑

226 Example
1

2n
<< 1 << 2n << en << 3n.

227 Lemma Let a ∈R, a > 1, k ∈N\ {0}. Then nk << an.

Proof: Using L’Hôpital’s Rule k times, lim
n→+∞

nk

an
= 0. Now apply Theorem 215. ❑

228 Theorem (“Exponentials are faster than powers”) Let a ∈R, a > 1, α ∈R. Then nα << an.

Proof: Put k = max(1,TαU+1). Then by Theorem 216, nα << nk . By Lemma 227, nk << an , and

by the Transitivity of Big Oh (Theorem 222), nα << nk << an . ❑

229 Example
n100 << en .

230 Theorem (“Logarithms are slower than powers”) Let (α,β) ∈R
2, α> 0. Then (log n)β << nα.

Proof: If β≤ 0, then (log n)β << 1 and the assertion is evident, so assume β> 0. For x > 0, then

log x < x. Putting x = nα/β, we get

log nα/β < nα/β =⇒ logn < βnα/β

α
=⇒ (log n)β < ββnα

αβ
,

whence (log n)β << nα. ❑

By the Multiplication Rule (Theorem 224) and Theorems 216, 228, 230, in order to compare two
expressions of the type an nb (log)c and un nv (log)w we simply look at the lexicographic order of the expo-
nents, keeping in mind that logarithms are slower than powers, which are slower than exponentials.

231 Example In increasing order of growth we have

1

en
<< 1

2n
<< 1

n2
= 1

log n
<< 1 << (loglog n)10 <<

√
logn << n

log n
<< n << n logn << en .

232 Example Decide which one grows faster as n →+∞: nlogn or (logn)n.

Solution: Ï Since nlogn = e(log n)2

and (logn)n = en log log n , and since (logn)2 << n loglogn, we

conclude that nlog n << (log n)n. Î

We now define two more fairly common symbols in asymptotic analysis.

233 Definition We write an = o(bn ) if
an

bn
→ 0 as n →+∞, and say that an is small oh of bn, or that an grows

slower than bn as n →+∞.

234 Definition A sequence {an }+∞n=1 is said to be infinitesimal if an = o(1), that is, if an → 0 as n →+∞.
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☞ We know from above that for a > 1 lim
n→+∞

nα

an
= 0, and so nα = o

(
an)

. Also, for γ> 0, lim
n→+∞

(log n)β

nγ
= 0,

and so (log n)β = o
(
nγ)

.

235 Definition We write an ∼ bn if
an

bn
→ 1 as n →+∞, and say that an is asymptotic to bn.

Asymptotic sequences are thus those that grow at the same rate as the index increases.

f ∼ g

f = o
(
g
)

g = o
(

f
)

f =O
(
g
)

g =O
(

f
)

Figure 3.1: Diagram of O relations.

236 Example The sequences
{

n2 −n sin n
}+∞

n=1,
{

n2 +n −1
}+∞

n=1 are asymptotic since

n2 −n sin n

n2 +n −1
=

1− sin n

n

1+ 1

n
− 1

n2

→ 1,

as n →+∞.

237 Theorem Let {an }+∞n=1 and {bn }+∞n=1 be two properly diverging sequences. Then

an ∼ bn ⇐⇒ an = bn (1+o(1)).

Proof: Since the limit is 1 > 0, either both diverge to +∞ or both to −∞. Assume the former, and

so, eventually, bn will be strictly positive. Now,

lim
n→+∞

an

bn
= 1 ⇐⇒ ∀ε> 0,∃N > 0, 1−ε< an

bn
< 1+ε

⇐⇒ bn −bnε< an < bn +bnε

⇐⇒ |an −bn | < bnε

⇐⇒ an −bn = o(bn ) .

❑

The relationship between the three symbols is displayed in figure 3.1.

Homework
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238 Exercise Prove that O (O (an )) =O (an ).

239 Exercise Let k ∈ R be a constant. Prove that
k +O (an ) =O (k +an ) =O (an ).

240 Exercise Let k ∈ R, k > 0, be a constant. Prove
that (an +bk )k << ak

n +bk
n.

241 Exercise For a sequence of real numbers
{an }+∞n=1 it is known that an = O

(
n2

)
and an = o

(
n2

)
.

Which of the two statements conveys more infor-
mation?

242 Exercise True or false: an =O (n) =⇒ an = o(n).

243 Exercise True or false: an = o(n) =⇒ an =O (n).

244 Exercise True or false: an = o
(
n2

)
=⇒ an =O (n).

245 Exercise True or false: an = o(n) =⇒ an =O
(
n2

)
.

3.2 Some Asymptotic Estimates
We are mainly interested in providing asymptotic estimates for sums. In the case when a closed formula
for the sum is known, the problem is half solved. If the terms of a sum are monotonic, then one may
apply a method akin to the integral test.

246 Example Since 1+2+·· ·+n = n2

2
+ n

2
, we have 1+2+·· ·+n ∼ n2

2
.

247 Example (Harmonic Sum) Prove that 1+ 1

2
+ 1

3
+·· ·+ 1

n
∼ log n.

Solution: Ï Using the fact that x 7→ 1

x
is decreasing for x > 0, if k > 0 is an integer, for x ∈]k ; k+1[,

1

k +1
< 1

x
< 1

k
=⇒

∫k+1

k

dx

k +1
<

∫k+1

k

dx

x
<

∫k+1

k

dx

k
=⇒ 1

k +1
<

∫k+1

k

dx

x
< 1

k
.

Letting k run from 1 to n −1 on the first inequality we deduce,

1

2
+ 1

3
+·· ·+ 1

n
<

∫n

1

dx

x
=⇒ 1+ 1

2
+ 1

3
+·· ·+ 1

n
< 1+

∫n

1

dx

x
= 1+ log n =⇒

1+ 1

2
+ 1

3
+·· ·+ 1

n

logn
< 1+ 1

logn
.

Letting k run from 1 to n −1 on the second inequality,

∫n

1

dx

x
< 1+ 1

2
+ 1

3
+·· ·+ 1

n −1
=⇒ logn + 1

n
< 1+ 1

2
+ 1

3
+·· ·+ 1

n
=⇒ 1+ 1

n logn
<

1+ 1

2
+ 1

3
+·· ·+ 1

n

logn
.

The assertion now follows by the Sandwich Theorem. Î

248 Example Using Calculus it can be proved that x 7→ x log x is increasing for x > e−1. Recall that using

an integration by parts,

∫n

1
log x dx = n logn −n +1. Use this to find an asymptotic estimate for

n∑

k=1

logk.

Solution: Ï We use the same method as in example 247. If k > 0 is an integer, for x ∈]k ; k +1[,

logk < log x < log(k+1) =⇒
∫k+1

k
log kdx <

∫k+1

k
log xdx <

∫k+1

k
log(k+1)dx =⇒ log k <

∫k+1

k
log xdx < log(k+1).

Letting k run from 1 to n −1 on the first inequality we deduce,

log1+ log 2+·· ·+ log(n −1) <
∫n

1
log x =⇒ log 1+ log 2+·· ·+ log(n −1) <

∫n

1
log xdx = n logn −n +1

=⇒ log 1+ log 2+·· ·+ log n < logn +n logn −n +1.
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Letting k run from 1 to n −1 on the second inequality,

∫n

1
log xdx < log 2+ log 3+·· ·+ log n =⇒ n logn < log 2+ log 3+·· ·+ log n

=⇒ n logn −n +1 = n logn −n +1+ log 1 < log 1+ log 2+ log 3+·· ·+ log n.

We deduce that

1− 1

logn
+ 1

n logn
< log 1+ log 2+·· ·+ log n

n logn
< 1+ 1

n
− 1

log n
+ 1

n logn
.

