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GNU Free Documentation License

Version 1.2, November 2002

Copyright © 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either

commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License

is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license,

unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept the license if you copy, modify

or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters) and

contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection

with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition

of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a

Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or

(for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters.

A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any

substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF

designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the

DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as

such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name

mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards

disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced

in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept

compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry,

clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full

title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be

treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network

location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably

prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or

through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the

Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same

title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors,

if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

iii
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D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in the

Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be

placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant.

To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties–for example, statements of peer review or that the text has been approved by an organization as

the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover

Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may

not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the

original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title

of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in

the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled

“Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection,

provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding

verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation

is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves

derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document

within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but

you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers,

provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer,

the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your

rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems

or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions

either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as

a draft) by the Free Software Foundation.

Que a quien robe este libro, o lo tome prestado y no lo devuelva, se le convierta en una serpiente en las

manos y lo venza. Que sea golpeado por la parálisis y todos sus miembros arruinados. Que languidezca

de dolor gritando por piedad, y que no haya coto a su agonía hasta la última disolución. Que las polillas

roan sus entrañas y, cuando llegue al final de su castigo, que arda en las llamas del Infierno para siempre.

-Maldición anónima contra los ladrones de libros en el monasterio de San Pedro, Barcelona.
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Chapter 1

Preliminaries

Why bother? We will use the language of set theory throughout these notes. There are various elementary

results that pop up in later proofs, among them, the De Morgan Laws and the Monotonicity Reversing of Com-

plementation Rule.

The concept of a function lies at the core of mathematics. We will give a brief overview here of some basic

properties of functions.

1.1 Sets

This section contains some of the set notation to be used throughout these notes. The one-directional arrow =⇒ reads

“implies” and the two-directional arrow ⇐⇒ reads “if and only if.”

1 Definition We will accept the notion of set as a primitive notion, that is, a notion that cannot be defined in terms of more

elementary notions. By a set we will understand a well-defined collection of objects, which we will call the elements of the

set. If the element x belongs to the set S we will write x ∈ S, and in the contrary case we will write x 6∈ S.1 The cardinality of

a set is the number of elements the set has. It can either be finite or infinite. We will denote the cardinality of the set S by

card(S).

☞ Some sets are used so often that merit special notation. We will denote by

N= {0,1,2,3, . . .}

the set of natural numbers, by

Z= {. . . ,−3,−2,−1,0,1, 2, 3, . . .}2

by Q the set of rational numbers3, by R the real numbers, and by C the set of complex numbers. We will occasionally also use

αZ= {. . . ,−3α,−2α,−α,0,α, 2α, 3α, . . .}, etc.

We will also denote the empty set, that is, the set having no elements by ∅.

2 Definition The union of two sets A and B is the set

A ∪B = {x : (x ∈ A) or (x ∈ B )}.

This is read “A union B .” See figure 1.1. The intersection of two sets A and B is

A ∩B = {x : (x ∈ A) and (x ∈ B )}.

1 Georg Cantor(1845-1918), the creator of set theory, said “A set is any collection into a whole of definite, distinguishable objects, called elements, of our

intuition or thought.”
2
Z for the German word Zählen meaning “integer.”

3
Q for “quotients.”
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A B

Figure 1.1: A ∪B

A B

Figure 1.2: A ∩B

A B

Figure 1.3: A \ B

This is read “A intersection B .” See figure 1.2. The set difference of two sets A and B is

A \ B = {x : (x ∈ A) and(x 6∈ B )}.

This is read “A set minus B .” See figure 1.3.

3 Definition Two sets A and B are disjoint if A ∩B =∅.

4 Example Write A ∪B as the disjoint union of three sets.

Solution: Observe that

A ∪B = (A \ B )∪ (A ∩B )∪ (B \ A),

and that the sets on the dextral side are disjoint.

5 Definition A subset B of a set A is a subcollection of A, and we denote this by B j A. 4 This means that x ∈ B =⇒ x ∈ A.

☞∅ and A are always subsets of any set A.

Observe that

A = B ⇐⇒ (A ⊆ B ) and (B ⊆ A).

We use this observation on the next theorem.

6 THEOREM (De Morgan Laws) Let A,B ,C be sets. Then

A \ (B ∩C ) = (A \ B )∪ (A \C ), A \ (B ∪C ) = (A \ B )∩ (A \C ).

Proof: We have

x ∈ A \ (B ∪C ) ⇐⇒ x ∈ A and x 6∈ (B or C )

⇐⇒ (x ∈ A) and ((x 6∈ B ) and (x 6∈C ))

⇐⇒ (x ∈ A and x 6∈ B ) and (x ∈ A and x 6∈C )

⇐⇒ (x ∈ A \ B ) and (x ∈ A \C )

⇐⇒ x ∈ (A \ B )∩ (A \C ).

Also,

x ∈ A \ (B ∩C ) ⇐⇒ x ∈ A and x 6∈ (B and C )

⇐⇒ (x ∈ A) and ((x 6∈ B ) or (x 6∈C ))

⇐⇒ (x ∈ A and x 6∈ B ) or (x ∈ A and x 6∈C )

⇐⇒ (x ∈ A \ B ) or (x ∈ A \C )

⇐⇒ x ∈ (A \ B )∪ (A \C )

❑

4There seems not to be an agreement here by authors. Some use the notation ⊂ or ⊆ instead of j. Some see in the notation ⊂ the exclusion of equality.

In these notes, we will always use the notation j, and if we wished to exclude equality we will write á.
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7 THEOREM (Monotonicity Reversing of Complementation) Let A,B , X be sets. Then

A j B ⇐⇒ X \ B j X \ A.

Proof: We have
A j B ⇐⇒ (x ∈ A) =⇒ (x ∈ B )

⇐⇒ (x 6∈ B ) =⇒ (x 6∈ A)

⇐⇒ (x ∈ X and x 6∈ B ) =⇒ (x ∈ X and x 6∈ A)

⇐⇒ X \ B j X \ A.

❑

8 Definition Let A1, A2, . . . , An , be sets. The Cartesian Product of these n sets is defined and denoted by

A1 × A2 ×·· ·× An = {(a1, a2, . . . , an ) : ak ∈ Ak },

that is, the set of all ordered n-tuples whose elements belong to the given sets.

☞ In the particular case when all the Ak are equal to a set A, we write

A1 × A2 ×·· · × An = An .

If a ∈ A and b ∈ A we write (a,b) ∈ A2.

9 Example The Cartesian product is not necessarily commutative. For example, (
p

2,1) ∈ R×Z but (
p

2,1) 6∈ Z×R. Since

R×Z has an element that Z×R does not, R×Z 6=Z×R.

10 Example Prove that if X ×X = Y ×Y then X = Y .

Solution: Let x ∈ X . Then (x, x) ∈ X ×X , which gives (x, x) ∈ Y ×Y , so y ∈ Y . Hence X ⊆ Y .

Similarly, if y ∈ Y then (y, y) ∈ Y ×Y , which gives (y, y) ∈ X ×X , so y ∈ X . Hence Y ⊆ X .

Thus X ⊆ Y and Y ⊆ X gives X = Y .

Homework

Problem 1.1.1 For a fixed n ∈N put An = {nk : k ∈N}.

1. Find A2 ∩ A3.

2. Find
∞⋂

n=1

An .

3. Find
∞⋃

n=1
An .

Problem 1.1.2 Prove the following properties of the empty set:

A ∩∅=∅, A ∪∅= A.

Problem 1.1.3 Prove the following commutative laws:

A ∩B = B ∩ A, A ∪B = B ∪ A.

Problem 1.1.4 Prove by means of set inclusion the following dis-

tributive law:

(A ∪B )∩C = (A ∩C )∪ (B ∩C ).

Problem 1.1.5 Prove the following associative laws:

A ∩ (B ∩C ) = (A ∩B )∩C , A ∪ (B ∪C )= (A ∪B )∪C .

Problem 1.1.6 Prove that

A ∩B = A ⇐⇒ A ⊆ B .

Problem 1.1.7 Prove that

A ∪B = A ⇐⇒ B ⊆ A.

Problem 1.1.8 Prove that

A ⊆ B =⇒ A ∩C ⊆ B ∩C .

Problem 1.1.9 Prove that

A ⊆ B and C ⊆ B =⇒ A ∪C ⊆ B .
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Problem 1.1.10 Prove the following distributive laws:

A ∩ (B ∪C ) = (A ∩B )∪ (A ∩C ), A ∪ (B ∩C ) = (A ∪B )∩ (A ∪C ).

Problem 1.1.11 Is there any difference between the sets ∅, {∅} and

{{∅}}? Explain.

Problem 1.1.12 Is the Cartesian product associative? Explain.

Problem 1.1.13 Let A,B , and C be sets. Shew that

A × (B \C )= (A ×B ) \ (A ×C ).

Problem 1.1.14 Prove that a set with N ∈N elements has exactly 2N

subsets.

1.2 Numerical Functions

11 Definition By a (numerical) function f : Dom
(

f
)
→ Target

(
f
)

we mean the collection of the following ingredients:

➊ a name for the function. Usually we use the letter f .

➋ a set of real number inputs called the domain of the function. The domain of f is denoted by Dom
(

f
)
jR.

➌ an input parameter , also called independent variable or dummy variable. We usually denote a typical input by the

letter x.

➍ a set of possible real number outputs of the function, called the target set of the function. The target set of f is denoted

by Target
(

f
)
jR.

➎ an assignment rule or formula, assigning to every input a unique output. This assignment rule for f is usually de-

noted by x 7→ f (x). The output of x under f is also referred to as the image of x under f , and is denoted by f (x).

The notation5

f :
Dom

(
f
)

→ Target
(

f
)

x 7→ f (x)

read “the function f , with domain Dom
(

f
)
, target set Target

(
f
)
, and assignment rule f mapping x to f (x)” conveys all

the above ingredients.

☞Oftentimes we will only need to mention the assignment rule of a function, without mentioning its domain or target set.

In such instances we will sloppily say “the function f ” or more commonly, “the function x 7→ f (x)”, e.g., the square function

x 7→ x2.6

12 Definition The image Im
(

f
)

of a function f is its set of actual outputs. In other words,

Im
(

f
)
= { f (a) : a ∈ Dom

(
f
)
}.

Observe that we always have Im
(

f
)
⊆ Target

(
f
)
. For a set A, we also define

f (A) = { f (a) : a ∈ A}.

13 THEOREM Let f : X → Y be a function and let A j X , A′ j X . Then

1. A j A′ =⇒ f (A) j f (A′)

2. f (A ∪ A′) = f (A)∪ f (A′)

3. f (A ∩ A′)j f (A)∩ f (A′)

4. f (A) \ f (A′)j f (A \ A′)

Proof:

5Notice the difference in the arrows. The straight arrow −→ is used to mean that a certain set is associated with another set, whereas the arrow 7→ (read

“maps to”) is used to denote that an input becomes a certain output.
6This corresponds to the even sloppier American usage “the function f (x) = x2 .”

4



Chapter 1

1. x ∈ A =⇒ x ∈ A′ and hence f (x) ∈ f (A) =⇒ f (x) ∈ f (A′) =⇒ f (A) j f (A′)

2. Since A j A ∪ A′ and A′ j A ∪ A′, we have f (A) j f (A ∪ A′) and f (A′) j f (A ∪ A′), by part (1) and thus

f (A) j f (A′) j f (A∪ A′). Moreover, if y ∈ f (A∪ A′), then ∃x ∈ A∪ A′ such that y = f (x). Then either x ∈ A

and so f (x) ∈ f (A) or x ∈ A′ and so f x ∈ f (A′). Either way, f (x) ∈ f (A)∪ f (A′) and

y ∈ f (A ∪ A′) =⇒ y ∈ f (A)∪ f (A′) =⇒ f (A ∪ A′)j f (A)∪ f (A′).

Hence

f (A ∪ A′) = f (A)∪ f (A′).

3. Let y ∈ f (A ∩ A′). Then ∃x ∈ A ∩ A′ such that f (x) = y . Thus we have both x ∈ A =⇒ f (x) ∈ f (A) and

x ∈ A′ =⇒ f (x) ∈ f (A′). Therefore f (x) ∈ f (A)∩ f (A′) and we conclude that f (A ∩ A′)j f (A)∩ f (A′).

4. Let y ∈ f (A) \ f (A′). Then y ∈ f (A) and y ∉ f (A′). Thus ∃x ∈ A such that f (x) = y . Since y ∉ f (A′), then

x ∉ A′. Therefore x ∈ A \ A′ and finally, y ∈ f (A \ A′). This means that f (A) \ f (A′)j f (A \ A′) as claimed.

❑

1.2.1 Injective and Surjective Functions

14 Definition A function is injective or one-to-one whenever two different values of its domain generate two different values

in its image. A function is surjective or onto if every element of its target set is hit, that is, the target set is the same as the

image of the function. A function is bijective if it is both injective and surjective.

15 Example The function

a :
R → R

x 7→ x2

is neither injective nor surjective.

The function

b :
R →

[
0 ;+∞

[

x 7→ x2

is surjective but not injective.

The function

c :

[
0 ;+∞

[
→ R

x 7→ x2

is injective but not surjective.

The function

d :

[
0 ;+∞

[
→

[
0 ;+∞

[

x 7→ x2

is a bijection.

A bijection between two sets essentially tells us that the two sets have the same size. We will make this statement more

precise now for finite sets.

16 THEOREM Let f : A → B be a function, and let A and B be finite. If f is injective, then card(A) ≤ card(B ). If f is surjective

then card(B ) ≤ card(A). If f is bijective, then card(A) = card(B ).

Proof: Put n = card(A), A = {x1, x2, . . . , xn } and m = card(B ), B = {y1, y2, . . . , ym }.

If f were injective then f (x1), f (x2), . . . , f (xn ) are all distinct, and among the yk . Hence n ≤ m.

If f were surjective then each yk is hit, and for each, there is an xi with f (xi ) = yk . Thus there are at least m

different images, and so n ≥ m. ❑
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1.2.2 Algebra of Functions

17 Definition Let f : Dom
(

f
)
→ Target

(
f
)

and g : Dom
(
g

)
→ Target

(
g

)
. Then Dom

(
f ± g

)
= Dom

(
f
)
∩Dom

(
g

)
and the

sum (respectively, difference) function f + g (respectively, f − g ) is given by

f ± g :
Dom

(
f
)
∩Dom

(
g

)
→ Target

(
f ± g

)

x 7→ f (x)± g (x)
.

In other words, if x belongs both to the domain of f and g , then

( f ± g )(x) = f (x)± g (x).

18 Definition Let f : Dom
(

f
)
→ Target

(
f
)

and g : Dom
(
g

)
→ Target

(
g

)
. Then Dom

(
f g

)
= Dom

(
f
)
∩Dom

(
g

)
and the

product function f g is given by

f g :
Dom

(
f
)
∩Dom

(
g

)
→ Target

(
f g

)

x 7→ f (x) ·g (x)
.

In other words, if x belongs both to the domain of f and g , then

( f g )(x) = f (x) ·g (x).

19 Definition Let g : Dom
(
g

)
→ Target

(
g

)
be a function. The support of g , denoted by supp

(
g

)
is the set of elements in

Dom
(
g

)
where g does not vanish, that is

supp
(
g

)
= {x ∈ Dom

(
g

)
: g (x) 6= 0}.

20 Definition Let f : Dom
(

f
)
→ Target

(
f
)

and g : Dom
(
g

)
→ Target

(
f
)
. Then Dom

(
f

g

)
= Dom

(
f
)
∩ supp

(
g

)
and the

quotient function
f

g
is given by

f

g
:

Dom
(

f
)
∩supp

(
g

)
→ Target

(
f /g

)

x 7→ f (x)

g (x)

.

In other words, if x belongs both to the domain of f and g and g (x) 6= 0, then
f

g
(x) = f (x)

g (x)
.

21 Definition Let f : Dom
(

f
)
→ Target

(
f
)
, g : Dom

(
g

)
→ Target

(
g

)
and let U = {x ∈ Dom

(
g

)
: g (x) ∈ Dom

(
f
)
}. We define

the composition function of f and g as

f ◦g :
U → Target

(
f ◦g

)

x 7→ f (g (x))
. (1.1)

We read f ◦g as “ f composed with g .”

1.2.3 Inverse Image

22 Definition Let X and Y be subsets of R and let f : X → Y be a function. Let B jY . The inverse image of B by f is the set

f −1(B ) = {x ∈ X : f (x) ∈ B }.

If B = {b} consists of only one element, we write, abusing notation, f −1({b}) = f −1(b). It is clear that f −1(Y ) = X and

f −1(∅) =∅.

23 Example Let

f :
{−2,−1,0,1,3} → {0,1,4,5,9}

x 7→ x2 .

Then f −1({0,1}) = {0,−1,1}, f −1(1) = {−1,1}, f −1(5) =∅, f −1(4) = 2, f −1(0) = 0, etc. Notice that we have abused notation

in all but the first example.
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24 THEOREM Let f : X → Y be a function and let B jY , B ′ j Y . Then

1. B j B ′ =⇒ f −1(B )j f −1(B ′)

2. f −1(B ∪B ′) = f −1(B )∪ f −1(B ′)

3. f −1(B ∩B ′) = f −1(B )∩ f −1(B ′)

4. f −1(B ) \ f (B ′) = f −1(B \ B ′)

Proof:

1. Assume x ∈ f −1(B ). Then there is y ∈ B j B ′ such that f (x) = y . But y is also in B ′ so x ∈ f −1(B ′). Thus

f −1(B )j f −1(B ′).

2. Since B j B ∪B ′ and B ′ j B ∪B ′, we have f −1(B ) j f −1(B ∪B ′) and f −1(B ′) j f −1(B ∪B ′), by part (1).

Thus f −1(B )∪ f −1(B ′)j f −1(B∪B ′). Now, let x ∈ f −1(B∪B ′). There is y ∈ B∪B ′ such that f (x) = y . Either

y ∈ B and so y ∈ B =⇒ x ∈ f −1(B ) or y ∈ B ′ and so y ∈ B =⇒ x ∈ f −1(B ′). Either way, x ∈ f −1(B )∪ f −1(B ′).

Thus f −1(B ∪B ′)j f −1(B )∪ f −1(B ′). We conclude that f −1(B ∪B ′) = f −1(B )∪ f −1(B ′).

3. Let x ∈ f −1(B ∩B ′). Then ∃y ∈ B ∩B ′ such that f (x) = y . Thus we have both y ∈ B =⇒ x ∈ f −1(B ) and y ∈
B ′ =⇒ x ∈ f −1(B ′). Therefore x ∈ f −1(B )∩ f −1(B ′) and we conclude that f −1(B ∩B ′)j f −1(B )∩ f −1(B ′).

Now, let x ∈ f −1(B )∩ f −1(B ′). Then x ∈ f −1(B ) and x ∈ f −1(B ′). Then f (x) ∈ B and f (x) ∈ B ′. Thus

f (x) ∈ B ∩B ′ and so x ∈ f −1(B ∩B ′). Hence f −1(B )∩ f −1(B ′) j f −1(B ∩B ′) also, and we conclude that

f −1(B )∩ f −1(B ′) = f −1(B ∩B ′).

4. Let x ∈ f −1(B ) \ f −1(B ′). Then x ∈ f −1(B ) and x ∉ f −1(B ′). Thus f (x) ∈ B and f (x) ∉ B ′. Thus f (x) ∈
B \ B ′ and therefore x ∈ f −1(B \ B ′), giving f −1(B ) \ f −1(B ′) j f −1(B \ B ′). Now, let x ∈ f −1(B \ B ′). Then

f (x) ∈ B \ B ′, which means that f (x) ∈ B but f (x) ∉ B ′. Thus x ∈ f −1(B ) but x ∉ f −1(B ′), which gives

x ∈ f −1(B ) \ f −1(B ′) and so f −1(B \ B ′)j f −1(B ) \ f −1(B ′). This establishes the desired equality.

❑

25 THEOREM Let f : X → Y be a function. Let A ×B j X ×Y . Then

1. A j ( f −1 ◦ f )(A)

2. ( f ◦ f −1)(B )j B

Proof: We have

1. Let x ∈ A. Then ∃y ∈ Y such that y = f (x). Thus y ∈ f (A). Therefore x ∈ f −1( f (A)).

2. y ∈ ( f ◦ f −1)(B ). Then ∃x ∈ f −1(B ) such that f (x) = y . Thus x ∈ f −1(y). Hence f (x) ∈ B . Therefore y ∈ B .

❑

1.2.4 Inverse Function

26 Definition Let A ×B jR
2. A function F : A → B is said to be invertible if there exists a function F−1 (called the inverse of

F ) such that F ◦F−1 = Id B and F−1 ◦F = Id A . Here Id S is the identity on the set S function with rule Id S (x) = x.

The central question is now: given a function F : A → B , when is F−1 : B → A a function? The answer is given in the next

theorem.

27 THEOREM Let A×B jR2. A function f : A → B is invertible if and only if it is a bijection. That is, f −1 : B → A is a function

if and only if f is bijective.
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Proof: Assume first that f is invertible. Then there is a function f −1 : B → A such that

f ◦ f −1 = Id B and f −1 ◦ f = Id A . (1.2)

Let us prove that f is injective and surjective. Let s, t be in the domain of f and such that f (s) = f (t). Applying

f −1 to both sides of this equality we get ( f −1 ◦ f )(s) = ( f −1 ◦ f )(t). By the definition of inverse function, ( f −1 ◦
f )(s) = s and ( f −1 ◦ f )(t) = t . Thus s = t . Hence f (s) = f (t) =⇒ s = t implying that f is injective. To prove that

f is surjective we must shew that for every b ∈ f (A) ∃a ∈ A such that f (a) = b. We take a = f −1(b) (observe that

f −1(b) ∈ A). Then f (a) = f ( f −1(b)) = ( f ◦ f −1)(b) = b by definition of inverse function. This shews that f is

surjective. We conclude that if f is invertible then it is also a bijection.

Assume now that f is a bijection. For every b ∈ B there exists a unique a such that f (a) = b. This makes the rule

g : B → A given by g (b) = a a function. It is clear that g ◦ f = Id A and f ◦ g = Id B . We may thus take f −1 = g .

This concludes the proof. ❑

Homework

Problem 1.2.1 Find all functions with domain {a,b} and target set

{c,d }.

Problem 1.2.2 Let A, B be finite sets with card (A) = n and

card (B ) = m. Prove that

• The number of functions from A to B is mn .

• If n ≤ m, the number of injective functions from A to B is

m(m−1)(m−2) · · · (m−n+1). If n > m there are no injective

functions from A to B .

Problem 1.2.3 Let A and B be two finite sets with card (A) = n and

card (B ) = m. If n < m prove that there are no surjections from A to

B . If n ≥ m prove that the number of surjective functions from A to

B is

mn−
(

m

1

)
(m−1)n+

(
m

2

)
(m−2)n−

(
m

3

)
(m−3)n+·· ·+(−1)m−1

(
m

m −1

)
(1)n .

Problem 1.2.4 Let h : R→R be given by h(1−x) = 2x . Find h(3x).

Problem 1.2.5 Consider the polynomial

(1−x2 +x4)2003 = a0 +a1x +a2x2 +·· · +a8012x8012.

Find

➊ a0

➋ a0 +a1 +a2 +·· · +a8012

➌ a0 −a1 +a2 −a3 +·· · −a8011 +a8012

➍ a0 +a2 +a4 +·· · +a8010 +a8012

➎ a1 +a3 +·· · +a8009 +a8011

Problem 1.2.6 Let f : R→R, be a function such that ∀x ∈]0;+∞[,

[f (x3 +1)]
p

x = 5,

find the value of
[

f

(
27+ y 3

y 3

)]√
27
y

for y ∈]0;+∞[.

Problem 1.2.7 Let f satisfy f (n +1) = (−1)n+1n −2f (n),n ≥ 1 If

f (1) = f (1001) find

f (1)+ f (2)+ f (3)+·· · + f (1000).

Problem 1.2.8 If f (a)f (b) = f (a+b) ∀ a,b ∈R and f (x) > 0 ∀ x ∈
R, find f (0). Also, find f (−a) and f (2a) in terms of f (a).

Problem 1.2.9 Prove that f :
R \ {−1} → R \ {1}

x 7→ x −1

x +1

is a bijection

and find f −1.

Problem 1.2.10 Let f [1](x) = f (x) = x +1, f [n+1] = f ◦ f [n],n ≥ 1.

Find a closed formula for f [n]

Problem 1.2.11 Let f , g :
[

0 ;1
]
→ R be functions. Demonstrate

that there exist (a,b) ∈
[

0 ;1
]2

such that
1

4
≤

∣∣f (a)+g (b)−ab
∣∣.

Problem 1.2.12 Demonstrate that there is no function f : R \

{1/2} →R such that

x ∈R \ {1/2} =⇒ f (x)

(
f

(
x −1

2x −1

))
= x2 +x +1

Problem 1.2.13 Find all functions f : R \ {−1,0} →R such that

x ∈R \ {−1,0} =⇒ f (x)+ f

( −1

x +1

)
= 3x +2.

Problem 1.2.14 Let f [1](x) = f (x) = 2x, f [n+1] = f ◦ f [n],n ≥ 1.

Find a closed formula for f [n]

Problem 1.2.15 Find all functions g : R→ R that satisfy g (x + y )+
g (x − y )= 2x2 +2y 2.

Problem 1.2.16 Find all the functions f : R → R that satisfy

f (x y ) = y f (x).

8
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Problem 1.2.17 Find all functions f : R \ {0} →R for which

f (x)+2f

(
1

x

)
= x.

Problem 1.2.18 Find all functions f : R \ {−1} →R such that

(f (x))2 · f

(
1−x

1+x

)
= 64x.

Problem 1.2.19 Let f [1] = f be given by f (x) =
1

1−x
. Find

(i) f [2](x) = (f ◦ f )(x),

(ii) f [3](x) = (f ◦ f ◦ f )(x), and

(iii) f [69] = (f ◦ f ◦ · · · f ◦ f )︸ ︷︷ ︸
69 compositions with itself

(x).

Problem 1.2.20 Let f : A → B and g : B → C be functions. Shew

that (i) if g ◦ f is injective, then f is injective. (ii) if g ◦ f is surjective,

then g is surjective.

1.3 Countability

28 Definition A set X is countable if either it is finite or if there is a bijection f : X → N, that is, the set X has as many

elements as N.

Any countable set can be thus enumerated a sequence

x1, x2, x3, . . . .

Thus the strictly positive integers can be enumerated as customarily:

1,2,3, . . . .

Another possible enumeration7 is the following

3,5,7,9, . . . , ,2 ·3,2 ·5,2 ·7,2 ·9,. . . ,22 ·3,22 ·5,22 ·7,22 ·9,. . . , . . . 24,23,22,2,1,

that is, we start with the odd integers in increasing order, then 2 times the odd integers, 22 times the odd integers, etc., and

at the end we put the powers of 2 in decreasing order.

29 LEMMA Any subset X jN is countable.

Proof: If X is finite, then there is nothing to prove. If X is infinite, we can arrange the elements of X increasing

order, say,

x1 < x2 < x3 < ·· · .

We then map the smallest element x1 ∈ S to 1, the next smallest x2 to 2, etc. ❑

☞Hence, even though 2NáN, the sets 2N and N have the same number of elements. This can also be seen by noticing that

f : N→ 2N given by xn = 2n is a bijection.

30 LEMMA A set X is countable if and only if there is an injection f : X →N.

Proof: The assertion is evident if X is finite. Hence assume X is infinite. If f : X →N is an injection then f (X ) is

an infinite subset of N. Hence there is a bijection g : f (X ) →N by virtue of Lemma 29. Thus (g ◦ f ) : X →N is a

bijection. ❑

☞ An obvious consequence of the above lemma is that if X ′ is countable and there is an injection f : X → X ′ then X is

countable.

31 THEOREM Z is countable.

7Which is relevant in chaos theory, for Sarkovkii’s Theorem.

9
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Proof: One can take, as a bijection between the two sets, for example, f : Z→N,

f (x) =
{

2x +1 if x ≥ 0

−2x if x < 0.

❑

32 THEOREM Q is countable.

Proof: Consider f : Q→N given

f
( a

b

)
= 2|a|3b51+signum(a),

where
a

b
is in least terms, and b > 0. By the uniqueness of the prime factorisation of an integer, f is an injection.

❑

☞ The above theorem means that there as many rational numbers as natural numbers. Thus the rationals can be enumer-

ated as

q1, q2, q3 , . . . ,

33 THEOREM (Cantor’s Diagonal Argument) R is uncountable.

Proof: Assume R were countable so that its complete set of elements may be enumerated, say, as in the list

r1 = n1.d11d12d13 . . .

r2 = n2.d21d22d13 . . .

r3 = n3.d31d32d33 . . . ,

where we have used decimal notation. Define the new real r = 0.d1d2d3 . . . by di = 0 if di i 6= 0 and di = 1 if

di i = 0. This is real number (as it is a decimal), but it differs from ri in the i th decimal place. It follows that the

list is incomplete and the reals are uncountable. ❑

34 THEOREM The interval
]
−1 ;1

[
is uncountable.

Proof: Observe that the map f :
]
−1 ;1

[
→R given by f (x) = tan

πx

2
is a bijection. ❑

Homework

Problem 1.3.1 Prove that there as many numbers in [0;1] as in any

interval [a;b] with a < b.

Problem 1.3.2 Prove that there as many numbers in
]
−∞ ;+∞

[
as

in
]

0 ;+∞
[

.

1.4 Groups and Fields

Here we observe the rules of the game for the operations of addition and multiplication in R.

35 Definition Let S,T be sets. A binary operation is a function

⊗ :
S ×S → T

(a,b) 7→ ⊗(a,b)
.

We usually use the “infix” notation a ⊗b rather than the “prefix” notation ⊗(a,b). If S = T then we say that the binary

operation is internal or closed and if S 6= T then we say that it is external.

10
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36 Example Ordinary addition is a closed binary operation on the setsN, Z, Q,R. Ordinary subtraction is a binary operation

on these sets. It is not closed on N, since for example 1−2 =−1 6∈N, but it is closed in the remaining sets.

37 Example The operation ⊗ : R×R→ R given by a ⊗b = 1+a ·b, where · is the ordinary multiplication of real numbers is

commutative but not associative. To see commutativity we have

a ⊗b = 1+ab = 1+ba = b ⊗a.

Now,

1⊗ (1⊗2) = 1⊗ (1+1 ·2) = 1⊗ (3) = 1+1 ·3 = 4, but (1⊗1)⊗2 = (1+1 ·1)⊗2 = 2⊗2 = 1+2 ·2 = 5,

so the operation is not associative.

38 Definition Let G be a non-empty set and ⊗ be a binary operation on G ×G. Then 〈G,⊗〉 is called a group if the following

axioms hold:

G1: ⊗ is closed, that is,

∀(a,b) ∈G2, a ⊗b ∈G,

G2: ⊗ is associative, that is,

∀(a,b,c) ∈G3, a ⊗ (b ⊗c) = (a ⊗b)⊗c ,

G3: G has an identity element, that is

∃e ∈G such that ∀a ∈G, e ⊗a = a ⊗e = a,

G4: Every element of G is invertible, that is

∀a ∈G, ∃a−1 ∈G such that a ⊗a−1 = a−1 ⊗a = e.

☞ From now on, we drop the sign ⊗ and rather use juxtaposition for the underlying binary operation in a given group.

Thus we will say a “group G” rather than the more precise “a group 〈G ,⊗〉.”

39 Definition A group G is abelian if its binary operation is commutative, that is, ∀(a,b) ∈G2, a ⊗b = b ⊗a.

40 Example 〈Z,+〉, 〈Q,+〉, 〈R,+〉, 〈C,+〉 are all abelian groups under addition. The identity element is 0 and the inverse of

a is −a.

41 Example 〈Q \ {0}, ·〉, 〈R \ {0}, ·〉, 〈C \ {0}, ·〉 are all abelian groups under multiplication. The identity element is 1 and the

inverse of a is
1

a
.

42 Example 〈Z\ {0}, ·〉 is not a group. For example the element 2 does not have a multiplicative inverse.

43 Example Let V4 = {e, a,b,c} and define ⊗ by the table below.

⊗ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

It is an easy exercise to check that V4 is an abelian group, called the Klein Viergruppe.

44 THEOREM Let G be a group. Then

11
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1. There is only one identity element, the identity element is unique.

2. The inverse of each element is unique.

3. ∀(a,b) ∈G2 we have

(ab)−1 = b−1a−1.

Proof:

1. Let e and e ′ be identity elements. Since e is an identity, e = ee ′. Since e ′ is an identity, e ′ = ee ′. This gives

e = ee ′ = e ′.

2. Let b and b′ be inverses of a. Then e = ab and b′a = e. This gives

b = eb = (b′a)b = b′(ab) = b′e = b′.

3. We have

(ab)(b−1a−1) = a(bb−1)a−1 = a(e)a−1 = aa−1 = e.

Thus b−1a−1 works as a right inverse for ab. A similar calculation shews also that it works as a left inverse.

Since inverses are unique, we must have

(ab)−1 = b−1a−1.

This completes the proof. ❑

45 Definition Let n ∈Z and let G be a group. If a ∈G, we define

a0 = e,

a |n| = a ·a · · ·a︸ ︷︷ ︸
|n| a ′s

,

and

a−|n| = a−1 ·a−1 · · ·a−1
︸ ︷︷ ︸

|n| a−1 ′s

.

☞ If (m,n) ∈Z2, then by associativity

(an )(am ) = (am )(an ) = am+n .

46 Definition Let F be a set having at least two elements 0F and 1F (0F 6= 1F ) together with two binary operations · (field

multiplication) and + (field addition). A field 〈F, ·,+〉 is a triplet such that 〈F,+〉 is an abelian group with identity 0F ,

〈F \ {0F }, ·〉 is an abelian group with identity 1F and the operations · and + satisfy

a · (b +c) = (a ·b)+ (a ·c),

that is, field multiplication distributes over field addition.

☞We will continue our practice of denoting multiplication by juxtaposition, hence the · sign will be dropped.

47 Example 〈Q, ·,+〉, 〈R, ·,+〉, and 〈C, ·,+〉 are all fields. The multiplicative identity in each case is 1 and the additive identity

is 0.

Homework

12



Chapter 1

Problem 1.4.1 Is the set of real irrational numbers closed under ad-

dition? Under multiplication?

Problem 1.4.2 Let

S = {x ∈Z : ∃(a,b) ∈Z2, x = a3 +b3 +c3 −3abc}.

Prove that S is closed under multiplication, that is, if x ∈ S and y ∈ S

then x y ∈ S.

Problem 1.4.3 (Putnam, 1971) Let S be a set and let ◦ be a binary

operation on S satisfying the two laws

(∀x ∈ S)(x ◦x = x),

and

(∀(x, y, z) ∈ S3)((x ◦ y )◦ z = (y ◦ z)◦x).

Shew that ◦ is commutative.

Problem 1.4.4 (Putnam, 1972) Let S be a set and let ∗ be a binary

operation of S satisfying the laws ∀(x, y ) ∈S
2

x ∗ (x ∗ y )= y, (1.3)

(y ∗x)∗x = y. (1.4)

Shew that ∗ is commutative, but not necessarily associative.

Problem 1.4.5 On Q∩]−1;1[ define the binary operation ⊗ by

a ⊗b =
a +b

1+ab
,

where juxtaposition means ordinary multiplication and + is the or-

dinary addition of real numbers. Prove that 〈Q∩]−1;1[,⊗〉 is an

abelian group by following these steps.

1. Prove that ⊗ is a closed binary operation on Q∩]−1;1[.

2. Prove that ⊗ is both commutative and associative.

3. Find an element e ∈Q∩]−1;1[ such that (∀a ∈Q∩]−1;1[) (e⊗
a = a).

4. Given e as above and an arbitrary element a ∈ Q∩] − 1;1[,

solve the equation a ⊗b = e for b.

Problem 1.4.6 Let G be a group satisfying (∀a ∈G)

a2 = e.

Prove that G is an abelian group.

Problem 1.4.7 Let G be a group where (∀(a,b) ∈G2)

((ab)3 = a3b3) and ((ab)5 = a5b5).

Shew that G is abelian.

Problem 1.4.8 Suppose that in a group G there exists a pair (a,b) ∈
G2 satisfying

(ab)k = ak bk

for three consecutive integers k = i ,i +1,i +2. Prove that ab = ba.

1.5 Addition and Multiplication in R

Since R is a field, it satisfies the following list of axioms, which we list for future reference.

48 Axiom (Arithmetical Axioms of R) 〈R, ·,+〉—that is, the set of real numbers endowed with multiplication · and addition

+—is a field. This entails that + and · verify the following properties.

R1: + and · are closed binary operations, that is,

∀(a,b) ∈R2, a +b ∈R, a ·b ∈R,

R2: + and · are associative binary operations, that is,

∀(a,b,c) ∈R
3, a + (b +c) = (a +b)+c , a · (b ·c) = (a ·b) ·c

R3: + and · are commutative binary operations, that is,

∀(a,b) ∈R2, a +b = b +a, a ·b = b ·a,

R4: R has an additive identity element 0, and a multiplicative identity element 1, with 0 6= 1, such that

∀a ∈R, 0+a = a +0 = a, 1 ·a = a ·1 = a,

R5: Every element of R has an additive inverse, and every element of R\ {0} has a multiplicative inverse, that is,

∀a ∈R, ∃(−a) ∈R such that a + (−a)= (−a)+a = 0,

∀b ∈R\ {0}, ∃b−1 ∈R\ {0} such that b ·b−1 = b−1 ·b = 1,

13
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R6: + and · satisfy the following distributive law:

∀(a,b,c , ) ∈R3, a · (b +c) = a ·b +a ·c .

Since + and · are associative in R, we may write a sum a1+a2+·· ·+an or a product a1a2 · · ·an of real numbers without

risking ambiguity. We often use the following shortcut notation.

49 Definition For real numbers ai we define

a1 +a2 +·· ·+an =
n∑

k=1

ak and a1a2 · · ·an =
n∏

k=1

ak .

☞ By convention
∑

k∈∅
ak = 0 and

∏

k∈∅
ak = 1 .

50 THEOREM (Lagrange’s Identity) Let ak ,bk be real numbers. Then

(
n∑

k=1

ak bk

)2

=
(

n∑
k=1

a2
k

)(
n∑

k=1

b2
k

)
−

∑
1≤k< j≤n

(ak b j −a j bk )2.

Proof: For j = k , ak b j −a j bk = 0, so we may relax the inequality in the last sum. We have

∑
1≤k< j≤n

(ak b j −a j bk )2 =
∑

1≤k≤ j≤n

(a2
k b2

j −2ak bk a j b j +a2
j b2

k )

=
∑

1≤k≤ j≤n

a2
k b2

j −2
∑

1≤k≤ j≤n

ak bk a j b j +
∑

1≤k≤ j≤n

a2
j b2

k

=
n∑

k=1

n∑
j=1

a2
k b2

j −
(

n∑
k=1

ak bk

)2

,

proving the theorem. ❑

Recall that the factorial symbol ! is defined by

0! = 1; k ! = k(k −1)! if k ≥ 1.