The Sandwich Theorem now gives
∑

1≤k≤n

logk ∼ n logn. Î

249 Example Prove that for sufficiently large n,

e
nn

en
< n! < e

nn+1

en
.

Solution: Ï From example 248,

n logn −n +1 < log n! < n logn −n + logn +1,

which gives upon exponentiation,

e
nn

en
< n! < e

nn+1

en
.

Î

☞ The true order of magnitude of n! is given by Stirling’s formula:

n! ∼ nn

en

p
2πn.

Homework

250 Exercise Let fn denote the nth Fibonacci num-
ber. Shew that fn =O

(
1.62n

)
.

251 Exercise Prove that en << n!.

252 Exercise Prove that 1+ 1
p

2
+ 1
p

3
+·· ·+ 1

p
n

∼ 2
p

n.

253 Exercise From the fact that x 7→ log x is a con-
cave function, deduce that

x ∈]k ; k +1[ =⇒ log k + log(k +1) < 2 log x.

Use this to improve the upper bound in example
248.

3.3 Analysis of Algorithms
In this section we will provide rough estimates for the time that takes out to carry out some algorithms.
The problem at hand is the following: given an input of size n (however that “size” is measured), which
we will assume grows indefinitely towards +∞, we would like to know how the memory requirements
and the running time for a computer to process it, in fact, we would like to find a certain function f

and say that the algorithms complexity is O
(

f (n)
)
.

254 Example Suppose it takes a digital camera 10−6 of a second to process a pixel. Estimate how much
time will it take it to handle a 1 megapixel (that is, one million pixels) image if the algorithm it uses is
of complexity O (n), O

(
n logn

)
, or O

(
n2

)
, where n is the number of pixels.
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Solution: Ï In the case of the linear algorithm, the camera takes about 10−6106 = 1 second.

If the algorithm is of order n logn, the camera takes about 10−6(106) log 106 ≈ 13 seconds. If the

algorithm is of complexity n2, the camera will take about 10−61012 = 106 seconds. Now, a week

is

7×24×60×60 = 604800

seconds, so it would take the camera approximately about 11 days to process such a picture!

Î

255 Definition A bit is a binary unit: either a 0 or a 1. The bit complexity of an algorithm is the number
of steps that it takes to process a given input measured in bits.

256 Example (Bit Complexity of Ordinary Addition) Two positive integers m and n are to be added. Find
the order of bit operations required to carry out their sum.

Solution: Ï Assume without loss of generality that m ≤ n. First we convert m and n into bits:

m has Tlog2 mU+1 bits and n has Tlog2 nU+1. We line up the bits and add them. There are

at most Tlog2 nU+1 sums performed and at most Tlog2 mU+1 carries. Hence, there are about

O
(
Tlog2 nU+1+Tlog2 mU+1

)
=O

(
log n

)
bit operations. Î

257 Example (Bit Complexity of Ordinary Multiplication) Two positive integers m and n are to be multi-
plied. Find the order of bit operations required to carry out their product.

Solution: Ï Assume without loss of generality that m ≤ n. Again, we first we convert m

and n into bits: m has Tlog2 mU+1 bits and n has Tlog2 nU+1. We multiply bit by bit requiring

(Tlog2 nU+1)(Tlog2 mU+1) =O
(
(logn)2

)
partial multiplications. After the partial multiplications we

need at most O
(
Tlog2 nU+1+Tlog2 mU+1

)
=O

(
log n

)
additions of at most O

(
Tlog2 nU+1

)
bits, that

is, O
(
(logn)2

)
additions. Hence, ordinary multiplication requires O

(
(logn)2 + (log n)2

)
= O

(
log2 n

)

bit operations. Î

Most algorithms that take just a for loop are easy to analyse: the number of operations they
take to perform is about the length of the loop. Thus if we have a for loop of the form

> S1; for k from 1 to n do S2; od;

then this fraction of the algorithm has computational time t1 +nt2 where t1 and t2 are, respectively,
the computational times of the statements S1 and S2.

The test in a conditional statement has usually a bit complexity of O (1), which must be added to its
branchings then or else.

258 Example Let K be a constant. Find the bit complexity of the fragment

> for k from 1 to K do O(1) od;

Solution: Ï In this case the complexity of the fragment is K O (1) = O (K ) = O (1), since K is a

constant. Î

259 Example Find the bit complexity of the fragment

> for k from 1 to n do O(1) od;

Solution: Ï In this case the complexity of the fragment is nO (1) =O (n). Î

260 Example Find the bit complexity of the imbricated loop

> for k from 1 to n do for j from 1 to n do O(1) od; od;
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Solution: Ï The inner for loop has complexity nO (1) = O (n). The outer for loop is simply

adding these complexities, and hence the fragment has complexity nO (n) =O
(
n2

)
. Alternatively,

there are
∑

1≤k≤n

∑

1≤ j≤n

O (1) = n2
O (1) =O

(
n2

)
bit operations. Î

261 Example Find the bit complexity of the imbricated loop

> for k from 1 to n do for j from 1 to i do O(1) od; od;

Solution: Ï There are
∑

1≤k≤n

∑

1≤ j≤i

O (1) =
∑

1≤k≤n

iO (1) =
n(n +1)

2
O (1) =O

(
n2

)
operations. Î

262 Example Find the bit complexity of the fragment

> c:=1; while (c<n) do O(1); c:=2*c; od;

Solution: Ï After i iterations, the value of c will be 2i . We need 2i < n =⇒ i < log2 n. Thus the

number of iterations and the complexity of the loop is O
(
log2 n

)
=O

(
logn

)
. Î

263 Example Find the bit complexity of the fragment

> c:=n; while (c>1) do O(1); c:=c/2; od;

Solution: Ï After i iterations, the value of c will be
n

2i
. We need

n

2i
> 1 =⇒ i < log2 n. Thus the

number of iterations and the complexity of the loop is O
(
log2 n

)
=O

(
logn

)
. Î

Sometimes we are simply interested in the number of operations (additions, multiplications, etc.)
necessary to carry out a task. In such cases, we over-estimate by looking at the worst case scenario.

264 Example What is the worst-case running time of the following program?

> a := pr oc(n)

x := 0;

f or i f r om 1 t o n −1 d o

f or j f r om i +1 t o n d o

f or k f r om 1 t o d o

x := x +1; od ; od ; od ;

RE T U R N (x);

end ;

Solution: Ï Each of the for loop takes about O (n) operations, hence the worst running time

is about O
(
n3

)
. Î

265 Example (Eratosthenes Sieve) Calculate the number of operations of Eratosthenes sieve of example
207.

Solution: Ï For given n > 0 Observe that we loop over
p

n potential divisors. For each divisor

k, we cross out
n

k
numbers. The number of operations carried out is

∑

1≤k≤
p

n

n

k
= n

∑

1≤k≤
p

n

1

k
∼ n log

p
n =O

(
n logn

)
,

where we have used the result of example 247. Î

Homework
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266 Exercise What is the complexity of the algo-
rithm for finding the maximum of a list of example
179?

267 Exercise What is the complexity of the algo-
rithm for finding the linear search in an unsorted
dictionary of example 177?

268 Exercise What is the complexity of the algo-

rithm for finding the nth power of x of example
210?

269 Exercise What is the worst case complexity of
the bubblesort algorithm of example 211?

270 Exercise What is the worst case complexity of
the quicksort algorithm of example 212?
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4 Answers and Hints

11 Hint: What is 500000500000+ x?

12 We compute the sum of all integers from 1 to 1000 and weed out the sum of the multiples of 3 and the sum of

the multiples of 5, but put back the multiples of 15, which we have counted twice. Put

An = 1+2+3+·· ·+n,

B = 3+6+9+·· ·+999 = 3A333,

C = 5+10+15+·· ·+1000 = 5A200,

D = 15+30+45+·· ·+990 = 15A66.

The desired sum is

A1000 −B −C +D = A1000 −3A333 −5A200 +15A66

= 500500−3 ·55611−5 ·20100+15 ·2211

= 266332.

13 We want the sum of the integers of the form 6r +2, r = 0, 1, . . . , 16. But this is

16∑

r=0

(6r +2) = 6
16∑

r=0

r +
16∑

r=0

2 = 6
16(17)

2
+2(17) = 850.

17 49500000.

18
(2n +1)(−1)n+1 +1

4
.

19
n(n +1)(−1)n+1

2
.

20 Use the same method as in theorem 1: put

S = 3+32 +·· ·+3n .

Then

3S = 32 +33 +·· ·+3n +3n+1.

Subtracting,

3S −S = (32 +33 +·· ·+3n +3n+1)− (3+32 +·· ·+3n ) = 3n+1 −3.

The answer is
3n+1 −3

2
.

21 By the binomial theorem, 0 = (1−1)n =
∑

0≤k≤n

(
n

k

)
(−1)k .

22 By the binomial theorem, 4n = (1+3)n =
∑

0≤k≤n

(
n

k

)
3k , and so

∑

1≤k≤n

(
n

k

)
3k = 4n −1.

23 We have ∑

1≤i≤n

∑

1≤k≤n

1 =
∑

1≤i≤n

n = n2.

24 We have ∑

1≤i≤n

∑

1≤k≤i

1 =
∑

1≤i≤n

i = n(n +1)

2
.
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25 We have
∑

1≤i≤n

∑

1≤k≤i

k =
∑

1≤i≤n

i (i +1)

2
= n(n +1)(n +2)

6
.

26 We have

∑

1≤i≤n

∑

1≤k≤n

i k =
(

∑

1≤i≤n

i

)(
∑

1≤k≤n

k

)
= n2(n +1)2

4
.

27

1. 263 = 9223372036854775808,

2. 264 −1 = 18446744073709551614,

3. 1.2×1015 kg, or 1200 billion tonnes

4. 3500 years

28 Put S = 1+ x + x2 +·· ·+ x80. Then

S − xS = (1+ x + x2 +·· ·+ x80)− (x + x2 + x3 +·· ·+ x80 + x81) = 1− x81,

or S(1− x) = 1− x81. Hence

1+ x + x2 +·· ·+ x80 = x81 −1

x −1
.

Therefore

x81 −1

x −1
= x81 −1

x27 −1
· x27 −1

x9 −1
· x9 −1

x3 −1
· x3 −1

x −1
.

Thus

1+ x + x2 +·· ·+ x80 = (x54 + x27 +1)(x18 + x9 +1)(x6 + x3 +1)(x2 + x +1).

30 Using the identity x2 − y 2 = (x − y)(x + y) and letting P be the sought product:

(2−1)P = (2−1) (2+1) ·
(
22 +1

)
·
(
222

+1
)
·
(
223

+1
)
· · ·

(
2299

+1
)

=
(
22 −1

)
·
(
22 +1

)
·
(
222

+1
)
·
(
223

+1
)
· · ·

(
2299

+1
)

=
(
222

−1
)
·
(
222

+1
)
·
(
223

+1
)
· · ·

(
2299

+1
)

=
(
223

−1
)
·
(
223

+1
)
·
(
224

+1
)
· · ·

(
2299

+1
)

...
...

= (2299
−1)(2299

+1)

= 22100
−1,

whence

P = 22100
−1.

31 Hints: Using loga b =
logc a

logc b
, transform into a telescoping product. 210 = 1024.
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32 Divide the interval into dyadic (powers of 2) blocks, and note that x 7→Tlog2 xU is constant there. Thus

1000∑

k=1

Tlog2 kU =
9∑

m=1

∑

2m−1<n<2m

Tlog2 nU+
1000∑

k=512

Tlog2 kU

=
9∑

m=1

∑

2m−1<n<2m

(m −1)+
1000∑

k=512

9

=
9∑

m=1

(m −1)2m−1 +489(9)

= 0 ·20 +1 ·21 ++2 ·22 +3 ·23 +4 ·24 +5 ·25 +6 ·26 +7 ·27 +8 ·28 +4401

= 0+2+8+24+64+160+384+896+2048+4401

= 7987.

33 From the hint: k ·k ! = (k +1)!−k ! and we get the telescoping sum

∑

1≤k≤n

k ·k ! =
∑

1≤k≤n

(k +1)!−k ! = (2!−1!)+ (3!−2!)+ (4!−3!)+·· ·((n +1)!−n!) = (n +1)!−1!.

34 Put f (x) = (1+ x)n =
∑

0≤k≤n

(
n

k

)
xk . Then

f ′(x) = n(1+ x)n−1 =
∑

0≤k≤n

k

(
n

k

)
xk−1 =

∑

1≤k≤n

k

(
n

k

)
xk−1,

since the term k = 0 vanishes. The result follows upon taking x = 1.

35 Put f (x) = (1+ x)n =
∑

0≤k≤n

(
n

k

)
xk . Then

f ′(x) = n(1+ x)n−1 =
∑

0≤k≤n

k

(
n

k

)
xk−1 =

∑

1≤k≤n

k

(
n

k

)
xk−1,

since the term k = 0 vanishes. Put now

g (x) = x f ′(x) = nx(1+ x)n−1 =
∑

1≤k≤n

k

(
n

k

)
xk ,

and so

g ′(x) = n(1+ x)n−1 +n(n −1)x(1+ x)n−2 =
∑

1≤k≤n

k2

(
n

k

)
xk−1,

The result follows upon taking x = 1.

37 Put

p(x) = (1− x2 + x4)109(2−6x +5x9)1996.

Observe that p(x) is a polynomial of degree 4 ·109+9 ·1996 = 18400. Thus p(x) has the form

p(x) = a0 +a1x +a2x2 +·· ·+a18400x18400.

The sum of all the coefficients of p(x) is

p(1) = a0 +a1 +a2 +·· ·+a18400,

which is also p(1) = (1−12 +14)109(2−6+5)1996 = 1. The desired sum is thus 1.

38 Put

p(x) = (1− x2 + x4)2003 = a0 +a1x +a2x2 +·· ·+a8012x8012.

Then

➊ a0 = p(0) = (1−02 +04)2003 = 1.

➋ a0 +a1 +a2 +·· ·+a8012 = p(1) = (1−12 +14)2003 = 1.
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➌

a0 −a1 +a2 −a3 +·· ·−a8011 +a8012 = p(−1)

= (1− (−1)2 + (−1)4)2003

= 1.

➍ The required sum is
p(1)+p(−1)

2
= 1.

➎ The required sum is
p(1)−p(−1)

2
= 0.

39 We have

f (2) = (−1)21−2 f (1) = 1−2 f (1)

f (3) = (−1)32−2 f (2) = −2−2 f (2)

f (4) = (−1)43−2 f (3) = 3−2 f (3)

f (5) = (−1)54−2 f (4) = −4−2 f (4)

...
...

...
...

...

f (999) = (−1)999998−2 f (998) = −998−2 f (998)

f (1000) = (−1)1000999−2 f (999) = 999−2 f (999)

f (1001) = (−1)10011000−2 f (1000) = −1000−2 f (1000)

Adding columnwise,

f (2)+ f (3)+·· ·+ f (1001) = 1−2+3−·· ·+999−1000−2( f (1)+ f (2)+·+ f (1000)).

This gives

2 f (1)+3( f (2)+ f (3)+·· ·+ f (1000))+ f (1001) =−500.

Since f (1) = f (1001) we have 2 f (1)+ f (1001) = 3 f (1). Therefore

f (1)+ f (2)+·· ·+ f (1000) =−500

3
.