51 Definition (Binomial Coefficients) Let n ∈N We define

(
n

0

)
= 1=

(
n

n

)
and for 1 ≤ k ≤ n,

(
n

k

)
= n!

k !(n −k)!
.

If k > n we take

(
n

k

)
= 0.

52 LEMMA (Pascal’s Identity) For n ≥ 1 and 1 ≤ k ≤ n,

(
n

k

)
=

(
n −1

k

)
+

(
n −1

k −1

)
.

14
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Proof: We have (
n −1

k

)
+

(
n −1

k −1

)
= (n −1)!

k !(n −1−k)!
+ (n −1)!

(k −1)!(n −k)!

= (n −1)!

(k −1)!(n −1−k)

(
1

k
+ 1

n −k

)

= (n −1)!

(k −1)!(n −1−k)

(
n

k(n −k)

)

=
n!

k !(n −k)!
=

(
n

k

)
.

❑

Using Pascal’s Identity we obtain Pascal’s Triangle.

(
0

0

)

(
1

0

) (
1

1

)

(
2

0

) (
2

1

) (
2

2

)

(
3

0

) (
3

1

) (
3

2

) (
3

3

)

(
4

0

) (
4

1

) (
4

2

) (
4

3

) (
4

4

)

(
5

0

) (
5

1

) (
5

2

) (
5

3

) (
5

4

) (
5

5

)

...
...

...
...

...
...

When the numerical values are substituted, the triangle then looks like this.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
...

...
...

...
...

...

We see from Pascal’s Triangle that binomial coefficients are symmetric. This symmetry is easily justified by the identity(
n

k

)
=

(
n

n −k

)
. We also notice that the binomial coefficients tend to increase until they reach the middle, and that then they

decrease symmetrically.

53 THEOREM (Binomial Theorem) For n ∈N,

(x + y)n =
n∑

k=0

(
n

k

)
xk yn−k .

Proof: The theorem is obvious for n = 0 (defining (x + y)0 = 1), n = 1 (as (x + y)1 = x + y), and n = 2 (as

(x + y)2 = x2 +2x y + y2). Assume n ≥ 3. The induction hypothesis is that (x + y)n =
n∑

k=0

(
n

k

)
xk yn−k . Then we
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have
(x + y)n+1 = (x + y)(x + y)n

= (x + y)

(
n∑

k=0

(
n

k

)
xk yn−k

)

=
n∑

k=0

(
n

k

)
xk+1 yn−k +

n∑
k=0

(
n

k

)
xk yn−k+1

= xn+1 +
n−1∑
k=0

(
n

k

)
xk+1 yn−k +

n∑
k=1

(
n

k

)
xk yn−k+1 + yn+1

= xn+1 +
n∑

k=1

(
n

k −1

)
xk yn−k+1 +

n∑
k=1

(
n

k

)
xk yn−k+1 + yn+1

= xn+1 +
n∑

k=1

((
n

k −1

)
+

(
n

k

))
xk yn−k+1 + yn+1

= xn+1 +
n∑

k=1

(
n +1

k

)
xk yn−k+1 + yn+1

=
n+1∑
k=0

(
n +1

k

)
xk yn−k+1,

proving the theorem. ❑

54 LEMMA If a ∈R, a 6= 1 and n ∈N\ {0}, then

1+a +a2 +·· ·an−1 = 1−an

1−a
.

Proof: For, put S = 1+a +a2 +·· ·+an−1. Then aS = a +a2 +·· ·+an−1 +an . Thus

S −aS = (1+a +a2 +·· ·+an−1)− (a +a2 +·· ·+an−1 +an ) = 1−an ,

and from (1−a)S = S −aS = 1−an we obtain the result. ❑

55 THEOREM Let n be a strictly positive integer. Then

yn − xn = (y − x)(yn−1 + yn−2x +·· ·+ y xn−2 + xn−1).

Proof: By making the substitution a =
x

y
in Lemma 54 we see that

1+ x

y
+

(
x

y

)2

+·· ·+
(

x

y

)n−1

=
1−

(
x
y

)n

1− x
y

we obtain (
1−

x

y

)(
1+

x

y
+

(
x

y

)2

+·· ·+
(

x

y

)n−1)
= 1−

(
x

y

)n

,

or equivalently, (
1− x

y

)(
1+ x

y
+ x2

y2
+·· ·+ xn−1

yn−1

)
= 1− xn

yn
.

Multiplying by yn both sides,

y

(
1− x

y

)
yn−1

(
1+ x

y
+ x2

y2
+·· ·+ xn−1

yn−1

)
= yn

(
1− xn

yn

)
,

which is

yn − xn = (y − x)(yn−1 + yn−2x +·· ·+ y xn−2 + xn−1),

yielding the result. ❑
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56 THEOREM 1+2+·· ·+n = n(n +1)

2
.

First Proof: Observe that

k2 − (k −1)2 = 2k −1.

From this

12 −02 = 2 ·1−1

22 −12 = 2 ·2−1

32 −22 = 2 ·3−1

...
...

...

n2 − (n −1)2 = 2 ·n −1

Adding both columns,

n2 −02 = 2(1+2+3+·· ·+n)−n.

Solving for the sum,

1+2+3+·· ·+n = n2/2+n/2= n(n +1)

2
.

❑

Second Proof: We may utilise Gauss’ trick: If

An = 1+2+3+·· ·+n

then

An = n + (n −1)+·· ·+1.

Adding these two quantities,

An = 1 + 2 + ·· · + n

An = n + (n −1) + ·· · + 1

2An = (n +1) + (n +1) + ·· · + (n +1)

= n(n +1),

since there are n summands. This gives An = n(n +1)

2
, that is,

1+2+·· ·+n = n(n +1)

2
.

Applying Gauss’s trick to the general arithmetic sum

(a)+ (a +d )+ (a +2d )+·· ·+ (a + (n −1)d )

we obtain

(a)+ (a +d )+ (a +2d )+·· ·+ (a + (n −1)d )= n(2a + (n −1)d )

2
(1.5)

❑

57 THEOREM 12 +22 +32 +·· ·+n2 =
n(n +1)(2n +1)

6
.

Proof: Observe that

k3 − (k −1)3 = 3k2 −3k +1.
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Hence

13 −03 = 3 ·12 −3 ·1+1

23 −13 = 3 ·22 −3 ·2+1

33 −23 = 3 ·32 −3 ·3+1

...
...

...

n3 − (n −1)3 = 3 ·n2 −3 ·n +1

Adding both columns,

n3 −03 = 3(12 +22 +32 +·· ·+n2)−3(1+2+3+·· ·+n)+n.

From the preceding example 1+2+3+·· ·+n = ·n2/2+n/2 = n(n +1)

2
so

n3 −03 = 3(12 +22 +32 +·· ·+n2)− 3

2
·n(n +1)+n.

Solving for the sum,

12 +22 +32 +·· ·+n2 = n3

3
+ 1

2
·n(n +1)− n

3
.

After simplifying we obtain

12 +22 +32 +·· ·+n2 =
n(n +1)(2n +1)

6
.

❑

Homework

Problem 1.5.1 Prove that for n ≥ 1,

2n =
n∑

k=0

(
n

k

)
; 0 =

n∑

k=0

(−1)k

(
n

k

)
, 2n−1 =

∑

0≤k≤n
k even

(
n

k

)
=

∑

1≤k≤n
k odd

(
n

k

)
.

Problem 1.5.2 Given that 1002004008016032 has a prime factor

p > 250000, find it.

Problem 1.5.3 Prove that (a +b +c)2 = a2 +b2 +c2 +2ab +2bc +
2ca.

Problem 1.5.4 Let a,b,c be real numbers. Prove that

a3 +b3 +c3 −3abc = (a +b +c)(a2 +b2 +c2 −ab −bc −ca).

Problem 1.5.5 Prove that
(

n

k

)
=

n

k

(
n −1

k −1

)
.

Problem 1.5.6 Prove that
(

n

k

)
=

n

k
·

n −1

k −1
·
(

n −2

k −2

)
.

Problem 1.5.7 Prove that

n∑

k=1

k

(
n

k

)
pk (1−p)n−k = np.

Problem 1.5.8 Prove that

n∑

k=2

k(k −1)

(
n

k

)
pk (1−p)n−k = n(n −1)p2.

Problem 1.5.9 Demonstrate that

n∑

k=0

(k −np)2

(
n

k

)
pk (1−p)n−k = np(1−p).

Problem 1.5.10 Let x ∈R \ {1} and let n ∈N\ {0}. Prove that

n∑

k=0

2k

x2k +1
=

1

x −1
−

2n+1

x2n+1 +1
.

Problem 1.5.11 Consider the nk k-tuples (a1, a2, . . . , ak ) which

can be formed by taking ai ∈ {1,2,. . . ,n}, repetitions allowed.

Demonstrate that

∑

ai ∈{1,2,...,n}

min(a1, a2, . . . , ak ) = 1k +2k +·· · +nk .

18



Chapter 1

1.6 Order Axioms

☞
Vocabulary Alert! We will call a number x positive if x ≥ 0 and strictly positive if x > 0. Similarly, we will call

a number y negative if y ≤ 0 and strictly negative if y < 0. This usage differs from most Anglo-American books,

who prefer such terms as non-negative and non-positive.

We assume R endowed with a relation > which satisfies the following axioms.

58 Axiom (Trichotomy Law) ∀(x, y) ∈R
2 exactly one of the following holds:

x > y, x = y, or y > x.

59 Axiom (Transitivity of Order) ∀(x, y, z) ∈R3,

if x > y and y > z then x > z .

60 Axiom (Preservation of Inequalities by Addition) ∀(x, y, z) ∈R3,

if x > y then x + z > y + z .

61 Axiom (Preservation of Inequalities by Positive Factors) ∀(x, y, z) ∈R3,

if x > y and z > 0 then xz > y z .

☞ x < y means that y > x . x ≤ y means that either y > x or y = x , etc.

62 THEOREM The square of any real number is positive, that is, ∀a ∈R, a2 ≥ 0. In fact, if a 6= 0 then a2 > 0.

Proof: If a = 0, then 02 = 0 and there is nothing to prove. Assume now that a 6= 0. By trichotomy, either a > 0 or

a < 0. Assume first that a > 0. Applying Axiom 61 with x = z = a and y = 0 we have

aa > a0 =⇒ a2 > 0,

so the theorem is proved if a > 0.

If a < 0 then −a > 0 and we apply the result just obtained:

−a > 0 =⇒ (−a)2 > 0 =⇒ 1 ·a2 > 0 =⇒ a2 > 0,

so the result is true regardless the sign of a. ❑

Theorem 62 will prove to be extremely powerful and will be the basis for many of the classical inequalities that follow.

63 THEOREM If (x, y) ∈R2,

x > y ⇐⇒ x − y > 0.

Proof: This is a direct consequence of Axiom 60 upon taking z =−y . ❑

64 THEOREM If (x, y, a,b) ∈R4,

x > y and a ≥ b =⇒ x +a > y +b.

Proof: We have

x > y =⇒ x +a > y +a, y +a ≥ y +b,

by Axiom 60 and so by Axiom 59 x +a > y +b. ❑
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65 THEOREM If (x, y, a,b) ∈R
4,

x > y > 0 and a ≥ b > 0 =⇒ xa > yb.

Proof: Indeed

x > y =⇒ xa > y a, y a ≥ yb,

by Axiom 61 and so by Axiom 59 xa > yb. ❑

66 THEOREM 1 > 0.

Proof: By definition of R being a field 0 6= 1. Assume that 1 < 0 then 12 > 0 by Theorem 62. But 12 = 1 and so

1 > 0, a contradiction to our original assumption. ❑

67 THEOREM x > 0 =⇒ −x < 0 and x−1 > 0.

Proof: Indeed, −1 < 0 since −1 6= 0 and assuming −1 > 0 would give 0 =−1+1 > 1, which contradicts Theorem

66. Thus

−x =−1 ·x < 0.

Similarly, assuming x−1 < 0 would give 1 = x−1x < 0. ❑

68 THEOREM x > 1 =⇒ x−1 < 1.

Proof: Since x−1 6= 1, assuming x−1 > 1 would give 1 = xx−1 > 1 ·1 = 1, a contradiction. ❑

1.6.1 Absolute Value

69 Definition (The Signum (Sign) Function) Let x be a real number. We define signum(x) =





−1 if x < 0,

0 if x = 0,

+1 if x > 0.

70 LEMMA The signum function is multiplicative, that is, if (x, y) ∈R2 then signum
(
x · y

)
= signum(x) signum

(
y
)
.

Proof: Immediate from the definition of signum. ❑

71 Definition (Absolute Value) Let x ∈R. The absolute value of x is defined and denoted by

|x| = signum (x) x.

72 THEOREM Let x ∈R. Then

1. |x| =
{

−x if x < 0,

x if x ≥ 0.

2. |x| ≥ 0,

3. |x| = max(x,−x),

4. |−x| = |x|,

5. −|x| ≤ x ≤ |x|.

6.
√

x2 = |x|

7. |x|2 = |x2| = x2

8. x = signum (x) |x|
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Proof: These are immediate from the definition of |x|. ❑

73 THEOREM (∀(x, y) ∈R2), ∣∣x y
∣∣= |x|

∣∣y
∣∣ .

Proof: We have ∣∣x y
∣∣ = signum

(
x y

)
x y =

(
signum(x) x

)(
signum

(
y
)

y
)
= |x|

∣∣y
∣∣ ,

where we have used Lemma 70. ❑

74 THEOREM Let t ≥ 0. Then

|x| ≤ t ⇐⇒ −t ≤ x ≤ t .

Proof: Either |x| = x or |x| = −x. If |x| = x,

|x| ≤ t ⇐⇒ x ≤ t ⇐⇒ −t ≤ 0 ≤ x ≤ t .

If |x| = −x,

|x| ≤ t ⇐⇒ −x ≤ t ⇐⇒ −t ≤ x ≤ 0 ≤ t .

❑

75 THEOREM If (x, y) ∈R2, max(x, y) =
x + y +

∣∣x − y
∣∣

2
and min(x, y) =

x + y −
∣∣x − y

∣∣
2

.

Proof: Observe that max(x, y)+min(x, y) = x + y , since one of these quantities must be the maximum and the

other the minimum, or else, they are both equal.

Now, either
∣∣x − y

∣∣= x−y , and so x ≥ y , meaning that max(x, y)−min(x, y) = x−y , or
∣∣x − y

∣∣=−(x−y) = y−x,

which means that y ≥ x and so max(x, y)−min(x, y) = y−x. In either case we get max(x, y)−min(x, y) =
∣∣x − y

∣∣.
Solving now the system of equations

max(x, y)+min(x, y) = x + y

max(x, y)−min(x, y) =
∣∣x − y

∣∣ ,

for max(x, y) and min(x, y) gives the result. ❑

Homework

Problem 1.6.1 Let x, y be real numbers. Then

0 ≤ x < y ⇐⇒ x2 < y 2.

Problem 1.6.2 Let t ≥ 0. Prove that

|x| ≥ t ⇐⇒ (x ≥ t ) or (x ≤−t ).

Problem 1.6.3 Let (x, y ) ∈ R2. Prove that max(x, y ) =
−min(−x,−y ).

Problem 1.6.4 Let x, y, z be real numbers. Prove that

max(x, y, z) = x+y+z−min(x, y )−min(y, z)−min(z , x)+min(x, y, z).

Problem 1.6.5 Let a < b. Demonstrate that

|x −a| < |x −b| ⇐⇒ x < a +b

2
.

1.7 Classical Inequalities

1.7.1 Triangle Inequality

76 THEOREM (Triangle Inequality) Let (a,b) ∈R2. Then

|a +b| ≤ |a|+ |b|. (1.6)
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Proof: From 5 in Theorem 72, by addition,

−|a| ≤ a ≤ |a|
to

−|b| ≤ b ≤ |b|
we obtain

−(|a|+ |b|) ≤ a +b ≤ (|a|+ |b|),

whence the theorem follows by applying Theorem 74. ❑

By induction, we obtain the following generalisation to n terms.

77 COROLLARY Let x1, x2, . . . , xn be real numbers. Then

|x1 + x2 +·· ·+ xn | ≤ |x1|+ |x2|+ · · · + |xn | .

Proof: We apply Theorem 76 n −1 times

|x1 + x2 +·· ·+ xn | ≤ |x1|+ |x2 +·· ·xn−1 + xn |
≤ |x1|+ |x2|+ |x3 +·· ·xn−1 + xn |
...

≤ |x1|+ |x2|+ · · ·+ |xn−1 + xn |
≤ |x1|+ |x2|+ · · ·+ |xn−1|+ |xn | .

❑

78 COROLLARY Let (a,b) ∈R2. Then

||a|− |b|| ≤ |a −b| . (1.7)

Proof: We have

|a| = |a −b +b| ≤ |a −b|+ |b|,
giving

|a|− |b| ≤ |a −b|.
Similarly,

|b| = |b −a +a| ≤ |b −a|+ |a| = |a −b|+ |a|,
gives

|b|− |a| ≤ |a −b| =⇒ −|a −b| ≤ |a|− |b| .

Thus

−|a −b| ≤ |a|− |b| ≤ |a −b| ,
and we now apply Theorem 74. ❑

79 THEOREM Let bi > 0 for 1 ≤ i ≤ n. Then

min

(
a1

b1
,

a2

b2
, . . . ,

an

bn

)
≤ a1 +a2 +·· ·+an

b1 +b2 +·· ·+bn
≤ max

(
a1

b1
,

a2

b2
, . . . ,

an

bn

)
.

Proof: For every k , 1 ≤ k ≤ n,

min

(
a1

b1
,

a2

b2
, . . . ,

an

bn

)
≤ ak

bk
≤ max

(
a1

b1
,

a2

b2
, . . . ,

an

bn

)
=⇒ bk min

(
a1

b1
,

a2

b2
, . . . ,

an

bn

)
≤ ak ≤ bk max

(
a1

b1
,

a2

b2
, . . . ,

an

bn

)
.

Adding all these inequalities for 1 ≤ k ≤ n,

(b1 +b2 +·· ·+bn ) min

(
a1

b1
,

a2

b2
, . . . ,

an

bn

)
≤ a1 +a2 +·· ·+an ≤ (b1 +b2 +·· ·+bn ) max

(
a1

b1
,

a2

b2
, . . . ,

an

bn

)
,

from where the result is obtained.❑
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1.7.2 Bernoulli’s Inequality

80 THEOREM If 0 ≤ a < b, n ≥ 1 ∈N

nan−1 < bn −an

b −a
< nbn−1.

Proof: By Theorem 55,

bn −an

b −a
= bn−1 +bn−2a +bn−3a2 +·· ·+b2an−3 +ban−2+an−1

< bn−1 +bn−1 +·· ·+bn−1 +bn−1

= nbn−1,

from where the dextral inequality follows. The sinistral inequality can be established similarly. ❑

81 THEOREM (Bernoulli’s Inequality) If x >−1, x 6= 0, and if n ∈N\ {0} then

(1+ x)n > 1+nx.

Proof: Set b = 1+ x, a = 1 in Theorem 80 and use the sinistral inequality. ❑

☞ If x > 0 then Bernoulli’s Inequality is an easy consequence of the Binomial Theorem, as

(1+x)n = 1+
(

n

1

)
x +

(
n

2

)
x2 +·· · > 1+

(
n

1

)
x = 1+nx.

1.7.3 Rearrangement Inequality

82 Definition Given a set of real numbers {x1, x2, . . . , xn } denote by

x̌1 ≥ x̌2 ≥ ·· · ≥ x̌n

the decreasing rearrangement of the xi and denote by

x̂1 ≤ x̂2 ≤ ·· · ≤ x̂n

the increasing rearrangement of the xi .

83 Definition Given two sequences of real numbers {x1, x2, . . . , xn } and {y1, y2, . . . , yn } of the same length n, we say that they

are similarly sorted if they are both increasing or both decreasing, and differently sorted if one is increasing and the other

decreasing..

84 Example The sequences 1 ≤ 2 ≤ ·· · ≤ n and 12 ≤ 22 ≤ ·· · ≤ n2 are similarly sorted, and the sequences
1

12
≥ 1

22
≥ ·· · ≥ 1

n2

and 13 ≤ 23 ≤ ·· · ≤ n3 are differently sorted.

85 THEOREM (Rearrangement Inequality) Given sets of real numbers {a1, a2, . . . , an } and {b1,b2, . . . ,bn } we have

∑
1≤k≤n

ǎk b̂k ≤
∑

1≤k≤n

ak bk ≤
∑

1≤k≤n

âk b̂k .

Thus the sum
∑

1≤k≤n

ak bk is minimised when the sequences are differently sorted, and maximised when the sequences are

similarly sorted.
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☞Observe that ∑

1≤k≤n

ǎk b̂k =
∑

1≤k≤n

âk b̌k and
∑

1≤k≤n

âk b̂k =
∑

1≤k≤n

ǎk b̌k .

Proof: Let {σ(1),σ(2), . . . ,σ(n)} be a reordering of {1,2,. . . ,n}. If there are two sub-indices i , j , such that the

sequences pull in opposite directions, say, ai > a j and bσ(i ) < bσ( j ), then consider the sums

S = a1bσ(1) +a2bσ(2) +·· ·+ai bσ(i ) +·· ·+a j bσ( j ) +·· ·+an bσ(n)

S′ = a1bσ(1) +a2bσ(2) +·· ·+ai bσ( j ) +·· ·+a j bσ(i ) +·· ·+an bσ(n)

Then

S′−S = (ai −a j )(bσ( j ) −bσ(i )) > 0.

This last inequality shews that the closer the a ’s and the b’s are to pulling in the same direction the larger the sum

becomes. This proves the result. ❑

1.7.4 Arithmetic Mean-Geometric Mean Inequality

86 THEOREM (Arithmetic Mean-Geometric Mean Inequality) Let a1, . . . , an be positive real numbers. Then their geometric

mean is at most their arithmetic mean, that is,

n
p

a1 · · ·an ≤
a1 +·· ·+an

n
,

with equality if and only if a1 = ·· · = an .

We will provide multiple proofs of this important inequality. Some other proofs will be found in latter chapters.

First Proof: Our first proof uses the Rearrangement Inequality (Theorem 85) in a rather clever way. We may

assume that the ak are strictly positive. Put

x1 =
a1

(a1a2 · · ·an )1/n
, x2 =

a1a2

(a1a2 · · ·an )2/n
, . . . , xn =

a1a2 · · ·an

(a1a2 · · ·an )n/n
= 1,

and

y1 =
1

x1
, y2 =

1

x2
, . . . , yn =

1

xn
= 1.

Observe that for 2 ≤ k ≤ n,

xk yk−1 = a1a2 · · ·ak

(a1a2 · · ·an )k/n
· (a1a2 · · ·an )(k−1)/n

a1a2 · · ·ak−1
= ak

(a1a2 · · ·an )1/n
.

The xk and yk are differently sorted, so by virtue of the Rearrangement Inequality we gather

1+1+·· ·+1 = x1 y1 + x2 y2 +·· ·+ xn yn

≤ x1 yn + x2 y1 +·· ·+ xn yn−1

= a1

(a1a2 · · ·an )1/n
+ a2

(a1a2 · · ·an )1/n
+·· ·+ an

(a1a2 · · ·an )1/n
,

or

n ≤ a1 +a2 +·· ·+an

(a1a2 · · ·an )1/n
,

from where we obtain the result. ❑

Second Proof: This second proof is a clever induction argument due to Cauchy. It proves the inequality first for

powers of 2 and then interpolates for numbers between consecutive powers of 2.

Since the square of a real number is always positive, we have, for positive real numbers a,b

(
p

a −
p

b)2 ≥ 0 =⇒
p

ab ≤ a +b

2
,
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proving the inequality for k = 2. Observe that equality happens if and only if a = b. Assume now that the in-

equality is valid for k = 2n−1 > 2. This means that for any positive real numbers x1, x2, . . . , x2n−1 we have

(
x1x2 · · ·x2n−1

)1/2n−1

≤
x1 + x2 +·· ·+ x2n−1

2n−1
. (1.8)

Let us prove the inequality for 2k = 2n . Consider any any positive real numbers y1, y2, . . . , y2n . Notice that there

are 2n −2n−1 = 2n−1(2−1)= 2n−1 integers in the interval
[

2n−1+1 ;2n
]

. We have

(
y1 y2 · · · y2n

)1/2n

=
√(

y1 y2 · · · y2n−1

)1/2n−1 (
y2n−1+1 · · · y2n

)1/2n−1

≤
(

y1 y2 · · · y2n−1

)1/2n−1

+
(

y2n−1+1 · · · y2n

)1/2n−1

2

≤

y1 + y2 +·· ·+ y2n−1

2n−1
+

y2n−1+1 +·· ·+ y2n

2n−1

2

= y1 +·· ·+ y2n

2n
,

where the first inequality follows by the Case n = 2 and the second by the induction hypothesis (1.8). The theorem

is thus proved for powers of 2.

Assume now that 2n−1 < k < 2n , and consider the k positive real numbers a1, a2, . . . , ak . The trick is to pad this

collection of real numbers up to the next highest power of 2, the added real numbers being the average of the

existing ones. Hence consider the 2n real numbers

a1, a2, . . . , ak , ak+1, . . . , a2n

with ak+1 = . . . = a2n = a1 +a2 +·· ·+ak

k
. Since we have already proved the theorem for 2n we have

(
a1a2 · · ·ak

( a1 +a2 +·· ·+ak

k

)2n−k
)1/2n

≤
a1 +a2 +·· ·+ak + (2n −k)

( a1 +a2 +·· ·+ak

k

)

2n
,

whence

(a1a2 · · ·ak )1/2n
( a1 +a2 +·· ·+ak

k

)1−k/2n

≤
k

a1 +a2 +·· ·+ak

k
+ (2n −k)

( a1 +a2 +·· ·+ak

k

)

2n
,

which implies

(a1a2 · · ·ak )1/2n
( a1 +a2 +·· ·+ak

k

)1−k/2n

≤
( a1 +a2 +·· ·+ak

k

)
,

Solving for
a1 +a2 +·· ·+ak

k
gives the desired inequality. ❑

Third Proof: As in the second proof, the Case k = 2 is easily established. Put

Ak =
a1 +a2 +·· ·+ak

k
, Gk = (a1a2 · · ·ak )1/k .

Observe that

ak+1 = (k +1)Ak+1 −k Ak .

The inductive hypothesis is that Ak ≥Gk and we must shew that Ak+1 ≥Gk+1. Put

A = ak+1 + (k −1)Ak+1

k
, G =

(
ak+1 Ak−1

k+1

)1/k
.

By the inductive hypothesis A ≥G. Now,

A + Ak

2
=

(k +1)Ak+1 −k Ak + (k −1)Ak+1

k
+ Ak

2
= Ak+1.

25



Classical Inequalities

Hence

Ak+1 = A + Ak

2
≥ (A Ak )1/2

≥ (GGk )1/2 .

=
(
Gk+1

k+1 Ak−1
k+1

)1/2k

We have established that

Ak+1 ≥
(
Gk+1

k+1 Ak−1
k+1

)1/2k
=⇒ Ak+1 ≥Gk+1,

completing the induction. ❑

Fourth Proof: We will make a series of substitutions that preserve the sum

a1 +a2 +·· ·+an

while strictly increasing the product

a1a2 · · ·an .

At the end, the ai will all be equal and the arithmetic mean A of the numbers will be equal to their geometric

mean G. If the ai where all > A then
a1 +a2 +·· ·+an

n
> n A

n
= A, impossible. Similarly, the ai cannot be all

< A. Hence there must exist two indices say i , j , such that ai < A < a j . Put a ′
i = A, a ′

j = ai + a j − A. Observe

that ai + a j = a ′
i + a ′

j , so replacing the original a ’s with the primed a ’s does not alter the arithmetic mean. On

the other hand,

a ′
i a ′

j = A
(
ai +a j − A

)
= ai a j +

(
a j − A

)
(A −ai ) > ai a j

since a j − A > 0 and A −ai > 0.

This change has replaced one of the a ’s by a quantity equal to the arithmetic mean, has not changed the arith-

metic mean, and made the geometric mean larger. Since there at most n a ’s to be replaced, the procedure must

eventually terminate when all the a ’s are equal (to their arithmetic mean). Strict inequality then holds when at

least two of the a ’s are unequal. ❑

1.7.5 Cauchy-Bunyakovsky-Schwarz Inequality

87 THEOREM (Cauchy-Bunyakovsky-Schwarz Inequality) Let xk , yk be real numbers, 1 ≤ k ≤ n. Then

∣∣∣∣∣
n∑

k=1

xk yk

∣∣∣∣∣≤
(

n∑
k=1

x2
k

)1/2 (
n∑

k=1

y2
k

)1/2

,

with equality if and only if

(a1, a2, . . . , an ) = t(b1,b2, . . . ,bn )

for some real constant t .

First Proof: The inequality follows at once from Lagrange’s Identity

(
n∑

k=1

xk yk

)2

=
(

n∑
k=1

x2
k

)(
n∑

k=1

y2
k

)
−

∑
1≤k< j≤n

(xk y j − x j yk )2

(Theorem 50), since
∑

1≤k< j≤n

(xk y j − x j yk )2 ≥ 0. ❑

Second Proof: Put a =
n∑

k=1

x2
k , b =

n∑

k=1

xk yk , and c =
n∑

k=1

y2
k . Consider the quadratic polynomial

at 2 +bt +c = t 2
n∑

k=1

x2
k −2t

n∑
k=1

xk yk +
n∑

k=1

y2
k =

n∑
k=1

(t xk − yk )2 ≥ 0,

26



Chapter 1

where the inequality follows because a sum of squares of real numbers is being summed. Thus this quadratic

polynomial is positive for all real t , so it must have complex roots. Its discriminant b2 −4ac must be negative,

from where we gather

4

(
n∑

k=1

xk yk

)2

≤ 4

(
n∑

k=1

x2
k

)(
n∑

k=1

y2
k

)
,

which gives the inequality ❑

For our third proof of the CBS Inequality we need the following lemma.

88 LEMMA For (a,b, x, y) ∈R4 with x > 0 and y > 0 the following inequality holds:

a2

x
+ b2

y
≥ (a +b)2

x + y
.

Equality holds if and only if
a

x
= b

y
.

Proof: Since the square of a real number is always positive, we have

(a y −bx)2 ≥ 0 =⇒ a2 y2 −2abx y +b2x2 ≥ 0

=⇒ a2 y(x + y)+b2 x(x + y) ≥ (a +b)2x y

=⇒ a2

x
+ b2

y
≥ (a +b)2

x + y
.

Equality holds if and only if the first inequality is 0.❑

☞ Iterating the result on Lemma 88,

a2
1

b1
+

a2
2

b2
+·· ·+

a2
n

bn
≥ (a1 +a2 +·· ·+an )2

b1 +b2 +·· · +bn
,

with equality if and only if
a1

b1
= a2

b2
= ·· · = an

bn
.

Third Proof: By the preceding remark, we have

x2
1 + x2

2 +·· ·+ x2
n =

x2
1 y2

1

y2
1

+
x2

2 y2
2

y2
2

+·· ·+
x2

n y2
n

y2
n

≥ (x1 y1 + x2 y2 +·· ·+ xn yn )2

y2
1 + y2

2 +·· ·+ y2
n

,

and upon rearranging, CBS is once again obtained.❑

1.7.6 Minkowski’s Inequality

89 THEOREM (Minkowski’s Inequality) Let xk , yk be any real numbers. Then

(
n∑

k=1

(xk + yk )2

)1/2

≤
(

n∑
k=1

x2
k

)1/2

+
(

n∑
k=1

y2
k

)1/2

.

Proof: We have
n∑

k=1

(xk + yk )2 =
n∑

k=1

x2
k +2

n∑
k=1

xk yk +
n∑

k=1

y2
k

≤
n∑

k=1

x2
k +2

(
n∑

k=1

x2
k

)1/2 (
n∑

k=1

y2
k

)1/2

+
n∑

k=1

y2
k

=
((

n∑
k=1

x2
k

)1/2

+
(

n∑
k=1

y2
k

)1/2)2

,

where the inequality follows from the CBS Inequality.❑
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Homework

Problem 1.7.1 Let (a,b,c,d ) ∈R4. Prove that

||a −c| − |b −c|| ≤ |a −b| ≤ |a −c| + |b −c| .

Problem 1.7.2 Let (x1, x2 , . . . , xn ) ∈Rn be such that

x2
1 +x2

2 +·· ·+x2
n = x3

1 +x3
2 +·· ·+x3

n = x4
1 +x4

2 +·· · +x4
n .

Prove that xk ∈ {0,1}.

Problem 1.7.3 Let n ≥ 2 an integer. Let (x1, x2, . . . , xn ) ∈Rn be such

that

x2
1 +x2

2 +·· · +x2
n = x1x2 +x2 x3 +·· ·+xn−1xn +xn x1.

Prove that x1 = x2 = ·· · = xn .

Problem 1.7.4 If b > 0 and B > 0 prove that

a

b
< A

B
=⇒ a

b
< a + A

b +B
< A

B
.

Further, if p and q are positive integers such that

7

10
< p

q
< 11

15
,

what is the least value of q?

Problem 1.7.5 Prove that if r ≥ s ≥ t then

r 2 − s2 + t 2 ≥ (r − s + t )2 .

Problem 1.7.6 Assume that ak ,bk ,ck ,k = 1,. . . ,n, are positive real

numbers. Shew that

(
n∑

k=1

ak bk ck

)4

≤
(

n∑

k=1

a4
k

)(
n∑

k=1

b4
k

)(
n∑

k=1

c2
k

)2

.

Problem 1.7.7 Prove that for integer n > 1,

n! <
(

n +1

2

)n

.

Problem 1.7.8 Prove that for integer n > 2,

nn/2 < n!.

Problem 1.7.9 Prove that for all integers n ≥ 0 the inequality n(n −
1) < 2n+1 is verified.

Problem 1.7.10 Prove that ∀(a,b,c) ∈R3,

a2 +b2 +c2 ≥ ab +bc +ca.

Problem 1.7.11 Prove that ∀(a,b,c) ∈ R3, with a ≥ 0, b ≥ 0, c ≥ 0,

the following inequalities hold:

a3 +b3 +c3 ≥ max(a2b +b2c +c2a, a2c +b2a +c2b),

a3 +b3 +c3 ≥ 3abc,

a3 +b3 +c3 ≥
1

2

(
a2(b +c)+b2 (c +a)+c2(a +b)

)
.

Problem 1.7.12 (Chebyshev’s Inequality) Given sets of real num-

bers {a1, a2, . . . , an } and {b1,b2, . . . ,bn } prove that

1

n

∑

1≤k≤n

ǎk b̂k ≤
(

1

n

∑

1≤k≤n

ak

)(
1

n

∑

1≤k≤n

bk

)
≤

1

n

∑

1≤k≤n

âk b̂k .

Problem 1.7.13 If x > 0, from

p
x +1−

p
x =

1
p

x +1+
p

x
,

prove that
1

2
p

x +1
<
p

x +1−
p

x <
1

2
p

x
.

Use this to prove that if n > 1 is a positive integer, then

2
p

n +1−2 < 1+ 1
p

2
+ 1

p
3
+·· · + 1

p
n

< 2
p

n −1

Problem 1.7.14 If 0 < a ≤ b, shew that

1

8
·

(b −a)2

b
≤

a +b

2
−
p

ab ≤
1

8
·

(b −a)2

a

Problem 1.7.15 Shew that

1

2
·

3

4
·

5

6
· · ·

9999

10000
<

1

100
.

Problem 1.7.16 Prove that for all x > 0,

n∑

k=1

1

(x +k)2
<

1

x
−

1

x +n
.

Problem 1.7.17 Let xi ∈ R such that
∑

i=1

∣∣xi

∣∣ = 1 and
∑

i=1

xi = 0.

Prove that ∣∣∣∣∣
n∑

i=1

xi

i

∣∣∣∣∣≤
1

2

(
1−

1

n

)
.

Problem 1.7.18 Let n be a strictly positive integer. Let xi ≥ 0. Prove

that
n∏

k=1

(1+xk ) ≥ 1+
n∑

k=1

xk .

When does equality hold?

Problem 1.7.19 (Nesbitt’s Inequality) Let a,b,c be strictly positive

real numbers. Then

a

b +c
+ b

c +a
+ c

a +b
≥ 3

2
.

28



Chapter 1

Problem 1.7.20 Let a > 0. Use mathematical induction to prove

that √

a +
√

a +
√

a +·· · +
p

a < 1+
p

4a +1

2
,

where the left member contains an arbitrary number of radicals.

Problem 1.7.21 Let a,b,c be positive real numbers. Prove that

(a +b)(b +c)(c +a) ≥ 8abc.

Problem 1.7.22 (IMO, 1978) Let ak be a sequence of pairwise dis-

tinct positive integers. Prove that

n∑

k=1

ak

k2
≥

n∑

k=1

1

k
.

Problem 1.7.23 (Harmonic Mean-Geometric Mean Inequality)

Let xi > 0 for 1 ≤ i ≤ n. Then

n

1

x1
+

1

x2
+·· · +

1

xn

≤ (x1x2 · · ·xn )1/n ,

with equality iff x1 = x2 = ·· · = xn .

Problem 1.7.24 (Arithmetic Mean-Quadratic Mean Inequality)

Let xi ≥ 0 for 1 ≤ i ≤ n. Then

x1 +x2 +·· · +xn

n
≤

(
x2

1 +x2
2 +·· · +x2

n

n

)1/2

,

with equality iff x1 = x2 = ·· · = xn .

Problem 1.7.25 Given a set of real numbers {a1, a2, . . . , an } prove

that there is an index m ∈ {0,1,. . . ,n} such that
∣∣∣∣∣

∑

1≤k≤m

ak −
∑

m<k≤n

ak

∣∣∣∣∣≤ max
1≤k≤n

∣∣ak

∣∣ .

If m = 0 the first sum is to be taken as 0 and if m = n the second one

will be taken as 0.

Problem 1.7.26 Give a purely geometric proof of Minkowski’s In-

equality for n = 2. That is, prove that if (a,b),(c,d ) ∈R2, then

√
(a +c)2 + (b +d )2 ≤

√
a2 +b2 +

√
c2 +d 2.

Equality occurs if and only if ad = bc.

Problem 1.7.27 Let xk ∈
[

0 ;1
]

for 1 ≤ k ≤ n. Demonstrate that

min

(
n∏

k=1

xk ,
n∏

k=1

(1−xk )

)
≤

1

2n
.