40 The quantity on the sinistral side is

(
1+ 1

2
+ 1

3
+ 1

4
+·· ·+ 1

2n −1
+ 1

2n

)

−2

(
1

2
+ 1

4
+ 1

6
+·· ·+ 1

2n

)

=
(

1+ 1

2
+ 1

3
+ 1

4
+·· ·+ 1

2n −1
+ 1

2n

)

−2 · 1

2

(
1+ 1

2
+ 1

3
+ 1

4
+·· ·+ 1

n

)

=
(

1+ 1

2
+ 1

3
+ 1

4
+·· ·+ 1

2n −1
+ 1

2n

)

−
(

1+ 1

2
+ 1

3
+ 1

4
+·· ·+ 1

n

)

= 1

n +1
+ 1

n +2
+·· ·+ 1

2n
,

as we wanted to shew.
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41 If x = 123456789, then (123456789)2 − (123456787) · (123456791) = x2 − (x −2)(x +2) = 4.

42 If a = 103, b = 2 then

1002004008016032 = a5 +a4b +a3b2 +a2b3 +ab4 +b5 = a6 −b6

a −b
.

This last expression factors as

a6 −b6

a −b
= (a +b)(a2 +ab +b2)(a2 −ab +b2)

= 1002 ·1002004 ·998004

= 4 ·4 ·1002 ·250501 ·k ,

where k < 250000. Therefore p = 250501.

43 Shew first that csc2x = cot x −cot2x . Use telescoping cancellation.

44 Multiplying both sides by sin
π

7
and using sin 2x = 2 sin x cos x we obtain

sin
π

7
P = (sin

π

7
cos

π

7
) ·cos

2π

7
·cos

4π

7

= 1

2
(sin

2π

7
cos

2π

7
) ·cos

4π

7

= 1

4
(sin

4π

7
cos

4π

7
)

= 1

8
sin

8π

7
.

As sin
π

7
=−sin

8π

7
, we deduce that

P =−1

8
.

45 Let

A = 1

2
· 3

4
· 5

6
· · · 9999

10000

and

B = 2

3
· 4

5
· 6

7
· · · 10000

10001
.

Clearly, x2 −1 < x2 for all real numbers x. This implies that

x −1

x
< x

x +1

whenever these four quantities are positive. Hence

1/2 < 2/3

3/4 < 4/5

5/6 < 6/7

...
...

...

9999/10000 < 10000/10001

As all the numbers involved are positive, we multiply both columns to obtain

1

2
· 3

4
· 5

6
· · · 9999

10000
< 2

3
· 4

5
· 6

7
· · · 10000

10001
,
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or A < B . This yields A2 = A · A < A ·B . Now

A ·B = 1

2
· 2

3
· 3

4
· 4

5
· 5

6
· 6

7
· 7

8
· · · 9999

10000
· 10000

10001
= 1

10001
,

and consequently, A2 < A ·B = 1/10001. We deduce that A < 1/
p

10001 < 1/100.

49 For j = k, ak b j −a j bk = 0, so we may relax the inequality in the last sum. We have

∑

1≤k< j≤n

(ak b j −a j bk )2 =
∑

1≤k≤ j≤n

(a2
k b2

j −2ak bk a j b j +a2
j b2

k )

=
∑

1≤k≤ j≤n

a2
k b2

j −2
∑

1≤k≤ j≤n

ak bk a j b j +
∑

1≤k≤ j≤n

a2
j b2

k

=
n∑

k=1

n∑

j=1

a2
k b2

j −
(

n∑

k=1

ak bk

)2

,

proving the theorem.

50 Let the the sum of integers be S = (l +1)+ (l +2)+ (l +n). Using Gauss’ trick we obtain S = n(2l +n +1)

2
. As S = 1000,

2000 = n(2l +n+1). Now 2000 = n2 +2l n+n > n2, whence n ≤ ⌊
p

2000⌋ = 44. Moreover, n and 2l +n+1 are divisors of 2000

and are of opposite parity. Since 2000 = 2453, the odd factors of 2000 are 1, 5, 25, and 125. We then see that the

problem has the following solutions:

n = 1, l = 999,

n = 5, l = 197,

n = 16, l = 54,

n = 25, l = 27.

57 Its x coordinate is

1

2
− 1

8
+ 1

32
−·· · =

1
2

1− −1
4

= 2

5
.

Its y coordinate is

1− 1

4
+ 1

16
−·· · = 1

1− −1
4

= 4

5
.

Therefore, the fly ends up in

(
2

5
,

4

5

)
.

58 From the MacLaurin expansion for x 7→ ex ,

f (x) = xex =
∑

n≥0

xn+1

n!
.

Then

f ′(x) = xex +ex =
∑

n≥0

(n +1)xn

n!
.

Multiplying by x ,

x f ′(x) = x2ex + xex =
∑

n≥0

(n +1)xn+1

n!
.

Differentiating this last equality,

x f ′′(x)+ f ′(x) = 2xex + x2ex + xex +ex =
∑

n≥0

(n +1)2xn

n!
.

Letting x → 1, we obtain
∑

n≥0

(n +1)2

n!
= 2e +e +e +e = 5e.
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59 For |x | < 1,

1+ x + x2 + x3 +·· · = 1

1− x
.

Differentiating,

1+2x +3x2 +·· · = 1

(1− x)2
=⇒

+∞∑

n=1

nxn−1 = 1

(1− x)2
.

Letting x = 1

2
,

+∞∑

n=1

n

2n−1
= 4.

60 For |x | < 1,

1+ x + x2 + x3 +·· · = 1

1− x
.

Differentiating,

1+2x +3x2 +·· · = 1

(1− x)2
.

Multiplying by x,

x +2x2 +3x3 +·· · = x

(1− x)2
.

Differentiating again,

1+4x +9x2 +·· · = 1+ x

(1− x)3
=⇒

+∞∑

n=1

n2xn−1 = 1+ x

(1− x)3

Letting x = 1

2
,

+∞∑

n=1

n2

2n−1
= 12.

61 We divide the sum into decimal blocks. There are 9k k-digit integers in the interval [10k ; 10k+1[ that do not have

a 0 in their decimal representation. Thus

∑

n∈S

1

n
=

+∞∑

k=0

∑

n∈[10k ;10k+1[∩S

1

n
≤

+∞∑

k=0

9k
(

1

10k

)
= 10.

62 Since tan(x − y) = tan x − tan y

1+ tan x tan y
, observe that arctan

1

n2 +n +1
= arctan(n +1)−arctann. Hence the series telescopes

to lim
n→+∞

arctan(n +1)−arctan1 = π

4
.

64 Observe that
1

4n2 −1
= 1

2(2n −1)
− 1

2(2n +1)
.

Hence
+∞∑

n=1

1

4n2 −1
=

(
1

2(1)
− 1

2(3)

)
+

(
1

2(3)
− 1

2(5)

)
+

(
1

2(5)
− 1

2(7)

)
+·· · = 1

2(1)
= 1

2
.

67 By unique factorisation of the integers, the desired sum is

(
1+ 1

2
+ 1

22
+ 1

23
+·· ·

)(
1+ 1

3
+ 1

32
+ 1

33
+·· ·

)
= 1

1− 1

2

· 1

1− 1

3

= 3.

68 We have, using Abel’s Theorem

π

4
=

∫1

0

dx

1+ x2

=
∫1

0

(
1− x2 + x4 − x6 + x8 −·· ·

)
dx

= 1− 1

3
+ 1

5
− 1

7
+ 1

9
−·· · ,

as wanted. Note: this series was known to Leibniz, for which he exclaimed that Deus numero impare gaudet, “God

delights in odd numbers,” quoting Virgil.
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70 Observe that
y

1− y 2
= 1

1− y
− 1

1− y 2
.

72 By (1.2)

lim
n→+∞

n∑

k=1

1
√

n2 +k2
= lim

n→+∞
1

n

n∑

k=1

1
√

1+ k2

n2

=
∫1

0

dx
√

1+ x2
= log(x +

√
1+ x2)

∣∣∣
1

0
= log(1+

p
2).

73 We have
n∏

k=2

k3 −1

k3 +1
=

n∏

k=2

k −1

k +1

n∏

k=2

k2 +k +1

k2 −k +1
.

Now
n∏

k=2

k −1

k +1
= (n −1)!

(n+1)!
2

= 2

n(n +1)
.

By observing that (k +1)2 − (k +1)+1 = k2 +k +1, we gather that

n∏

k=2

k2 −k +1

k2 +k +1
= 32 +3+1

22 −2+1
· 42 +4+1

32 +3+1
· 52 +5+1

42 +4+1
· · · n2 +n +1

(n −1)2 + (n −1)+1
= n2 +n +1

3
.

Thus
n∏

k=2

k3 −1

k3 +1
= 2

3
· n2 +n +1

n(n +1)
→ 2

3
,

as n →+∞.

94 Observe that (1+ i )2 = 1+2i + i 2 = 2i and so (1+ i )2004 = 21002i 1002 = −21002. Also, (1− i )2 = 1−2i + i 2 = −2i and so

(1− i )2000 = 21000i 1000 = 21000. Hence

(1+ i )2004

(1− i )2000
= −21002

21000
=−4

95 Observe that n + (n +1)i + (n +2)i 2 + (n +3)i 3 = n +ni + i −n −2−ni −3i =−2−2i . Thus grouping every four terms,

1+2i +3i 2 +4i 3 +5i 4 +·· ·+2007i 2006 = (1+2i +3i 2 +4i 3)+ (5i 4 +6i 5 +7i 6 +8i 7)+·· ·+ (2001i 2000 +2002i 2001 +2003i 2002 +2004i 2003)+2005

= (−2−2i )+ (−2−2i )+·· ·+ (−2−2i )︸ ︷︷ ︸
501 terms

+2005+2006i −2007

= −1002−1002i +2005+2006i −2007

= −1004−1004i .

96 Using the binomial theorem and Euler’s formula,

32 cos6 2x =
(
e2i x +e−2i x

)6

=
(

6

0

)
e12i x +

(
6

1

)
e10i x e−2i x +

(
6

2

)
e8i x e−4i x +

(
6

3

)
e6i x e−6i x +

(
6

4

)
e4i x e−8i x +

(
6

5

)
e2i x e−10i x +

(
6

6

)
e−12i x

= e12i x +6e8i x +15e4i x +20+15e−4i x +6e−8i x +e−12i x

= (e12i x +e−12i x )+6(e8i x +e−8i x )+15(e4i x +e−4i x )+20

= 2 cos 12x +12 cos8x +30 cos4x +20,

from where we deduce the result.
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97 From

cos3x = 4 cos3 x −3 cos x , sin 3x = 3 sin x −4 sin3 x ,

we gather, upon using the double angle and the sum identities,

tan 3x = 3 sin x −4 sin3 x

4 cos3 x −3 cos x

= tan x

(
3−4 sin2 x

4 cos2 x −3

)

= tan x

(
3−4 sin2 x

1−4 sin2 x

)

= tan x

(
1+ 2

1−4 sin2 x

)

= tan x + 2 sin x

cos x −4 sin2 x cos x
.

= tan x + 2 sin x

cos x −2 sin x sin 2x

= tan x + 2 sin x

cos x −2

(
cos x

2
− cos3x

2

)

= tan x + 2 sin x

cos3x
.

Finally, upon letting x = π

9
we gather,

p
3 = tan

π

3
= tan

π

9
+

2 sin
π

9

cos
π

3

= tan
π

9
+4 sin

π

9
,

as it was to be shewn.

98 Let f (x) = (1+ x + x2)n .

1. Clearly a0 +a1 +a2 +a3 +a4 +·· · = f (1) = 3n .

2. We have

f (1) = a0 +a1 +a2 +a3 +·· ·

f (−1) = a0 −a1 +a2 −a3 +·· ·

Summing these two rows,

f (1)+ f (−1) = 2a0 +2a2 +2a4 +·· · ,

whence

a0 +a2 +a4 +·· · = 1

2
( f (1)+ f (−1)) = 1

2
(3n +1).

3. We see that

f (1)− f (−1) = 2a1 +2a3 +2a5 +·· ·
Therefore

a1 +a3 +a5 +·· · = 1

2
( f (1)− f (−1)) = 1

2
(3n −1).

4. Since we want the sum of every fourth term, we consider the fourth roots of unity, that is, the complex

numbers with x4 = 1. These are ±1,±i . Now consider the equalities

f (1) = a0 +a1 +a2 +a3 +a4 +a5 +a6 +a7 +a8 +a9 +·· ·

f (−1) = a0 −a1 +a2 −a3 +a4 −a5 +a6 −a7 +a8 −a9 +·· ·

f (i ) = a0 + i a1 −a2 − i a3 +a4 + i a5 −a6 − i a7 +a8 + i a9 +·· ·

f (−i ) = a0 − i a1 −a2 + i a3 +a4 − i a5 −a6 + i a7 +a8 − i a9 +·· ·
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Summing these four rows,

f (1)+ f (−1)+ f (i )+ f (−i ) = 4a0 +4a4 +4a8 +·· · ,

whence

a0 +a4 +a8 +·· · = 1

4
( f (1)+ f (−1)+ f (i )+ f (−i )) = 1

4
(3n +1+ i n + (−i )n ).

5. Consider the equalities

f (1) = a0 +a1 +a2 +a3 +a4 +a5 +a6 +a7 +a8 +·· ·

− f (−1) = −a0 +a1 −a2 +a3 −a4 +a5 −a6 +a7 −a8 +·· ·

−i f (i ) = −i a0 +a1 + i a2 −a3 − i a4 +a5 + i a6 −a7 − i a8 +·· ·

i f (−i ) = i a0 +a1 − i a2 −a3 + i a4 +a5 − i a6 −a7 + i a8 +·· ·

Adding

f (1)− f (−1)− i f (i )+ i f (i ) = 4a1 +4a5 +4a9 +·· · ,

whence

a1 +a5 +a9 +·· · = 1

4

(
3n −1− i n+1 − (−i )n+1

)
.

99 Since we want every third term starting with the zeroth one, we consider the cube roots of unity, that is, ω3 = 1.

These are ω=−1/2−
p

3/2,ω2 =−1/2+
p

3/2 and ω3 = 1. If ω 6= 1, then 1+ω+ω2 = 0. If ω= 1, 1+ω+ω2 = 3. Thus if k is not

a multiple of 3, 1k +ωk +ω2k = 0, and if k is a multiple of 3, then 1k +ωk +ω2k = 3. By the Binomial Theorem we then

have

(1+1)1995 + (1+ω)1995

+(1+ω2)1995 =
∑

k≤1995

(1k +ωk +ω2k )

(
1995

k

)

=
∑

k≤665

3

(
1995

3k

)
.

But (1+ω)1995 = (−ω2)1995 =−1, and (1+ω2)1995 = (−w )1995 =−1. Hence

∑

k≤665

(
1995

3k

)
= 1

3
(21995 −2).

114 Let an be this number. Clearly a1 = 2. The nth line is cut by he previous n −1 lines at n −1 points, adding n

new regions to the previously existing an−1. Hence

an = an−1 +n, a1 = 2.

We use the same method as in example 107 to solve this recurrence. write

a2 = a1 +2,

a3 = a2 +3,

a4 = a3 +4,

...
...