Problem 1.7.28 If n > 0 is an integer and if ak > 0, 1 ≤ k ≤ n are

real numbers, demonstrate that

(
n∑

k=1

ak

k

)2

≤
n∑

j=1

n∑

k=1

a j ak

j +k −1
.

Problem 1.7.29 Let n be a strictly positive integer, let ak ≥ 0, 1 ≤
k ≤ n be real numbers such that a1 ≥ a2 ≥ ·· · ≥ an , and let bk , 1 ≤
k ≤ n be real numbers. Assume that for all indices k ∈ {1,2,. . . ,n},

k∑

i=1

ai ≤
k∑

i=1

bi .

Prove that
n∑

i=1

a2
i ≤

n∑

i=1

b2
i

Problem 1.7.30 Let n ≥ 2 an integer and let ak , 1 ≤ k ≤ n be real

numbers such that a1 ≤ a2 ≤ ·· · ≤ an . Prove that there is an index

k ∈ {1,2,. . . ,n} such that

(ak+1 −ak )2 ≤ 12

n(n2 −1)
(a2

1 +a2
2 +·· ·a2

n ).

Problem 1.7.31 (AIME 1991) Let P = {a1, a2, . . . , an } be a collec-

tion of points with

0 < a1 < a2 < ·· · < an < 17.

Consider

Sn = min
P

n∑

k=1

√
(2k −1)2 +a2

k
,

where the minimum runs over all such partitions P . Shew that ex-

actly one of S2,S3, . . . ,Sn , . . . is an integer, and find which one it is.

1.8 Completeness Axiom

Why bother?We saw that both Q and R are fields, and hence they both satisfy the same arithmetical axioms.

Why the need then for R? In this section we will study a property of R that is not shared with Q, that of com-

pleteness. It essentially means that there are no ‘holes’ on the real line.

90 Definition A number u is an upper bound for a set of numbers A ⊆ R if for all a ∈ A we have a ≤ u. The smallest such

upper bound is called the supremum or least upper bound of the set A, and is denoted by sup A. If sup A ∈ A then we say

that A has a maximum and we denote it by max A(= sup A). Similarly, a number l is a lower bound for a set of numbers

B ⊆R if for all b ∈ B we have l ≤ b. The largest such lower bound is called the infimum or greatest lower bound of the set B ,

and is denoted by infB . If sup B ∈ B then we say that B has a minimum and we denote it by infB (= infB ).
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Completeness Axiom

☞We define inf(R) =−∞, sup(R) =+∞, inf(∅) =+∞ and sup(∅) =−∞.

91 Definition A set of numbers A is said to be complete if every non-empty subset of A which is bounded above has a

supremum lying in A.

92 Axiom (Completeness of R) Any non-empty set of real numbers which is bounded above has a supremum. Any non-

empty set of real numbers which is bounded below has a infimum.

93 THEOREM (Approximation Property of the Supremum and Infimum) Let A 6=∅be a set of real numbers possessing a supre-

mum sup A. Then

∀ε> 0 ∃a ∈ A such that sup A −ε≤ a.

Let B 6=∅ be a set of real numbers possessing an infimum infB . Then

∀ε> 0 ∃b ∈ B such that inf A +ε≥ b.

Proof: If ∀a ∈ A, sup A −ε> a then sup A −ε would be an upper bound smaller than the least upper bound,

a contradiction to the definition of sup A. Hence there must be a rogue a ∈ A such that sup A −ε≤ a.

If ∀b ∈ A, infB +ε< b then infB +ε would be a lower bound greater than the greatest lower bound, a contra-

diction to the definition of infB . Hence there must be a rogue b ∈ B such that infB +ε≥ b.

❑

☞ The above result should be intuitively clear. sup A sits on the fence, just to the right of A, so that going just a bit to the

left should put sup A −ε within A, etc.

94 THEOREM (Monotonicity Property of the Supremum and Infimum) Let ∅ á A ⊆ B j R and suppose that both A and B

have a supremum and an infimum. Then sup A ≤ sup B and infB ≤ inf A.

Proof: Assume B is bounded above with supremum sup B . Suppose x ∈ A. Then x ∈ B and so x ≤ sup B . Thus

sup B is an upper bound for the elements of A, and so A and so by definition, sup A ≤ sup B .

Assume B is bounded below with infimum infB . Suppose x ∈ A. Then x ∈ B and so x ≥ infB . Thus inf B is a

lower bound for the elements of A and so by definition, inf A ≥ infB . ❑

95 LEMMA Let a,b be real numbers and assume that for all numbers ε> 0 the following inequality holds:

a < b +ε.

Then a ≤ b.

Proof: Assume contrariwise that a > b. Hence
a −b

2
> 0. Since the inequality a < b +ε holds for every ε> 0 in

particular it holds for ε= a −b

2
. This implies that

a < b +
a −b

2
or a < b.

Thus starting with the assumption that a > b we reach the incompatible conclusion that a < b. The original

assumption must be wrong. We therefore conclude that a ≤ b. ❑

96 THEOREM (Additive Property of the Supremum) Let ∅á A ⊆R, and B jR. Put

A +B = {x + y : (x, y) ∈ A ×B }

and suppose that both A and B have a supremum. Then A +B has also a supremum and

sup(A +B ) = sup A +sup B .
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Proof: If t ∈ A +B then t = x + y with (x, y) ∈ A ×B . Then t = x + y ≤ sup A +sup B , and so sup A +sup B is an

upper bound for A +B . By the Completeness Axiom, A +B is bounded. Thus sup(A +B ) ≤ sup A +sup B .

We now prove that sup A + sup B ≤ sup(A +B ). By the approximation property, ∀ε > 0 ∃a ∈ A and b ∈ B such

that sup A − ε

2
< a and sup B − ε

2
< b. Observe that a +b ∈ A +B and so a +b ≤ sup(A +B ). Then

sup A +sup B −ε< a +b ≤ sup(A +B ),

and by Lemma 95 we must have

sup A +sup B ≤ sup(A +B ).

This completes the proof.❑

97 THEOREM (Archimedean Property of the Real Numbers) If (x, y) ∈ R2 with x > 0, then there exists a natural number n

such that nx > y .

Proof: Consider the set

A = {nx : n ∈N}.

Since 1 ·x ∈ A, A is non-empty. If ∀n ∈N we had nx ≤ y , then A would be bounded above by y . By the Complete-

ness Axiom, A would have a supremum sup A. Thus ∀n ∈ N, nx ≤ sup A. Since (n +1)x ∈ A, we would also

have

(n +1)x ≤ sup A =⇒ nx ≤ sup A − x.

This means that sup A − x is an upper bound for A which is smaller than its supremum, a contradiction Thus

there must be an n for which nx > y . ❑

98 COROLLARY N is unbounded above.

Proof: This follows by taking x = 1 in Theorem 97. ❑

The Completeness Axioms tells us, essentially, that there are no “holes” in the real numbers. We will see that this prop-

erty distinguishes the reals from the rational numbers.

99 LEMMA [Hipassos of Metapontum]
p

2 is irrational.

Proof: Assume there is s ∈Q such that s2 = 2. We can find integers m,n 6= 0 such that s = m

n
. The crucial part

of the argument is that we can choose m,n such that this fraction be in least terms, and hence, m,n must not be

both even. Now, m2s2 = n2, that is 2m2 = n2. This means that n2 is even. But then n itself must be even, since

the product of two odd numbers is odd. Thus n = 2a for some non-zero integer a (since n 6= 0). This means that

2m2 = (2a)2 = 4a2 =⇒ m2 = 2a2. This means once again that m is even. But then we have a contradiction,

since m and n were not both even. ❑

100 THEOREM Q is not complete.

Proof: We must shew that there is a non-empty set of rational numbers which is bounded above but that does

not have a supremum in Q. Consider the set A = {r ∈Q : r 2 ≤ 2} of rational numbers. This set is bounded above

by u = 2. For assume that there were a rogue element of A, say r0 such that r0 > 2. Then r 2
0 > 4 and so r0 would

not belong to A, a contradiction. Thus r ≤ 2 for every r ∈ A and so A is bounded above. Suppose that A had a

supremum s, which must satisfy s ≤ 2. Now, by Lemma 99 we cannot have s2 = 2 and thus s2 < 2. By Theorem

97 there is an integer n such that 2− s2 > 1

10n
. Put t = s + 1

10n−1
, a rational number and observe that since s ≤ 2

one has

t 2 = s2 + 2s

10n−1
+ 1

102n−2
< s2 + 2s

10n−1
+ 1

10n−1
≤ s2 + 5

10n−1
< s2 + 1

10n
< 2.

Thus t ∈ A and t > s, that is t is an element of A larger than its least upper bound, a contradiction. Hence A does

not have a least upper bound. ❑

31



Completeness Axiom

1.8.1 Greatest Integer Function

101 THEOREM Given y ∈R there exists a unique integer n such that

n ≤ y < n +1.

Proof: By Theorem 97, the set {n ∈Z : n ≤ y} is non-empty and bounded above. We put

TyU= sup{n ∈Z : n ≤ y}.

❑

☞ ∀x ∈R, TxU≤ x <TxU+1.

102 Definition The unique integer in Theorem 101 is called the floor of x and is denoted by TxU.

The greatest integer function enjoys the following properties:

103 THEOREM Let α,β ∈R, a ∈Z,n ∈N. Then

1. Tα+aU= TαU+a

2. T
α

n
U= T

TαU

n
U

3. TαU+TβU≤ Tα+βU≤ TαU+TβU+1

Proof:

1. Let m = Tα+ aU. Then m ≤ α+ a < m +1. Hence m − a ≤ α < m − a +1. This means that m − a = TαU,

which is what we wanted.

2. Write α/n as α/n = Tα/nU+θ,0 ≤ θ< 1. Since nTα/nU is an integer, we deduce by (1) that

TαU= TnTα/nU+nθU= nTα/nU+TnθU.

Now, 0 ≤ TnθU≤ nθ < n, and so 0 ≤ TnθU/n < 1. If we let Θ= TnθU/n, we obtain

TαU

n
= T

α

n
U+Θ, 0 ≤Θ< 1.

This yields the required result.

3. From the inequalities α−1< TαU≤α,β−1< TβU≤β we get α+β−2< TαU+TβU≤α+β. Since TαU+TβU
is an integer less than or equal to α+β, it must be less than or equal to the integral part of α+β, i.e. Tα+βU.

We obtain thus TαU+TβU ≤ Tα+βU. Also, α+β is less than the integer TαU+TβU+2, so its integer part

Tα+βU must be less than TαU+TβU+2, but Tα+βU< TαU+TβU+2 yields Tα+βU≤ TαU+TβU+1. This

proves the inequalities.

❑

104 Definition The ceiling of a real number x is the unique integer VxW satisfying the inequalities

VxW−1 < x ≤ VxW.

105 Definition The fractional part of a real number x is defined and denoted by

{x} = x −TxU.

Observe that 0 ≤ {x} < 1.

Homework
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Problem 1.8.1 Let A and B be non-empty sets of real numbers. Put

−A = {−x : x ∈ A}, A −B = {a −b : (a,b) ∈ A ×B }.

Prove that

1. If A is bounded above, then −A is bounded below and sup A =
−inf(−A).

2. If A and B are bounded above then A ∪ B is also bounded

above and sup(A ∪B ) = max(sup A,sup B ).

3. If A is bounded above and B is bounded below, then A −B is

bounded above and sup(A −B ) = sup A − infB .

Problem 1.8.2 Assume that A is a subset of the strictly positive real

numbers. Prove that if A is bounded above, then the set A−1 = {
1

x
:

x ∈ A} is bounded below and that sup A =
1

inf A−1
.

Problem 1.8.3 Let n ≥ 2 be an integer. Prove that

max
0≤x1≤x2≤···≤xn≤1

(
∑

1≤i< j≤n

(x j −xi )

)
= T

n2

4
U.

Problem 1.8.4 Find a non-zero polynomial P (x, y ) such that

P (T2tU,T3tU) = 0

for all real t .

Problem 1.8.5 Prove that the integers

T
(
1+

p
2
)n

U

with n a positive integer, are alternately even or odd.

Problem 1.8.6 Let x ∈R and let n be a strictly positive integer. Prove

that

TnxU=
n−1∑

k=1

Tx +
k

n
U.

Problem 1.8.7 (Putnam 1948) If n is a positive integer, demon-

strate that

T
p

n +
p

n +1U= T
p

4n +2U.

Problem 1.8.8 Find a formula for the n-th non-square.

Problem 1.8.9 Prove that if a,b are strictly positive integers then

a2

b2
< 2 =⇒

(a +2b)2

(a +b)2
< 2.

Prove, moreover, that

(a +2b)2

(a +b)2
−2 < 2− a2

b2
.

This means that
(a +2b)2

(a +b)2
is closer to 2 than

a2

b2
is.

Problem 1.8.10 Shew that ∀x > 0, x is farther from
p

5 than
2x +5

x +2
is.

Problem 1.8.11 (Existence of n-th Roots) Let a > 0 and let n ∈ R,

n ≥ 2. Prove that there is a unique b ∈R such that bn = a.
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Topology of R

2.1 Intervals

Why bother? In this section we give a more precise definition of what an interval is, and establish the interesting

property that between any two real numbers there is always a rational number.

106 Definition An interval I is a subset of the real numbers with the following property: if s ∈ I and t ∈ I , and if s < x < t ,

then x ∈ I . In other words, intervals are those subsets of real numbers with the property that every number between two

elements is also contained in the set. Since there are infinitely many decimals between two different real numbers, intervals

with distinct endpoints contain infinitely many members.

☞ The empty set ∅ is trivially an interval.

We will now establish that there are nine types of intervals.

Interval Notation Set Notation Graphical Representation

[a;b] {x ∈R : a ≤ x ≤ b}1

a b

]a;b[ {x ∈R : a < x < b}
a b

[a;b[ {x ∈R : a ≤ x < b}
a b

]a;b] {x ∈R : a < x ≤ b}
a b

]a;+∞[ {x ∈R : x > a}
a +∞

[a;+∞[ {x ∈R : x ≥ a}
a +∞

]−∞;b[ {x ∈R : x < b}
−∞ b

]−∞;b] {x ∈R : x ≤ b}
−∞ b

]−∞;+∞[ R
−∞ +∞

Table 2.1: Types of Intervals. Observe that we indicate that the endpoints are included by means of shad-

ing the dots at the endpoints and that the endpoints are excluded by not shading the dots at

the endpoints.

☞ If x ∈R, then {x} =
[

x ; x
]

.
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107 THEOREM The only kinds of intervals are those sets shewn in Table 2.1, and conversely, all sets shewn in this table are

intervals.

Proof: The converse is easily established, so assume that I jRpossesses the property that∀(a,b)∈ I 2,
[

a ;b
]
j

I . Since ∅ is an interval one may assume that I 6=∅. Let a ∈ I be a fixed element of I and put Ma = {x ∈ I : x ≤
a}=

]
−∞ ; a

]
∩ I and Na = {x ∈ I : x ≥ a} =

[
a ;+∞

[
∩ I .

If Na is not bounded above, then ∀b ∈
[

a ;+∞
[

, ∃c ∈ Na such that b ≤ c . Since a ≤ b ≤ c , this entails that

b ∈ Na . Thus Na =
[

a ;+∞
[

.

If Na is bounded above, then it has supremum s = sup(Na ) and Na j
[

a ; s
]

. By Theorem 93, ∀b ∈
[

a ; s
[

, c ∈
Na such that b ≤ c , and since a ≤ b ≤ c , this entails that b ∈ Na . Thus

[
a ; s

[
j Na j

[
a ; s

]
,

and so Na =
[

a ; s
[

or Na =
[

a ; s
]

.

Thus Na is one among three possible forms:
[

a ;+∞
[

,
[

a ; s
]

, or
[

a ; s
[

. Applying a similar reasoning, one obtains

gathers that Ma is of one of the forms
]
−∞ ; a

]
,
]

l ; a
]

, or
[

l ; a
]

, where l = inf(Ma ). Since I = Ma ∪Na , there are

3 choices for Ma and 3 for Na , hence there are 3 ·3 = 9 choices for I . The result is established. ❑

108 Example Determine
∞⋂

k=1

[
1− 1

2k
;1+ 1

k

]
.

Solution: Observe that the intervals are, in sequence,

[1

2
;2

]
;

[3

4
;

3

2

]
;

[7

8
;

4

3

]
; . . . .

We claim that
∞⋂

k=1

[
1− 1

2k
;1+ 1

k

]
= 1. For we see that

∀k ≥ 1,
1

2
≤ 1−

1

2k
< 1 < 1+

1

k
≤ 2,

so 1 is in every interval. Could this intersection contain a number smaller than 1? No, for if
1

2
≤ a < 1, then we

can take k large enough so that

a < 1− 1

2k
,

for example

a < 1−
1

2k
=⇒ k >− log2(1−a),

so taking k ≥ T− log2(1−a)U+1 will work. Could the intersection contain a number b larger than 1? No, for if

1 < b < 2, then we can take k large enough so that

1+ 1

k
< b,

for example

1+ 1

k
< b =⇒ k > 1

b −1
,

so taking k ≥ T
1

b −1
U+1 will work. Hence the only number in the intersection is 1.
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2.2 Dense Sets

109 Definition A set B jR is dense in A jR if ∀(a1, a2) ∈ A2, a1 < a2, ∃b ∈ B such that a1 < b < a2, that is, between any

two different elements of A one can always find an element of B .

110 THEOREM Q is dense in R.

Proof: Let x, y be real numbers with x < y . Since there are infinitely many positive integers, there must be a

positive integer n such that n > 1

y − x
by the Archimedean Property of R. Consider the rational number r = m

n
,

where m is the least natural number with m > nx. This means that

m > nx ≥ m −1.

We claim that x < m

n
< y . The first inequality is clear, since by choice x < m

n
. For the second inequality observe

that, again

nx ≥ m −1 and y − x > 1

n
=⇒ x > m

n
− 1

n
and y > x + 1

n
=⇒ y > m

n
− 1

n
+ 1

n
= m

n
.

Thus
m

n
is a rational number between x and y . ❑

111 THEOREM R\Q is dense in R.

Proof: Let a < b be two real numbers. By Theorem 110, there is a rational number r with
a
p

2
< r < b

p
2

. But

then a <
p

2r < b, and the number
p

2r is an irrational number.❑

112 THEOREM (Dirichlet) For any real number θ and any integer Q ≥ 1, there exist integers a and q , 1 ≤ q ≤Q, such that

∣∣∣∣θ−
a

q

∣∣∣∣≤
1

qQ
.

Proof: For 1 ≤ n ≤Q, let

In =
[

n −1

Q
;

n

Q

[
.

Thus these Q intervals partition the interval [0;1[. The Q +1 numbers

{0θ},{1θ},{2θ}, . . . ,{Qθ}

lie in [0;1[. Hence by the pigeonhole principle there is an n such that In contains at least two of these numbers,

say

{q1θ} ∈ In , {q2θ} ∈ In , 0 ≤ q1 < q2 ≤Q.

Put q = q2 −q1, a = [q2θ]− [q1θ]. Since {q1θ} ∈ In ,{q2θ} ∈ In we must have

∣∣{q2θ}− {q1θ}
∣∣< 1

Q
.

But

{q2θ}− {q1θ} = q2θ− [q2θ]−q1θ+ [q1θ] = qθ−a,

whence the result. ❑

113 COROLLARY If θ is irrational prove that there exist infinitely many rational numbers
a

q
, gcd(a, q) = 1, such that θ lies

in the open intervals
] a

q
− 1

q 2
;

a

q
+ 1

q 2

[
.
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Proof: Suppose that

∣∣∣∣θ− ar

qr

∣∣∣∣<
1

q 2
r

for 1 ≤ r ≤ R. Since the differences θ− ar

qr
are non-zero, we may choose Q so

large in Theorem 112 that none of these rational numbers is a solution of

∣∣∣∣θ− a

q

∣∣∣∣<
1

qQ
. Since this latter inequal-

ity does have a solution, the R given rational approximations do not exhaust the set of solutions of

∣∣∣∣θ− a

q

∣∣∣∣<
1

q 2
.

❑

Homework

Problem 2.2.1 Determine
⋂

1≤k≤500

[
k ;1001−k

]
.

Problem 2.2.2 Determine
∞⋃

k=1

[
1 ;1+

1

k

]
.

Problem 2.2.3 Determine
∞⋃

k=1

[
−k ;k

]
.

Problem 2.2.4 Determine
∞⋂

k=1

[
1 ;1+ 1

k

]
.

Problem 2.2.5 Determine
∞⋂

k=1

[
k ;+∞

[
.

Problem 2.2.6 Determine
∞⋂

k=1

]
1 ;1+

1

k

]
.

Problem 2.2.7 Let I =
[

a ;b
]

, and I ′ =
[

a′ ;b′
]

be closed intervals

in R. Prove that I j I ′ if and only if a′ ≤ a and b ≤ b′.

Problem 2.2.8 Let

Q+
p

2Q= {a +
p

2b : (a,b) ∈Q2}

and define addition on this set as

(a +
p

2b)+ (c +
p

2d ) = (a +c)+
p

2(b +d ),

and multiplication as

(a +
p

2b)(c +
p

2d ) = (ac +2bd )+
p

2(ad +bc).

Then 〈Q+
p

2Q, ·,+〉 is a field.

Problem 2.2.9 Put D = {x : x = q2 or x = −q2, q ∈ Q}. Prove

that D is dense in R.

Problem 2.2.10 A dyadic rational is a rational number of the form
m

2n
, where m ∈ Z, n ∈ N. Prove that the set of dyadic rationals is

dense in R.

2.3 Open and Closed Sets

Why bother? Many of the properties that we will study in these notes generalise to sets other than R. To better

understand what is it from the features of R that is essential for a generalisation, the language of topology is

used.

114 Definition The open ball Bx0 (r ) centred at x = x0 and radius ε> 0 is the set

Bx0 (ε) =
]

x0 −ε ; x0 +ε
[

.

115 Definition A set Nx0 j R is an open neighbourhood of a point x0 if ∃ε > 0 such that Bx0 (r ) j Nx0 , that is, there is a

sufficiently small open ball containing x0 completely contained in Nx0 .

116 Definition A set U j R is said to be open in R if ∀ x ∈U there is an open neighbourhood Nx0 such that Nx0 jU . A set

F ⊆R is said to be closed in R if its complement U =R\ F is open in R.

117 THEOREM Every open ball is open.

Proof: Let Bx0 (r ) with r > 0 be an open ball and let x ∈Bx0 (r ). We must shew that there is a sufficiently small

neighbourhood of x completely within Bx0 (r ) . That is, we search for ε> 0 such that y ∈Bx (ε) =⇒ y ∈Bx0 (r ).

37



Open and Closed Sets

Now,

y ∈Bx (ε) =⇒ y ∈Bx0 (r ) ⇐⇒ |y − x| < ε =⇒ |y − x0| < r.

By the Triangle Inequality

|y − x0| ≤ |y − x|+ |x − x0| < ε+|x − x0|.
So, as long as

ε+|x − x0| < r,

we will be within Bx0 (r ). One can take

ε= r −|x − x0|
2

.

❑

118 Example The open intervals
]

a ;b
[

,
]

a ;+∞
[

,
]
−∞ ;b

[
,
]
−∞ ;+∞

[
, are open in R.

The closed intervals {a},
[

a ;b
]

,
[

a ;+∞
[

,
]
−∞ ;b

]
,
]
−∞ ;+∞

[
=R, are closed in R.

The sets ∅ and R are simultaneously open and closed in R.

The intervals
]

a ;b
]

and
[

a ;b
[

are neither open nor closed in R.

119 THEOREM The union of any (finite or infinite) number of open sets in R is open in R. The union of a finite number of

closed in R sets is closed in R.

The intersection of a finite number of open sets in R is open in R. The intersection of any (finite or infinite) number of

closed sets in R is closed in R.

Proof: Let U1,U2, . . . , be a sequence of open sets in R (some may be empty) and consider x ∈
∞⋃

n=1

Un . There is an

index N such that x ∈UN . Since UN is open in R, there is an open neighbourhood of x
]

x −ε ; x +ε
[
jUN , for

ε> 0 small enough. But then ]
x −ε ; x +ε

[
jUN j

∞⋃
n=1

Un ,

and so given an arbitrary point of the union, there is a small enough open neighbourhood enclosing the point

and within the union, meaning that the union is open.

If
∞⋂

n=1

Fn is an arbitrary intersection of closed sets, then there are open sets Un =R\ Fn . By the De Morgan Laws,

∞⋂
n=1

Fn =
∞⋂

n=1

(R\Un ) =R\
∞⋃

n=1

Un ,

and since
∞⋃

n=1

Un is open by the above paragraph,
∞⋂

n=1

Fn is the complement of an open set, that is, it is closed.

Let U1,U2, . . . ,UL be a sequence of open sets in R and consider x ∈
L⋂

n=1

Un . Then x belongs to each of the Uk and

so there are εk > 0 such that x ∈
]

x −εk ; x +εk

[
jUk . Let ε= min

1≤k≤L
εk be the smallest one of such. But then for

all k ,
]

x −ε ; x +ε
[
j

]
x −εk ; x +εk

[
jUk , =⇒

]
x −ε ; x +ε

[
j

L⋂
n=1

Un ,

and so given an arbitrary point of the intersection, there is a small enough open neighbourhood enclosing the

point and within the intersection, meaning that the intersection is open.

Using the De Morgan Laws and the preceding paragraph, the remaining statement can be proved. ❑
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120 Example The intersection of an infinite number of open sets may not be open. For example

∞⋂
k=1

]
1− 1

n +1
;2− 1

n +1

[
=

[
1 ;2

[
,

which is neither open nor closed.

121 THEOREM (Characterisation of the Open Sets of R) A set A j R is open if an only if it is the countable union of open

sets of R.

2.4 Interior, Boundary, and Closure of a Set

122 Definition Let A jR. The interior of A is defined and denoted by

Å =
⋃

ΩjA
Ω open

Ω,

that is, the largest open set inside A. The points of Å are called the interior points of A.

123 Definition Let A jR. The closure of A is defined and denoted by

A =
⋃

ΩkA

Ω closed

Ω,

that is, the smallest closed set containing A. The points of A are called the adherence points of A.

☞One always has Å j A j A. A set U is open if and only if U = Ů . A set F is closed if and only if F = F .

124 Definition Let A jR. The boundary of A is defined and denoted by

Bdy(A) = A − Å.

The elements of Bdy (A) are called the boundary points of A.

125 Example We have

1.
�̊]
0 ;1

]
=

]
0 ;1

[
,

]
0 ;1

]
=

[
0 ;1

]
, Bdy

(]
0 ;1

])
= {0,1}

2. �̊{0,1} =∅, {0,1} = {0,1}, Bdy({0,1}) = {0,1}

3. Q̊=∅, Q=R, Bdy (Q) =R

126 THEOREM Let A jR. Then

R\ Å =R\ A, R\ A = �̊R\ A.

Proof: The theorem follows from the De Morgan Laws, as

R\ Å =R\
⋃

ΩjA
Ω open

Ω=
⋂

ΩjA
Ω open

(R\Ω) =
⋂

R\AjR\Ω
Ω open

(R\Ω) =
⋂

R\AjF

F closed

F =R\ A,

and

R\ A =R\
⋂

FkA

F closed

F =
⋃

FkA

F closed

(R\ F ) =
⋃

R\AkR\F

F closed

(R\ F ) =
⋂

R\AkΩ

Ω open

Ω= �̊R\ A.

❑
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127 THEOREM x ∈ A ⇐⇒ ∀Nx , Nx ∩ A 6=∅. That is, x is an adherent point if and only if every neighbourhood of x has a

nonempty intersection with A.

Proof: Assume x ∈ A and let r > 0. If
]

x−r ; x+r
[
∩A =∅, then

]
x−r ; x+r

[
jR\ A. Since

]
x−r ; x+r

[
is open,

we have—in particular—
]

x −r ; x +r
[
j �̊R\ A =R\ A by Theorem 126. This means that x 6∈ A, a contradiction.

Conversely, assume that for all neighbourhoods Nx of x we have Nx ∩ A 6= ∅. If x 6∈ A then x ∈ R \ A = �̊R\ A.

Since �̊R\ A is open there is an r ′ > 0 such that
]

x −r ′ ; x +r ′
[
j �̊R\ A jR\ A. But then

]
x −r ′ ; x +r ′

[
∩ A =∅, a

contradiction. ❑

128 THEOREM Let ∅& A jR be bounded above. Then sup A ∈ A. If, moreover, A is closed then sup(A) ∈ A.

Proof: Let r > 0. By Theorem 93, there exists a ∈ A such that sup(A)− r < a, which gives
∣∣sup(A)−a

∣∣ < r .

This shews that
]

sup A −r ;sup A +r
[
∩ A 6=∅ regardless of how small r > 0 might be and, hence, sup(A) ∈ A by

Theorem 127. If A is closed, then A = A. ❑

129 Definition Let A jR. A point x ∈ A is called an isolated point of A if there exists an r > 0 such that Bx (r )∩ A = {x}. The

set of isolated points of A is denoted by A∗.

A point y ∈R is called an accumulation point of A in R if

∀Nx , (Nx \ {x})∩ A 6=∅,

that is, if any neighbourhood of x meets A at a point different than x. The set of accumulation points of A is called the

derived set of A and is denoted by Acc (A).

130 Example We have

1. 0 is an isolated point of the set A = {0}∪
[

1 ;2
]

.

2. Every point of the set A =
{

1,
1

2
,

1

3
,. . .

}
is isolated. This is because we may take r = 1

2n+2
in the definition of isolated

point, and then
] 1

n
−

1

2n+2
;

1

n
+

1

2n+2

[
∩ A =

{
1

n

}
. Observe that

1

n
−

1

n +1
=

1

n(n +1)
and

1

n −1
−

1

n
=

1

n(n −1)
and

that 2n+2 > max(n(n +1),n(n −1)).

3. 0 is an accumulation point of A =
{

1,
1

2
,

1

3
,. . .

}
.

131 THEOREM x is an accumulation point of A if and only if every neighbourhood of x in R has an infinite number of points

of A.

Proof: Suppose x ∈ A′. Suppose a neighbourhood of x had only finitely many elements of A, say {y1, y2, . . . , yn }.

Take 2r = min
1≤k≤n

∣∣yk − x
∣∣. Then

(]
x −r ; x +r

[
\ {x}

)
∩ A =∅ contradicting the fact that every neighbourhood of x

meets A at a point different from x.

Conversely if every neighbourhood of x in R has an infinite number of points of A, then a fortiori, any intersection

of such a neighbourhood with A will contain a point different from x, and so x ∈ Acc(A). ❑

132 THEOREM A set is closed if and only if it contains all its accumulation points.
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Proof: If A is closed then R \ A is open. If c ∈ R \ A then there exists r > 0 such that
]

c − r ;c + r
[
j R \ A, a

neighbourhood that clearly does not contain any points of A, which means c 6∈ Acc (A).

Conversely, suppose a set Acc (A) j A. We will prove that R \ A is open. If x ∈ R \ A, then a fortiori, x 6∈ Acc(A).

This means that there is an r > 0 such that
]

x − r ; x + r
[
∩ A =∅. Hence

]
x − r ; x + r

[
j R \ A, and so R \ A is

open. ❑

☞One has

A∗ j A, A − A jAcc (A) , A∗∩Acc (A) =∅, A∗∪Acc (A) = A.

2.5 Connected Sets

133 Definition A set X jR is connected if, given open sets U ,V of R with U ∪V = X , U ∩V =∅, either U =∅ or V =∅.

134 THEOREM If X jR is connected, and if (a,c) ∈ X 2, b ∈R, are such that a < b < c then b ∈ X .

135 COROLLARY The only connected sets of R are the intervals. In particular, R is connected.

2.6 Compact Sets

136 Definition A sequence of open sets U1,U2, . . . is said to be an open cover for A jR if A j
∞⋃

n=1

Un . U1,U2, . . . has a subcover

Uk1 ,Uk2 , . . . of A if A j
∞⋃

n=1

Ukn
.

137 Definition A set of real numbers is said to be compact in R if every open cover of the set has a finite subcover.2

138 Example Since R=
⋃

n∈Z

]
n −1 ;n +1

[
, the sequence of intervals

]
n −1 ;n +1

[
, n ∈Z is a cover for R.

139 THEOREM Let a,b be real numbers with a ≤ b. The closed interval
[

a ;b
]

is compact in R.

Proof: Let U1,U2, . . . be an open cover for
[

a ;b
]

. Let E be the collection of all x ∈
[

a ;b
]

such that
[

a ; x
]

has a

finite subcover from the Ui . We will shew that b ∈ E .

Since a ∈
∞⋃

i=1

Ui , there exists Ur such that a ∈ Ur . Thus {a} =
[

a ; a
]
jUr and so E 6=∅. Clearly, b is an upper

bound for E . By the Completeness Axiom, sup E exists. We will shew that b = sup E .

By Theorem 128, sup E ∈
[

a ;b
]
j

∞⋃
i=1

Ui , hence there exists Us such that sup E ∈Us . Since Us is open, there exists

ε> 0 such that
]

sup E −ε ;sup E +ε
[
jUs . By Theorem 93 there is x ∈ E such that sup E −ε< x ≤ sup E . Thus

there is a finite subcover from the Ui , say, Up1 Up2 , . . . , Upn such that
[

a ; x
]
j

n⋃
i=1

Uki
.

We thus have [
a ;sup E

]
j

[
a ; x

]⋃]
sup E −ε ;sup E +ε

[
j

(
n⋃

i=1

Uki

)
∪Us ,

2This definition is appropriate for R but it is not valid in general. However, it very handy for one-variable calculus, hence we will retain it.
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a finite subcover. This means that sup E ∈ E .

Suppose now that sup E < b, and consider y = sup E + 1

2
min(b −sup E ,ε). Then

sup E < y,
[

a ; y
]
=

[
a ;sup E

]
∪

[
sup E ; y

]
j

(
n⋃

i=1

Uki

)
∪Us ,

whence y ∈ E , contradicting the definition of sup E . This proves that sup E = b and finishes the proof of the

theorem. ❑

140 THEOREM (Heine-Borel) A set A of R is closed and bounded if and only if it is compact.

Proof: Let A be closed and bounded in R, and let U1,U2, . . . , be an open cover for A. There exist (a,b) ∈R2, a ≤ b,

such that A j
[

a ;b
]

. Since
[

a ;b
]
j (R\ A)∪

∞⋃
i=1

Ui ,

by Theorem 139 there is a finite subcover of the Ui , say, Uki
such that

[
a ;b

]
j (R\ A)∪

∞⋃
i=1

Uki
.

Therefore

A = A ∩
[

a ;b
]
j

[
a ;b

]
j

∞⋃
i=1

Uki
,

and so A admits an open subcover.

Conversely, suppose that every open cover of A admits a finite subcover. The open cover
]
−n ;n

[
,n ∈R of A must

admit a finite subcover by our assumption, hence there is N ∈ N such that A j
]
− N ; N

[
, meaning that A is

bounded. Let us shew now that R\ A is open.

Let x ∈R\ A. We have

⋃
n≥1

(
R\

[
x −

1

n
; x +

1

n

])
=R\

⋂
n≥1

[
x −

1

n
; x +

1

n

]
=R\ {x} k A,

since x 6∈ A. By hypothesis there is N ∈N and n1,n2, . . . ,nN such that

A j
N⋃

k=1

(
R\

[
x −

1

nk
; x +

1

nk

])
jR\

[
x −

1

nm
; x +

1

nm

]
,

where m = max(n1,n2, . . . ,nN ). This gives
[

x −
1

nm
; x +

1

nm

]
j R \ A, meaning that R \ A is open, whence A is

closed.

❑

141 COROLLARY (Cantor’s Intersection Theorem) Let

[
a1 ;b1

]
k

[
a2 ;b2

]
k

[
a3 ;b3

]
k . . .

be a sequence of non-empty, bounded, nested closed intervals. Then

∞⋂
j=1

[
a j ;b j

]
6=∅.
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Proof: Assume that
[

a1 ;b1

]
∩

∞⋂
j=2

[
a j ;b j

]
=∅. Then

[
a1 ;b1

]
jR\

∞⋂
j=2

[
a j ;b j

]
=

∞⋃
j=2

(
R\

[
a j ;b j

])
.

The R\
[

a j ;b j

]
for an open cover for

[
a1 ;b1

]
, which is closed and bounded. By Theorem 7 we have

[
a j ; a j

]
j

[
ai ;bi

]
=⇒ R\

[
ai ;bi

]
jR\

[
a j ;b j

]
.

By the Heine-Borel Theorem 140 there is a finite subcover, say

[
a1 ;b1

]
j

N⋃
j=1

(
R\

[
an j ;bn j

])
jR\

[
anN ;bnN

]
.

But then
[

anN ;bnN

]
jR\

[
a1 ;b1

]
, which contradicts

[
anN ;bnN

]
j

[
a1 ;b1

]
, and the proof is complete.❑

142 THEOREM (Bolzano-Weierstrass) Ever bounded infinite set of R has at least one accumulation point.

Proof: Let A be a bounded set of R with Acc(A) =∅. Then A∗ = A = A. Notice that then every element of A is an

isolated point of A, and hence,

∀a ∈ A, ∃ra > 0, such that
]

a −ra ; a +ra

[
∩ A = {a}.

Observe that

A j
⋃

a∈A

]
a −ra ; a +ra

[
,

and so the
]

a −ra ; a +ra

[
form an open cover for A. Since A = A, A is closed. By the Heine-Borel Theorem 140 A

has a finite subcover from among the
]

a −ra ; a +ra

[
and so there exists an integer N > 0 and ai such that

A j
N⋃

i=1

]
ai −rai ; ai +rai

[
.

Since

A = A ∩
N⋃

i=1

]
ai −rai ; ai +rai

[
=

N⋃
i=1

{ai },

A has only N elements and thus it is finite. ❑

143 THEOREM Let X jR. Then the following are equivalent.

1. X is compact.

2. X is closed and bounded.

3. every infinite set of X has an accumulation point.

4. every infinite sequence of X has a converging subsequence in X .

Homework

Problem 2.6.1 Give an example shewing that the union of an infi-

nite number of closed sets is not necessarily closed.

Problem 2.6.2 Prove that a set A jR is dense if and only if A =R.

Problem 2.6.3 For any set A jR prove that Bdy(A) = Bdy(R \ A).
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Problem 2.6.4 Let A 6=∅ be a subset ofR. Assume that A is bounded

above. Prove that sup(A) = sup(A).

Problem 2.6.5 Demonstrate that the only subsets of R which are si-

multaneously open and closed in R are ∅ and R. One codifies this by

saying that R is connected.

Problem 2.6.6 Prove that the closed additive subgroups of the real

numbers are (i) just zero; or (ii) all integral multiples of a fixed non-

zero number (which may be assumed positive); or (iii) or all reals.