...

an−1 = an−2 + (n −1),

an = an−1 +n,

Add these equalities and cancel common terms on the left and right,

a2 +a3 +a4 +·· ·+an−1 +an = a1 +a2 +a3 +a4 +·· ·+an−1 + (2+3+·· ·+n) =⇒ an = a1 +
(

n(n +1)

2
−1

)
= n2 +n +2

2
,
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upon using Corollary 3. A Maple sequence for solving this recurrence is

> rsolve({a(k)=a(k-1)+k, a(1)=2}, a(n));

115 Observe that

an −an−1 =
(

1+
n−1∑

k=1

ak

)
−

(
1+

n−2∑

k=1

ak

)
= an−1.

This means that an = 2an−1 and so

an = 2an−1

an−1 = 2an−2

...
...

...

a2 = 2a1

Multiplying all these equalities,

an an−1 · · ·a2 = 2n−1an−1an−2 · · ·a1 =⇒ an = 2n−1a1 = 2n−1.

116 xn = 3n +n2.

117 xn = 2n +3n .

118 Let n = 2, 22, . . . 2k . Then

a2 = 2a1 +6(2)−1

a4 = 2a2 +6(4)−1

a8 = 2a4 +6(8)−1

...
...

...

a2k−1 = 2a2k−2 +6(2k−1)−1

a2k = 2a2k−1 +6(2k )−1

Multiplying successively each equation by 2k−1, 2k−2, . . . , 2, 1, obtaining,

2k−1a2 = 2k a1 +6(2) ·2k−1 −2k−1

2k−2a4 = 2k−1a2 +6(4) ·2k−2 −2k−2

2k−3a8 = 2k−2a4 +6(8) ·2k−3 −2k−3

...
...

...

2a2k−1 = 22a2k−2 +6(2k−1) ·2−2

a2k = 2a2k−1 +6(2k )−1

Adding and cancelling,

a2k = 2k a1 +6k ·2k − (1+2+22 +·· ·+2k−1) = 2k +6 ·k ·2k −2k +1 = 6k2k +1,

where we have used Theorem 1. Now let n ≥ 1 be an integer. If 2k = n then k = log2 n and

an = 6n(log2 n)+1.
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119 xn = 2(9n )+7n.

120 We have

x0 = 7

x1 = x0 +1

x2 = x1 +2

x3 = x2 +3

...
...

...

xn = xn−1 +n

Adding both columns,

x0 + x1 + x2 +·· ·+ xn = 7+ x0 + x2 +·· ·+ xn−1 + (1+2+3+·· ·+n).

Cancelling and using the fact that 1+2+·· ·+n = n(n +1)

2
,

xn = 7+ n(n +1)

2
.

121 Observe that

an = 2an−1 +n −1

an−1 = 2an−2 +n −2

an−2 = 2an−3 +n −3

...
...

...

a3 = 2a2 +1

a2 = 2a1 +1

Starting from the top, multiply successively by 2, 22, . . . , 2n−1, obtaining,

2an = 22an−1 +2(n −1)

22an−1 = 23an−2 +22(n −2)

23an−2 = 24an−3 +23(n −3)

...
...

...

2n−2a3 = 2n−1a2 +2n−2 ·2

2n−1a2 = 2n a1 +2n−1 ·1

Adding and cancelling,

2an = 2n a1 +
n−1∑

k=1

k2n−k = 2n +2n
n−1∑

k=1

k

2k
= 2n +2n

(
−2n

2n
− 2

2n
+2

)
= 3 ·2n −2n −2,

where we have used Corollary 2. Finally,

an = 3 ·2n−1 −n −1.
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122 Observe that am ( j +1)+1 = (am ( j ))2+2am ( j )+1 = (am ( j )+1)2. Put v j = am ( j )+1. Then v j+1 = v 2
j , and ln v j+1 = 2 ln v j ;

Put y j = ln v j . Then y j+1 = 2y j ; and hence 2n y0 = yn or 2n ln v0 = ln vn or vn = (v0)2n
= (1+ d

2m
)2n

or am (n)+1 = (1+ d

2m
)2n

.

Thus an (n) = (
d

2n
+1)2n

−1 → ed −1 as n →∞.

123 Let vn = log un . Then vn = log un = log u1/2
n−1 = 1

2
log un−1 = vn−1

2
. As vn = vn−1/2, we have vn = v0/2n , that is, log un =

(log u0)/2n . Therefore, un = 31/2n
.

124 Let xn , yn , n = 0, 1, 2, . . . denote the fraction of water in urns I and II respectively at stage n. Observe that

xn + yn = 1 and that

x0 = 1; y0 = 0

x1 = x0 −
1

2
x0 = 1

2
; y1 = y1 +

1

2
x0 = 1

2

x2 = x1 +
1

3
y1 = 2

3
; y2 = y1 −

1

3
y1 = 1

3

x3 = x2 −
1

4
x2 = 1

2
; y1 = y1 +

1

4
x2 = 1

2

x4 = x3 +
1

5
y3 = 3

5
; y1 = y1 −

1

5
y3 = 2

5

x5 = x4 −
1

6
x4 = 1

2
; y1 = y1 +

1

6
x4 = 1

2

x6 = x5 +
1

7
y5 = 4

7
; y1 = y1 −

1

7
y5 = 3

7

x7 = x6 −
1

8
x6 = 1

2
; y1 = y1 +

1

8
x6 = 1

2

x8 = x7 +
1

9
y7 = 5

9
; y1 = y1 −

1

9
y7 = 4

9

A pattern emerges (which may be proved by induction) that at each odd stage n we have xn = yn = 1

2
and that at

each even stage we have (if n = 2k) x2k = k +1

2k +1
, y2k = k

2k +1
. Since

1978

2
= 989 we have x1978 = 990

1979
.

127 Consider iterates of f (x) = N −1

N
(x −M p), where x is the initial amount of coconuts. Then x = t N N+1 −M p(N −1),

where t is the smallest positive integer that makes x positive.

128 Number the envelopes 1, 2, 3, · · · , n. We condition on the last envelope. Two events might happen. Either n and

r (1 ≤ r ≤ n −1) trade places or they do not.

In the first case, the two letters r and n are misplaced. Our task is just to misplace the other n −2 letters,

(1, 2, · · · , r −1, r +1, · · · , n −1) in the slots (1, 2, · · · , r −1, r +1, · · · , n −1). This can be done in Dn−2 ways. Since r can be

chosen in n −1 ways, the first case can happen in (n −1)Dn−2 ways.

In the second case, let us say that letter r , (1 ≤ r ≤ n −1) moves to the n-th position but n moves not to the

r -th position. Since r has been misplaced, we can just ignore it. Since n is not going to the r -th position, we may

relabel n as r . We now have n −1 numbers to misplace, and this can be done in Dn−1 ways.

As r can be chosen in n−1 ways, the total number of ways for the second case is (n−1)Dn−1. Thus Dn = (n−1)Dn−2+
(n −1)Dn−1.

141 The required sequence is

> (123456789)^2-(123456787)*(123456791);

4

142 The required command line is

> gcd(a, b)*lcm(a,b);
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143 The required sequence is

((10^4+324)∗ (22^4+324)

∗(34^4+324)∗ (46^4+324)

∗(58^4+324))/((4^4+324)

∗(16^4+324)∗ (28^4+324)

∗(40^4+324)∗ (52^4+324));

373

Using Sophie Germain’s trick,

a4 +4b4 = a4 +4a2b2 +4b4 = (a2 +2b2)2 − (2ab)2 = (a2 −2ab +2b2)(a2 +2ab +2b2),

and so with b = 34, we gather that

a4 +324 = (a(a +6)−18)(a(a −6)+18),

meaning that most factors cancel out, leaving just

58 ·64+18

−2 ·4+18
= 3730

10
= 373.

144 Put u =
√

1+
√

1+
p

x, then x = (u2 −2)2u4 and dx = (4u3(u2 −2)2 +4u5(u2 −2))du. Hence

∫
dx

√
1+

√
1+

p
x

=
∫

(4u3(u2 −2)2 +4u5(u2 −2))du

u

= 4

∫
u2(u2 −2)2du +4

∫
u4(u2 −2)du

= 4

∫
(u6 −4u4 +4u2)du +4

∫
(u6 −2u4)du

= 8

∫
u6du −24

∫
u4du +16

∫
u2du

= 8

7
u7 − 24

5
u5 + 16

3
u3 +C

= 8

7
(

√
1+

√
1+

p
x)7 − 24

5
(

√
1+

√
1+

p
x)5 + 16

3
(

√
1+

√
1+

p
x)3 +C .

The required command line is

> int(1/sqrt(1+sqrt(1+sqrt(x))),x);

1/2
p

2xhypergeom
(
[2, 1/4, 3/4], [3, 3/2],−

p
x
)

Note: Maple X expresses the answer in terms of hypergeometric functions, and hence, our solution is perhaps

better.

145 The command lines appear below.

> int(max(abs(x-1),x^2+2),x=-1..2);

9

146 Put u =
p

tan x and so u2 = tan x, 2udu = sec2 xdx = (tan2 x +1)dx = (u4 +1)dx. Hence the integral becomes
∫p

tan xdx = 2

∫
u2

u4 +1
du.

To decompose the above fraction into partial fractions observe (Sophie Germain’s trick) that u4+1 = u4+2u2+1−2u2 =
(u2 +u

p
2+1)(u2 −u

p
2+1) and hence

∫p
tan xdx = 2

∫
u2

u4 +1
du

= −
p

2

2

∫
u

u2 +u
p

2+1
du +

p
2

2

∫
u

u2 −u
p

2+1
du

= −
p

2

4
log(u2 +u

p
2+1)+

p
2

4
log(u2 −u

p
2+1)+

p
2

2
arctan(

p
2u +1)−

p
2

2
arctan(−

p
2u +1)+C

= −
p

2

4
log(tan x +

p
2 tan x +1)+

p
2

4
log(tan x −

p
2 tan x +1)

+
p

2

2
arctan(

p
2 tan x +1)−

p
2

2
arctan(−

p
2 tan x +1)+C
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The required Maple sequence is

> int(sqrt(tan(x)),x);

1/2

p
2
p

tan (x) cos(x) arccos(cos(x)−sin (x))
p

cos(x) sin(x)
−1/2

p
2 ln

(
cos(x)+

p
2
√

tan (x) cos (x)+sin(x)
)

147 The required sequence is

> (1+I)^2004/(1-I)^2000;

−4

148 The command line is

> ifactor(1002004008016032);

(2)5(3)2(7)(109)2(167)(250501)

149 The required command lines are

> factor((x + y)^5 - x^5 - y^5);

5x y(x + y)(y 2 + x y + x2)

> factor((x + y)^7 - x^7 - y^7);

7x y(x + y)(y 2 + x y + x2)2

150 Here is one possible answer

> is((a^2 + b^2)*(c^2+ d^2)= (a*c + b*d)^2 + (a*d - b*c)^2);

t r ue

151 Here is one possible answer

> sum(k*I^(k-1), k=1..2007);

−1004+1004I

152 Here is a possible way.

> simplify(sum(floor(log[2](k)),k=1..1000));

7987

153 The following Maple routine finds the exact value.

> convert(cos(Pi/5),radical);

1

4

p
5+ 1

4
Consider a regular pentagon ABC DE . Let x be the length of any one of its sides. Recall that the Golden Section

τ satisfies

τ> 0,
1

τ
= τ

1+τ
=⇒ τ= 1+

p
5

2
.

b A

b

B

bC

b

D

b

E

b

F

Figure 4.1: Problem 153.

Let F be the point of intersection of the line segment [AC ] and [B E ]. Since [AC ] ∥ [DE ] , �F C E = �C E D and thus

△F C D ≡ △DEC . Hence F C = C D = x. Observe that △F AB is isosceles and similar to △F C E . Letting t = AF and

observing that C E =C A = x + t , we have,

F A

F C
= B A

C E
=⇒ t

x
= x

t + x
=⇒ 1

x
t

=
x
t

1+ x
t

=⇒ x

t
=τ.
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Since �F C E = �C E D and �BC A = �F C E , we have �BC A = �F C E = �C E D = 1

3
· 3π

5
= π

5
. This means that �F C E = 3π

5
and hence

�AB F = �F AB = π

5
. Erecting a perpendicular from F to [AB ], we deduce from △F AB ,

cos
π

5
=

x
2

t
= x

2t
= τ

2
= 1+

p
5

4
.

159 Let A := {2, 4, 6, . . . , 100}, B := {3, 6, 9, . . . , 99}. We want the number of elements in X \ (A ∪B ). The following Maple

code calculates this. We have suppressed the outputs in order to economise space.

> X:={seq(k, k=1..100)};

> A:={seq(2*k,k=1..50)};)

> B:={seq(3*k,k=1..33)};)

> nops(X minus (A union B));

> X minus (A union B);

160 Let A := {12, 22, 32, . . . , 312} (observe T
p

1000U = 31), B := {13, 23, . . . , 103} (observe T
3p

1000U = 10), and C := {15, 25, 35}

(observe T
5p

1000U= 3). We want the number of elements in X \ (A ∪B ∪C ). The following Maple code calculates this.

We have suppressed the outputs in order to economise space.

> X:={seq(k, k=1..1000)};

> A:={seq(k^2,k=1..31)};)

> B:={seq(k^3,k=1..10)};)

> C:={seq(k^5,k=1..3)};)

> nops(X minus (A union B union C));

> X minus (A union B union C);

161 Here is a possible answer. The code will not do anything unless a list X is declared prior to it.

> sum(X[k], k=1..nops(X));

168 One may use the following code. We omit the Maple output.
> A:={1,2,3,4};
> B:={3,4,5,6};
> map(x->f(x), A minus B) union map(x->f(x), B minus A);
> map(x->f(x), (A minus B) union (B minus A)) ;

169 One may use the following code. We omit the Maple output.
> MU:=proc(X) sum(X[i], i=1..nops(X))/nops(X) end;
> VARIANCE:= proc(X) sum((X[i]-mu(X))^2, i=1..nops(X))/nops(X) end;

170 Here is one way.

> SW AP 2 := pr oc(x , y)

x1 := x + y ; y1 := x ; x1 := x1− y1;

RE T U R N (x1, y1);

end ;

171 Here is one way.

> SUMDIGITS:= proc(x) RETURN(sum(ITHDIGIT(x,i),i=1..length(x))); end;

172 Here is one way. Observe that a − (a mod 10) deletes the last digit of a replacing it with a zero, and so,

(a −a mod b)/10 deletes the last digit of a. Furthermore, the integer ITHDIGIT(b, length(n))*10^(length(b)-1)
has as many digits as b and has the same leftmost digit of b. Thus b-ITHDIGIT(b, length(b))*10^(length(b)-1)
deletes the first digit of b. We need to apply these two operations in sequence.

PE E LE R := pr oc(x)

a := x ; b := (a − (a mod 10))/10;

RE T U R N (b − I T HD IG I T (b, l eng t h(b))∗10^(l eng t h(b)−1));

end ;

181 Here is one possible answer.

> ABSVAL:= proc(x,y) if x>=0 then RETURN(x) else RETURN(-x) fi; end;

182 Here is a possible answer.

> PRIMES:= proc(N) for k from 1 to N do print(ithprime(k)) od; end;
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183 Here is one possible answer.