Problem 2.6.7 Let A ∈R. Prove the following

1. A = A

2.
˚̊
A = Å

3. A jB =⇒ A jB

4. A jB =⇒ Å j B̊

5. A ∪B = A ∪B

6. A ∩B j A ∩B

7. Å ∪ B̊ j �̊A ∪B

8. �̊A ∩B = Å ∩ B̊

2.7 R

Why bother? The algebraic rules introduced here will simplify some computations and statements in subse-

quent chapters.

Geometrically, each real number can be viewed as a point on a straight line. We make the convention that we orient the real

line with 0 as the origin, the positive numbers increasing towards the right from 0 and the negative numbers decreasing

towards the left of 0, as in figure 2.1.

0 1 2 3 4 5 6 70-1-2-3-4-5-6-7
+∞−∞

Figure 2.1: The Real Line.

We append the object +∞, which is larger than any real number, and the object −∞, which is smaller than any real

number. Letting x ∈R, we make the following conventions.

(+∞)+ (+∞)=+∞ (2.1)

(−∞)+ (−∞)=−∞ (2.2)

x + (+∞) =+∞ (2.3)

x + (−∞) =−∞ (2.4)

x(+∞) =+∞ if x > 0 (2.5)

x(+∞) =−∞ if x < 0 (2.6)

x(−∞) =−∞ if x > 0 (2.7)

x(−∞) =+∞ if x < 0 (2.8)

x

±∞
= 0 (2.9)

Observe that we leave the following undefined:

±∞
±∞

, (+∞)+ (−∞), 0(±∞).

144 Definition We denote by R =
[
−∞ ;+∞

]
the set of real numbers such with the two symbols −∞ and +∞ appended,

obeying the algebraic rules above. Observe that then every set in R has a supremum (it may as well be +∞ if the set is

unbounded by finite numbers) and an infimum (which may be −∞).
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2.8 Lebesgue Measure

145 Definition Let (a,b) ∈ R
2. The measure of the open interval

]
a ;b

[
is b − a. We denote this by µ

(]
a ;b

[)
= b − a. If

G =
∞⋃

k=1

]
ak ;bk

[
is a union of disjoint, bounded, open intervals, then µ(G) =

∞∑
k=1

(bk −ak ).

146 Definition Let E jR be a bounded set. The outer measure of E is defined and denoted by

µ(E ) = inf
EjO

O open

µ(O) .

147 Definition A set E j R is said to be Lebesgue measurable if ∀ε > 0, ∃G k E open such that µ(G \ E ) < ε. In this case

µ(E ) =µ(E ).

2.9 The Cantor Set

148 Definition (The Cantor Set) The Cantor set C is the canonical example of an uncountable set of measure zero. We

construct C as follows.

Begin with the unit interval C0 =
[

0 ;1
]

, and remove the middle third open segment R1 :=
]1

3
;

2

3

[
. Define C1 as

C1 :=C0 \ R1 =
[

0 ;
1

3

]⋃[2

3
;1

]
(2.10)

Iterate this process on each remaining segment, removing the open set

R2 :=
]1

9
;

2

9

[⋃]7

9
;

8

9

[
(2.11)

to form the four-interval set

C2 :=C1 \ R2 =
[

0 ;
1

9

]⋃[2

9
;

1

3

]⋃[2

3
;

7

9

]⋃[8

9
;1

]
(2.12)

Continue the process, forming C3,C4, . . . Note that Ck has 2k pieces.

At each step, the endpoints of each closed segment will remain in the set. See figure 2.2.

The Cantor set is defined as

C :=
∞⋂

k=1

Ck =C0 \
∞⋃

n=1

Rn (2.13)

C0
0 1

C1
0 11

3
2
3

C2
0 11

3
2
3

1
9

2
9

7
9

8
9

...
...

Figure 2.2: Construction of the Cantor Set.
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149 THEOREM (Cardinality of the Cantor Set) The Cantor Set is uncountable.

Proof: Starting with the two pieces of C1, we mark the sinistral segment “0” and the dextral segment “1”. We then

continue to C2, and consider only the leftmost pair. Again, mark the segments “0” and “1”, and do the same for

the rightmost pair. Successively then, mark the 2k−1 leftmost segments of Ck “0” and the 2k−1 rightmost segments

“1.” The elements of the Cantor Set are those with infinite binary expansions. Since there uncountable many such

expansions, the Cantor Set in uncountable.❑

150 THEOREM (Measure of the Cantor Set) The Cantor Set has (Lebesgue) measure 0.

Proof: Using the notation of Definition 148, observe that

µ(R1) =
2

3
−

1

3
=

1

3
(2.14)

µ(R2) =
(

2

9
− 1

9

)
+

(
8

9
− 7

9

)
= 2

9
(2.15)

... (2.16)

µ(Rk ) =
k∑

n=1

2n−1

3n
(2.17)

Since the R ’s are disjoint, the measure of their union is the sum of their measures. Taking the limit as k →∞,

µ

( ∞⋃
n=1

Rn

)
=

∞∑
n=1

2n−1

3n
= 1. (2.18)

Since clearly µ(C0) = 1, we then have

µ(C ) =µ

(
C0 \

∞⋃
n=1

Rn

)
=µ(C0)−

∞∑
n=1

1

2n
= 1−1 = 0. (2.19)

❑

151 THEOREM The Cantor set is closed and its interior is empty.

Proof: Each of C0,C1,C2, . . ., is closed, being the union of a finite number of closed intervals. Thus the Cantor Set

is closed, as it is the intersection of closed sets.

Now, let I be an open interval. Since the numbers of the form
m

3n
, (m,n) ∈Z are dense in the reals, there is exists

a rational number
m

3n
∈ I . Expressed in ternary, this rational number has a finite expansion. If this expansion

contains the digit “1”, then this number does not belong to Cantor Set, and we are done. If not, since I is open,

there must exist a number k > n such that
m

3n
+ 1

3k
∈ I . By construction, the last digit of the ternary expansion of

this number is also “1”, and hence this number does not belong to the Cantor Set either.❑
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Sequences

3.1 Limit of a Sequence

Why bother? The limit concept is at the centre of calculus. We deal with discrete quantities first, that is, with

limits of sequences.

152 Definition A (numerical) sequence is a function a : N→R. We usually denote a(n) by an .1

☞We will use the notation {an }l
n=k

to denote the sequence ak , ak+1 . . . , al . For example

{an }10
n=0 = {a0, a1, a2, . . . , a10},

{bn }6
n=4 = {b4,b5,b6},

{(
1+ 1

n

)n}+∞

n=1
= {2,

9

4
,

64

27
,. . . ,},

etc.

153 Example The Harmonic sequence is

1,
1

2
,

1

3
, . . . ,

or an = 1

n
for n ≥ 1.

154 Definition A sequence {an}+∞n=1 is bounded if there exists a constant K > 0 such that ∀n, |an | ≤ K . It is increasing if for

all n > 0, an ≤ an+1 and decreasing if for all n ≥ 0, an ≥ an+1.

3.2 Convergence of Sequences

155 Definition A sequence {an}+∞n=1 is said to converge if

∃L ∈R,∀ε> 0, ∃N > 0 such that ∀n ∈N, n ≥ N =⇒ |an −L| < ε.

In other words, eventually2 the differences

|an −L| , |an+1−L| , |an+2−L| , . . .

remain smaller that an arbitrarily prescribed small quantity. We denote the fact that the sequence {an}+∞n=1 converges to L

as n →+∞ by

lim
n→+∞

an = L, or by an → L as n →+∞.

1It is customary to start at n = 1 rather than n = 0. We won’t be too fuzzy about such complications, but we will be careful to write sense.
2A good word to use in informal speech “eventually” will mean “for large enough values” or in the case at hand ∀n ≥ N for some strictly positive integer

N .
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A sequence that does not converge is said to diverge. Thus a sequence diverges if

∀L ∈R,∃ε> 0,∀N ∈N,∃n ∈N such that n > N and |an −L| ≥ ε.

☞Given a sequence sequence {an }+∞n=1 and L ∈R,

an → L as n →+∞ ifandonlyif lim inf an = lim sup an = lim an = L.

156 Definition A sequence {bn }+∞n=1diverges to plus infinity if ∀M > 0, ∃N > 0 such that ∀n ≥ N , bn > M . A sequence

{cn }+∞n=1diverges to minus infinity if ∀M > 0, ∃N > 0 such that ∀n ≥ N , cn < −M . A sequence that diverges to plus or

minus infinity is said to properly diverge. Otherwise it is said to oscillate.

157 Definition Given a sequence {an}+∞n=1, we say that lim
n→+∞

an exists it is either convergent or properly divergent.

158 Example The constant sequence

1,1,1,1, . . .

converges to 1. Similarly, if a sequence is eventually stationary, that is, constant, it converges to that constant.

159 Example Consider the sequence

1,
1

2
,

1

3
,. . . ,

1

n
, . . . ,

We claim that
1

n
→ 0 as n → +∞. Suppose we wanted terms that get closer to 0 by at least .00001 = 1

105
. We only need

to look at the 100000-term of the sequence:
1

100000
= 1

105
. Since the terms of the sequence get smaller and smaller, any

term after this one will be within .00001 of 0. We had to wait a long time—till after the 100000-th term—but the sequence

eventually did get closer than .00001 to 0. The same argument works for any distance, no matter how small, so we can

eventually get arbitrarily close to 0. A rigorous proof is as follows. If ε > 0 is no matter how small, we need only to look at

the terms after N = T
1

ε
+1U to see that, indeed, if n > N , then

sn = 1

n
< 1

N
= 1

T 1
ε +1U

< ε.

Here we have used the inequality

t −1 < TtU≤ t , ∀t ∈R.

160 Example The sequence

0,1,4,9,16,. . . ,n2, . . .

diverges to +∞, as the sequence gets arbitrarily large. A rigorous proof is as follows. If M > 0 is no matter how large, then

the terms after N = T
p

MU+1 satisfy (n > N )

tn = n2 > N 2 = (T
p

MU+1)2 > M .

161 Example The sequence

1,−1,1,−1,1,−1,. . . , (−1)n , . . .

has no limit (diverges), as it bounces back and forth from −1 to +1 infinitely many times.

162 Example The sequence

0,−1,2,−3,4,−5,. . . , (−1)n n, . . . ,

has no limit (diverges), as it is unbounded and alternates back and forth positive and negative values..

We will now see some properties of limits of sequences.
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163 THEOREM (Uniqueness of Limits) If an → L and an → L′ as n →+∞ then L = L′.

Proof: The statement only makes sense if both L and L′ are finite, so assume so. If L 6= L′, take ε= |L −L′|
2

> 0 in

the definition of convergence. Now

lim
n→+∞

an = L =⇒ ∃N1 > 0, ∀n ≥ N1 |an −L| < ε,

lim
n→+∞

an = L′ =⇒ ∃N2 > 0, ∀n ≥ N2

∣∣an −L′∣∣< ε.

If n > max(N1, N2) then by the Triangle Inequality (Theorem 76) then

∣∣L −L′∣∣≤ |L −an |+
∣∣an −L′∣∣< 2ε=

∣∣L −L′∣∣ ,

a contradiction, so L = L′. ❑

164 THEOREM Every convergent sequence is bounded.

Proof: Let {an}+∞n=1 converge to L. Using ε= 1 in the definition of convergence, ∃N > 0 such that

n ≥ N =⇒ |an −L| < 1 =⇒ L −1 < an < L +1,

hence, eventually, an does not exceed L +1. ❑

| | | | | | |
x0 x1 x2 . . .

xn . . .
s

Figure 3.1: Theorem ??.

When is it guaranteed that a sequence of real numbers has a limit? We have the following result.

165 THEOREM Every bounded increasing sequence {an}+∞n=0 of real numbers converges to its supremum. Similarly, every

bounded decreasing sequence of real numbers converges to its infimum.

Proof: The idea of the proof is sketched in figure 3.1. By virtue of Axiom 92, the sequence has a supremum s.

Every term of the sequence satisfies an ≤ s. We claim that eventually all the terms of the sequence are closer to s

than a preassigned small distance ε> 0. Since s −ε is not an upper bound for the sequence, there must be a term

of the sequence, say an0 with s−ε≤ an0 by virtue of the Approximation Property Theorem 93. Since the sequence

is increasing, we then have

s −ε≤ an0 ≤ an0+1 ≤ an0+2 ≤ an0+2 ≤ . . . ≤ s,

which means that after the n0-th term, we get to within ε of s.

To obtain the second half of the theorem, we simply apply the first half to the sequence {−an}+∞n=0. ❑

166 THEOREM (Order Properties of Sequences) Let {an}+∞n=1 be a sequence of real numbers converging to the real number

L. Then

1. If a < L then eventually a < an .

2. If L < b then eventually an < b.

3. If a < L < b then eventually a < an < b.

4. If eventually an ≥ a then L ≥ a.
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5. If eventually an ≤ b then L ≤ b.

6. If eventually a ≤ an ≤ b then a ≤ L ≤ b.

Proof: We apply the definition of convergence repeatedly.

1. Taking ε= L −a in the definition of convergence, ∃N1 > 0 such that

∀n ≥ N1, |an −L| < L −a =⇒ ∀n ≥ N1, a −L < an −L < L −a =⇒ ∀n ≥ N1, a < an ,

that is, eventually a < an .

2. Taking ε= b −L in the definition of convergence, ∃N2 > 0 such that

∀n ≥ N2, |an −L| < b −L =⇒ ∀n ≥ N2, L −b < an −L < b −L =⇒ ∀n ≥ N2, an < b,

that is, eventually an < b.

3. It suffices to take N = max(N1, N2) above.

4. If, to the contrary, L > a, then by part (1) we will eventually have an > a, a contradiction.

5. If, to the contrary, L < b, then by part (2) we will eventually have an < b, a contradiction.

6. If either L < a or b < L we would obtain a contradiction to parts (4) or (5).

❑

167 THEOREM (Sandwich Theorem) Let {an}+∞n=1, {un }+∞n=1, {vn}+∞n=1 be sequences of real numbers such that eventually

un ≤ an ≤ vn .

If for L ∈R, un → L and vn → L then an → L.

Proof: For all ε> 0 there are N1 > 0, N2 > 0 such that

∀n ≥ max(N1, N2), |un −L| < ε, |vn −L| < ε =⇒ −ε< un −L < ε, −ε< vn −L < ε.

Thus for such n,

−ε< un −L ≤ an −L ≤ vn −L < ε, =⇒ −ε< an −L < ε =⇒ |an −L| < ε,

from where {an}+∞n=1 converges to L. ❑

168 THEOREM Let {an}+∞n=1 be a sequence of real numbers such that an → L. Then |an |→ |L|.

Proof: From Corollary 77, we have the inequality ||an |− |L|| ≤ |an −L| from where the result follows. ❑

169 THEOREM Let {an}+∞n=1 be a sequence of real numbers such that an → 0, and let {bn }+∞n=1 be a bounded sequence. Then

an bn → 0.

Proof: Eventually |an | < ε. Assume that eventually |bn | ≤U . Then

|an bn | ≤U |an | <Uε,

from where the result follows. ❑

170 THEOREM If bn → l 6= 0 then bn is eventually different from 0 and
1

bn
→ 1

l
.
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Proof: By Theorem 169, |bn |→ |l |. Using ε= |l |
2

> 0 in the definition of convergence, we have that eventually

||bn |− |l || < |l |
2

=⇒ |l |− |l |
2

< |bn | < |l |+ |l |
2

=⇒ |l |
2

< |bn | ,

That is, eventually |bn | is strictly positive and so
1

bn
makes sense. Also, eventually,

1

|bn |
< 2

|l |
Now, for sufficiently

large n, ∣∣∣∣
1

bn
−

1

l

∣∣∣∣=
∣∣∣∣

l −bn

|bn ||l |

∣∣∣∣=
|bn − l |
|bn | |l |

<
2ε

|l | |l | ,

from where the result follows.❑

171 THEOREM (Algebraic Properties of Sequences) Let k ∈R. If {an}+∞n=1 converges to L and {bn }+∞n=1 converges to L′ then

lim
n→+∞

(k an +bn ) = kL +L′, lim
n→+∞

(an bn ) = LL′.

Moreover, if L′ 6= 0 then

lim
n→+∞

(
an

bn

)
= L

L′ .

Proof: The trick in all these proofs is the following observation: If one multiplies a bounded quantity by an

arbitrarily small quantity, one gets an arbitrarily small quantity. Hence once considers the absolute value of the

desired terms of the sequence from the expected limit.

Given ε> 0 there are N1 > 0 and N2 > 0 such that |an −L| < ε and
∣∣bn −L′∣∣< ε. Then

∣∣(k an +bn )− (kL +L′)
∣∣=

∣∣(k an −kL)+ (bn −L′)
∣∣≤ |k | |an −L|+

∣∣bn −L′∣∣< ε(k +1),

and so the sinistral side is arbitrarily close to 0, establishing the first assertion.

For the product, observe that by Theorem 164 there exists a constant K > 0 such that |bn | < K . Hence

∣∣an bn −LL′∣∣=
∣∣(an −L)bn +L(bn −L′)

∣∣≤ |an −L| |bn |+ |L|
∣∣bn −L′∣∣< εK +|L|ε= ε(K +|L|),

and again, the sinistral side is made arbitrarily close to 0.

Finally, if L′ 6= 0 then by Theorem 170, bn is eventually 6= 0 and
1

bn
→

1

L′ . We now simply apply the result we

obtained for products, giving

an bn → L

(
1

L′

)
= L

L′ .

❑

Homework

Problem 3.2.1 If∀n > 0, an > 0 and {an }+∞n=1 converges to L must

it be the case that L > 0?

Problem 3.2.2 Prove that if an → +∞ and if {bn }+∞n=1 is bounded,

then an +bn →+∞.

Problem 3.2.3 Prove that if an → +∞ and bn → +∞ is bounded,

then an +bn →+∞.

Problem 3.2.4 Prove that if an →+∞ and if there exists K > 0 such

that eventually bn ≥ K , then an bn →+∞.

Problem 3.2.5 Prove that if an → +∞ and bn → +∞ is bounded,

then an bn →+∞.

Problem 3.2.6 Prove that if an → +∞ and if {bn }+∞n=1 is bounded,

then an +bn →+∞.
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Problem 3.2.7 Prove that if an →+∞ then
1

an
→ 0.

Problem 3.2.8 Prove that if an → 0 and if eventually an > 0, then
1

an
→+∞.

Problem 3.2.9 Prove that
n∑

i=1

n

n2 + i
→ 1 as n →+∞.

Problem 3.2.10 Prove that
1

(n!)1/n
→ 0.

Problem 3.2.11 Prove that
2n

n!
→ 0.

Problem 3.2.12 Let x1, x2, . . . be a bounded sequence of real num-

bers, and put sn = x1 + x2 + ·· · + xn . Suppose that
sn2

n2
→ 0. Prove

that
sn

n
→ 0.

Problem 3.2.13 Prove rigorously that the sequence {sinn}+∞n=0 is di-

vergent.

Problem 3.2.14 Prove that (n!)1/n →+∞ as n →+∞.

Problem 3.2.15 A sequence of real numbers a1, a2, . . . satisfies, for

all m,n, the inequality

|am +an −am+n | ≤
1

m +n
.

Prove that this sequence is an arithmetic progression.

Problem 3.2.16 Prove rigorously that
p

n +1−
p

n → 0 as n →+∞.

Problem 3.2.17 Prove that the sequence Hn = 1+ 1

2
+ 1

3
+ ·· · + 1

n
diverges to +∞.

Problem 3.2.18 Find

lim
K→+∞

K∑

n=1

p
(n −1)!

(1+
p

1)(1+
p

2)(1+
p

3) · · · (1+
p

n)
.

Problem 3.2.19 What reasonable meaning can be given to

√

1+
√

1+
√

1+
p
··· ?

Problem 3.2.20 Prove that

1+2+·· · +n

n2
→

1

2
, as n →+∞.

Problem 3.2.21 Calculate the following limits:

1. lim
n→+∞

(
12

n2
+ 22

n2
+·· · + (n −1)2

n2

)
,

2. lim
n→+∞

(
1

1 ·2
+

1

2 ·3
+·· · +

1

n(n +1)

)
,

3. lim
n→+∞

(
1

1 ·2 ·3
+

1

2 ·3 ·4
+·· ·+

1

n(n +1)(n +2)

)
,

Problem 3.2.22 What reasonable meaning can be given to

1

1+
1

1+
1

1+ 1

...

?

Problem 3.2.23 Let K ∈ N \ {0}, and let a1, . . . , aK ,λ1, . . . ,λK be

strictly positive real numbers. Prove that

lim
n→+∞

(
K∑

k=1

λk an
k

)1/n

= max
1≤k≤K

ak , lim
n→+∞

(
K∑

k=1

λk a−n
k

)−1/n

= min
1≤k≤K

ak .

Problem 3.2.24 Prove that if

{
an

bn

}+∞

n=1
is a monotonic sequence,

then the

{
a1 +a2 +·· · +an

b1 +b2 +·· · +bn

}+∞

n=1
is also monotonic in the same

sense.

Problem 3.2.25 Let a,b,c be real numbers such that b2 −4ac < 0.

Let {Xn }+∞n=1, {Yn }+∞n=1 be sequences of real numbers such that

a X 2
n +bXn Yn +cY 2

n → 0, as n →+∞.

Prove that Xn → 0 and Yn → 0 as n →+∞.

Problem 3.2.26 (Gram’s Product) Prove that

lim
n→+∞

n∏

k=2

k3 −1

k3 +1
= 2

3
.

Problem 3.2.27 Prove that the sequence {xn }+∞n=1 with xn = 1+
1

22
+

1

32
+·· ·+ 1

n2
satisfies xn ≤ 2− 1

n
for n ≥ 1. Hence deduce that it con-

verges.

Problem 3.2.28 Prove the convergence of the sequence xn =
n∑

k=1

1

n +k
, n ≥ 1.

Problem 3.2.29 Prove the convergence of the sequence, x1 = a, x2 =
b, xn+1 = xn +xn−1

2
, n ≥ 2 and (a,b) ∈ R2, a 6= b. Also, find its

limit.

Problem 3.2.30 Prove the convergence of the sequence, x1 = a,

xn+1 = 1

2

(
xn + b

xn

)
, n ≥ 1 and (a,b) ∈R2, a > 0,b > 0. Also, find its

limit.

Problem 3.2.31 Prove the convergence of the sequence, x1 = a,

xn+1 = 1

2

(
xn + b

xn

)
, n ≥ 1 and (a,b) ∈R2, a < 0,b > 0. Also, find its

limit.
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Problem 3.2.32 Let (a,b) ∈ R2, a > b > 0. Set a1 =
a +b

2
, b1 =

p
ab. If for n > 1,

an+1 =
an +bn

2
, bn =

√
an bn ,

Prove that

1. {an }+∞n=1 is monotonically decreasing,

2. {bn }+∞n=1 is monotonically inreasing,

3. both sequences converge,

4. their limits are equal.

3.3 Classical Limits of Sequences

Why bother? In this section we will obtain various classical limits. In particular, we define the constant e and

obtain a few interesting results about it.

172 THEOREM Let r ∈R be fixed. If |r | < 1 then r n → 0 as n →+∞. If |r | > 1 then r n →+∞ as n →+∞.

Proof: Taking x =
∣∣∣∣

1

r

∣∣∣∣−1 in Bernoulli’s Inequality (Theorem 81), we find

∣∣∣∣
1

r

∣∣∣∣
n

> 1+n

(∣∣∣∣
1

r

∣∣∣∣−1

)
> n

(∣∣∣∣
1

r

∣∣∣∣−1

)
.

Therefore

|r |n < |r |
n(1−|r |)

→ 0,

as n →+∞, since
1

n
→ 0 as n →+∞.

If |r | > 1, again by Bernoulli’s Inequality

|r |n = (1+|r |−1)n > 1+n(|r |−1),

and the dextral side can be made arbitrarily large.❑

173 THEOREM Let |r | < 1. Then

1+r +r 2 +·· ·+r n → 1

1−r
, as n →+∞.

Proof: If Sn = 1+r +r 2 +·· ·+r n then r Sn = r +r 2 +r 3 ++·· ·+r n+1 and

Sn −r Sn = 1−r n+1 =⇒ Sn = 1−r n+1

1−r
.

Then apply Theorem 172. ❑

☞ An estimating trick that we will use often is the following. If 0 < r < 1 then the truncated sum is smaller than the infinite

sum and so, for all positive integers k :

1+r +r 2 +·· · +r k < 1+r +r 2 +·· · + ·· · = 1

1−r
.

174 THEOREM Let a ∈R, a > 0, be fixed. Then a1/n → 1 as n →+∞.

Proof: If a > 1 then a1/n > 1 and by Bernoulli’s Inequality,

a = (1+ (a1/n −1))n > 1+n(a1/n −1) =⇒ 0 ≤ a1/n −1 < a −1

n
,

whence a1/n −1 → 0 as n →+∞.
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If 0 < a < 1 then b = 1

a
> 1 and so by what we just proved,

b1/n → 1 =⇒ 1

a1/n
→ 1 =⇒ a1/n → 1,

proving the theorem.❑

175 THEOREM Let a ∈R, a > 1, k ∈N\ {0}, be fixed. Then
an

nk
→+∞ as n →+∞.

Proof: Observe that a1/k > 1. We have, using the Binomial Theorem,

(
a1/k

)n
=

(
1+ (a1/k −1)

)n
=

n∑
i=0

(
n

i

)
(a1/k −1)i .

Since each term of the above expansion is ≥ 0, we gather that

(
a1/k

)n
≥ n(n −1)

2
(a1/k −1)2 =⇒

(
a1/k

)n

n
≥ (n −1)

2
(a1/k −1)2 =⇒

(
a1/k

)n

n
→+∞ =⇒ an

nk
→+∞,

as desired. ❑

☞ In particular
2n

n
→+∞ as n →+∞.

176 THEOREM Let a ∈R, , be fixed. Then
an

n!
→ 0 as n →+∞.

Proof: Put N = T|a|U+1 and let n ≥ N . Then

∣∣∣∣
an

n!

∣∣∣∣=
( |a|

1
·
|a|
2

· · ·
|a|
N

)( |a|
N +1

·
|a|

N +2
· · ·

|a|
n

)
≤

( |a|N
N !

)(
1 ·1 · · ·1 ·

|a|
n

)
→ 0,

as n →+∞. ❑

177 THEOREM The sequence

en =
(

1+ 1

n

)n

,n = 1,2,. . .

is a bounded increasing sequence, and hence it converges to a limit, which we call e. Also, for all strictly positive integers n,(
1+ 1

n

)n

< e.

Proof: By Theorem 80

bn+1 −an+1

b −a
≤ (n +1)bn =⇒ bn [(n +1)a −nb]< an+1.

Putting a = 1+ 1

n +1
, b = 1+ 1

n
we obtain

en =
(

1+ 1

n

)n

<
(

1+ 1

n +1

)n+1

= en+1,

whence the sequence en ,n = 1,2,. . . increases. Again, by putting a = 1, b = 1+ 1

2n
we obtain

(
1+ 1

2n

)n

< 2 =⇒
(

1+ 1

2n

)2n

< 4 =⇒ e2n < 4.

Since en < e2n < 4 for all n, the sequence is bounded above. In view of Theorem 165 the sequence converges to

a limit. We call this limit e. It follows also from this proof and from Theorem 166 that for all strictly positive

integers n,

(
1+ 1

n

)n

< e. ❑
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☞ Another way of obtaining

(
1+ 1

n

)n

<
(

1+ 1

n +1

)n+1

is as follows. Using the AM-GM Inequality with x1 = 1, x2 = ·· · =

xn+1 = 1+
1

n
we have

(
1+

1

n

)n/(n+1)

<
1+n

(
1+ 1

n

)

n +1
=⇒

(
1+

1

n

)n/(n+1)

<
n +2

n +1
=

(
1+

1

n +1

)

from where the desired inequality is obtained.

178 THEOREM The sequence

{(
1+ 1

n

)n+1}+∞

n=1

is strictly decreasing and

(
1+ 1

n

)n+1

→ e. Also, for all strictly positive inte-

gers n,

(
1+ 1

n

)n+1

> e.

Proof: By Theorem 80

bn+1 −an+1

b −a
≥ (n +1)an .

Putting a = 1+ 1

n +1
, b = 1+ 1

n
we obtain

(
1+ 1

n

)n+1

>
(

1+ 1

n +1

)n+2 (
n3 +4n2 +4n +1

n(n +2)2

)
.

The result will follow as long as

(
n3 +4n2 +4n +1

n(n +2)2

)
> 1. But

n(n +2)2 = n(n2 +4n +4) = n3 +4n2 +4n < n3 +4n2 +4n +1 =⇒ n3 +4n2 +4n +1

n(n +2)2
> 1.

Thus the sequence is a sequence of strictly decreasing sequence of real numbers. Putting a = 1, b = 1 + 1

n
in

bn+1 −an+1

b −a
≥ (n +1)an we get

(
1+

1

n

)n+1

> 1+n(n +1) > 2,

so the sequence is bounded below. In view of Theorem 165 the sequence converges to a limit L. To see that L = e

observe that (
1+ 1

n

)n+1

=
(

1+ 1

n

)n (
1+ 1

n

)
→ e ·1 = e.

It follows also from this proof and from Theorem 166 that for all strictly positive integers n,

(
1+ 1

n

)n+1

> e. ❑

☞ The inequality

(
1+

1

n +1

)n+2

<
(

1+
1

n

)n+1

can be obtained by the Harmonic Mean-Geometric Mean Inequality by

putting x1 = 1, x2 = x2 = ·· · = xn+2 = 1+
1

n

n +2
1

x1
+ 1

x2
+·· · + 1

xn+2

≤ (x1x2 · · ·xn+2)1/(n+2) =⇒
n +2

1+ (n +1)
( n

n +1

) <
(

1+
1

n

)(n+1)/(n+2)

.

179 THEOREM 2< e < 3.

Proof: By the Binomial Theorem (
1+

1

n

)n

=
n∑

k=0

(
n

k

)
·

1

nk
.
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Now, for 2 ≤ k ≤ n,

(
n

k

)
· 1

nk
= 1

k !
· n(n −1)(n −2) · · · (n −k +1)

nk
= 1

k !
· (1) ·

(
1− 1

n

)(
1− 2

n

)
·
(

1− k −1

n

)
≤ 1

2 ·3 · · ·k
≤ 1

2k−1
.

Thus

(
1+ 1

n

)n

=
n∑

k=0

(
n

k

)
· 1

nk
≤ 1+1+ 1

2
+ 1

4
+·· ·+ 1

2n−1
< 1+1+ 1

2
+ 1

4
+·· ·+ 1

2n−1
+·· · < 1+2 = 3,

by Theorem 173 (with r = 1

2
), and so the dextral inequality is proved. The sinistral inequality follows from Theo-

rem 177. ❑

☞ e = 2.718281828459045235360287471352 . . . .

180 THEOREM e = lim
n→+∞

(
1+

1

1!
+

1

2!
+

1

3!
+·· ·+

1

n!

)
.

Proof: Put yk = 1+ 1

1!
+ 1

2!
+ 1

3!
+·· ·+ 1

k !
. Clearly yk+1 > yk so that

{
yk

}+∞
k=1 is an increasing sequence. We will

prove that it is bounded above with supremum e. By the Binomial Theorem

(
1+ 1

n

)n

=
n∑

j=0

(
n

j

)
· 1

n j
= 1+

(
n

1

)
1

n
+·· ·+

(
n

k

)
1

nk
+·· ·+

(
n

n

)
1

nn
≥ 1+

(
n

1

)
1

n
+·· ·+

(
n

k

)
1

nk
,

for 0 < k < n. Now let j be fixed, 0 < j < n. Taking limits as n →+∞,

(
n

j

)
· 1

n j
= 1

j !
· n(n −1)(n −2) · · · (n −k +1)

n j
= 1

j !
· (1) ·

(
1− 1

n

)(
1− 2

n

)
·
(

1− j −1

n

)
=⇒ lim

n→+∞

(
n

j

)
· 1

n j
= 1

j !
.

Hence, taking limits as n →+∞,

(
1+ 1

n

)n

≥ 1+
(

n

1

)
1

n
+·· ·+

(
n

k

)
1

nk
=⇒ e ≥ 1+ 1

1!
+ 1

2!
+ 1

3!
+·· ·+ 1

k !
= yk ,

or renaming,

e ≥ 1+
1

1!
+

1

2!
+

1

3!
+·· ·+

1

n!
= yn . (3.1)

Moreover, since

(
n

k

)
· 1

nk
= 1

k !
· (1) ·

(
1− 1

n

)(
1− 2

n

)
·
(

1− k −1

n

)
≤ 1

2 ·3 · · ·k
≤ 1

k !
, we have

(
1+ 1

n

)n

= 1+
(

n

1

)
1

n
+·· ·+

(
n

k

)
1

nk
+·· ·+

(
n

n

)
1

nn

≤ 1+
1

1!
+·· ·+

1

k !
+·· ·+

1

n!
= yn . (3.2)

In conclusion, from 3.1 and 3.2 we get (
1+ 1

n

)n

≤ yn ≤ e,

and by taking limits and using the Sandwich Theorem, we get that yn → e as n →+∞. ❑

181 LEMMA Let n,m be strictly positive integers and let 1+ 1

1!
+ 1

2!
+ 1

3!
+·· ·+ 1

n!
= yn . Then ym+n − yn < 1

n ·n!
.
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Proof: We have

ym+n − yn = 1

(n +1)!
+ 1

(n +2)!
+ 1

(n +3)!
+·· ·+ 1

(n +m)!

< 1

(n +1)!

(
1+ 1

n +2
+ 1

(n +2)2
· · ·+ 1

(n +2)m−1

)

<
1

(n +1)!

(
1+

1

n +2
+

1

(n +2)2
+·· ·+ ·· ·

)

=
1

(n +1)!




1

1− 1

n +2




= 1

(n +1)!
· n +2

n +1
.

Here the second inequality follows by using the estimating trick deduced from Theorem 173. Observe that this

bound is independent of m. ❑

182 LEMMA Let 1+
1

1!
+

1

2!
+

1

3!
+·· ·+

1

n!
= yn . Then 0< e − yn <

1

n!n
.

Proof: From Lemma 181,

0 < ym+n − yn <
1

(n +1)!
·

n +2

n +1
.

Taking the limit as m →+∞ we deduce

0 < e − yn ≤ 1

(n +1)!
· n +2

n +1
.

(The first inequality is strict by Theorem 180.) We only need to shew that for integer n ≥ 1

1

(n +1)!
· n +2

n +1
< 1

n!n
.

But working backwards (which we are allowed to do, as all quantities are strictly positive),

1

(n +1)!
· n +2

n +1
< 1

n!n
⇐ n!n(n +2) < (n +1)!(n +1)

⇐ n(n +2) < (n +1)(n +1)

⇐ n2 +2n < n2 +2n +1

⇐ 0 < 1,

and the theorem is proved. ❑

183 THEOREM e is irrational.

Proof: Assume e is rational, with e = p

q
, where p and q are positive integers and the fraction is in lowest terms.

Since qe = p, an integer, q !e must also be an integer. Also q !yq must be an integer, since

q !yq = q !

(
1+ 1

1!
+ 1

2!
+ 1

3!
+·· ·+ 1

q !

)
.

But by Lemma 182,

0< e − yq < 1

q !q
=⇒ 0 < q !(e − yq ) < 1

q
≤ 1.

That is, the integer q !(e − yq ) is strictly between 0 and 1, a contradiction. ❑
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184 THEOREM The sequence
{

n1/n
}+∞

n=1
is decreasing for n ≥ 3. Also, n1/n → 1 as n →+∞.

Proof: Consider the ratio

(n +1)n

nn+1
=

(
1+ 1

n

)n

· 1

n
< e

n
.

Thus for n ≥ 3,

(n +1)n

nn+1
< 1 =⇒ (n +1)1/(n+1) < n1/n .

Hence we have

31/3 > 41/4 > 51/5 > ·· · .

Clearly, if n > 1 then n1/n > 11/n = 1. Also, by the Binomial Theorem, again, if n > 1,

(
1+

√
2

n

)n

= 1n +
(

n

1

)(√
2

n

)1

+
(

n

2

)(√
2

n

)2

+·· · > 1+
(

n

2

)(√
2

n

)2

= 1+ n(n −1)

2

(
2

n

)
= n.

We then conclude that

1 < n1/n < 1+
√

2

n
,

and that n1/n → 1 follows from the Sandwich Theorem. ❑

☞ 21/2 = 41/4.

Homework

Problem 3.3.1 What’s wrong with the following? Since the product

of the limits is the limit of the product,

e = lim
n→+∞

(
1+ 1

n

)n

=
(

lim
n→+∞

1+ 1

n

)
·
(

lim
n→+∞

1+ 1

n

)
· · ·

(
lim

n→+∞
1+ 1

n

)

︸ ︷︷ ︸
n times

= 1 ·1 · · ·1︸ ︷︷ ︸
n times

= 1.

Problem 3.3.2 Demonstrate that for all strictly positive integers n:

cos
π

2n+1
=

1

2

√

2+

√
2+

√
2+·· · +

p
2

︸ ︷︷ ︸
n radicands

,

sin
π

2n+1
=

1

2

√

2−

√
2+

√
2+·· · +

p
2

︸ ︷︷ ︸
n radicands

.

Hence deduce Viète’s Formula for π:

π= lim
n→+∞

2n

√

2−

√
2+

√
2+·· · +

p
2

︸ ︷︷ ︸
n radicands

.

Problem 3.3.3 Prove that the sequence

{
2n∑

k=n

1

k

}+∞

n=1

converges to

log 2.

Problem 3.3.4 Prove that the sequence

{
1−

1

2
+

1

3
−

1

4
+·· ·+

1

2n −1
−

1

2n

}+∞

n=1
converges to log 2.

Problem 3.3.5 Let n be a strictly positive integer and let xn denote

the unique real solution of the equation xn+x+1. Prove that xn → 1

as n →+∞.

Problem 3.3.6 Let

an =

√√√√
n +

√

(n −1)+

√
(n −2)+·· · +

√
2+

p
1,

for n ≥ 1. Prove that an −
p

n →
1

2
.

Problem 3.3.7 Prove that e is not a quadratic irrational.

Problem 3.3.8 Find lim
n→+∞

n∏

k=1

(
1+ k

n

)
.

Problem 3.3.9 A quadratic integer is any number x that satisfies an

equation

x2 +mx +n = 0, (m,n) ∈Z2.

Prove that the real quadratic integers are dense in the reals.
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3.4 Averages of Sequences

Why bother? In this section we will examine some classical results that allow us to compute more complicated

limits. Had we the language of matrices, most results here could be deduced from a classical result of Toeplitz.

Since we don’t, we will develop ad hoc methods which are interesting by themselves.

We start with the following discrete analogues of L’Hôpital’s Rule.