M AX I 3 := pr oc(x , y, z)

M AX I := pr oc(a, b) i f a >= b t hen RE T U R N (a); el se RE T U R N (b); f i end ;

i f M AX I (x , y) >= z t hen M AX I (x , y)

el se z f i ;

end ;

184 Here is one possible answer.

T W I N P R I ME S := pr oc()count := 0;

f or k f r om 1 t o 1000000

d o i f i spr i me(k) and i spr i me(k +2) t hen count := count +1;

f i ; od ;

RE T U R N (count );

end ;

185 Here is a possible Maple procedure.

> KUREPA:= proc(A) for a from 1 to A do if gcd(sum(k!, k=0..a-1), a!) <> 2 then print(’a
’=a) fi; od; end;

Take A ≤ 150.

191 Here is a possible answer.

> REV E RSE D IG I T S := pr oc(n)

b := n; new := 0;

w hi l eb <> 0 d o r := bmod 10; b := f l oor (b/10);

new := new ∗10+ r ; od ;

RE T U R N (new );

end ;

192 Here is a possible answer. The last digit of x is x mod 10. Its first digit is Tx/10length(x)−1U.

> F I RST I SL AST := pr oc(x)

i f (x mod 10) = f l oor (x/10^(l eng t h(x)−1))

t hen RE T U R N (t r ue)

el se RE T U R N ( f al se) f i ; end ;

193 Here is a possible answer.

> DIETOSS:=proc(n) die:=rand(1..6); k:=1;while(k<=n) do k:=k+1 ; print(die()); od; end;

194 Here is a possible answer.

> SU MP ALI N DROME S := pr oc(M , N )

t ot al := 0;

f or k f r om M t o N d o

i f I SP ALI N DROME (k) t hen t ot al := t ot al +k ; f i ; od ;

RE T U R N (t ot al );

end ;

195 Here is a possible answer.

>GOLDB AC H := pr oc(n)

f or k f r om 3 t o (n −3)

d o i f i spr i me(k) and i spr i me(n −k) t hen pr i nt (n, " = ", k , "+", n −k) f i ; od ;

end ;

196 Here is a possible answer.
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> POST AGE := pr oc(a, b, h)

r eal i sabl e := f al se; x :=−1;

w hi l e(x <= h/a and not (r eal i sabl e)) d o x := x +1; y :=−1;

w hi l e(y <= h/b and not (r eal i sabl e)) d o y := y +1;

i f h = a ∗ x +b ∗ y t hen r eal i sabl e := t r ue; f i ;

od ; od ;

pr i nt (h, "i s", a, "∗", x , "+", b, "∗", y);

end ;

197 Here is a possible answer.

>C I RC LE P ROB LE M := pr oc(n)

a := 0; s := 0;

w hi l e(a ∗a <= n) d o b := 0; t := 0;

w hi l e(a ∗a +b ∗b <= n) d o b := b +1; t := t +1; od ;

a := a +1; s := s + t ; od ;

RE T U R N (s);

end ;

198 Our algorithm works as follows: the maximum number of consecutive repetitions in a roman numeral is

three, and so every number in the given range can be formed with one of the strings in [M ,C M , D,C D,C , XC , L, X L, X , I X ,V , IV , I ].

> ROM AN := pr oc(n)

r omannumer al := [ ]; hi nd unumber := n;

a := [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1];

r := [M ,C M , D,C D,C , XC , L, X L, X , I X ,V , IV , I ];

f or k f r om 1 t o nops(a)

d o w hi l e hi nd unumber >= a[k]

d o hi nd unumber := hi nd unumber −a[k];

r omannumer al := [op(r omannumer al ), r [k]]; od ; od ;

RE T U R N (r omannumer al [ ]);

end ;
We can do this more efficiently with Maple’s convert command.

> convert(1966,roman);

199 We use the procedure REVERSELIST from example 190. We first revert the portions (x1, x2, . . . , xm ) to (xm , xm+1, . . . , x1)

and (xm+1, xm+2, . . . , xm+n ) to (xm+n , xm+n−1, . . . , xm+1). We concatenate them to

(xm , xm+1, . . . , x1, xm+n , xm+n−1, . . . , xm+1),

and we revert this last array to

(xm+1, xm+2, . . . , xm+n , x1, x2, . . . , xm )

which is what we wanted.

> SW I T C HLI ST := pr oc(X , m, n)

Y := X ;

L1 := REV E RSE LI ST (X [1..m]);

L2 := REV E RSE LI ST (X [m +1..m +n]);

L := REV E RSE LI ST ([op(L1), op(L2)]);

RE T U R N (L);

end ;
> SWITCHLIST([1,2,3,4,5,a,b,c,d,e,f,g,h,i,j],5,10);

[a, b, c , d , e, f , g , h, i , j , 1, 2, 3, 4, 5]

200 Here is a possible answer.

> D I F F E RE N T := pr oc(X )

i := 1; d i f := 1;

w hi l e i <> nops(X )

d o i := i +1; i f X [i ] <> X [i −1] t hen d i f := d i f +1; f i ; od ;

end ;
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201 Here is a possible solution.

LI ST COM MON E RS := pr oc(X , Y )

k1 := 0; l 1 := 0; n := 0;

w hi l e (k1 <> nops(X )) and (l 1 <> l )

d o i f X [k1+1] < Y [l 1+1]

t hen k1 := k1+1;

el i f X [k1+1] > Y [l 1+1]

t henl 1 := l 1+1;

el se k1 := k1+1; l 1 := l 1+1; n := n +1; f i ; od ;

RE T U R N (n);

end ;

202 Here is a possible solution.
> a:=proc(a,x) k:=1; while
> floor(x^k/10^(length(x^k)-length(a))) <> a do k:=k+1; od; RETURN(k);
> end;

206 Here is an iterative one.

f ac t 1 := pr oc(n) f := 1;

i f n <= 1 t hen f ;

el se f or k f r om 1 t o n d o f := k ∗ f ; od ; f i ;

RE T U R N ( f );

end ;
Here is a recursive one.

f ac t 2 := pr oc(n)

opt i on r emember ;

i f n <= 1 t hen 1

el se n ∗ f ac t 2(n −1) f i ;

end ;
By typing

> time(fact1(200)); time(fact2(200));

we see that the iterative version is somewhat faster.

213 Here is one possible way. We recall that a composite integer n must have a prime factor ≤
p

n.

Pr i meF ac t or s := pr oc(n)

k := n; t := 2;

w hi l e not k = 1

d o i f k mod t = 0 t hen k := k/t ; pr i nt (t );

el i f t ∗ t > k t hen t := k ;

el se t := t +1; f i ; od ;

end ;

241 an = o
(
n2

)
does, since this says that lim

n→+∞
an

n2
= 0, whereas an =O

(
n2

)
says that

an

n2
is bounded by some positive

constant.

242 False. Take an = 2n, for example. Then an << n,
an

n
= 2, and so

an

n
9 0.

243 True.
an

n
→ 0 and so by Theorem 215, an << n.

244 False. Take an = n3/2. Then
an

n2
→ 0 but an 6=O (n).

245 True.
an

n
→ 0 and so by Theorem 215, an << n. Since n << n2, the assertion follows by transitivity.

251 For n ≥ 3,

e ·e · · ·e︸ ︷︷ ︸
n times

≤ e ·e3 ·4 · · ·n = e2n!

2
=⇒ en =O (n!) .
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252 Use the fact that x 7→ 1
p

x
decreases for x > 0. Then

1
p

k +1
<

∫k+1

k

dx
p

x
< 1

p
k

gives
n∑

k=2

1
p

k
<

∫n

1

dx
p

x
<

n−1∑

k=1

1
p

k
,

which implies that

2
p

n −2+ 1
p

n
<

n∑

k=1

1
p

k
< 2

p
n −1,

from where the required result is easily deduced.

266 O (n), where n is the size of the list.

267 O (n), where n is the size of the dictionary.

268 O
(
log n

)
.

269 O

(
n2

)
.

270 O

(
n2

)
.
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