185 THEOREM Let {xn }+∞n=1,
{

yn

}+∞
n=1, be two sequences of real numbers such that xn → 0, yn → 0. Suppose, moreover, that

the xn are eventually strictly decreasing. Then

lim
n→+∞

xn − xn−1

yn − yn−1
= lim

n→+∞
xn

yn
,

provided the sinistral limit exists (be it finite or +∞).

Proof: Assume first that
xn−1 − xn

yn−1 − yn
= xn − xn−1

yn − yn−1
→ L, a finite real number. Then, given ε> 0 we can find N > 0

such that for n > N ,

L −ε< xn−1 − xn

yn−1 − yn
< L +ε, yn < yn−1.

Thus (L −ε)(yn−1 − yn ) < xn−1 − xn < (L +ε)(yn−1 − yn ), and repeating this inequality for n +1,n +2,. . . ,n +m,

(L −ε)(yn − yn+1) < xn − xn+1 < (L +ε)(yn − yn+1),

(L −ε)(yn+1 − yn+2) < xn+1 − xn+2 < (L +ε)(yn+1 − yn+2),

...

(L −ε)(ym+n−1 − ym+n ) < xm+n−1 − xm+n < (L +ε)(ym+n−1 − ym+n ).

Adding columnwise,

(L −ε)(yn − ym+n ) < xn − xm+n < (L +ε)(yn − ym+n ).

Letting m →+∞, and since the yn are strictly positive,

(L −ε)yn < xn < (L +ε)yn =⇒ L −ε< xn

yn
< L +ε =⇒ xn

yn
→ L

as n →+∞.

If
xn−1 − xn

yn−1 − yn
diverges to +∞ then for all M > 0 we can find N ′ > 0 such that for all n ≥ N ′,

xn−1 − xn

yn−1 − yn
> M =⇒ xn−1 − xn > M(yn−1 − yn ).

Reasoning as above, for positive integers m ≥ 0,

xn − xm+n > M(yn − ym+n ).

Taking the limit as m →+∞,

xn ≥ M yn =⇒ xn

yn
≥ M =⇒ xn

yn
→+∞.

❑

186 THEOREM (Stolz’s Theorem) Let {an}+∞n=1, {bn}+∞n=1, be two sequences of real numbers. Suppose that {bn }+∞n=1 is strictly

increasing for sufficiently large n and that bn →+∞ as n →+∞. Then

lim
n→+∞

an −an−1

bn −bn−1
= lim

n→+∞
an

bn
,

provided the sinistral side exists (be it finite or infinite).
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Proof: Assume first that
an −an−1

bn −bn−1
→ L, finite. Then for every ε> 0 there is N > 0 such that (∀)n ≥ N ,

L −ε<
an+1 −an

bn+1 −bn
< L +ε, bn+1 > bn .

This means that

(L −ε)(bn+1 −bn ) < an+1 −an < (L +ε)(bn+1 −bn )

By iterating the above relation for N +1, N +2,. . . ,m +N we obtain

(L −ε)(bN+1 −bN ) < aN+1 −aN < (L +ε)(bN+1 −bN ),

(L −ε)(bN+2 −bN+1) < aN+2 −aN+1 < (L +ε)(bN+2 −bN+1),

...

(L −ε)(bm+N −bm+N−1) < am+N −am+N−1 < (L +ε)(bm+N −bm+N−1).

Adding columnwise,

(L −ε)(bm+N −bN ) < am+N −aN < (L +ε)(bm+N −bN ) =⇒
∣∣∣∣

am+N −aN

bm+N −bN
−L

∣∣∣∣< ε.

Now,
am+N

bm+N
−L = aN −LbN

bm+N
+

(
1− bN

bm+N

)(
am+N −aN

bm+N −bN
−L

)
,

so by the Triangle Inequality

∣∣∣∣
am+N

bm+N
−L

∣∣∣∣≤
∣∣∣∣

aN −LbN

bm+N

∣∣∣∣+
∣∣∣∣1− bN

bm+N

∣∣∣∣
∣∣∣∣

am+N −aN

bm+N −bN
−L

∣∣∣∣ .

Since N is fixed,
aN −LbN

bm+N
→ 0 and

bN

bm+N
→ 0 as m →+∞ Thus the dextral side is arbitrarily small, proving

that
am

bm
→ L as m →+∞.

Assume now that
an −an−1

bn −bn−1
→+∞. For sufficiently large n thus an−an−1 > bn−bn−1. Thus the an are eventually

increasing and an →+∞ as n →+∞. Applying the results above to the
bn

an
we obtain

lim
n→+∞

bn

an
= lim

n→+∞
bn −bn−1

an −an−1
= 0

and so lim
n→+∞

an

bn
=+∞ too. ❑

187 THEOREM (Cèsaro) If a sequence of real numbers converges to a number, then its sequence of arithmetic means con-

verges to the same number, that is, if xn → a then
x1 + x2 +·· ·+ xn

n
→ a.

First Proof: Let an = x1 + x2 +·· ·+ xn and bn = n in Stolz’s Theorem. ❑

Second Proof: It is instructive to give an ad hoc proof of this result. Given ε > 0 there exists N > 0 such that if

n ≥ N then |xn −a|. Then

∣∣∣ x1 + x2 +·· ·+ xn

n
−a

∣∣∣=
∣∣∣∣

(x1 −a)+ (x2 −a)+·· ·+ (xn −a)

n

∣∣∣∣≤
|(x1 −a)|+ |(x2 −a)|+ · · ·+ |(xn −a)|

n
.
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Now we run into a slight problem. We can control the differences |xk − a| after a certain point, but the early

differences need to be taken care of. To this end we consider the differences xk − a with k ≤ T
p

nU or k > TnU
where n is so large that T

p
nU≥ N . We have

|(x1 −a)|+ |(x2 −a)|+ · · ·+ |(xn −a)|
n

=
|(x1 −a)|+ |(x2 −a)|+ · · ·+

∣∣∣(xT
p

nU−a)
∣∣∣

n

+

∣∣∣(xT
p

nU+1 −a)
∣∣∣+|(x2 −a)|+ · · ·+ |(xn −a)|

n

<
T
p

nUmax1≤k≤T
p

nU |xk −a|
n

+
(n −T

p
nU)ε

n
.

These two last quantities tend to 0 as n →+∞, from where the result follows. ❑

188 Example Since n1/n → 1,
1+21/2 +31/3 +·· ·+n1/n

n
→ 1.

189 Example Since
1

n
→ 0,

1+
1

2
+

1

3
+·· ·+

1

n

n
→ 0.

190 Example Since

(
1+ 1

n

)n

→ e,

(
1+ 1

1

)1

+
(

1+ 1

2

)2

+
(

1+ 1

3

)3

+·· ·+
(

1+ 1

n

)n

n
→ e.

191 Example The converse of Cèsaro’s Theorem is false. For, the sequence an = (−1)n oscillates and does not converge. But

its sequence of averages is bn = 1−1+1−1+·· ·+ (−1)n

n
→ 0 as n →+∞ since the numerator is either 0 or −1.

192 THEOREM If a sequence of positive real numbers converges to a number, then its sequence of geometric means con-

verges to the same number, that is, if ∀n > 0, xn ≥ 0 and xn → a then (x1 x2 · · ·xn )1/n → a.

Proof: The proof mimics Cèsaro’s Theorem 187. Since xn → a, for all ε> 0 there is N > 0 such that for all n ≥ N ,

|xn −a| < ε =⇒ a −ε< xn < a +ε.

Then

(
min

1≤k≤T
p

nU
xk

)T
p

nU/n (
xT

p
nU+1 · · ·xn

)1/n
≤ (x1x2 · · ·xT

p
nUxT

p
nU+1 · · ·xn )1/n ≤

(
max

1≤k≤T
p

nU
xk

)T
p

nU/n (
xT

p
nU+1 · · ·xn

)1/n
.

This gives, for T
p

nU≥ N ,

(
min

1≤k≤T
p

nU
xk

)T
p

nU/n

(a −ε)(n−T
p

nU)/n ≤ (x1x2 · · ·xT
p

nUxT
p

nU+1 · · ·xn )1/n ≤
(

max
1≤k≤T

p
nU

xk

)T
p

nU/n

(a +ε)(n−T
p

nU)/n .

Now, both

(
min

1≤k≤T
p

nU
xk

)T
p

nU/n

and

(
max

1≤k≤T
p

nU
xk

)T
p

nU/n

converge to 1 as n →+∞ by virtue of Theorem 174,

and again by the same theorem,

(a −ε)(n−T
p

nU)/n = (a −ε) (a −ε))T
p

nU/n → a −ε, (a +ε)(n−T
p

nU)/n = (a +ε) (a +ε))T
p

nU/n → a +ε

as n →+∞. This gives the result. ❑
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193 Example Since en =
(

n +1

n

)n

→ e, then by the Theorem 192

(e1e2 · · ·en )1/n =
((

2

1

)1 (
3

2

)2 (
4

3

)3

· · ·
(

n +1

n

)n)1/n

=
(

(n +1)n

n!

)1/n

→ e.

This gives
n

(n!)1/n
= n

n +1
· n +1

(n!)1/n
→ 1 ·e = e.

Homework

Problem 3.4.1 If {an }+∞n=1 is a sequence of strictly positive real num-

bers such that
an

an−1
→ a > 0. Prove that

lim
n→+∞

an

an−1
= lim

n→+∞
n
p

an .

Problem 3.4.2 Let xn → a and yn → b. Prove that
x1 yn +x2 yn−1+·· · +xn y1

n
→ ab.

Problem 3.4.3 Prove that lim
n→+∞

((
2n

n

))1/n

= 4.

Problem 3.4.4 Prove that lim
n→+∞

1

n
(n(n +1) · · · (n +n))1/n = 4e.

Problem 3.4.5 Prove that lim
n→+∞

1

n
(1 ·3 ·5 · · · (2n −1))1/n =

2

e
.

Problem 3.4.6 Prove that lim
n→+∞

1

n2

(
(3n)!

n!

)1/n

=
2

e
.

3.5 Orders of Infinity

Why bother? It is clear that the sequences {n}+∞n=1 and
{

n2
}+∞

n=1 both tend to +∞ as n →+∞. We would like now

to refine this statement and compare one with the other. In other words, we will examine their speed towards

+∞.

194 Definition We write an = O (bn ) if ∃C > 0, ∃N > 0 such that ∀n ≥ N we have |an | ≤C |bn |. We then say that an is Big Oh

of bn , or that an is of order at most bn as n →+∞. Observe that this means that

∣∣∣∣
an

bn

∣∣∣∣ is bounded for sufficiently large n.

The notation an << bn , due to Vinogradov, is often used as a synonym of an = O (bn ).

☞ A sequence {an }+∞n=1 is bounded if and only if an << 1.

An easy criterion to identify Big Oh relations is the following.

195 THEOREM If lim
n→+∞

an

bn
= c ∈R, then an << bn .

Proof: By Theorem 164, a convergent sequence is bounded, hence the sequence

{
an

bn

}+∞

n=+1

is bounded: so for

sufficiently large n,

∣∣∣∣
an

bn

∣∣∣∣<C for some constant C > 0. This proves the theorem. ❑

☞ The = in the relation an = O(bn ) is not a true equal sign. For example n2 = O
(
n3

)
since lim

n→+∞
n2

n3
= 0 and so n2 << n3

by Theorem 195. On the other hand, lim
n→+∞

n3

n2
=+∞ so that for sufficiently large n, and for all M > 0, n3 > Mn2 , meaning

that n3 6= O
(
n2

)
. Thus the Big Oh relation is not symmetric.3

3One should more properly write an ∈ O (bn ), as O (bn ) is the set of sequences growing to infinity no faster than bn , but one keeps the = sign for

historical reasons.
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196 THEOREM (Lexicographic Order of Powers) Let (α,β) ∈ R and consider the sequences
{

nα
}+∞

n=1 and
{

nβ
}+∞

n=1
. Then

nα << nβ ⇐⇒ α≤β.

Proof: If α≤β then lim
n→+∞

nα

nβ
is either 1 (when α=β) or 0 (when α<β), hence nα << nβ by Theorem 195.

If nα << nβ then for sufficiently large n, nα ≤C nβ for some constant C > 0. If α> β then this would mean that

for all large n we would have nα−β ≤C , which is absurd, since for a strictly positive exponent α−β, nα−β →+∞
as n →+∞.❑

197 Example As n →+∞,

n1/10 << n1/3 << n << n10/9 << n2,

for example.

198 THEOREM If c ∈ R \ {0} then O (c an ) = O (an ), that is, the set of sequences of order at most c an is the same set at those

of order at most an .

Proof: We prove that bn = O (c an ) ⇐⇒ bn = O (an ). If bn = O (c an ) the there are constants C > 0 and N > 0 such

that |bn | ≤ C |c an | whenever n ≥ N . Therefore, |bn | ≤ C ′ |an | whenever n ≥ N , where C ′ = C |c |, meaning that

bn = O (an ). Similarly, if bn = O (an ) the there are constants C1 > 0 and N1 > 0 such that |bn | ≤C1 |an | whenever

n ≥ N1. Since c 6= 0 this is equivalent to |bn | ≤
C1

c
(c |an |) =C ′′ (c |an |) whenever n ≥ N1, where C ′′ =

C1

c
, meaning

that bn = O (c an ). Therefore, O (an ) = O (c an ). ❑

199 Example As n →+∞,

O
(
n3

)
= O

(
n3

3

)
= O

(
4n3

)
.

200 THEOREM (Sum Rule) Let an = O (xn ) and bn = O
(

yn

)
. Then an +bn =O(max(|xn | ,

∣∣yn

∣∣)).

Proof: There exist strictly positive constants C1, N1,C2, N2 such that

n ≥ N1, =⇒ |an | ≤C1 |xn | and n ≥ N2, =⇒ |bn | ≤C2

∣∣yn

∣∣ .

Let N ′ = max(N1, N2). Then for n ≥ N , by the Triangle inequality

|an +bn | ≤ |an |+ |bn | ≤C1 |xn |+C2

∣∣yn

∣∣ .

Let C ′ = max(C1,C2). Then

|an +bn | ≤C ′(|xn |+
∣∣yn

∣∣) ≤ 2C ′ max(|xn | ,
∣∣yn

∣∣),

whence the theorem follows. ❑

201 COROLLARY Let an = k0nm +k1nm−1 +k2nm−2 +·· ·+km−1n +kn be a polynomial of degree m in n with real number

coefficients. The an = O
(
nm

)
, that is, an is of order at most its leading term.

Proof: By the Sum Rule Theorem 200 the leading term dominates.❑

202 THEOREM (Transitivity Rule) If an =O(bn ) and bn =O(cn ), then an = O (cn ).

Proof: There are strictly positive constants C1,C2, N1, N2 such that

n ≥ N1, =⇒ |an | ≤C1 |bn | and n ≥ N2, =⇒ |bn | ≤C2 |cn | .

If n ≥ max(N1, N2), then |an | ≤C1 |bn | ≤C1C2 |cn | =C |cn | , with C =C1C2. This gives an = O (cn ). ❑
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203 Example By Corollary 201, 5n4 −2n2 +100n −8= O
(
5n4

)
. By Theorem 198, O

(
5n4

)
= O

(
n4

)
. Hence

5n4 −2n2 +100n −8 = O
(
n4

)
.

204 THEOREM (Multiplication Rule) If an =O(xn ) and bn =O(yn ), then an bn = O
(
xn yn

)
.

Proof: There are strictly positive constants C1,C2, N1, N2 such that

n ≥ N1, =⇒ |an | ≤C1 |xn | and n ≥ N2, =⇒ |bn | ≤C2

∣∣yn

∣∣ .

If n ≥ max(N1, N2), then |an bn | ≤C1C2

∣∣xn yn

∣∣=C
∣∣xn yn

∣∣, with C =C1C2. This gives an bn = O
(
xn yn

)
. ❑

205 THEOREM (Lexicographic Order of Exponentials) Let (a,b) ∈ R, a > 1, b > 1, and consider the sequences
{

an
}+∞

n=1 and{
bn

}+∞
n=1. Then an << bn ⇐⇒ a ≤ b.

Proof: Put r = a

b
, and use Theorems 172 and 195. ❑

206 Example
1

2n
<< 1 << 2n << en << 3n .

207 LEMMA Let a ∈R, a > 1, k ∈N\ {0}. Then nk << an .

Proof: By Theorem 175, lim
n→+∞

nk

an
= 0. Now apply Theorem 195. ❑

208 THEOREM (“Exponentials are faster than powers”) Let a ∈R, a > 1, α ∈R. Then nα << an .

Proof: Put k = max(1,TαU+ 1). Then by Theorem 196, nα << nk . By Lemma 207, nk << an , and by the

Transitivity of Big Oh (Theorem 202), nα << nk << an . ❑

209 Example

n100 << en .

210 THEOREM (“Logarithms are slower than powers”) Let (α,β) ∈R
2, α> 0. Then (logn)β << nα.

Proof: If β≤ 0, then (logn)β << 1 and the assertion is evident, so assume β> 0. For x > 0, then log x < x. Putting

x = nα/β, we get

lognα/β < nα/β =⇒ logn <
βnα/β

α
=⇒ (logn)β <

ββnα

αβ
,

whence (logn)β << nα. ❑

By the Multiplication Rule (Theorem 204) and Theorems 196, 208, 210, in order to compare two expressions of the type

an nb (log)c and un nv (log)w we simply look at the lexicographic order of the exponents, keeping in mind that logarithms

are slower than powers, which are slower than exponentials.

211 Example In increasing order of growth we have

1

en
<< 1

2n
<< 1

n2
= 1

logn
<< 1 << (loglogn)10 <<

√
logn << n

logn
<< n << n logn << en .

212 Example Decide which one grows faster as n →+∞: nlogn or (logn)n .

64



Chapter 3

Solution: Since nlogn = e(log n)2
and (logn)n = en loglogn , and since (logn)2 << n loglogn, we conclude that

nlogn << (logn)n .

We now define two more fairly common symbols in asymptotic analysis.

213 Definition We write an = o(bn ) if
an

bn
→ 0 as n →+∞, and say that an is small oh of bn , or that an grows slower than bn

as n →+∞.

214 Definition A sequence {an}+∞n=1 is said to be infinitesimal if an = o(1), that is, if an → 0 as n →+∞.

☞ We know from above that for a > 1 lim
n→+∞

nα

an
= 0, and so nα = o

(
an)

. Also, for γ > 0, lim
n→+∞

(log n)β

nγ
= 0, and so

(log n)β = o
(
nγ)

.

215 Definition We write an ∼ bn if
an

bn
→ 1 as n →+∞, and say that an is asymptotic to bn .

Asymptotic sequences are thus those that grow at the same rate as the index increases.

f ∼ g

f = o
(
g

)
g = o

(
f
)

f = O
(
g

)
g = O

(
f
)

Figure 3.2: Diagram of O relations.

216 Example The sequences
{

n2 −n sin n
}+∞

n=1,
{

n2 +n −1
}+∞

n=1 are asymptotic since

n2 −n sin n

n2 +n −1
=

1− sin n

n

1+ 1

n
− 1

n2

→ 1,

as n →+∞.

217 THEOREM Let {an}+∞n=1 and {bn}+∞n=1 be two properly diverging sequences. Then an ∼ bn ⇐⇒ an = bn (1+o(1)).

Proof: Since the limit is 1 > 0, either both diverge to +∞ or both to −∞. Assume the former, and so, eventually,

bn will be strictly positive. Now,

lim
n→+∞

an

bn
= 1 ⇐⇒ ∀ε> 0,∃N > 0,1−ε<

an

bn
< 1+ε

⇐⇒ bn −bnε< an < bn +bnε

⇐⇒ |an −bn | < bnε

⇐⇒ an −bn = o(bn ) .

❑
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The relationship between the three symbols is displayed in figure 3.2.

Homework

Problem 3.5.1 Prove that en << n!.

Problem 3.5.2 Prove that O(O(an ))= O(an ).

Problem 3.5.3 Let k ∈ R be a constant. Prove that k + O(an ) =
O(k +an ) = O(an ).

Problem 3.5.4 Let k ∈ R, k > 0, be a constant. Prove that (an +
bk )k << ak

n +bk
n .

Problem 3.5.5 For a sequence of real numbers {an }+∞n=1 it is known

that an = O
(

n2
)

and an = o
(

n2
)
. Which of the two statements con-

veys more information?

Problem 3.5.6 True or false: an = O(n) =⇒ an = o(n).

Problem 3.5.7 True or false: an = o(n) =⇒ an = O(n).

Problem 3.5.8 True or false: an = o
(
n2

)
=⇒ an = O(n).

Problem 3.5.9 True or false: an = o(n) =⇒ an = O
(

n2
)
.

3.6 Cauchy Sequences

218 Definition A sequence of real numbers {an}+∞n=1 is called a Cauchy Sequence if

∀ε> 0, ∃N > 0, such that ∀n,m ≥ N |an −am | < ε.

219 THEOREM Cauchy sequences are bounded.

Proof: Let {an}+∞n=1 be Cauchy. Take N > 0 such that for all n ≥ N , |an −aN | < 1 . Then an is bounded by

max (|a1|, |a2| , . . . , |aN |)+1.

❑

220 LEMMA If a Cauchy sequence of real numbers has a convergent subsequence, then the parent sequence converges, and

it does so to the same limit as the subsequence.

Proof: Let {an}+∞n=1 be a Cauchy sequence of real numbers, and suppose that its subsequence
{

ank

}+∞
k=1 converges

to the real number a. Given ε> 0, take N > 0 sufficiently large such that

∀m,n,nk ≥ N , |an −am | < ε, and
∣∣ank

−a
∣∣< ε.

By the Triangle Inequality,

|an −a| ≤
∣∣an −ank

∣∣+
∣∣ank

−a
∣∣< ε+ε= 2ε,

whence an → a.❑

221 THEOREM (General Principle of Convergence) A sequence of real numbers converges if and only if it is Cauchy.

Proof:

(⇒) If an → a, given ε> 0, choose N > 0 such that |an −a| < ε for all n ≥ N .

Then if m,n ≥ N ,

|an −am | ≤ |an −a|+ |am −a| ≤ ε+ε= 2ε.

Since 2ε> 0 can be made arbitrarily small, an is Cauchy.
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(⇐) Suppose an is Cauchy. By virtue of Theorem 219 it is bounded, say that for all n > 0, an ∈
[
α ;β

]
. Put

S = {s : an ≥ s for infinitely many n}.

As α ∈S , S 6=∅. S is bounded above by β. By the Completeness Axiom, S has a supremum, a = supS .

Given ε> 0, a−ε< a and so there is s ∈S such that a−ε< s. By definition of S , there are infinitely many

n with an ≥ s > a−ε. a+ε> a, so that a+ε ∉S and so there are only finitely many n for which an ≥ a+ε.

Thus there are infinitely many n with an ∈ (a −ε, a +ε).

Choose N > 0 such that |an −am | < ε for all m,n ≥ N . We can find m ≥ N with am ∈ (a − ε, a + ε) ie

|am −a| < ε. Then if n ≥ N ,

|an −a| ≤ |an −am |+ |am −a| < ε+ε= 2ε

As 2ε can be made arbitrarily small this shews an → a.

❑

Homework

3.7 Topology of sequences. Limit Superior and Limit Inferior

222 THEOREM A set X j R is dense in R is and only if for every x ∈ R there is a sequence {xn }+∞n=1 of elements of X \ {x} that

converges to x.

Proof:

=⇒ For each positive integer n, since X is dense in R, there exists xn ∈ X \ {x} such that |xn − x| < 1

2n
. But then

xn → x as n →+∞.

⇐ Let x ∈ R and let {xn }+∞n=1 of elements of X \ {x} that converges to x. Then ∀ε > 0, ∃N ∈ N such that ∀n ≥ N ,

|xn − x| < ε. But then we have found elements of X \ {x} which are arbitrarily close to x, meaning that X is

dense in R.

❑

223 THEOREM Let X j R. A point x ∈ R is an accumulation point of X if and only if there exists a sequence of elements of

X \ {x} converging to x.

Proof:

=⇒ If x is an accumulation point of X , every closed interval In := [x−1/n; x+1/n], n ∈N, satisfies In∩(X \{x}) 6=
∅, thus ∀n ∈N, ∃xn ∈ In ∩ (X \ {x}). Since |xn − x| < 1

n
, we conclude that lim xn = x.

⇐ Suppose now that {xn }+∞1 is an infinite sequence of points of X \ {x} converging to x. If x ∉ Acc (X ), then

x ∉ Acc(x1, x2, . . .). Thus there is a neighbourhood of x, Nx such that Nx ∩ {x1, x2, . . .}. Thus there is a ε> 0

such that ]x −ε; x +ε[jNx . For this ε and for none of the xn it is true then that |xn − x| < ε, contradicting

the fact that lim
n→+∞

xn = x.

❑

224 Definition Given a sequence {an}+∞1 , the new sequence

bk = inf
n≥k

an = inf{ak , ak+1, ak+2,}, k ≥ 1,

satisfies bk ≤ bk+1, that is, it is increasing, and hence it converges to its supremum. We then put

lim inf
n→+∞

= sup
n≥1

inf
k≥n

ak .
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Similarly, the new sequence

ck = sup
n≥k

an = sup{ak , ak+1, ak+2,}, k ≥ 1,

satisfies ck ≥ ck+1, that is, it is decreasing, and hence it converges to its infimum. We then put

lim sup
n→+∞

= inf
n≥1

sup
k≥n

ak .

We now prove the following theorem for future reference.

225 THEOREM For any sequence {an}+∞n=0 of strictly positive real numbers

lim
n→+∞

inf
an+1

an
≤ lim

n→+∞
inf n

p
an ≤ lim

n→+∞
sup n

p
an ≤ lim

n→+∞
sup

an+1

an
.

Proof: We will prove the last inequality. The first is quite similar, and the two middle ones are obvious.

Put r = lim
n→+∞

sup
an+1

an
. If r =+∞ then there is nothing to prove. For r <+∞ choose r ′ > r . There is N ∈N such

that

∀n ≥ N ,
an+1

an
≤ r ′.

Hence,

aN+1 ≤ r ′aN , aN+2 ≤ r ′aN+1, aN+3 ≤ r ′aN+2, . . . aN+t ≤ r ′aN+t−1,

and so, upon multiplication and cancelling,

aN+t ≤ aN (r ′)t ,

and putting n = N + t ,

an ≤ aN (r ′)−N (r ′)n =⇒ n
p

an ≤ r ′ n
√

aN (r ′)−N =⇒ lim
n→+∞

sup n
p

an ≤ r ′,

since aN (r ′)−N is a fixed real number (does not depend on n), and so,
n
√

aN (r ′)−N → 1 by Theorem 174.

❑

The following theorem is an easy exercise left to the reader.

226 THEOREM Let {an}+∞1 be a sequence of real numbers. Then

1. if limsup
n→+∞

an =+∞, then {an}+∞1 has a subsequence converging to +∞.

2. if limsup
n→+∞

an =−∞, then lim
n→+∞

an =−∞.

3. if limsup
n→+∞

an = a ∈R, then

∀ǫ> 0, ∃n0 such that an < a +ǫ whenever n ≥ n0

and also, there are infinitely many an such that a −ǫ< an .

4. if liminf
n→+∞

an =−∞, then {an}+∞1 has a subsequence converging to −∞.

5. if liminf
n→+∞

an =+∞, then lim
n→+∞

an =+∞.

6. if liminf
n→+∞

an = a ∈R, then

∀ǫ> 0, ∃n0 such that a −ǫ< an whenever n ≥ n0

and there are infinitely many an such that an < a +ǫ.

7. liminf
n→+∞

an ≤ limsup
n→+∞

an is always verified, and furthermore, liminf
n→+∞

an = limsup
n→+∞

an if and only if lim
n→+∞

an exists, in

which case liminf
n→+∞

an = lim
n→+∞

an = limsup
n→+∞

an .

Homework
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Problem 3.7.1 Identify the set of accumulation points of the set

{
p

a −
p

b : (a,b) ∈N2}.

Problem 3.7.2 Consider the following enumeration of the proper

fractions
0

1
,

1

1
,

0

2
,

1

2
,

2

2
,

0

3
,

1

3
,

2

3
,

3

3
.. . .

Clearly, the fraction
a

b
in this enumeration occupies the a +

b(b +1)

2
-th place. For each integer k ≥ 1, cover the k-th fraction

a

b
by an interval of length 2−k centred at

a

b
. Shew that the point

p
2

2
does not belong to any interval in the cover.
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Series

4.1 Convergence and Divergence of Series

227 Definition Let {an}+∞n=1 be a sequence of real numbers. A series is the sum of a sequence. We write

sn = a1 +a2 +·· ·+an =
n∑

k=1

ak .

Here sn is the n-th partial sum. Observe in particular that

an = sn − sn−1.

228 Definition If the sequence {sn }+∞n=1 has a finite limit S, we say that the series converges to S and write

+∞∑
k=1

ak = lim
n→+∞

sn = S.

Otherwise we say that the series diverges.

Observe that
+∞∑
n=1

an converges to S if ∀ε> 0, ∃N such that ∀n ≥ N ,

∣∣∣∣∣

(
∑

k≤n

ak

)
−S

∣∣∣∣∣= |sn −S| < ε.

Now, since (
∑

k≤n

ak

)
−S =

(
∑

k≤n

ak

)
−

(
∑

k≥1

ak

)
=

∑
k>n

ak ,

we see that a series converges if and only if its “tail” can be made arbitrarily small. Hence, the reader should notice that

adding or deleting a finite amount of terms to a series does not affect its convergence or divergence. Furthermore, since

the sequence of partial sums of a convergent series must be a Cauchy sequence we deduce that a series is convergent if and

only if ∀ε> 0, ∃N > 0 such that ∀m ≥ N ,n ≥ N , m ≤ n,

|sn − sm | =
∣∣∣∣∣

n∑
k=m

ak

∣∣∣∣∣< ε. (4.1)

229 THEOREM (n-th Term Test for Divergence) If
∞∑

n=1

an converges, then an → 0 as n →+∞.

Proof: Put sn =
n∑

k=1

ak . Then

lim
n→+∞

sn = S =⇒ an = sn − sn−1 → S −S = 0.

❑

70



Chapter 4

In general, the problem of determining whether a series converges or diverges requires some work and it will be dealt

with in the subsequent sections. We continue here with some other examples.

230 Example The series
+∞∑
n=1

(
1+ 2

n

)n

diverges, since its n-th term

(
1+ 2

n

)n

→ e2.

231 Example We will prove that the harmonic series
+∞∑
n=1

1

n
diverges, even though

1

n
→ 0 as n →+∞. Thus the condition in

Theorem 229 though necessary for convergence is not sufficient. The divergence of the harmonic series was first demon-

strated by Nicole d’Oresme (ca. 1323-1382), but his proof was mislaid for several centuries. The result was proved again

by Pietro Mengoli in 1647, by Johann Bernoulli in 1687, and by Jakob Bernoulli shortly thereafter. Write the partial sums in

dyadic blocks,
2M∑

n=1

1

n
=

M∑
m=1

2m∑

n=2m−1+1

1

n
.

As 1/n ≥ 1/N when n ≤ N , we deduce that

2m∑

n=2m−1+1

1

n
≥

2m∑

n=2m−1+1

2−m = (2m −2m−1)2−m = 1

2

Hence,
2M∑

n=1

1

n
≥ M

2

so the series diverges in the limit M →+∞.

The following theorem says that linear combinations of convergent series converge.

232 THEOREM Let
+∞∑
n=1

an = A and
+∞∑
n=1

bn = B be convergent series and letγ ∈Rbe a real number. Then the series
+∞∑
n=1

(an +γbn )

converges to A +γB .

Proof: For all ε> 0 there exist N , N ′ such that for all n ≥ max(N , N ′),

∣∣∣∣∣
∑

k≤n

ak − A

∣∣∣∣∣<
ε

2
,

∣∣∣∣∣
∑

k≤n

bk −B

∣∣∣∣∣<
ε

2(|γ|+1)
.

Hence, by the triangle inequality and by the obvious inequality
|γ|

|γ|+1
≤ 1, we have

∣∣∣∣∣

(
∑

k≤n

ak +γbk

)
− (A +γB )

∣∣∣∣∣≤
∣∣∣∣∣
∑

k≤n

ak − A

∣∣∣∣∣+|γ|
∣∣∣∣∣
∑

k≤n

bk −B

∣∣∣∣∣≤
ε

2
+|γ| ε

2(|γ|+1)
< ε

2
+ ε

2
= ε.

❑

233 Definition A geometric series with common ratio r and first term a is one of the form

a +ar +ar 2 +ar 3+·· · =
+∞∑
n=0

ar n .

By Theorem 173, if |r | < 1 then the series converges and we have

a +ar +ar 2 +ar 3 +·· · =
+∞∑
n=0

ar n = a

1−r
.
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234 Example A fly starts at the origin and goes 1 unit up, 1/2 unit right, 1/4 unit down, 1/8 unit left, 1/16 unit up, etc., ad

infinitum. In what coordinates does it end up?

Solution: Its x coordinate is
1

2
− 1

8
+ 1

32
−·· · =

1
2

1− −1
4

= 2

5
.

Its y coordinate is

1− 1

4
+ 1

16
−·· · = 1

1− −1
4

= 4

5
.

Therefore, the fly ends up in (
2

5
,

4

5

)
.

Here we have used the fact the sum of an infinite geometric progression with common ratio r , with |r | < 1 and

first term a is

a +ar +ar 2 +ar 3 +·· · = a

1−r
.

235 Definition A telescoping sum is a sum where adjacent terms cancel out. That is,
N∑

n=0

an is a telescoping sum if we can

write an = bn+1 −bn and then

N∑
n=0

an = a0 +a1 +·· ·+aN = (b1 −b0)+ (b2 −b1)+·· ·+ (bN+1 −bN ) = bN+1 −b0.

236 Example We have

N∑
n=1

1

n(n +1)
=

N∑
n=1

(
1

n
− 1

n +1

)
=

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+·· ·+

(
1

N
− 1

N +1

)
= 1− 1

N +1
.

Thus
+∞∑
n=1

1

n(n +1)
= lim

N→+∞

N∑
n=1

1

n(n +1)
= lim

N→+∞

(
1− 1

N +1

)
= 1.

237 Example We have

N∑
n=1

1

n(n +1)(n +2)
=

1

2

N∑
n=1

(
1

n(n +1)
−

1

(n +1)(n +2)

)
=

1

2

((
1

1 ·2
−

1

2 ·3

)
+

(
1

2 ·3
−

1

3 ·4

)
+·· ·+

(
1

N (N +1)
−

1

(N +1)(N +2)

))

=
1

2

(
1

2
−

1

(N +1)(N +2)

)
.

Thus
+∞∑
n=1

1

n(n +1)(n +2)
= lim

N→+∞

N∑
n=1

1

n(n +1)(n +2)
= lim

N→+∞

1

2

(
1

2
− 1

(N +1)(N +2)

)
= 1

4
.

Homework

Problem 4.1.1 Find the sum of
∞∑

n=3

2n

en+1
.

Problem 4.1.2 Find the sum of the series
+∞∑

n=2

1

4n2 −1
.

Problem 4.1.3 Find the exact numerical value of the sum

+∞∑

n=0

arctan
1

n2 +n +1
.

Problem 4.1.4 Find the exact numerical value of the infinite sum

+∞∑
n=1

p
(n −1)!

(1+
p

1) · · · (1+
p

n)
.

72



Chapter 4

Problem 4.1.5 Shew that

n∑

k=1

k

k4 +k2 +1
=

1

2
·

n2 +n

n2 +n +1
,

and thus prove that
n∑

k=1

k

k4 +k2 +1
converges.

Problem 4.1.6 Let b(n) denote the number of ones in the binary

expansion of the positive integer n, for example b(3) = b(112) = 2.

Prove that
∑

n=1

b(n)

n(n +1)
= log 4.

Problem 4.1.7 Find

1+
1

2
+

1

3
+

1

6
+

1

8
+

1

9
+

1

12
+

1

16
+

1

18
+·· · ,

which is the sum of the reciprocals of all positive integers of the form

2n 3m for integers n ≥ 0,m ≥ 0.

Problem 4.1.8 The Fibonacci Numbers fn are defined recursively

as follows:

f0 = 1, f1 = 1, fn+2 = fn + fn+1, n ≥ 0.

Prove that
+∞∑
n=1

fn

3n
=

3

5
.

Problem 4.1.9 Let
∑

n≥0

an be a convergent series and let
∑

n≥0

bn be a

divergent series. Prove that
∑

n≥0

(an +bn ) diverges.

Problem 4.1.10 Prove that if
∑

n≥1

an is a series of positive terms and

that its partial sums are bounded, then
∑

n≥1

an converges. Shew that

this is not necessarily true if
∑

n≥1

an is not a series of positive terms.

4.2 Convergence and Divergence of Series of Positive Terms

We have several tools to establish convergence and divergence of series of positive terms. We will start with some simple

comparison tests.

238 THEOREM (Direct Comparison Test) Let {an}+∞n=0, {bn }+∞n=0, {cn}+∞n=0, be sequences of positive real numbers. Suppose that

eventually an ≤ bn , that is, that ∃N ≥ 0 such that ∀n ≥ N there holds an ≤ bn . If
∑

n≥0

bn converges, then
∑

n≥0

an converges.

If eventually an ≥ cn , and
∑

n≥0

cn diverges, then
∑

n≥0

an also must diverge.

Proof: The theorem is clear from the inequalities
∑

n≥N

an ≤
∑

n≥N

bn ,
∑

n≥N

an ≥
∑

n≥N

cn .

If
∑

n≥0

bn converges, then its tail can be made as small as we please, and so the tail of
∑

n≥0

an can be made as small

as we please. Similarly if
∑

n≥0

cn diverges, because it is a series of positive terms, its tail grows without bound and

so the tail of
∑

n≥0

an grows without bound. ❑

☞ Call a divergent series of positive terms a “giant” and a converging series of positive terms a “midget.” The comparison

tests say that if a series is bigger than a giant it must be a giant, and if a series is smaller than a midget, it must be a midget.

239 Example From example 236,
∑

n≥1

1

n(n +1)
converges. Since for n ≥ 1,

n(n +1) < (n +1)2 =⇒ 1

(n +1)2
< 1

n(n +1)
,

we deduce that the series ∑
n≥1

1

(n +1)2
=

∑
n≥2

1

n2

converges. Since adding a finite amount of terms to a series does not affect convergence, we deduce that 1+
∑

n≥2

1

n2
=

∑
n≥1

1

n2

converges.

240 Example
+∞∑
n=1

1

nn
converges. For n ≥ 2 we have

1

nn
≤ 1

n2
and the series converges by direct comparison with

+∞∑
n=1

1

n2
.
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241 Example From example 230,
∑

n≥1

1

n
diverges. Since for n ≥ 1, logn < n, we deduce that

∑
n≥2

1

logn
diverges. Notice that

here we start the sum at n = 2 since the logarithm vanishes at n = 1.

242 Example Prove that
∑

p

p prime

1

p

diverges.

Solution: We will prove this by contradiction. Let p1 = 2, p2 = 3, p3 = 5, . . . be the sequence of primes in

ascending order and assume that the series converges. Then there exists an integer K such that

∑
m≥K+1

1

pm
< 1

2
.

Let P = p1p2 · · ·pK and consider the numbers 1+nP for n = 1,2,3, . . .. None of these numbers has a prime divisor

in the set {p1, p2, . . . , pK } and hence all the prime divisors of the 1+nP belong to the set {pK+1, pK+2, . . .}. This

means that for each t ≥ 1,
t∑

n=1

1

1+nP
≤

∑
s≥1

(
∑

m≥K+1

1

pm

)s

≤
∑
s≥1

1

2s
= 1,

that is,
t∑

n=1

1

1+nP
, a series of positive terms, has bounded partial sums and so it converges. But since 1+nP ∼ nP

as n →+∞ and
1

P

∑
n≥1

1

n
diverges, we obtain a contradiction.

Since the convergent behaviour of a series depends of its tail, the following asymptotic comparison tests should be clear,

and its proof follows the same line of reasoning as Theorem 238.

243 THEOREM (Asymptotic Comparison Test) Let {an}+∞n=0, {bn}+∞n=0, {cn}+∞n=0, be sequences of real numbers which are even-

tually positive. Suppose that an << bn , and that cn << an . Then both
∑

n≥0

an and
∑

n≥0

bn converge together, and both
∑

n≥0

an

and
∑

n≥0

cn diverge together. Moreover, if {bn}+∞n=0 is eventually a strictly positive sequence and an ∼ bn , then
∑

n≥0

an and

∑
n≥0

bn converge or diverge together.

In order to effectively use the comparison tests we must have a ready catalogue of series whose convergence or diver-

gence we know. In the subsequent lines we will develop such a catalogue. We start with the following consequence of the

comparison tests.

244 THEOREM (Cauchy Condensation Test) Let {an}+∞n=0 be a sequence of positive real numbers which is monotonically de-

creasing. Then
∞∑

n=0

an converges if and only if the sum
∞∑

n=0

2n a2n converges.

Proof: Since the sequence {an}+∞n=0 is monotonically decreasing and positive,

2n+1−1∑
k=2n

a2n+1−1 ≤
2n+1−1∑

k=2n

ak ≤
2n+1−1∑

k=2n

a2n =⇒ 2n a2n+1−1 ≤
2n+1−1∑

k=2n

ak ≤ 2n a2n .

The second inequality yields

2N+1−1∑
n=0

an =
N∑

n=0

2n+1−1∑
k=2n

ak ≤
N∑

n=0

2n a2n =⇒ lim
N→+∞

2N+1−1∑
n=0

an ≤ lim
N→+∞

N∑
n=0

2n a2n .

Thus if
+∞∑
n=0

2n a2n converges so does
+∞∑
n=0

an .
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The first inequality yields

2n a2n+1−1 ≤
2n+1−1∑

k=2n

ak =⇒ (2n+1−1)a2n+1−1 ≤ 2
2n+1−1∑

k=2n

ak −a2n+1−1

=⇒
N∑

n=0

(2n+1 −1)a2n+1−1 ≤ 2
N∑

n=0

2n+1−1∑
k=2n

ak −
N∑

n=0

a2n+1−1 = 2
2N+1−1∑

n=0

an −
N∑

n=0

a2n+1−1.

❑

As an application of Cauchy’s Test, we obtain the following important result.

245 THEOREM (p-series Test) If p > 1 then ζ(p) =
+∞∑
n=1

1

np
converges, but diverges when p ≤ 1.

Proof: If p ≤ 0, divergence follows from Theorem 229. If p > 0, then using the fact that x 7→ xp is monotonically

increasing, we may use Theorem 244. Since

∑
k≥0

2k

2pk
=

∑
k≥0

(
2(1−p)

)k

is a geometric series with ratio 21−p , it converges by Theorem 173 when

21−p < 1 =⇒ (1−p) log2 2 < log2 1 =⇒ 1−p < 0 =⇒ p > 1,

and diverges for p > 1. The case p = 1 has been shewn to diverge in example 230. ❑

246 Example Since
p

2 > 1, the series
+∞∑
n=1

1

n
p

2
converges.

247 Example Since

n
p

2 + (loglogn)2007

n3 +n(logn)5 +1
∼ n

p
2

n3
= 1

n3−
p

2

and 3−
p

2 > 1, the series
∑

n≥1

n
p

2 + (loglogn)2007

n3 +n(logn)5 +1
converges.

248 COROLLARY (De Morgan’s Logarithmic Scale) If p > 1 then all of

+∞∑
n=1

1

np
;

+∞∑
n≥e

1

n(logn)p
;

+∞∑
n≥ee

1

n(logn)(loglogn)p
;

+∞∑

n≥eee

1

n(logn)(loglogn)(logloglogn)p
; . . .

converge, but diverge when p ≤ 1.

Proof: The theorem is proved inductively by successive applications of Cauchy’s Condensation Test. We will

prove how the case for
+∞∑
n≥e

1

n(logn)p
follows from the case

+∞∑
n=1

1

np
and leave the rest to the reader. We see that

∑
k≥1

2k

2k (log2k )p
= 1

(log2)p

∑
k≥1

1

k p
,

and so this case follows from Theorem 245. ❑

249 Example Determine whether
+∞∑
n=4

(logn)100

n3/2 loglogn
converges.
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Solution: Since (logn)100 << n1/4, eventually
(logn)100

n1/4
<< 1. We have

(logn)100

n3/2 loglogn
<< (logn)100

n1/4
· 1

n5/4 loglogn

and since
+∞∑
n=4

1

n5/4 loglogn
<+∞, we have

+∞∑
n=4

(logn)100

n3/2 loglogn
<+∞, that is, the series converges.

The reader should be aware that the value of the exponent in Theorems 245 and 248 is fixed. The following examples should

dissuade him that “having an exponent higher than 1” implies convergence.

250 Example Test
∞∑

n=1

1

n1+1/n
for convergence by comparing it to a suitable p-series. Use the direct comparison test.

Solution: By induction n < 2n =⇒ n1/n < 2 and so n1+1/n < 2n =⇒ 1

2n
< 1

n1+/1n
. So the series diverges by

direct comparison to
∞∑

n=1

1

2n
.

251 Example Test
∞∑

n=2

1

n1+1/logn
for convergence by comparing it to a suitable p-series. Use the direct comparison test

Solution: We have n = e logn =⇒ n
1

logn = e and so n1+1/logn = en, n > 1.. So the series diverges by direct

comparison to
∞∑

n=2

1

en
.

252 Example Test
∞∑

n=2

1

n1+1/loglogn
for convergence by comparing it to a suitable p-series. Use the direct comparison test.

Solution: By considering the monotonicity of f (x) = ex − x2

2
(see Theorem 385) or otherwise, we can prove that

ex > x2

2
for x > 0. Now,

n1/loglogn = e logn1/loglogn

= e
logn

loglogn > (logn)2

2(loglogn)2
.

This gives

2(loglogn)2

n(logn)2
>

1

n
1+ 1

log logn

.

Now,
+∞∑
n=2

2(loglogn)2

n(logn)2

can be shewn to converge by comparing to a series in the De Morgan logarithmic scale.

253 Example Prove that the series
+∞∑
n=1

1

n1.8+sinn
diverges.

Solution: For k ∈ Z, the interval Ik =
[

(2k + 4

3
)π ; (2k + 5

3
)π

]
has length

π

3
> 1 and x ∈ Ik =⇒ sin x ≤−

p
3

2
.

The gap between Ik and Ik+1 is < 5π

3
< 6. Hence, among any seven consecutive integers, at least one must fall

into Ik and for this value of n we must have 1.8+sin n < 1−
p

3

2
< 1. This means that

+∞∑
n=1

1

n1.8+sinn
=

+∞∑
m=0

n=7m+7∑
n=7m+1

1

n1.8+sinn
≥

+∞∑
m=0

1

7m +7
,

and since the rightmost series diverges, the original series diverges by the direct comparison test.
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The following result puts the harmonic series at the “frontier” of convergence and divergence for series with monotonically

decreasing positive terms.

254 THEOREM (Pringsheim’s Theorem) Let
∑

n≥1

an be a converging series of positive terms of monotonically decreasing

terms. Then an = o

(
1

n

)
.

Problem 4.2.1 Since the series converges, its sequence of partial sums is a Cauchy sequence and by 4.1, given ε > 0, ∃m > 0,

such that ∀n ≥ m,
n∑

k=m+1

ak < ε.

Because the series decreases monotonically, each of am+1, am+2, . . . , an is at least an and thus

(n −m)an ≤
n∑

k=m+1

ak < ε.

Again, since the series converges, an → 0 as n →+∞ we may choose n large enough so that an <
ε

m
. In this case

(n −m)an < ε =⇒ nan < ε+man < 2ε =⇒ an < 2ε

n
,

which proves the theorem.

The disadvantage of the comparison tests is that in order test for convergence, we must appeal to the behaviour of an

auxiliary series. The next few tests provide a way of testing the series against its own terms.

255 THEOREM (Root Test) Let
+∞∑
n=1

an be a series of positive terms. Put r = limsup(an )1/n . Then the series converges if r < 1

and diverges if r > 1. The test is inconclusive if r = 1.

Proof: If r < 1 choose r ′ with r < r ′ < 1. Then there exists N ∈N such that

∀n ≥ N , n
p

an ≤ r ′ =⇒ an ≤ (r ′)n .

But then
+∞∑
n=0

an converges by direct comparison to the converging geometric series
+∞∑
n=0

(r ′)n .

If r > 1 then there is a sequence {nk }+∞k=1 of positive integers such that

nk
√

ank
→ r.

This means that an will be > 1 for infinitely many values of n, and so, the condition an → 0 necessary for conver-

gence, does not hold.

By considering
+∞∑
n=1

1

n
, which diverges, and

+∞∑
n=1

1

n2
, which converges, one sees that r = 1 may appear in series of

different conditions. ❑

256 THEOREM (Ratio Test) Let
+∞∑
n=1

an be a series of strictly positive terms. Put r = limsup
an+1

an
. Then the series converges

if r < 1 and diverges if r > 1. The test is inconclusive if r = 1.

Proof: If r < 1, then there exists N ∈N such that

aN+1 ≤ r aN , aN+2 ≤ r aN+1, aN+3 ≤ r aN+2, . . . aN+t ≤ r aN+t−1.
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Multiplying all these inequalities together,

aN+t ≤ aN r t .

Putting N + t = n we deduce that

an ≤ aN r −N r n .

Since aN r −N is a constant, we may use direct comparison between
+∞∑
n=1

an and the converging geometric series

aN r −N
+∞∑
n=1

r n , concluding that
+∞∑
n=1

an converges.

If r > 1 then an+1 ≥ an ≥ aN for all n ≥ N . This means that the condition an → 0, necessary for convergence, does

not hold.

By considering
+∞∑
n=1

1

n
, which diverges, and

+∞∑
n=1

1

n2
, which converges, one sees that r = 1 may appear in series of

different conditions. ❑

☞ The root test is more general than the ratio test, as can be seen from Theorem 225.

257 Example Since
(n+1)!

(n+1)n+1

n!
nn

= 1(
1+ 1

n

)n → 1

e
< 1

the series
+∞∑
n=1

n!

nn
converges.

258 Example Since (
(n!)n

nn2

)1/n

= n!

nn
→ 0

the series
+∞∑
n=1

(n!)n

nn2
converges.

Homework

Problem 4.2.2 True or False: If the infinite series
+∞∑

n=1

an of strictly

positive terms, converges, then
+∞∑

n=1

a2
n must necessarily converge.

Problem 4.2.3 True or False: If the infinite series
+∞∑

n=1

an of strictly

positive terms converges, then
+∞∑
n=1

sin(an ) must necessarily con-

verge.

Problem 4.2.4 True or False: If the infinite series
+∞∑
n=1

an of strictly

positive terms converges, then
+∞∑

n=1

tan(an ) must necessarily con-

verge.

Problem 4.2.5 True or False: If the infinite series
+∞∑
n=1

an converges,

then
+∞∑

n=1

cos(an ) must necessarily converge.

Problem 4.2.6 Use the comparison tests to shew that if an > 0 and
∞∑

n=1

an converges, then
∞∑

n=1

an

n
converges.

Problem 4.2.7 Give an example of a series converging to 1 with n-

th term an > 0 satisfying an <<
1

n2
. (That is, the n-th term goes to

zero faster than the reciprocal of a square.)

Problem 4.2.8 Give an example of a converging series of strictly

positive terms
+∞∑
n=1

an such that
+∞∑
n=1

(an )1/n also converges.

Problem 4.2.9 Give an example of a converging series of strictly

positive terms
+∞∑
n=1

an such that
+∞∑
n=1

(an )1/n diverges.
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Problem 4.2.10 Give an example of a converging series of strictly

positive terms an such that lim
n→+∞

(an )1/n does not exist.

Problem 4.2.11 Test
∞∑

n=1

3n

n2n
using both direct comparison and

the root test.

Problem 4.2.12 Let S be the set of positive integers none of whose

digits in its decimal representation is a 0:

S = {1,2,3,4,5,6, 7, 8, 9,11, 12,13, 14,15, 16,17, 18,19, 21, · · · }.

Prove that the series
∑

n∈S

1

n
converges.

Problem 4.2.13 Let d (n) be the number of strictly positive divisors

of the integer n. Prove that d (n)≤ 2
p

n. Use this to prove that

∑
n≥1

d (n)

n2

converges.

Problem 4.2.14 Let pn be the n-th prime. Thus p1 = 2, p2 = 3,

p3 = 5, etc. Put a1 = p1 and an+1 = p1p2 · · ·pn +1 for n ≥ 1. Find

+∞∑
n=1

1

an
.

Problem 4.2.15 Determine whether
∑

n≥2

an converges, when an is

given as below.

1.

(
1+

1

n

)n

−e.

2. coshα n −sinhα n.

3. log
(n3 +1)2

(n2 +1)3
.

4.
np

n +1− n
p

n.

5. arccos

(
n3 +1

n3 +2

)
.

6.
an

1+a2n
.

7.
2 ·4 ·6 · · · (2n)

nn
.

8.
1!+2!+·· · +n!

(n +2)!
.

9.
1!−2!+·· · ±n!

(n +1)!
.

10.
(log n)n

nlogn
.

11.
1

(log n)logn
.

4.3 Summation by Parts

In this section we consider series whose terms have arbitrary signs. We first need the following result.

259 THEOREM (Summation by Parts) Let An =
∑

0≤k≤n

ak , A−1 = 0. Then for p ≤ q ,

∑
p≤k≤q

ak bk =
∑

p≤k≤q−1

Ak (bk −bk+1)+ Aq bq − Ap−1bp .

Proof: Changing a subindex,

∑
p≤k≤q

ak bk =
∑

p≤k≤q

(Ak − Ak−1)bk

=
∑

p≤k≤q

Ak bk −
∑

p≤k≤q

Ak−1bk

=
∑

p≤k≤q−1

Ak bk −
∑

p≤k≤q−1

Ak bk+1 + Aq bq − Ap−1bp .

giving the result. ❑

☞ An alternative and more symmetric formulation will be given once we introduce Riemann-Stieltjes integration.

We now obtain a convergence test.

260 THEOREM (Dirichlet’s Test) The series
∑

k≥0

ak bk converges if

1. the partial sums An =
n∑

k=0

ak are bounded

2. bn ≥ bn+1

3. bn → 0 as n →+∞
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Proof:

❑

4.4 Alternating Series

A series of the form
+∞∑
n=1

(−1)n an where the all the an ≥ 0 is called an alternating series.

261 THEOREM (Leibniz’s Alternating Series Test) The alternating series
+∞∑
n=1

(−1)n an converges if all the following condi-

tions are met

• the an eventually decrease, that is, an+1 ≤ an for all n ≥ N .

• an → 0

262 Example The series
+∞∑
n=1

(−1)n+1 1

n
converges by Leibniz’s Test. In fact, one can prove that it equals log2.

4.5 Absolute Convergence

If
+∞∑
n=1

|an | converges then
+∞∑
n=1

an converges. The converse is not true.

263 Example Since
∣∣∣sin n

n2

∣∣∣≤ 1

n2
,
+∞∑
n=1

|sin n

n2

∣∣∣ converges by the comparison test. Thus
+∞∑
n=1

sin n

n2
converges absolutely and so

it converges.

264 Example Determine whether the following two infinite series converge: (I)
∞∑

n=2

(−1)n sin(3n)

n2
, (II)

∞∑
n=1

(−1)n n

n2 +2
.

Solution: We have ∣∣∣(−1)n sin 3n

n2

∣∣∣≤ 1

n2
,

so (I) converges absolutely. As for number (II), f (x) = x

x2 +2
is decreasing (take the first derivative)

n

n2 +2
→ 0,

so it converges by Leibniz’s Test.
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Real Functions of One Real Variable

5.1 Limits of Functions

265 DEFINITION-PROPOSITION (Cauchy-Heine, Sinistral Limit) Let f :
]

a ;b
[
→R and let x0 ∈

]
a ;b

[
. The following are equiv-

alent.

1. ∀ε> 0, ∃δ> 0 such that

x0 −δ< x < x0 =⇒
∣∣ f (x)−L

∣∣< ε.

2. For each sequence {xn }+∞n=1 of points in the interval
]

a ;b
[

with xn < x0, xn → x0 =⇒ f (xn ) → L.

If either condition is fulfilled we say that f has a sinistral limit f (x0−) as x increases towards x0 and we write

f (x0−) = lim
x→x0−

f (x) = lim
xրx0

f (x).

Proof:

1 =⇒ 2 Suppose that ∀ε> 0, ∃δ> 0 such that

x0 −δ< x < x0 =⇒
∣∣f (x)−L

∣∣< ε.

Let xn < x0, xn → x0. Then

|xn − x0| <δ =⇒ x0 −δ< xn < x0 +δ

for sufficiently large n. But we are assuming that xn < x0, so in fact we have x0 −δ < xn < x0. By our

assumption then
∣∣f (xn )−L

∣∣< ε, and so 1 =⇒ 2.

2 =⇒ 1 Suppose that for each sequence {xn }+∞n=1 of points in the interval
]

a ;b
[

with xn < x0, xn → x0 =⇒ f (xn ) →
L. If it were not true that f (x) → L as x → x0, then there exists some ε0 > 0 such that for all δ > 0 we can

find x such that

0 < |x − x0| <δ =⇒
∣∣f (x)−L

∣∣≥ ε0.

In particular, for each strictly positive integer n we can find xn satisfying

0 < |xn − x0| <
1

n
=⇒

∣∣f (xn )−L
∣∣≥ ε0,

a contradiction to the fact that f (xn ) → L.

❑

In an analogous manner, we have the following.

266 DEFINITION-PROPOSITION (Cauchy-Heine, Dextral Limit) Let f :
]

a ;b
[
→R and let x0 ∈

]
a ;b

[
. The following are equiv-

alent.
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1. For each sequence {xn }+∞n=1 of points in the interval
]

a ;b
[

with xn > x0, xn → x0 =⇒ f (xn ) → L.

2. ∀ε> 0, ∃δ> 0 such that

x0 < x < x0 +δ =⇒
∣∣ f (x)−L

∣∣< ε.

If either condition is fulfilled we say that f has a dextral limit f (x0+) as x decreases towards x0 and we write

f (x0+) = lim
x→x0+

f (x) = lim
xցx0

f (x).

Upon combining Propositions 265 and 266 we obtain the following.

267 DEFINITION-PROPOSITION (Cauchy-Heine) Let f :
]

a ;b
[
→R and let x0 ∈

]
a ;b

[
. The following are equivalent.

1. f (x0−) = f (x0+)

2. For each sequence {xn }+∞n=1 of points in the interval
]

a ;b
[

different from x0, xn → x0 =⇒ f (xn ) → L.

3. ∀ε> 0, ∃δ> 0 such that

0 < |x − x0| <δ =⇒
∣∣f (x)−L

∣∣< ε.

If either condition is fulfilled we say that f has a (two-sided) limit L as x decreases towards x0 and we write

L = lim
x→x0

f (x).

We now prove analogues of the theorems that the proved for limits of sequences.

268 THEOREM (Uniqueness of Limits) Let X jR, a ∈R, and f : X →R. If lim
x→a

f (x) = L and lim
x→a

f (x) = L′ then L = L′.

Proof: If L 6= L′ then take 2ε=
∣∣L −L′∣∣ in the definition of limit. There is δ> 0 such that

0 < |x −a| <δ =⇒
∣∣ f (x)−L

∣∣<
∣∣L −L′∣∣

2
,

∣∣ f (x)−L′∣∣<
∣∣L −L′∣∣

2
.

By the Triangle Inequality

∣∣L −L′∣∣≤
∣∣L − f (x)

∣∣+
∣∣ f (x)−L′∣∣<

∣∣L −L′∣∣
2

+
∣∣L −L′∣∣

2
=

∣∣L −L′∣∣ ,

but
∣∣L −L′∣∣<

∣∣L −L′∣∣ is a contradiction. ❑

269 THEOREM (Local Boundedness) Let X j R, a ∈R, and f : X →R. If lim
x→a

f (x) = L exists and is finite, then f is bounded

in a neighbourhood of a.

Proof: Take ε= 1 in the definition of limit. Then there is a δ> 0 such that

0 < |x −a| <δ =⇒
∣∣ f (x)−L

∣∣< 1 =⇒
∣∣ f (x)

∣∣< 1+|L| ,

and so f is bounded on this neighbourhood. ❑

270 THEOREM (Order Properties of Limits) Let X jR, a ∈R, and f : X →R. Let lim
x→a

f (x) = L exist and be finite. Then

1. If s < L then there exists a neighbourhood Na of a contained in X such that ∀x ∈Na , s < f (x).

2. If L < t then there exists a neighbourhood Na of a contained in X such that ∀x ∈Na , f (x) < t .

3. If s < L < t then there exists a neighbourhood Na of a contained in X such that ∀x ∈Na , s < f (x) < t .

4. If there exists a neighbourhood Na j X such that ∀x ∈Na , s ≤ f (x), then s ≤ L.
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5. If there exists a neighbourhood Na j X such that ∀x ∈Na , f (x) ≤ t , then L ≤ t .

6. If there exists a neighbourhood Na j X such that ∀x ∈Na , s ≤ f (x) ≤ t , then s ≤ L ≤ t .

Proof: We have

1. Take ε= L − s > 0 in the definition of limit. There is δ> 0 such that

0 < |x −a| <δ =⇒
∣∣ f (x)−L

∣∣< L − s =⇒ s −L +L < f (x) < 2L − s =⇒ s < f (x),

as claimed.

2. Take ε= t −L > 0 in the definition of limit. There is δ> 0 such that

0 < |x −a| < δ =⇒
∣∣ f (x)−L

∣∣< t −L =⇒ L − t +L < f (x) < t −L +L =⇒ f (x) < t ,

as claimed.

3. This follows by (1) and (2).

4. If on the said neighbourhood Na we had, on the contrary, L > s then (1) asserts that there is a neighbourhood

of N
′

a jNa such that f (x) > s, a contradiction to the assumption that ∀x ∈Na , s ≤ f (x).

5. If on the said neighbourhood Na we had, on the contrary, L < t then (2) asserts that there is a neighbourhood

of N
′

a jNa such that f (x) < t , a contradiction to the assumption that ∀x ∈Na , t ≥ f (x).

6. This follows by (4) and (5).

❑

Analogous to the Sandwich Theorem for sequences we have

271 THEOREM (Sandwich Theorem) Assume that a,b,c are functions defined on a neighbourhood Nx0 of a point x0 except

possibly at x0 itself. Assume moreover that in Nx0 they satisfy the inequalities a(x) ≤ b(x) ≤ c(x). Then

lim
x→x0

a(x) = L = lim
x→x0

c(x) =⇒ lim
x→x0

b(x) = L.

Proof: For all ε> 0 there is δ> 0 such that

0 < |x − x0| <δ =⇒ |a(x)−L| < ε and |c(x)−L| < ε =⇒ L −ε< a(x) < L +ε and L −ε< c(x) < L +ε.

If we now consider x ∈Nx0 ∩ {x : 0 < |x − x0| < δ} then

L −ε< a(x) ≤ b(x) ≤ c(x) < L +ε =⇒ L −ε< b(x) < L +ε =⇒ |b(x)−L| < ε,

whence lim
x→x0

b(x) = L. ❑

272 THEOREM Let X jR, a ∈R, and f , g : X →R. Let (L,L′,λ) ∈R
3. Then

1. lim
x→a

f (x) = L =⇒ lim
x→a

∣∣f (x)
∣∣= |L|.

2. lim
x→a

f (x) = 0 ⇐⇒ lim
x→a

∣∣f (x)
∣∣= 0.

3. lim
x→a

f (x) = L, lim
x→a

g (x)= L′ =⇒ lim
x→a

( f (x)+λg (x)) = L +λL′.

4. lim
x→a

f (x) = L, lim
x→a

g (x)= L′ =⇒ lim
x→a

( f (x)g (x)) = LL′.

5. If lim
x→a

f (x) = 0 and if g is bounded on a neighbourhood Na of a, then lim
x→a

f (x)g (x) = 0.

6. lim
x→a

f (x) = L, lim
x→a

g (x)= L′ 6= 0 =⇒ lim
x→a

(
f (x)

g (x)

)
= L

L′ .

83



Limits of Functions

Proof:

1. This follows from the inequality
∣∣∣∣f (x)

∣∣−|L|
∣∣≤

∣∣f (x)−L
∣∣.

2. This follows from the inequalities−
∣∣ f (x)

∣∣≤ f (x) ≤
∣∣ f (x)

∣∣ and min(− f (x), f (x)) ≤
∣∣ f (x)

∣∣≤ max(− f (x), f (x))

and the Sandwich Theorem.

3. For all ε> 0 there are δ1 > 0 and δ2 > 0 such that

0 < |x −a| <δ1 =⇒
∣∣ f (x)−L

∣∣< ε, and 0 < |x −a| <δ2 =⇒
∣∣g (x)−L′∣∣< ε.

Take δ= min(δ1,δ2). Then

0 < |x −a| <δ =⇒
∣∣f (x)+λg (x)− (L +λL′)

∣∣≤
∣∣f (x)−L

∣∣+|λ|
∣∣g (x)−L′∣∣< (1+|λ|)ε.

Since the dextral side can be made arbitrarily small, the assertion follows.

4. For all ε> 0 there are δ1 > 0 and δ2 > 0 such that

0 < |x −a| <δ1 =⇒
∣∣ f (x)−L

∣∣< ε, and 0 < |x −a| <δ2 =⇒
∣∣g (x)−L′∣∣< ε.

Also, by Theorem 269, g is locally bounded and so there exists B > 0, and δ3 > 0 such that

0 < |x −a| <δ3 =⇒
∣∣g (x)

∣∣< B .

Take δ= min(δ1,δ2,δ3). Then

∣∣ f (x)g (x)−LL′∣∣=
∣∣( f (x)−L)g (x)+L(g (x)−L′)

∣∣≤
∣∣f (x)−L

∣∣ ∣∣g (x)
∣∣+|L|

∣∣g (x)−L′∣∣< (B +
∣∣L′∣∣)ε.

As the dextral side can be made arbitrarily small, the result follows.

5. For all ε> 0 there are δ1 > 0, B > 0, and δ2 > 0 such that

0 < |x −a| <δ1 =⇒
∣∣f (x)

∣∣< ε, and 0 < |x −a| < δ2 =⇒
∣∣g (x)

∣∣< B .

Take δ= min(δ1,δ2). Then ∣∣f (x)g (x)
∣∣≤ |B |

∣∣f (x)
∣∣< Bε.

As the dextral side can be made arbitrarily small, the result follows.

6. First
∣∣g (x)

∣∣→
∣∣L′∣∣ as x → a by part (1). Hence, for ε=

∣∣∣∣
L′

2

∣∣∣∣> 0 there is a sufficiently small δ′ > 0 such that

∣∣∣∣g (x)
∣∣−

∣∣L′∣∣∣∣<
∣∣L′∣∣

2
=⇒

∣∣L′∣∣−
∣∣L′∣∣

2
<

∣∣g (x)
∣∣<

∣∣L′∣∣+
∣∣L′∣∣

2
=⇒

∣∣L′∣∣
2

<
∣∣g (x)

∣∣<
3

∣∣L′∣∣
2

,

that is,
∣∣g (x)

∣∣ is bounded away from 0 x sufficiently close to a. Now, for all ε> 0 there are δ1 > 0 and δ2 > 0

such that

0 < |x −a| <δ1 =⇒
∣∣ f (x)−L

∣∣< ε, and 0 < |x −a| <δ2 =⇒
∣∣g (x)−L′∣∣< ε.

For δ= min(δ1,δ2,δ′),

0 < |x −a| <δ =⇒ L −ε< f (x) < L +ε,

∣∣L′∣∣
2

<
∣∣g (x)

∣∣<
3

∣∣L′∣∣
2

, and L′−ε< g (x) < L′+ε.

Hence

∣∣∣∣
f (x)

g (x)
− L

L′

∣∣∣∣=
∣∣∣∣

L′ f (x)−Lg (x)

g (x)L′

∣∣∣∣=
∣∣∣∣

L′( f (x)−L)−L(g (x)−L′)

g (x)L′

∣∣∣∣≤
∣∣L′∣∣∣∣ f (x)−L

∣∣+|L|
∣∣g (x)−L′∣∣

∣∣g (x)
∣∣ |L′|

<
2(

∣∣L′∣∣+|L|)ε
|L′| |L′| ,

which gives the result.

❑

In the manner of proof of Proposition 265, we may prove the following two propositions.
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273 DEFINITION-PROPOSITION (Cauchy-Heine, Limit at +∞) Let f :
]

a ;+∞
[
→R The following are equivalent.

1. For each sequence {xn }+∞n=1 of points in the interval
]

a ;+∞
[

,

xn →+∞ =⇒ f (xn ) → L.

2. ∀ε> 0, ∃M , M > max(0, a), such that

x ≥ M =⇒
∣∣f (x)−L

∣∣< ε.

If either condition is fulfilled we say that f has a limit L as x tends towards +∞ and we write

L = lim
x→+∞

f (x).

274 DEFINITION-PROPOSITION (Cauchy-Heine, Limit at −∞) Let f :
]
−∞ ; a

[
→R The following are equivalent.

1. For each sequence {xn }+∞n=1 of points in the interval
]
−∞ ; a

[
,

xn →−∞ =⇒ f (xn ) → L.

2. ∀ε> 0, ∃M , M < min(0, a), such that

x ≤ M =⇒
∣∣f (x)−L

∣∣< ε.

If either condition is fulfilled we say that f has a limit L as x tends towards −∞ and we write

L = lim
x→−∞

f (x).

275 Definition We write lim
x→a+

f (x) =+∞ or lim
xցa

f (x) =+∞ if ∀M > 0, ∃δ> 0 such that

x ∈
]

a ; a +δ
[
=⇒ f (x) > M .

Similarly, we write lim
x→a−

f (x) =+∞ or lim
xրa

f (x) =+∞ if ∀M > 0, ∃δ> 0 such that

x ∈
]

a −δ ; a
[
=⇒ f (x) > M .

Finally, we write lim
x→a

f (x) =+∞ if ∀M > 0, ∃δ> 0 such that

x ∈
]

a −δ ; a +δ
[
=⇒ f (x) > M .

276 Definition We write lim
x→a+

f (x) =−∞ or lim
xցa

f (x) =−∞ if ∀M < 0, ∃δ> 0 such that

x ∈
]

a ; a +δ
[
=⇒ f (x) < M .

Similarly, we write lim
x→a−

f (x) =−∞ or lim
xրa

f (x) =−∞ if ∀M < 0, ∃δ> 0 such that

x ∈
]

a −δ ; a
[
=⇒ f (x) < M .

Finally, we write lim
x→a

f (x) =−∞ if ∀M < 0, ∃δ> 0 such that

x ∈
]

a −δ ; a +δ
[
=⇒ f (x) < M .

277 THEOREM Let X ,Y be subsets of R, a ∈ X and b ∈ Y , f : X →R, g : Y →R such that f (X )j Y , and let L ∈R. Then

lim
x→a

f (x) = a and lim
x→b

g (x) = L =⇒ lim
x→a

(g ◦ f )(x) = L.

Proof:

❑

Homework
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Problem 5.1.1 Prove that lim
x→0

sin
1

x
does not exist.

Problem 5.1.2 Let m,n be strictly positive integers. Prove that

lim
x→1

xn −1

xm −1
= n

m
.

Problem 5.1.3 Let X j R, a ∈ R, and f , g : X → R. If f (x) → +∞
and there exists a neighbourhood Na j X of a where f (x) ≤ g (x),

prove that g (x) →+∞.

Problem 5.1.4 Let X j R, a ∈ R, and f , g : X → R. Suppose that

lim
x→a

f (x) =+∞. Demonstrate that

1. If lim
x→a

g (x) =+∞, then lim
x→a

(f (x)+g (x)) =+∞.

2. If lim
x→a

g (x) = L ∈R, then lim
x→a

(f (x)+g (x)) =+∞.

3. If lim
x→a

g (x) =+∞, then lim
x→a

(f (x)g (x)) =+∞.

4. If lim
x→a

g (x) = L > 0, then lim
x→a

(f (x)g (x)) =+∞.

Problem 5.1.5 (Cauchy Criterion for Functional Limits) Let X j

R, a ∈ X , and f : X →R. Prove that f has a limit at a (finite or infi-

nite) if and only if for all ε> 0 there is a δ> 0 such that
∣∣x ′−x ′′∣∣<δ

implies
∣∣f (x ′)− f (x ′′)

∣∣< ε.

5.2 Continuity

278 Definition A function f :
]

a ;b
[
→ R is said to be continuous at the point x0 ∈

]
a ;b

[
, if we can exchange limiting

operations, as in

lim
x→x0

f (x) = f

(
lim

x→x0
x

)
(= f (x0)).

In other words, a function is continuous at the point x0 if

∀ε> 0,∃δ> 0, such that |x − x0| <δ =⇒
∣∣ f (x)− f (x0)

∣∣< ε.

279 Definition A function f :
[

a ;b
]
→R is said to be right continuous at a, if

f (a)= f (a+).

It is said to be left continuous at b, if

f (b) = f (b−).

In view of the above definitions and Proposition 267, we have the following

280 THEOREM The following are equivalent.

1. The function f :
]

a ;b
[
→R is continuous at the point x0 ∈

]
a ;b

[
.

2. f (x0−) = f (x0) = f (x0+).

3. If {xn }+∞n=1, and for all n, xn ∈
]

a ;b
[

, then xn → x0 =⇒ f (xn ) → f (x0).

281 Example What are the points of discontinuity of the function

f :

[
0 ;+∞

[
→ R

x 7→





1

p +q
if x ∈Q∩

[
0 ;+∞

[
, x = p

q
, in lowest terms

0 if x ∈
[

0 ;+∞
[

\Q

?

Solution: Let a ∈ Q. Since
[

0 ;+∞
[

\ Q is dense in
[

0 ;+∞
[

, there exists a sequence {an}+∞n=1 of points in[
0 ;+∞

[
\Q such that an → a as n →+∞. Observe that f (an ) = 0 but f (a) 6= 0. Hence an → a does not imply

f (an ) → f (a) and f is not continuous at a. On the other hand, let n ∈
[

0 ;+∞
[

\Q. Then f (b) = 0. Let {bn }+∞n=1 be

a sequence in
[

0 ;+∞
[
∩Q converging to b, bn = pn

qn
in lowest terms. By Dirichlet’s Approximation Theorem we
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must have pn →+∞ and qn →+∞. Hence
1

pn +qn
→ 0. So f is continuous at b. In conclusion, f is continuous

at every irrational in
[

0 ;+∞
[

and discontinuous at every rational in
[

0 ;+∞
[

.

282 DEFINITION-PROPOSITION (Oscillation of a function at a point) Let f be bounded. The function ω : Dom
(

f
)
→ [0;+∞[,

called the oscillation of f at x and given by

ω( f , x) = lim
δ→0+

sup{
∣∣ f (a)− f (b)

∣∣ : |a − x| <δ, |b − x| <δ}

is well-defined. Moreover, f is continuous at x if and only if ω( f , x) = 0.

Proof: Observe that in fact

ω( f , x) = lim
δ→0+

sup{
∣∣ f (a)− f (b)

∣∣ : |a − x| < δ, |b − x| <δ} = inf
δ>0

sup{
∣∣ f (a)− f (b)

∣∣ : |a − x| <δ, |b − x| <δ} ≤
∣∣ f (a)− f (b)

∣∣≤ 2
∣∣f

∣∣<+∞

This says that ω( f , x) is well-defined.

❑

283 Definition We say that a function f is continuous on the closed interval
[

a ;b
]

if it is continuous everywhere on
]

a ;b
[

,

continuous on the right at a and continuous on the left at b. If X j R, then f : X → R is said to be continuous on X (or

continuous) if it is continuous at every element of X .

284 THEOREM Let X jR. A function f : X →R is continuous if and only if the the inverse image of an open set is open in X .

Proof:

=⇒ Let A j R be an open set. We must shew that f −1(A) is open in X . Let a ∈ f −1(A). Since f (a) ∈ A and A is

open in R, there exists an r > 0 such that
]

f (a)−r ; f (a)+r
[
j A. Since f is continuous at a, there exists a

δ> 0 such that

|x −a| < δ =⇒
∣∣f (x)− f (a)

∣∣< r, that is, x ∈
]

a +δ ; a −δ
[
=⇒ f (x) ∈

]
f (a)−r ; f (a)+r

[
,

that is, x ∈
]

a +δ ; a −δ
[
=⇒ x ∈ f −1

(]
f (a)−r ; f (a)+r

[)
,

that is,
]

a +δ ; a −δ
[
j f −1

(]
f (a)−r ; f (a)+r

[)

Since f −1
(]

f (a)−r ; f (a)+r
[)
j f −1(A), we have shewn that

]
a +δ ; a −δ

[
j f −1(A), which means that

for any a, a neighbourhood of a lies entirely in f −1(A), that is, f −1(A) is open.

⇐ Given ε> 0, we must find a δ> 0 such that for all a ∈ X ,

|x −a| <δ =⇒
∣∣ f (x)− f (a)

∣∣< ε.

Now ∣∣f (x)− f (a)
∣∣< ε =⇒ f (x) ∈

]
f (a)−ε ; f (a)+ε

[
=⇒ x ∈ f −1

(]
f (a)−ε ; f (a)+ε

[)
.

Now,
]

f (a)−ε ; f (a)+ε
[
j R is open in R, and so, by assumption, so is f −1

(]
f (a)−ε ; f (a)+ε

[)
. This

means that if t ∈ f −1
(]

f (a)−ε ; f (a)+ε
[)

then there is a r > 0 such that

]
t −r ; t +r

[
j f −1

(]
f (a)−ε ; f (a)+ε

[)
.

But clearly a ∈ f −1
(]

f (a)−ε ; f (a)+ε
[)

, and hence there is a δ> 0 such that

]
a −δ ; a +δ

[
j f −1

(]
f (a)−ε ; f (a)+ε

[)
.
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Thus

x ∈
]

a −δ ; a +δ
[
=⇒ x ∈ f −1

(]
f (a)−ε ; f (a)+ε

[)
,

or equivalently,

|x −a| < δ =⇒ f (x) ∈
]

f (a)−ε ; f (a)+ε
[

,

that is,

|x −a| <δ =⇒
∣∣ f (x)− f (a)

∣∣< ε,

as we needed to shew.

❑

285 THEOREM Let X j R. A function f : X →R is continuous if and only if the the inverse image of a closed set is closed in

X .

Proof: Let F jR be a closed set. Then R\F is open. By Theorem 284 f −1(R\F ) is open in X , and so X \ f −1(R\F )

is closed in X . But X \ f −1(R\ F ) = f −1(F ), proving the theorem. ❑

286 THEOREM If two continuous functions agree on a dense set of the reals, then they are identical. That is, if X jR is dense

in R and if f : R→R and g : R→R satisfy f (x) = g (x) for all x ∈ X , then f (x) = g (x) for all x ∈R.

Proof: Let a ∈R\ X . Since X is dense in R, there is a sequence {xn }+∞n=1 j X such that xn → a as n →+∞. Notice

that since xn ∈ X , we have f (xn ) = g (xn ). By continuity

f (a) = f
(

lim
n→+∞

xn

)
= lim

n→+∞
f (xn ) = lim

n→+∞
g (xn ) = g

(
lim

n→+∞
xn

)
= g (a),

proving the theorem. ❑

287 THEOREM (Cauchy’s Functional Equation) Let f be a continuous function defined over the real numbers that satisfies

the Cauchy functional equation:

∀(x, y) ∈R2, f (x + y) = f (x)+ f (y).

Then f is linear, that is, there is a constant c such that f (x) = c x.

Proof: Our method of proof is as follows. We first prove the assertion for positive integers n using induction. We

then extend our result to negative integers. Thence we extend the result to reciprocals of integers and after that to

rational numbers. Finally we extend the result to all real numbers by means of Theorem 286.

We prove by induction that for integer n ≥ 0, f (nx) = n f (x). Using the functional equation,

f (0 ·x) = f (0 ·x +0 ·x) = f (0 ·x)+ f (0 ·x) =⇒ f (0 ·x) = 0 f (x),

and the assertion follows for n = 0. Assume n ≥ 1 is an integer and that f ((n −1)x) = (n −1) f (x). Then

f (nx) = f ((n −1)x + x) = f ((n −1)x)+ f (x) = (n −1) f (x)+ f (x) = n f (x),

proving the assertion for all strictly positive integers.

Let m < 0 be an integer. Then −m > 0 is a strictly positive integer, for which the result proved in the above

paragraph holds, and thus and by the above paragraph, f (−mx) =−m f (x). Now,

0 = f (0) =⇒ 0 = f (mx + (−mx)) = f (mx)+ f (−mx) =⇒ f (mx) =− f (−mx) =−(−m f (x)) = m f (x),

and the assertion follows for negative integers. We have thus proved the theorem for all integers.
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Assume now that x = a

b
, with a ∈Z and b ∈Z\ {0}. Then f (a) = f (a ·1)= a f (1) and f (a) = f

(
b

a

b

)
= b f

( a

b

)
by

the result we proved for integers and hence

a f (1) = b f
( a

b

)
=⇒= f

( a

b

)
= f (1)

( a

b

)
.

We have established that for all rational numbers x ∈Q, f (x) = x f (1).

We have not used the fact that the function is continuous so far. Since the rationals are dense in the reals the

extension of the result now follows from Theorem 286.❑

Homework

Problem 5.2.1 Find all functions f : R → R, continuous at x = 0

such that ∀x ∈R, f (x) = f (3x).

Problem 5.2.2 Find all functions f : R → R, continuous at x = 0

such that ∀x ∈R, f (x) = f

(
x

1+x2

)
.

Problem 5.2.3 Determine the set of points of discontinuity of the

function f : R→R, f : x 7→ TxU+
√

x −TxU.

Problem 5.2.4 What are the points of discontinuity of the function

f :

R → R

x 7→





x if x ∈Q

0 if x ∈R \Q

?

Problem 5.2.5 What are the points of discontinuity of the function

f :

R → R

x 7→





0 if x ∈Q

x if x ∈R \Q

?

Problem 5.2.6 What are the points of discontinuity of the function

f :

R → R

x 7→





0 if x ∈Q

1 if x ∈R \Q

?

Problem 5.2.7 What are the points of discontinuity of the function

f :

R → R

x 7→





cos x if x ∈Q

sin x if x ∈R \Q

?

Problem 5.2.8 Find all functions f : R → R, continuous at x = 1

such that ∀x ∈R, f (x) =−f (x2).

Problem 5.2.9 Let a ∈R be fixed. Find all functions f : R→R, con-

tinuous everywhere such that ∀(x, y ) ∈ R2, f (x − y ) = f (x)− f (y )+
ax y .

Problem 5.2.10 Let f :
[

0 ;+∞
[

→
[

0 ;+∞
[

, x 7→
√

x +
√

x +
p

x +·· ·. Is f right-continuous at 0?

5.3 Algebraic Operations with Continuous Functions

288 THEOREM (Algebra of Continuous Functions) Let f , g :
]

a ;b
[
→R be continuous a the point x0 ∈

]
a ;b

[
. Then

1. f + g is continuous at x0.

2. f g is continuous at x0.

3. if g (x0) 6= 0,
f

g
is continuous at x0.

Proof: This follows directly from Theorem 272. ❑

289 THEOREM Let X ,Y be subsets of R, a ∈ X and b ∈ Y , f : X → R, g : Y → R such that f (X ) j Y . If f is continuous at a

and g is continuous at f (a), then g ◦ f is continuous at a.
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Proof: This follows at once from Theorem 277. ❑

290 THEOREM Let f : I →R be a monotone function, where I jR is a non-empty interval. Then the set of points of discon-

tinuity of f is either finite or countable.

With Theorems 288 and 289 we can now demonstrate the

5.4 Monotonicity and Inverse Image

291 Definition Let X and Y be subsets of R. Let f : X → Y , and assume that X has at least two elements. Then f is said to

be

• increasing if ∀(a,b) ∈ X 2, a < b =⇒ f (a) ≤ f (b). Equivalently, if the ratio
f (b)− f (a)

b −a
≥ 0.

• strictly increasing if ∀(a,b) ∈ X 2, a < b =⇒ f (a)< f (b). Equivalently, if the ratio
f (b)− f (a)

b −a
> 0.

• decreasing if ∀(a,b) ∈ X 2, a < b =⇒ f (a) ≥ f (b). Equivalently, if the ratio
f (b)− f (a)

b −a
≤ 0.

• strictly decreasing if ∀(a,b) ∈ X 2, a < b =⇒ f (a)> f (b). Equivalently, if the ratio
f (b)− f (a)

b −a
< 0.

f is said to be monotonic if it is either increasing or decreasing, and strictly monotonic if it is either strictly increasing or

strictly decreasing.

☞Observe that if f is increasing, then −f is decreasing, and conversely. Similarly for strictly monotonic functions.

292 THEOREM Let X jR and let f : X →R be strictly monotone. Then f is injective.

Proof: Recall that f is injective if x 6= y =⇒ f (x) 6= f (y). If f is strictly increasing then x < y =⇒ f (x) < f (y)

and if f is strictly decreasing then x < y =⇒ f (x) > f (y). In either case, the condition for injectivity is fulfilled.

❑

293 THEOREM Let I jR be an interval and let f : I → f (I ) be strictly monotone. Then f −1 is strictly monotone in the same

sense as f .

Proof: Assume first that f is strictly increasing and put x = f −1(a), y = f −1(b) and that a < b. If x ≥ y , then,

since f is strictly increasing, f (x) ≥ f (y). But then, f ( f −1(a))≥ f ( f −1(b)) =⇒ a ≥ b, a contradiction.

A similar argument finishes the theorem for f strictly decreasing.

❑

The following theorem is remarkable, since it does not allude to any possible continuity of the function in question.

294 THEOREM Let I jR be an interval and let f : I → f (I ) be strictly monotone. Then f −1 is continuous.

Proof: Let b ∈ f (I ), b = f (a), and ε> 0. We must shew that there is δ> 0 such that

∣∣y −b
∣∣<δ =⇒

∣∣ f −1(y)−b
∣∣< ε.

If a is not an endpoint of I , there is an α> 0 such that
]

a −α ; a +α
[
j I . Put ε′ = min(ε,α). Since both f and

f −1 are both strictly monotone

∣∣f −1(y)−b
∣∣< ε′ =⇒ b−ε′ < f −1(y) < b+ε′ =⇒ f (b−ε′) < f ( f −1(y)) < f (b+ε′) =⇒ f (b−ε′) < y < f (b+ε′).
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Since f is strictly increasing and a−ε′ < a, f (a−ε′) < f (a)= b. Thus there must be an η> 0 such that f (a−ε′) =
b −η < b. Similarly, there is an η′ such that b < b +η′ = f (a +ε′). Putting η′′ = min(η,η′), we have that for all

y ∈ f (I ),

∣∣y −b
∣∣<η′′ =⇒ b −η′′ < y < b +η′′

=⇒ b −η< y < b +η′

=⇒ a −ε′ < f −1(y) < a +ε′

=⇒
∣∣f −1(y)− f −1(b)

∣∣< ε′,

finishing the proof for when a is not an endpoint. If a were an endpoint, the above proof carries by suppressing

one of η or η′. ❑

295 THEOREM A continuous function f :
[

a ;b
]
→ f

([
a ;b

])
is invertible if and only if it is strictly monotone.

Proof:

=⇒ Assume f is continuous and invertible. Since f is injective, f (a) 6= f (b). Assume that f (a) < f (b), if

f (a) > f (b) the argument is similar. We would like to shew that if a ′ < b′ =⇒ f (a ′) < f (b′). Consider the

continuous function g :
[

0 ;1
]
→R,

g (t) = f ((1− t)a + t a ′)− f ((1− t)b + tb′).

We have

g (0)= f (a)− f (b) < 0 and g (1)= f (a ′)− f (b′).

If g (1) = 0, then we must have a ′ = b′, contradicting a ′ < b′. If g (1) > 0, then by the Intermediate Value

Theorem there must be an s ∈
]

0 ;1
[

such that g (s)= 0. This entails

(1− s)a + sa ′ = (1− s)b + sb′ =⇒ 0 > (1− s)(a −b)= s(b′−a ′) > 0,

absurd. This entails that g (1) < 0 =⇒ f (a ′) < f (b′), as wanted.

⇐ Trivially, f is surjective. If f is strictly monotone, then f is injective by Theorem 292, and thus f is invertible,

by Theorem 27.

❑

5.5 Convex Functions

296 Definition Let A ×B jR2. A function f : A → B is convex in A if ∀(a,b,λ) ∈ A2 × [0;1],

f (λa + (1−λ)b) ≤ f (a)λ+ (1−λ) f (b).

It is strictly convex if the inequality above is strict. Similarly, a function g : A → B is concave in A if ∀(a,b,λ) ∈ A2 × [0;1],

g (λa + (1−λ)b) ≥ g (a)λ+ (1−λ)g (b).

It is strictly concave if the inequality above is strict.

5.5.1 Graphs of Functions

297 Definition Given a function f , its graph is the set on the plane

Γf = {(x, y) ∈R2 : y = f (x)}.
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298 Example Figures ?? through ?? shew the graphs of a few standard functions, with which we presume the reader to be

familiar.

5.6 Classical Functions

5.6.1 Affine Functions

299 Definition An affine function is one with assignment rule of the form x 7→ ax +b, where a,b are real constants.

300 THEOREM The graph of an affine function is a line on the plane. Conversely, any non-vertical straight line on the plane

is the graph on an affine function.

5.6.2 Quadratic Functions

5.6.3 Polynomial Functions

5.6.4 Exponential Functions

301 DEFINITION-PROPOSITION Let x ∈ R be fixed. The sequence
{(

1+ x

n

)n}+∞
n>−x

is bounded and strictly increasing. Thus it

converges and we define the natural exponential function by

exp : R→R, exp(x) := lim
n→+∞

(
1+ x

n

)n
.

Proof: Observe that 1+ x

n
> 0 for n >−x. Using the AM-GM Inequality with x1 = 1, x2 = ·· · = xn+1 = 1+ x

n

(
1+ x

n

)n/(n+1)
<

1+n
(
1+ x

n

)

n +1
= 1+ x

n +1
=⇒

(
1+ x

n

)n
<

(
1+ x

n +1

)n+1
,

whence the sequence is increasing.

For 0 < x ≤ 1 then
(
1+ x

n

)n
≤

(
1+ 1

n

)n

< e, by Theorem 177.

If x > 1 then by the already proved monotonicity,

(
1+

x

n

)n
≤

(
1+

TxU+1

n

)n

<
(

1+
TxU+1

n(TxU+1)

)n(TxU+1)

< eTxU+1.

If x ≤ 0 then 1+ x

n
≤ 1 and so

(
1+ x

n

)n
≤ 1. ❑

☞ By Theorem 177, exp(1) = e. We will later prove, in ????, that for all x ∈R, exp(x) = ex .

5.6.5 Logarithmic Functions

5.6.6 Trigonometric Functions

302 THEOREM Let x ∈
]

0 ;
π

2

[
. Then sin x < x < tan x.

Proof:

❑

92



Chapter 5

Homework

Problem 5.6.1 How many solutions does the equation

sinx =
x

100

have?

Problem 5.6.2 Prove that

2

π
x ≤ sin(x) ≤ x,∀ x ∈

[
0 ;

π

2

]
.

Problem 5.6.3 How many solutions does the equation

sin x = log x

have?

Problem 5.6.4 How many solutions does the equation

sin(sin(sin(sin(sin(x))))) =
x

3

have?

Problem 5.6.5 (Chebyshev Polynomials)

Problem 5.6.6 (Cardano’s Formula)

5.6.7 Inverse Trigonometric Functions

5.7 Continuity of Some Standard Functions.

5.7.1 Continuity Polynomial Functions

303 LEMMA Let K ∈R be a constant. The constant function f : R→R, f (x) = K is everywhere continuous.

Proof: Given a ∈R and ε> 0, take δ= ε. Then clearly

|x −a| <δ =⇒
∣∣f (x)− f (a)

∣∣< ε,

since f (x) = f (a) = K and the quantity after the implication is 0 < ε and we obtain a tautology. ❑

304 LEMMA The identity function f : R→R, f (x) = x is everywhere continuous.

Proof: Given a ∈R and ε> 0, take δ= ε. Then clearly

|x −a| <δ =⇒
∣∣f (x)− f (a)

∣∣< ε,

since the quantity after the implication is |x −a| <δ and we obtain a tautology. ❑

305 LEMMA Given a strictly positive integer n, the power function f : R→R, f (x) = xn is everywhere continuous.

Proof: By Lemma 304, the function x 7→ x is continuous. Applying this Lemma and the product rule from

Theorem 288 n times, we obtain the result. ❑

306 THEOREM (Continuity of Polynomial Functions) Let n be a fixed positive integer. Let ak ∈ R, 0 ≤ k ≤ n be constants.

Then the polynomial function f : R→R, f (x) = a0 +a1x +a2x2 +·· ·+an xn is everywhere continuous.

Proof: This follows from Lemma 305 and the sum rule from Theorem 288 applied n +1 times. ❑

5.7.2 Continuity of the Exponential and Logarithmic Functions

307 LEMMA Let a > 1. The exponential function R→R, x 7→ ax is continuous at x = 0.

Proof: For integral n > 0 we know that lim
n→+∞

a1/n = 1 by virtue of Theorem 174. We wish to shew that ax → 1 as

x → 0. Observe first that lim
n→+∞

a−1/n = lim
n→+∞

1

a1/n
= 1 also. Thus given ε> 0, and since a > 1, there is N > 0 such

that

1−ε< a−1/N < a1/N < 1+ε.

93



Continuity of Some Standard Functions.

If x ∈
]
− 1

N
;

1

N

[
then,

a−1/N < ax < a1/N .

By the above, this implies that

1−ε< ax < 1+ε =⇒
∣∣ax −1

∣∣< ε =⇒
∣∣ax −a0

∣∣< ε,

finishing the proof. ❑

308 THEOREM (Continuity of the Exponential Function) Let a > 0, a 6= 1. The exponential function f : R→
]

0 ;+∞
[

, x 7→ ax

is everywhere continuous.

Proof: Assume first that a > 1. Let us shew that it is continuous at an arbitrary u ∈ R. If x → u then x −u → 0.

Thus

lim
x→u

ax = au lim
x→u

ax−u = au lim
x−u→0

ax−u = au lim
t→0

a t = au ·1 = au ,

by Lemma 307, and so the continuity is established for a > 1.

If 0 < a < 1 then
1

a
> 1 and by what we have proved, x 7→ 1

ax
is continuous. Then

lim
x→u

ax = lim
x→u

1

1

ax

=
1

1

au

= au ,

proving continuity in the case 0 < a < 1.❑

309 LEMMA Let a > 0, a 6= 1. Then
]

0 ;+∞
[
→R, x 7→ loga x is everywhere continuous.

Proof: Its inverse function R→
]

0 ;+∞
[

, x 7→ ax , is everywhere continuous and strictly monotone. The result

then follows from Theorem 294. ❑

5.7.3 Continuity of the Power Functions

310 THEOREM Let p ∈R. Then
]

0 ;+∞
[
→

]
0 ;+∞

[
, x 7→ xp is everywhere continuous.

Proof: This follows by the continuity of compositions: xp = ep log x . ❑

Homework

Problem 5.7.1 Prove the continuity of the function R →
[
−1 ;1

]
,

x 7→ sin x .

Problem 5.7.2 Prove the continuity of the function
[
−1 ;1

]
→

[
−

π

2
;
π

2

]
, x 7→ arcsinx .

Problem 5.7.3 Prove the continuity of the function R →
[
−1 ;1

]
,

x 7→ cos x .

Problem 5.7.4 Prove the continuity of the function
[
− 1 ;1

]
→[

0 ;π
]

, x 7→ arccos x .

Problem 5.7.5 Prove the continuity of the function R\(2Z+1)
π

2
→

R, x 7→ tan x .

Problem 5.7.6 Prove the continuity of the function R→
]
− π

2
;
π

2

[
,

x 7→ arctan x .
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5.8 Inequalities Obtained by Continuity Arguments

The technique used Theorem 287, of proving results in a dense set of the real numbers and extending the result by continuity

can be exploited in a variety of situations. We now use it to give a generalisation of Bernoulli’s Inequality.

311 THEOREM (Generalisation of Bernoulli’s Inequality) Let (α, x) ∈R2 with x ≥−1. If 0 <α< 1 then

(1+ x)α ≤ 1+αx.

If α ∈
]
−∞ ;0

[
∪

]
1 ;+∞

[
then

(1+ x)α ≥ 1+αx.

Equality holds in either case if and only if x = 0.

Proof: Let α ∈ Q, 0 < α < 1. Then α = m

n
for integers m,n with 1 ≤ m < n. Since x +1 ≥ 0, we may use the

AM-GM Inequality to obtain

(1+ x)α = (1+ x)m/n

=
(
(1+ x)m ·1n−m

)1/n

≤ m(1+ x)+ (n −m) ·1

n

= n +mx

n

= 1+
m

n
x

= 1+αx.

Equality holds when are the factors are the same, that is, when 1+ x = 1 =⇒ x = 0.

Assume now that α ∈ R \Q with 0 < α < 1. We can find a sequence of rational numbers {an}+∞n=1 j Q such that

an →α as n →+∞. Then

(1+ x)an ≤ 1+an x,

whence by the continuity of the power functions (Theorem 310),

(1+ x)α = lim
n→+∞

(1+ x)an ≤ lim
n→+∞

(1+an x) = 1+αx,

giving the result for all real numbers α with 0 <α< 1, except that we need to prove that equality holds only for

x = 0. Take a rational number r with 0 <α< r < 1, and recall that we are assuming that α is irrational. Then

(1+ x)α = (1+ x)α/r )r ≤
(
1+ α

r
x
)r

.

Since the exponent on the right is rational, by what we have proved above
(
1+ α

r
x
)r

≤ 1+ x with equality if and

only if x = 0. Hence the full result has been proved for the case α ∈R with 0 <α< 1.

Let α> 1. If 1+αx < 0, then obviously (1+x)α > 0 > 1+αx, and there is nothing to prove. Hence we will assume

that αx ≥−1. By the first part of the theorem, since 0 < 1

α
< 1,

(1+αx)1/α ≤ 1+
1

α
·αx = 1+ x =⇒ 1+αx ≤ (1+ x)α,

with equality only if x = 0. The theorem has been proved for α> 1.

95



Inequalities Obtained by Continuity Arguments

Finally, let α< 0. Again, if 1+αx < 0, then obviously (1+x)α > 0 > 1+αx, and there is nothing to prove. Assume

thus αx ≥−1. Choose a strictly positive integer n satisfying 0 <−α< n. Now,

1≥ 1− α2

n2
x2 =

(
1− α

n
x
)(

1+ α

n
x
)
=⇒ 1

1− α

n
x
≥ 1+ α

n
x,

and so by the first pat of the theorem

(1+ x)−α/n ≤ 1− α

n
x =⇒ (1+ x)α/n ≥ 1

1− α

n
x

=⇒ (1+ x)α/n ≥ 1+
α

n
x

=⇒ (1+ x)α ≥
(
1+ α

n
x
)n

,

and since n is a positive integer,
(
1+ α

n
x
)n

≥ 1+n · α
n

x = 1+αx and so (1+ x)α ≥ 1+αx also when α< 0. This

finishes the proof of the theorem. ❑

312 THEOREM (Monotonicity of Power Means) Let a1, a2, . . . , an be strictly positive real numbers and let (α,β) ∈R
2 be such

that α ·β 6= 0 and α<β. Then
(

aα
1 +aα

2 +·· ·+aα
n

n

)1/α

≤
(

a
β
1 +a

β
2 +·· ·+a

β
n

n

)1/β

,

with equality if and only is a1 = a2 = ·· · = an .

Proof: Assume first that 0 <α<β. Put cα =
(

aα
1 +aα

2 +·· ·+aα
n

n

)1/α

and dk =
(

ak

cα

)α
. Observe that

cβ

cα
=




(
a1

cα

)β
+

(
a2

cα

)β
+·· ·+

(
an

cα

)β

n




1/β

=
(

d
β/α
1 +d

β/α
2 +·· ·+d

β/α
n

n

)1/β

,

and that (
d1 +d2 +·· ·+dn

n

)1/α

=
1

cα

(
aα

1 +aα
2 +·· ·+aα

n

n

)1/α

= 1 =⇒ d1 +d2 +·· ·+dn = n.

Put dk = 1+ xk . Then x1 + x2 +·· ·+ xn = 0. By Theorem 311,

d
β/α

k
= (1+ xk )β/α ≥ 1+

β

α
xk . (5.1)

Letting k run from 1 through n and adding,

d
β/α
1 +d

β/α
2 +·· ·+d

β/α
n ≥ n + β

α
(x1 + x2 +·· ·+ xn ) = n.

Hence

d
β/α
1 +d

β/α
2 +·· ·+d

β/α
n

n
≥ 1 =⇒

cβ

cα
≥ 1,

proving the theorem when 0 <α<β.

If α < β < 0, then 0 < β

α
< 1. The inequality in (5.1) is reversed, giving

d
β/α
1 +d

β/α
2 +·· ·+d

β/α
n

n
≤ 1, and since

β< 0,

cβ

cα
=

(
d
β/α
1 +d

β/α
2 +·· ·+d

β/α
n

n

)1/β

≥ 11/β = 1,
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proving the theorem when α<β< 0.

Finally, we tackle the case α< 0 <β. By the AM-GM Inequality, putting G = (a1a2 · · ·an )1/n

Gα = (aα
1 aα

2 · · ·aα
n )1/n ≤

aα
1 +aα

2 +·· ·+aα
n

n
.

Raising the quantities at the extreme of the inequalities to the power −1/α and remembering that −1/α > 0, we

gather that (
aα

1 +aα
2 +·· ·+aα

n

n

)1/α

≤G.

In a similar manner,

Gβ = (a
β
1 a

β
2 · · ·a

β
n )1/n ≤

a
β
1 +a

β
2 +·· ·+a

β
n

n
,

and

G ≤
(

a
β
1 +a

β
2 +·· ·+a

β
n

n

)1/β

,

since β> 0. This finishes the proof. ❑

313 LEMMA Let α, a, x be real numbers with α> 1, a > 0, and x ≥ 0. Then

xα−ax ≥ (1−α)
( a

α

)α/(α−1)
.

Proof: By Theorem 311, since α> 1,

(1+ z)α ≥ 1+αz , z ≥−1,

with equality only is z = 0. Putting z = 1+ y ,

yα ≥ 1+α(y −1) =⇒ yα−αy ≥ 1−α, y ≥ 0,

with equality only if y = 1. Let c > 0 be a constant. Multiplying the above inequality by cα we obtain

(c y)α−αcα−1(c y) ≥ (1−α)cα, for y ≥ 0.

Putting x = c y and a =αcα−1, we get

xα−ax ≥ (1−α)
( a

α

)α/(α−1)
,

with equality if and only if x = c =
( a

α

)α/(α−1)
.

❑

314 THEOREM (Young’s Inequality) Let p > 1 and put
1

p
+ 1

q
= 1. Then for (x, y) ∈ ([0;+∞[)2 we have

x y ≤
xp

p
+

y q

q
.

Proof: Put α= p, a = p y in Lemma 313, obtaining

xp − (p y)x ≥ (1−p)

(
p y

p

)p/(p−1)

= (1−p)y p/(p−1).

Now,
1

q
=

p −1

p
=⇒ q =

p

p −1
and p −1 =

p

q
. Hence

xp − (p y)x ≥ (1−p)y p/(p−1) =⇒ (1−p)y p/(p−1) ≥−p

q
y q ,

and rearranging gives the result sought. ❑
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We now derive a generalisation of the Cauchy-Bunyakovsky-Schwarz Inequality.

315 THEOREM (Hölder Inequality) Let x j , yk , 1 ≤ j ,k ≤ n, be real numbers. Let p > 1 and put
1

p
+ 1

q
= 1. Then

∣∣∣∣∣
n∑

k=1

xk yk

∣∣∣∣∣≤
(

n∑
k=1

|xk |p
)1/p (

n∑
k=1

∣∣yk

∣∣q

)1/q

.

Proof: If either
n∑

k=1

|xk |p = 0 or
n∑

k=1

∣∣yk

∣∣q = 0 there is nothing to prove, so assume otherwise. From Young’s

Inequality we have

|xk |(∑n
k=1

|xk |p
)1/p

|yk |
(∑n

k=1

∣∣yk

∣∣q )1/q
≤ |xk |p(∑n

k=1
|xk |p

)
p
+ |yk |q(∑n

k=1

∣∣yk

∣∣q )
q

.

Adding, we deduce

n∑
k=1

|xk |(∑n
k=1

|xk |p
)1/p

|yk |
(∑n

k=1

∣∣yk

∣∣q )1/q
≤ 1(∑n

k=1
|xk |p

)
p

n∑
k=1

|xk |p + 1(∑n
k=1

∣∣yk

∣∣q )
q

n∑
k=1

|yk |q

=
∑n

k=1
|xk |p(∑n

k=1
|xk |p

)
p
+

(∑n
k=1

∣∣yk

∣∣q )
q

(∑n
k=1

∣∣yk

∣∣q )
q

= 1

p
+ 1

q

= 1.

This gives

n∑
k=1

|xk yk | ≤
(

n∑
k=1

|xk |p
)1/p (

n∑
k=1

∣∣yk

∣∣q

)1/q

.

The result follows by observing that

∣∣∣∣∣
n∑

k=1

xk yk

∣∣∣∣∣≤
n∑

k=1

|xk yk | ≤
(

n∑
k=1

|xk |p
)1/p (

n∑
k=1

∣∣yk

∣∣q

)1/q

.

❑

Finally, we derive a generalisation of Minkowski’s Inequality.

316 THEOREM (Generalised Minkowski Inequality) Let p ∈]1;+∞[. Let x j , yk , 1 ≤ j ,k ≤ n, be real numbers. Then the fol-

lowing inequality holds
(

n∑
k=1

∣∣xk + yk

∣∣p

)1/p

≤
(

n∑
k=1

|xk |p
)1/p

+
(

n∑
k=1

∣∣yk

∣∣p

)1/p

.

Proof: From the triangle inequality for real numbers

|xk + yk |p = |xk + yk ||xk + yk |p−1 ≤
(
|xk |+ |yk |

)
|xk + yk |p−1.

Adding
n∑

k=1

|xk + yk |p ≤
n∑

k=1

|xk ||xk + yk |p−1 +
n∑

k=1

|yk ||xk + yk |p−1. (5.2)
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By the Hölder Inequality

n∑
k=1

|xk ||xk + yk |p−1 ≤
(

n∑
k=1

|xk |p
)1/p (

n∑
k=1

|xk + yk |(p−1)q

)1/q

=
(

n∑
k=1

|xk |p
)1/p (

n∑
k=1

|xk + yk |p
)1/q (5.3)

In the same manner we deduce

n∑
k=1

|yk ||xk + yk |p−1 ≤
(

n∑
k=1

∣∣yk

∣∣p

)1/p (
n∑

k=1

∣∣xk + yk

∣∣p

)1/q

. (5.4)

Hence (5.2) gives

n∑
k=1

|xk + yk |p ≤
(

n∑
k=1

|xk |p
)1/p (

n∑
k=1

∣∣xk + yk

∣∣p

)1/q

+
(

n∑
k=1

∣∣yk

∣∣q

)1/q (
n∑

k=1

∣∣xk + yk

∣∣p

)1/q

=
((

n∑
k=1

|xk |p
)1/p

+
(

n∑
k=1

∣∣yk

∣∣p

)1/p)(
n∑

k=1

∣∣xk + yk

∣∣p

)1/q

,

from where we deduce the result. ❑

Homework

Problem 5.8.1 Prove that if α> 0 and n > 0 an integer then

n1+α− (n −1)1+α

1+α
< nα < (n +1)1+α−n1+α

1+α
.

Deduce that

lim
n→+∞

1α+2α +·· ·+nα

n1+α = 1

1+α
.

5.9 Intermediate Value Property

317 THEOREM (Intermediate Value Theorem) Let I j R and let (a,b) ∈ I 2. Let f : I → R be a continuous function such that

f (a)≤ f (b). Then f attains every intermediate value between f (a) and f (b), that is,

∀t ∈
[

f (a) ; f (b)
]

,∃c ∈ I , such that f (c) = t .

Proof: Suppose on the contrary that there is a t ∈
[

f (a) ; f (b)
]

such that for all c ∈ I , f (c) 6= t . Hence f (a) < t <
f (b). Assume, without loss of generality, that a < b. Consider the sets

U =
]
−∞ ; a

[
∪

{
x ∈

[
a ;b

]
: f (x) < t

}
=

]
−∞ ; a

[
∪ f −1

(]
−∞ ; t

[
∩

]
a ;b

[)
,

and

V =
]

b ;+∞
[
∪

{
x ∈

[
a ;b

]
: f (x) > t

}
=

]
b ;+∞

[
∪ f −1

(]
t ;+∞

[
∩

]
a ;b

[)
.

Then U ,V are open sets of R by virtue of Theorem 284. But then R = U ∪V and U ∩V = ∅, U 6= ∅, V 6= ∅,

contradicting the fact that R is connected. Thus there must exist a c such that f (c) = t . ❑

318 COROLLARY A continuous function defined on an interval maps that interval into an interval.

Proof: This follows at once from the Intermediate Value Theorem and the definition of an interval. ❑

319 THEOREM (Bolzano’s Theorem) If f :
[

u ; v
]
→ R is continuous and f (u) f (v ) < 0, then there is a w ∈

]
u ; v

[
such that

f (w )= 0.
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Proof: This follows at once from the Intermediate Value Theorem by putting a = min( f (u), f (v )) < 0 and

b = max( f (u), f (v ))> 0 . ❑

320 COROLLARY Every polynomial p(x) ∈R[x] with real coefficients and odd degree has at least one real root.

Proof: Let p(x) = a0 + a1x + a2x2 + ·· · + an xn , with an 6= 0 and n odd. Since p has odd degree, lim
x→−∞

p(x) =
(−∞) signum(an ) and lim

x→+∞
p(x) = (+∞) signum(an ), which are of opposite sign. The polynomial must then

attain positive and negative values and between values of opposite sign, it will have a real root. ❑

321 COROLLARY If f is continuous at the point a and f (a) 6= 0, then there is a neighbourhood of a where f (x) has the same

sign as f (a).

Proof: Take ε=
∣∣f (a)

∣∣
2

> 0 in the definition of continuity. There is a δ> 0 such that

|x −a| < δ =⇒
∣∣f (x)− f (a)

∣∣<
∣∣ f (a)

∣∣
2

=⇒ f (a)−
∣∣ f (a)

∣∣
2

< f (x) < f (a)+
∣∣ f (a)

∣∣
2

,

from where the result follows. ❑

322 THEOREM A continuous function defined on a compact set maps that compact set into a compact set.

Proof: Let f : X → R be continuous and X j R compact. Let
{

yn

}+∞
n=1 j f (X ) be an infinite sequence of f (X ).

There are xn ∈ X such that xn = f (yn ). Since {xn }+∞n=1 j X is an infinite sequence of X and X is compact, it has a

convergent subsequence in X , say,
{

xnk

}+∞
k=1 with xnk

→ x ∈ X , by virtue of Theorem 143. Since f is continuous

xnk
→ x =⇒ f (xnk

) → f (x).

Clearly f (x) ∈ f (X ). Thus the arbitrary sequence
{

yn

}+∞
n=1 j f (X ) has the convergent subsequence

{
ynk

}+∞
k=1 in

f (X ), and one more appeal to Theorem 143 proves compactness. ❑

323 THEOREM (Weierstrass Theorem) A continuous function f :
[

a ;b
]
→R attains a maximum and a minimum on

[
a ;b

]
.

Proof: By Theorem 322, f (
[

a ;b
]

) is compact, and so, by the Heine-Borel Theorem, it is closed and bounded.

Thus there exists (m, M) ∈ R2 such that m = inf

x∈
[

a ;b

] f (x) and M = sup

x∈
[

a ;b

] f (x). We must prove that these are

attained in
[

a ;b
]

, i.e., that there exist µ ∈
[

a ;b
]

and µ′ ∈
[

a ;b
]

such that f (µ) = m and f (µ′) = M . By

the Approximation Property of the Infimum and the Supremum, we may find sequences {mn }+∞n=1 j
[

a ;b
]

, and

{Mn}+∞n=1 j
[

a ;b
]

such that m ≤ mn and mn → m, and also, Mn ≤ M , and Mn → M as n → +∞. By the In-

termediate Value Theorem, there exist µn ∈
[

a ;b
]

and µ′
n ∈

[
a ;b

]
such that mn = f (µn ) and Mn = f (µ′

n ). By

the compactness of
[

a ;b
]

the sequences
{
µn

}+∞
n=1 j

[
a ;b

]
and

{
µ′

n

}+∞
n=1 j

[
a ;b

]
have convergent subsequences

{
µnk

}+∞
k=1 j

[
a ;b

]
and

{
µ′

nk

}+∞
k=1

j
[

a ;b
]

such that µnk
→µ ∈

[
a ;b

]
and µ′

nk
→µ′ ∈

[
a ;b

]
. By continuity and

the uniqueness of limits,

µnk
→µ =⇒ mnk

= f (µnk
) → m = f (µ), and µ′

nk
→µ′ =⇒ Mnk

= f (µ′
nk

) → M = f (µ′),

and so f attains both extrema in
[

a ;b
]

.❑

324 THEOREM (Fixed Point Theorem) Let f :
[

a ;b
]
→

[
a ;b

]
be continuous. Then f has a fixed point, that is, there is

c ∈
[

a ;b
]

such that f (c) = c .
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Proof: If either f (a)= a or f (b) = b we are done. Assume then that f (a) > a and f (b) < b. Put g (x) = f (x)−x.

Then g is continuous, g (a)> 0 and g (b) < 0. By Bolzano’s Theorem, there must be a c ∈
]

a ;b
[

such that g (c)= 0,

that is, f (c)−c = 0, finishing the proof. ❑

Homework

Problem 5.9.1 Let p(x), q(x) be polynomials with real coefficients

such that

p(x2 +x +1) = p(x)q(x).

Prove that p must have even degree.

Problem 5.9.2 A function f defined over all real numbers is contin-

uous and for all real x satisfies

(
f (x)

)
·
(
(f ◦ f )(x)

)
= 1.

Given that f (1000) = 999, find f (500).

Problem 5.9.3 Let f : R → R be a continuous function such that

lim
x→−∞ f (x) = 0 = lim

x→+∞
f (x). If f is strictly negative somewhere on

R then f attains a finite absolute minimum on R. If f is strictly pos-

itive somewhere on R then f attains a finite absolute maximum on

R.

Problem 5.9.4 Let f :
[

0 ;1
]
→

[
0 ;1

]
be continuous. Prove that

there is no c ∈
[

0 ;1
]

such that f −1({c}) has exactly two elements.

Problem 5.9.5 Let f , g be continuous functions from
[

0 ;1
]

to[
0 ;1

]
such that

∀x ∈
[

0 ;1
]

f (g (x)) = g (f (x)).

Prove that f and g have a common fixed point in
[

0 ;1
]

.

Problem 5.9.6 A continuous function f : R→R satisfies

∀x ∈R f (x + f (x)) = f (x).

Prove that f is constant.

Problem 5.9.7 Let I be a closed and bounded interval on the line

and let f be continuous on I . Suppose that for each x ∈ I , there ex-

ists a y ∈ I such that

|f (y )| ≤
1

2
|f (x)|.

Prove the existence of a t ∈ I such that f (t ) = 0.

Problem 5.9.8 Find all continuous functions that satisfy the func-

tional equation

f (x)+ f (y ) = f

(
x + y

1−x y

)
,

for all −1 < x, y < 1.

Problem 5.9.9 (Putnam 1947) A real valued continuous function

satisfies for all real x, y the functional equation

f (

√
x2 + y 2) = f (x)f (y ).

Prove that f (x) = (f (x))x2
.

Problem 5.9.10 Suppose that f :
[

0 ;1
]
→

[
0 ;1

]
is continuous.

Prove that there is a number c in
[

0 ;1
]

such that f (c) = 1−c .

Problem 5.9.11 (Universal Chord Theorem) Suppose that f is a

continuous function of
[

0 ;1
]

and that f (0) = f (1). Let n be a

strictly positive integer. Prove that there is some number x ∈
[

0 ;1
]

such that f (x) = f (x +1/n).

Problem 5.9.12 Under the same conditions of problems 5.9.11

prove that there are no universal chords of length a,0 < a < 1, a 6=
1/n.

5.10 Variation of a Function and Uniform Continuity

325 Definition A partition P of the interval
[

a ;b
]

is any finite set of points x0, x1, . . . , xn such that

a = x0 < x1 < ·· · < xn = b.

A partition P
′ of

[
a ;b

]
is said to be finer than the partition P if P jP

′.

326 Definition The mesh or norm of P is ∣∣∣
∣∣∣P

∣∣∣
∣∣∣= max

1≤k≤n
|xk − xk−1| .

☞ If P j P
′ then clearly

∣∣∣
∣∣∣P ′

∣∣∣
∣∣∣ ≤

∣∣∣
∣∣∣P

∣∣∣
∣∣∣, since the finer partition has probably more points which will make the corre-

sponding subintervals smaller.
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327 Definition Let f be a bounded function on an interval
[

a ;b
]

and let I j
[

a ;b
]

be a subinterval. The oscillation of f

on I is defined and denoted by

ω( f , I ) = sup
x∈I

f (x)− inf
x∈I

f (x).

328 THEOREM Let f :
[

a ;b
]
→R be a continuous function. Given ε> 0 there exists a partition of

[
a ;b

]
into a finite number

of subintervals of equal length such that the oscillation of f on each of these subintervals is at most ε.

Proof: Let Pε mean the following: there is an ε > 0 such that for all partitions of
[

a ;b
]

into a finite number

of intervals of equal length, the oscillation of f is ≥ ε. By bisecting
[

a ;b
]

, at least one of the halves must have

property Pε, say
[

a1 ;b1

]
. If

[
a ;b

]
we to have property Pε, then by bisecting

[
a1 ;b1

]
, at least one of the halves

must have property Pε, say
[

a2 ;b2

]
. Continuing in this way we have constructed a sequence of imbricated

intervals [
a ;b

]
k

[
a1 ;b1

]
k

[
a2 ;b2

]
k · · ·k

[
an ;bn

]
k · · ·

where the length of
[

an ;bn

]
is bn −an = b −a

2n
→ 0 as n →+∞. By the Cantor Intersection Theorem, there is a

point c ∈
∞⋂

n=1

[
an ;bn

]
. Moreover, we have ω( f ,

[
an ;bn

]
) ≥ ε. Since c ∈

[
a ;b

]
, f is continuous at c . Hence there

is a δ> 0 such that

x ∈
]

c −δ ;c +δ
[
=⇒

∣∣ f (x)− f (c)
∣∣< ε

2

. Taking (x ′, x ′′) ∈
]

c −δ ;c +δ
[2

we have

∣∣ f (x ′)− f (x ′′)
∣∣≤

∣∣f (x ′)− f (c)
∣∣+

∣∣ f (c)− f (x ′′)
∣∣< ε,

whence

ω( f ,
[

a ;b
]
∩

]
c −δ ;c +δ

[
) < ε.

Now, if there was an ε > 0 such that for all partitions of
[

a ;b
]

into a finite number of intervals of equal length,

the oscillation of f is ≥ ε, then by taking n large enough above we could find one of the
[

an ;bn

]
completely

inside one of the subintervals of the partition. By the above, the oscillation there would be < ε, a contradiction. ❑

329 THEOREM Let f :
[

a ;b
]
→ R be a continuous function. Given ε > 0 there exists a δ > 0 such that on any subinterval

I j
[

a ;b
]

having length <δ the oscillation of f on I is < ε.

Proof: Let δ=
b −a

n
. By Theorem 328 we may choose n so large that the oscillation of f on each of

[
a ; a +δ

]
,

[
a +δ ; a +2δ

]
, . . . ,

[
a + (n −1)δ ;b

]
, (5.5)

is < ε

2
. Let I j

[
a ;b

]
be any subinterval of length <δ and let x ′ ∈ I be the point where f achieves its largest value

and x ′′ ∈ I be the point where f achieves its smallest value. Then x ′ and x ′′ either belong to the same interval in

5.5—in which case
∣∣f (x ′)− f (x ′′)

∣∣< ε

2
—or since I has length smaller than δ, to two consecutive subintervals

[
a + ( j −1)δ ; a + jδ

]
,
[

a + jδ ; a + ( j +1)δ
]

.

In this case

f (x ′)− f (x ′′) = ( f (x ′)− f (a + jδ))+ ( f (a + jδ)− f (x ′′)) < ε

2
+ ε

2
= ε.

The theorem now follows.❑
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330 Definition A function f is said to be uniformly continuous on
[

a ;b
]

if ∀ε > 0 there exists δ > 0 depending only on ε

such that for any (u, v ) ∈
[

a ;b
]2

,

|u − v | <δ =⇒
∣∣f (u)− f (v )

∣∣< ε.

331 THEOREM If f :
[

a ;b
]
→R is continuous, then f is uniformly continuous.

Proof: This follows from Theorem 329. ❑

332 THEOREM (Heine’s Theorem) If f : X →R is continuous and X is compact, then f is uniformly continuous.

Proof: This follows from Theorem 331. ❑

333 THEOREM Let f be an increasing function on an open interval
]

a ;b
[

. Then, for any x satisfying a < x < b,

sup

t∈
]

a ;x

[ f (t) = f (x−) ≤ f (x) ≤ inf

t∈
]

x ;b

[ f (t) = f (x+).

Moreover, if a < x < y < b, then f (x+) ≤ f (y−).

Proof: The set { f (t) : a < u < x} is bounded above by f (x) and hence it has a supremum sup

t∈
]

a ;x

[ f (t) = A and

clearly A ≤ f (x) as f is increasing. Let us shew that A = f (x−). By the Approximation Property of the Supremum,

there is δ> 0 such that a < x −δ< x and A −ε< f (x −δ) ≤ A. But as f is increasing,

x −δ< t < x =⇒ f (x −δ) ≤ f (t) < A =⇒
∣∣f (x)− A

∣∣ ,

whence f (x−) = A.

A similar reasoning gives inf

t∈
]

x ;b

[ f (t) = f (x+).

Now, if a < x < y < b, then by what has already been proved we obtain

f (x+) = inf
x<t<b

f (t) = inf
x<t<y

f (t),

again, remembering that f is increasing. Similarly,

f (y−) = sup
a<t<y

f (t) = inf
x<t<y

f (t),

from where f (x+) ≤ f (y−). ❑

334 THEOREM Let f be an increasing function defined on the interval
[

a ;b
]

and let

a = x0 < x1 < x2 < ·· · < xn = b

be n +1 points partitioning the interval. Then

n−1∑
k=1

(
f (xk+)− f (xk−)

)
≤ f (b)− f (a).
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Variation of a Function and Uniform Continuity

Proof: Let yk ∈
]

xk ; xk+1

[
. For 1 ≤ k ≤ n −1, by Theorem ??,

f (xk+) ≤ f (yk ) and f (yk−1) ≤ f (xk−) =⇒ f (xk+)− f (xk−) ≤ f (yk )− f (yk−1).

Adding,
n−1∑
k=1

(
f (xk+)− f (xk−)

)
≤

n−1∑
k=1

(
f (yk )− f (yk−1)

)
= f (yn−1)− f (y0).

The proof is completed upon noticing that f (yn−1)− f (y0) ≤ f (b)− f (a). ❑

335 THEOREM Let f :
[

a ;b
]
→ R be a monotone function, Then the set of points of discontinuity of f is either finite or

countable.

Proof: Assume f is increasing, for if f were decreasing, we may apply the same argument to − f . Let m > 0 be

an integer, and let

Sm =
{

x ∈
]

a ;b
[

: f (x+)− f (x−) ≥ 1

m

}
.

If x1 < x2 < ·· · < xn are in Sm then by Theorem 334,

n

m
≤ f (b)− f (a),

which implies that Sm is a finite set. The set of discontinuities of f in
[

a ;b
]

is
∞⋃

m=1

Sm , the countable union of

finite sets, and hence it is countable. ❑

336 Definition Let f be a function defined on the interval
[

a ;b
]

and let

a = x0 < x1 < x2 < ·· · < xn = b

be n +1 points partitioning the interval. If there exists V > 0 such that

n∑
k=1

∣∣f (xk )− f (xk−1)
∣∣≤V

for all partitions of
[

a ;b
]

, the we say that f is of bounded variation on
[

a ;b
]

.

337 THEOREM If f is monotonic on
[

a ;b
]

, then f is bounded variation on
[

a ;b
]

.

Proof: Let

a = x0 < x1 < x2 < ·· · < xn = b

be any partition of
[

a ;b
]

. Then

n∑
n=1

∣∣f (xk )− f (xk−1)
∣∣= max( f (b)− f (a), f (a)− f (b)),

the first choice occurring when f is increasing and the second when f is decreasing. Then V =
∣∣ f (b)− f (a)

∣∣
satisfies the definition of bounded variation for an arbitrary partition. ❑

338 THEOREM If f is of bounded variation on
[

a ;b
]

then f is bounded on
[

a ;b
]

.

Proof: Let x ∈
]

a ;b
[

and consider the partition a < x < b of
[

a ;b
]

. Since f is of bounded variation there is a

V > 0 such that ∣∣ f (a)− f (x)
∣∣+

∣∣f (x)− f (b)
∣∣≤V .

But then ∣∣ f (x)
∣∣≤

∣∣f (x)− f (a)
∣∣+

∣∣ f (a)
∣∣≤V +

∣∣ f (a)
∣∣ .

and so f is bounded by the constant quantity V +
∣∣f (a)

∣∣. ❑
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Homework

Problem 5.10.1 Shew that
]

0 ;+∞
[
→

]
0 ;+∞

[
, x 7→ x2 , is not uni- formly continuous.

5.11 Classical Limits

339 LEMMA If 0 < x ≤ 1 then

1 ≤
exp(x)−1

x
≤ 1+ x(e −2).

If −1

2
≤ x < 0 then

1+ x ≤
exp(x)−1

x
≤ 1+

x

4
.

Proof:

Since
(
1+ x

n

)n
≤ exp(x) for n >−x by Proposition 301, we have 1+ x ≤ exp(x) for all x >−1. Now, for n ≥ 2 and

0 < x ≤ 1,

(
1+ x

n

)n
= 1+

(
n

1

)
x

n
+

(
n

2

)
x2

n2
+

(
n

3

)
x3

n3
+·· ·+

(
n

n

)
xn

nn

= 1+ x + x2

(
1

2!

(
1

n

)(
1− 1

n

)
+ 1

3!

(
1

n

)(
1− 1

n

)(
1− 2

n

)
x +·· ·+ 1

n!

(
1

n

)(
1− 1

n

)(
1− 2

n

)
· · ·

(
1− n −1

n

)
xn−2

)

≤ 1+ x + x2

(
1

2!
+ 1

3!
+·· ·+ 1

n!

)

< 1+ x + x2(e −2),

upon using Theorem 180. This proves the first set of inequalities.

For x >−2, 1+ x + x2

4
=

(
1+ x

2

)2
≤ exp(x) by Proposition 301. Now we assume that −1

2
≤ x ≤ 0. As before,

(
1+ x

n

)n
= 1+ x + x2

(
1

2!

(
1

n

)(
1− 1

n

)
+ 1

3!

(
1

n

)(
1− 1

n

)(
1− 2

n

)
x +·· ·+ 1

n!

(
1

n

)(
1− 1

n

)(
1− 2

n

)
· · ·

(
1− n −1

n

)
xn−2

)
.

Since xk ≤ 0 for odd k and xk ≤ 1

2k
for even k we may delete the odd terms from the dextral side and so

(
1+ x

n

)n
≤ 1+ x + x2

(
1

2!

(
1

n

)(
1− 1

n

)
+0+·· ·+ 1

n!

(
1

n

)(
1− 1

n

)(
1− 2

n

)
· · ·

(
1− 2k −1

n

)
x2k +·· ·

)

≤ 1+ x + x2

(
1

2
+ 1

22
+·· ·

)

≤ 1+ x + x2.

On taking limits exp(x) ≤ 1+ x + x2 for −1

2
≤ x ≤ 0. Thus we have

−1

2
≤ x < 0 =⇒ 1+ x + x2

4
≤ exp(x) ≤ 1+ x + x2 =⇒ 1+ x ≤ exp(x)−1

x
≤ 1+ x

4
,

since division by negative x reverses the sense of the inequalities. ❑

340 THEOREM lim
x→0

exp(x)−1

x
= 1.
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Proof: We prove that lim
x→0+

exp(x)−1

x
= 1 and that lim

x→0−

exp(x)−1

x
= 1. Let us start with the first assertion. For

0 < x ≤ 1 we have, by the Sandwich Theorem, and Lemma 339,

1 ≤ exp(x)−1

x
≤ 1+ x(e −2) =⇒ lim

x→0+

exp(x)−1

x
= 1,

proving the first assertion.

For −1

2
≤ x ≤ 0 we have, by the Sandwich Theorem and Lemma 339,

1+ x + x2

4
≤ exp(x) ≤ 1+ x + x2 =⇒ 1+ x

4
≤ exp(x)−1

x
≤ 1+ x =⇒ lim

x→0−

exp(x)−1

x
= 1,

proving the second assertion. ❑

341 LEMMA For 0 < x ≤ 1,

1−
x(e −2)

1+ x
≤

log(1+ x)

x
≤ 1

and for −1

2
≤ x ≤ 0,

1 ≤ log(1+ x)

x
≤ 1− x

1+ x
.

Proof: Since x 7→ log(1+ x) is strictly increasing, we have by Lemma 339 for 0 < x ≤ 1,

1+ x ≤ exp(x) ≤ 1+ x + x2(e −2) =⇒ log(1+ x) ≤ x ≤ log(1+ x + x2(e −2)).

Notice that we have established that log(1+ x) ≤ x for 0 < x ≤ 1. Now

log(1+ x + x2(e −2)) = log(1+ x)

(
1+ x2(e −2)

1+ x

)
= log(1+ x)+

(
1+ x2(e −2)

1+ x

)
.

Since for x > 0, x 7→
x2

1+ x
is strictly increasing,

x2(e −2)

1+ x
<

e −2

2
< 1 for 0 < x < 1. Thus we may use log(1+y) ≤ y ,

0 ≤ y ≤ 1 with y = x2(e −2)

1+ x
obtaining

log

(
1+ x2(e −2)

1+ x

)
≤ x2(e −2)

1+ x
.

Hence

x ≤ log(1+ x + x2(e −2)) ≤ log(1+ x)+ x2(e −2)

1+ x
.

In conclusion,

0 < x ≤ 1 =⇒ log(1+ x) ≤ x ≤ log(1+ x)+ x2(e −2)

1+ x
=⇒ 1− x(e −2)

1+ x
≤ log(1+ x)

x
≤ 1.

Similarly, for −1

2
≤ x < 0, by Lemma 339,

1+ x + x2

4
≤ exp(x) ≤ 1+ x + x2 =⇒ log

(
1+ x + x2

4

)
≤ x ≤ log(1+ x + x2).

Since x 7→ log(1+ x) is increasing, plainly

log(1+ x) ≤ log

(
1+ x + x2

4

)
≤ x.
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Now observe that −1

2
≤ x < 0 =⇒ 0 < x2

1+ x
≤ 1

2
< 1 and so

log(1+ x + x2) = log(1+ x)+ log

(
1+ x2

1+ x

)
≤ log(1+ x)+ x2

1+ x
=⇒ x ≤ log(1+ x)+ x2

1+ x
.

In conclusion,

−1

2
≤ x < 0 =⇒ log(1+ x) ≤ x ≤ log(1+ x)+ x2

1+ x
=⇒ 1 ≤ log(1+ x)

x
≤ 1− x

1+ x
,

since division by negative x reverses the sense of the inequalities. ❑

342 THEOREM lim
x→0

log(1+ x)− x

x
= 0.

Proof: By Lemma 341, for 0 < x ≤ 1,

1−
x(e −2)

1+ x
≤

log(1+ x)

x
≤ 1 =⇒ lim

x→0+

log(1+ x)

x
= 1,

by the Sandwich Theorem. Again, by Lemma 341 and the Sandwich Theorem,

−1

2
≤ x ≤ 0 =⇒ 1 ≤ log(1+ x)

x
≤ 1− x

1+ x
=⇒ lim

x→0−

log(1+ x)

x
= 1.

Combining both results, the theorem follows.❑

θ

O

A

B

b

b

b

b

C

Figure 5.1: Theorem 344.

343 THEOREM If a ∈R, then lim
x→0

(1+ x)a −1

x
= a.

Proof: This is evident for a = 0. Assume now a 6= 0. Since x 7→ exp(x) is continuous and since a log(1+ x) → 0 as

x → 0, by Theorems 340 and 342,

lim
x→0

(1+ x)a −1

x
= a lim

x→0

exp(a log(1+ x))−1

a log(1+ x)
· lim

x→0

log(1+ x)

x
= a ·1 ·1 = a.

❑

344 THEOREM lim
θ→0

sinθ

θ
= 1.
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Proof: We first prove that lim
θ→0+

sinθ

θ
= 1. Sinceθ 7→ sinθ

θ
is an even function it will also follow that lim

θ→0−

sinθ

θ
=

1.

Assume 0 < θ < θ

2
and consider △O AB right-angled at A, with O A = 1 and ∠BO A = θ. C is the point where line

OB meets the unit circle with centre at O and D is its perpendicular projection. The area of △O AC is smaller

than the area of the circular sector O AC , which is smaller than the area of △O AB . Hence

1

2
sinθ <

θ

2
<

1

2
tanθ =⇒

1

cosθ
<

sinθ

θ
< 1 =⇒ lim

θ→0+

sinθ

θ
= 1

by the Sandwich Theorem, proving the theorem.❑
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Differentiable Functions

6.1 Derivative at a Point

345 Definition Let I be an interval, a ∈ I̊ , and f : I →R. We say that f is differentiable at a if the limit

lim
x→a

f (x)− f (a)

x −a
= lim

h→0

f (a +h)− f (a)

h

exists and is finite. In such a case we denote this limit by f ′(a), D f (a), or
df

dx
(a) and we call this quantity the derivative of

f at a.

346 Definition Let I be an interval, a ∈ I̊ , and f : I →R. If

lim
x→a+

f (x)− f (a)

x −a
= lim

h→0+

f (a +h)− f (a)

h

exists and is finite we say that f is differentiable at a on the right and write f ′
+(a) for this limit. If

lim
x→a−

f (x)− f (a)

x −a
= lim

h→0−

f (a +h)− f (a)

h

exists and is finite we say that f is differentiable at a on the left and write f ′
−(a) for this limit.

347 THEOREM Let I be an interval, a ∈ I̊ , and f : I →R. Then f is differentiable at a if and only if both f+(a) and f−(a) exist

and are equal. In this case f+(a)= f ′(a) = f−(a).

Proof: Obvious. ❑

348 THEOREM Let I be an interval, a ∈ I̊ , and f : I →R. If f is differentiable at a then it is continuous at a.

Proof: We have

lim
h→0

f (a +h)− f (a)= lim
h→0

(
f (a +h)− f (a)

h

)
h =

(
lim
h→0

f (a +h)− f (a)

h

)(
lim
h→0

h

)
= f ′(a) ·0 = 0.

Thus lim
h→0

f (a +h)− f (a) = 0 =⇒ lim
h→0

f (a +h) = f (a) and so f is continuous. ❑

349 THEOREM Let I jR be an interval. If f : I →R is identically constant, then f ′(I ) = 0.

Proof: Assume that f (I ) = K , a constant. Let c ∈ I̊ . Then f ′(c) = lim
x→c

f (x)− f (c)

x −c
= lim

x→c

K −K

x −c
= 0. If c is an

endpoint of I , then the argument is modified to be either the left or right derivative. ❑

Homework
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Differentiation Rules

Problem 6.1.1 Let f : R→R,

f (x)





x +1 if x ∈Q

2−x if x ∈R \Q

Prove that f is nowhere differentiable.

Problem 6.1.2 Let f : R→ R, x 7→ |x|. Prove that f is not differen-

tiable at x = 0 and that for x 6= 0, f ′(x) = signum(x).

Problem 6.1.3 Let f : R → R, x 7→ x |x|. Determine whether f ′(0)

exists.

6.2 Differentiation Rules

350 THEOREM Let I be an interval, a ∈ I̊ , λ ∈R a constant, and f , then, g : I →R. If f and g are differentiable at a then

1. (Linearity Rule) f +λg is differentiable at a and ( f +λg )′(a) = f ′(a)+λg ′(a)

2. (Product Rule) f g is differentiable at a and ( f g )′(a) = f ′(a)g (a)+ f (a)g ′(a)

3. if g (a) 6= 0,
1

g
is differentiable at a and

(
1

g

)′
(a) =− g ′(a)

(g (a))2

4. (Quotient Rule) if g (a) 6= 0,
f

g
is differentiable at a and

(
f

g

)′
(a) = f ′(a)g (a)− f (a)g ′(a)

(g (a))2

Proof:

1. This follows by the linearity of limits.

2. We have

( f g )′(a) = lim
h→0

( f g )(a +h)− ( f g )(a)

h

= lim
h→0

g (a +h)( f (a +h)− f (a))+ f (a)(g (a +h)− g (a))

h

= lim
h→0

g (a +h) lim
h→0

( f (a +h)− f (a))

h
+ lim

h→0
f (a) lim

h→0

(g (a +h)− g (a))

h

= g (a) f ′(a)+ f (a)g ′(a),

as desired.

3. We have

(
1

g

)′
(a) = lim

h→0

1

g (a +h)
− 1

g (a)

h

= lim
h→0

g (a)− g (a +h)

g (a +h)g (a)

h

= lim
h→0

g (a)− g (a +h)

h
lim
h→0

1

g (a +h)g (a)

=
(
−g ′(a)

)( 1

g (a)g (a)

)

= −
g ′(a)

g (a)2
,

as desired.

4. Using (2) and (3), (
f

g

)′
(a) = f ′(a)

(
1

g

)
(a)+ f (a)

(
1

g

)′
(a)

= f ′(a)

g (a)
− f (a)g ′(a)

g (a)2

= f ′(a)g (a)− f (a)g ′(a)

(g (a))2
,
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as desired.

❑

351 THEOREM (Chain Rule) Let I , J be intervals of R, with a ∈ I . Let f : I → R and g : J → R be such that f (I ) j J . If f is

differentiable at a and g is differentiable at f (a), then g ◦ f is differentiable at a and (g ◦ f )′ = g ′( f (a)) f ′(a).

Proof: Put b = f (a), and

ϕ(y) =





g (y)− g (b)

y −b
if y 6= b

g ′(b) if y = b

Since g is differentiable at b, ϕ is continuous at y = b. Now, for x 6= a,

g ( f (x))− g ( f (a))

x −a
=ϕ( f (x))

f (x)− f (a)

x −a
.

(If f (x) 6= f (a) this follows directly from the definition of ϕ. If f (x) = f (a), both sides of the equality are 0.)

By the continuity of f at a and of ϕ at b,

lim
x→a

ϕ( f (x)) =ϕ( f (a))= g ′( f (a)),

whence

(g ◦ f )′(a) = lim
x→a

g ( f (x))− g ( f (a))

x −a

= lim
x→a

ϕ( f (x))
f (x)− f (a)

x −a

= g ′( f (a)) f ′(a),

as desired.

❑

352 THEOREM (Inverse Function Rule) Let I be an interval of R, with a ∈ I . Let f : I → R be strictly monotonic and contin-

uous over I . If f is differentiable at a and f ′(a) 6= 0, then the inverse f −1 : f (I ) →R is differentiable at f (a) and

( f −1)′( f (a))= 1

f ′(a)
.

Proof: Put b = f (a). Observe that lim
y→b

f −1(y) = a, and by the composition rule for limits,

lim
y→b

f −1(y)− f 1(b)

y −a
= lim

y→b

f −1(y)−a

f ( f −1(y))−a
= 1

f ′(a)
,

proving the theorem. ❑

☞Once it is known that (f −1)′ exists, we may proceed as follows. Since f −1(f (x)) = x , differentiating on both sides, using

the Chain Rule on the sinistral side,

(f −1)′(f (x))f ′(x) = 1,

from where the result follows.

353 Definition Let I be an interval of R. Let f : I →R be differentiable at every point of I . The function f ′ : I →R, x 7→ f ′(x)

is called the derivative function or derivative of the function f .

354 THEOREM Let n ≥ 0 be an integer. Let f : R→ R, x 7→ xn . Then f is everywhere differentiable and f ′ : R→R is given by

x 7→ nxn−1.
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Proof: Assume first n is strictly positive. By Theorem 55,

lim
x→a

xn −an

x −a
= lim

x→a

(x −a)(xn−1+axn−2 +a2xn−3 +·· ·+an−2x +an−1)

x −a

= lim
x→a

(xn−1 +axn−2 +a2xn−3 +·· ·+an−2x +an−1)

= nan−1.

Observe that this is true for all a ∈R.

If n = 0 then f is constant, say f (x) = K for all x and so

lim
x→a

f (x)− f (a)

x −a
= lim

x→a

K −K

x −a
= 0.

❑

355 THEOREM Let n > 0 be an integer and f :
]

0 ;+∞
[
→

]
0 ;+∞

[
, x 7→ 1

xn
. Then f ′ exists everywhere in

]
0 ;+∞

[
and

f ′ :
]

0 ;+∞
[
→

]
0 ;+∞

[
is given by f ′(x) =− n

xn+1
.

Proof: We use the result above, part (3) of Theorem 350, and the Chain Rule, to get

d

dx

1

xn
=−nxn−1

(xn )2
=− n

xn+1
,

and the theorem follows.❑

356 LEMMA Let q ∈Z, q > 0 be an integer, and f :
]

0 ;+∞
[
→

]
0 ;+∞

[
, x 7→ x1/q . Then f ′ exists everywhere in

]
0 ;+∞

[
and

f ′ :
]

0 ;+∞
[
→

]
0 ;+∞

[
is given by f ′(x) = x1/q−1

q
.

Proof: We have ( f (x))q = x. Using the Chain Rule q f ′(x)( f (x))q−1 = 1. Since f (x) 6= 0,

f ′(x) = 1

q( f (x))q−1
= 1

q(x1/q )q−1
= 1

q
x1/q−1.

❑

357 THEOREM Let r ∈Q and let f :
]

0 ;+∞
[
→

]
0 ;+∞

[
, x 7→ xr . Then f ′ exists everywhere in

]
0 ;+∞

[
and f ′ :

]
0 ;+∞

[
→]

0 ;+∞
[

is given by f ′(x) = r xr−1.

Proof: Let r = a

b
, where a,b are integers, with b > 0. We use the Chain Rule, Lemma 356, and Theorem 355.

Then
d

dx
xa/b = d

dx
(x1/b )a = a(x1/b )a−1 · 1

b
x1/b−1 = a

b
xa/b−1 = r xr−1,

proving the theorem.

❑

358 THEOREM (Derivative of the Exponential Function) Let exp : R→ R, x 7→ ex . Then exp is everywhere differentiable and

exp′ : R→R is given by x 7→ ex .
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Proof: Using Theorem 340, we have, with h = x −a,

lim
x→a

ex −ea

x −a
= ea lim

x→a

ex−a −1

x −a

= ea lim
h→0

eh −1

h

= ea ·1

= ea .

❑

359 THEOREM (Derivative of the Logarithmic Function) Let f :
]

0 ;+∞
[
→

]
−∞ ;+∞

[
, x 7→ log x. Then f ′ exists everywhere

in
]

0 ;+∞
[

and f ′ :
]

0 ;+∞
[
→R\ {0} is given by f ′(x) = 1

x
.

Proof: Let a > 0. Then, with h = x

a
−1, and using Theorem 342,

lim
x→a

log x − log a

x −a
= lim

x→a

log
x

a

x −a

=
1

a
· lim

x→a

log
(
1+

x

a
−1

)

x

a
−1

= 1

a
· lim

h→0

log(1+h)

h

= 1

a
·1

= 1

a
.

❑

360 THEOREM (Power Rule) Let t ∈ R and let f :
]

0 ;+∞
[
→

]
0 ;+∞

[
, x 7→ x t . Then f ′ exists everywhere in

]
0 ;+∞

[
and

f ′ :
]

0 ;+∞
[
→

]
0 ;+∞

[
is given by f ′(x) = t x t−1.

Proof: Using the Chain Rule,

d

dx
x t = d

dx

(
exp(t log x)

)
= t

x
·
(
exp(t log x)

)
= t

x
·x t = t x t−1.

❑

361 THEOREM (Derivative of sin) . Let sin : R→ R, x 7→ sin x. Then sin is everywhere differentiable and sin′ : R→ R is given

by x 7→ cos x.
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Proof: We make a change of variables, and use Theorem 344,

lim
x→a

sin x −sin a

x −a
= lim

x→a

sin(x −a +a)−sin a

x −a

= lim
x→a

sin(x −a) cos a +cos(x −a) sin a −sin a

x −a

= (cos a) lim
x→a

sin(x −a)

x −a
+ (sin a) lim

x→a

cos(x −a)−1

x −a

= (cos a) lim
h→0

sin h

h
+ (sin a) lim

h→0

cosh −1

h

= (cos a) ·1+ (sin a) lim
h→0

cos2 h −1

h(cosh +1)

= (cos a) ·1+ (sin a) lim
h→0

−sin2 h

h(cosh +1)

= (cos a)+ (sin a) lim
h→0

sin h

h
· lim

h→0

−sin h

cosh +1

= cos a,

and the theorem follows. ❑

362 THEOREM (Derivatives of the Goniometric Functions)

1.
d

dx
sin x = cos x x ∈R

2.
d

dx
cos x = sin x x ∈R

3.
d

dx
tan x = sec2 x x ∈R\ (2Z+1)

π

2

4.
d

dx
sec x = sec x tan x x ∈R\ (2Z+1)

π

2

5.
d

dx
csc x = −csc x cot x x ∈R\Zπ

6.
d

dx
cot x = −csc2 x x ∈R\Zπ

Proof: (1) is Theorem 361. To prove (2), observe that

d

dx
cos x = d

dx
sin

(π
2
− x

)
=−cos

(π
2
− x

)
=−sin x.

To prove (3), we use the Quotient Rule,

d

dx
tan x =

d

dx

sin x

cos x
=

(cos x)(cos x)− (−sin x)(sin x)

cos2 x
=

1

cos2 x
= sec2 x.

To prove (4), we use once again the Quotient Rule,

d

dx
sec x = d

dx

1

cos x
= (0)(cos x)− (−sin x)(1)

cos2 x
= sin x

cos2 x
= sec x tan x.

To prove (5), observe that

d

dx
csc x = d

dx
sec

(π
2
− x

)
=−sec

(π
2
− x

)
tan

(π
2
− x

)
=−csc x cot x.

To prove (6), observe that

d

dx
cot x = d

dx
tan

(π
2
− x

)
=−sec2

(π
2
− x

)
=−csc2 x.

❑
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363 Definition (Higher Order Derivatives) Let I be an interval of R and let f : I → R. For a ∈ I we define the successive

derivatives of f at a, inductively. Put f (a)= f (0)(a). If n ≥ 1,

f (n)(a) = f ′( f (n−1)(a)),

provided f is differentiable at f (n−1)(a).

☞We usually write f ′′ instead of f (2).

364 THEOREM (Leibniz’s Rule) Let n be a positive integer.

( f g )(n) =
n∑

k=0

(
n

k

)
f (k)g (n−k)

Proof: This is a generalisation of the Product Rule. The proof is by induction on n. For n = 0 and n = 1 the

assertion is obvious. Assume that ( f g )(n) =
n∑

k=0

(
n

k

)
f (k)g (n−k). Observe that

( f g )(n+1) = (( f g )(n))′

=
(

n∑
k=0

(
n

k

)
f (k)g (n−k)

)′

=
n∑

k=0

(
n

k

)
( f (k+1)g (n−k) + f (k)g (n−k+1))

=
n∑

k=0

(
n

k

)
f (k+1)g (n−k) +

n∑
k=0

(
n

k

)
f (k)g (n−k+1)

= f (0)g (n+1)+
n∑

k=0

((
n

k

)
+

(
n

k +1

))
f (k)g (n+1−k)+ f (n+1)g (0)

=
n+1∑
k=0

(
n +1

k

)
f (k)g (n+1−k),

proving the statement.

❑

Homework

Problem 6.2.1 Prove that

2

x2 −1
= 1

x −1
− 1

x +1

and use this result to find the 100th derivative of f (x) = 2

x2 −1
.

Problem 6.2.2 Find the 100-th derivative of x 7→ x2 sin x .

Problem 6.2.3 Demonstrate that the polynomial p(x) ∈ R[x] has a

zero at x = a of multiplicity k if and only if

p(a) = p ′(a) = ·· · = p(k−1)(a) = 0.

Problem 6.2.4 Demonstrate that if for all x ∈ R there holds the

identity
n∑

k=0

ak (x −a)k =
n∑

k=0

bk (x −b)k ,

then ak =
n∑

j=k

(
n

j

)
b j (a −b) j−k .

Problem 6.2.5 Let p be a polynomial of degree r and consider the

polynomial F with

F (x) = p(x)+p ′(x)+p ′′(x)+·· · +p(r )(x).

Prove that
d

(
F (x)exp(−x)

)

dx
=−exp(−x)p(x).
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6.3 Rolle’s Theorem and the Mean Value Theorem

365 THEOREM (Rolle’s Theorem) Let (a,b) ∈ R2 such that a < b, f :
[

a ;b
]
→ R be such that f is continuous on

[
a ;b

]
and

differentiable in
]

a ;b
[

, and f (a) = f (b). Then there exists c ∈
]

a ;b
[

such that f ′(c) = 0.

Proof: Since f is continuous on
[

a ;b
]

, by Weierstrass’ Theorem 323,

m = inf

x∈
[

a ;b

] f (x), M = sup

x∈
[

a ;b

] f (x),

exist. If m = M , then f is constant and so by Theorem 349, f ′ is identically 0 and there is nothing to prove. Assume

that m < M . Since f (a) = f (b), one may not simultaneously have M = f (a) and m = f (a). Assume thus without

loss of generality that M 6= f (a). Then there exists c ∈
]

a ;b
[

such that f (c) = M . Now

lim
x→c−

f (x)− f (c)

x −c
≥ 0, lim

x→c+
f (x)− f (c)

x −c
≤ 0,

whence it follows that f ′(c) = 0, proving the theorem. ❑

366 THEOREM (Mean Value Theorem) Let (a,b) ∈ R
2 such that a < b, f :

[
a ;b

]
→R be such that f is continuous on

[
a ;b

]

and differentiable on
]

a ;b
[

. Then there exists c ∈
]

a ;b
[

such that f ′(c) = f (b)− f (a)

b −a
.

Proof: Put

g :
[

a ;b
]
→R, g (x) = f (x)− f (b)− f (a)

b −a
x.

Then g is continuous on
[

a ;b
]

and differentiable on
]

a ;b
[

, and g (a)= g (b). Since g satisfies the hypotheses of

Rolle’s Theorem, there is c ∈
]

a ;b
[

such that

g ′(c) = 0 =⇒ f ′(c)− f (b)− f (a)

b −a
= 0 =⇒ f ′(c) = f (b)− f (a)

b −a
,

proving the theorem.❑

367 THEOREM If f : I → R is continuous on the interval I , differentiable on I̊ , and if ∀x ∈ I̊ , f ′(x) = 0 then f is constant on

I .

Proof: Let (a,b) ∈ I 2, a < b. By the Mean Value Theorem, there is c ∈
]

a ;b
[

such that

f (b)− f (a) = f ′(c)(b −a) = 0 · (b −a) =⇒ f (b) = f (a),

thus any two outputs have exactly the same value and f is constant. ❑

368 THEOREM If f : I → R is continuous on the interval I , and differentiable on I̊ . Then f is increasing on I if and only if

∀x ∈ I̊ , f ′(x) ≥ 0 and f is decreasing on I if and only if ∀x ∈ I̊ , f ′(x) ≤ 0.

Proof:

=⇒ Suppose f is increasing. Let x0 ∈ I̊ . If h 6= 0 is so small that x0 +h ∈ I̊ , then

f (x0 +h)− f (x0)

h
≥ 0 =⇒ lim

h→0

f (x0 +h)− f (x0)

h
≥ 0 =⇒ f ′(x0) ≥ 0.

If f is decreasing we apply what has just been proved to − f .
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⇐ Suppose that for all x ∈ I̊ , f ′(x) ≥ 0. Let (a,b) ∈ I 2 , a < b. By the Mean Value Theorem, there is c ∈
]

a ;b
[

such that

f (b)− f (a) = (b −a) f ′(c) ≥ 0,

and so f is increasing. If for all x ∈ I̊ , f ′(x) ≤ 0 we apply what we just proved to − f .

❑

369 THEOREM If f : I → R is continuous on the interval I , and differentiable on I̊ . Then f is strictly increasing on I if and

only if ∀x ∈ I , f ′(x) ≥ 0 and the set ß̊{x ∈ I◦ : f ′(x) = 0} =∅. Also, f is strictly decreasing on I if and only if ∀x ∈ I , f ′(x) ≤ 0

and ß̊{x ∈ I◦ : f ′(x) = 0} =∅.

Proof:

=⇒ Suppose f is strictly increasing. From Theorem 368 we know that∀x ∈ I̊ , f ′(x) ≥ 0. Assume that ß̊{x ∈ I◦ : f ′(x) = 0} 6=
∅. Then there is c ∈ ß̊{x ∈ I◦ : f ′(x) = 0} and ε> 0 such that

]
c−ε ;c+ε

[
j I and ∀x ∈

]
c−ε ;c+ε

[
, f ′(x) = 0.

By Theorem 367, f must be constant on
]

c −ε ;c +ε
[

and so it is not strictly increasing, a contradiction. If

f is strictly decreasing, we apply what has been proved to − f .

⇐ Conversely, suppose that ∀x ∈ I , f ′(x) ≥ 0. and the set ß̊{x ∈ I◦ : f ′(x) = 0} = ∅. From Theorem 368, f is

increasing on I . Suppose that there exist (a,b) ∈ I 2, a < b such that f (a) = f (b). Since f is increasing, we

have ∀x ∈
[

a ;b
]

, f (x) = f (a). But then
]

a ;b
[
j {x ∈ I◦ : f ′(x) = 0}, a contradiction, since this last set was

assumed empty. If f ′(x) ≤ 0 we apply what has been proved to − f .

❑

Homework

Problem 6.3.1 Shew, by means of Rolle’s Theorem, that 5x4 −4x +
1 = 0 has a solution in [0;1].

Problem 6.3.2 Let a0, a1 . . . , an be real numbers satisfying

a0 +
a1

2
+

a2

3
+·· · +

an

n +1
= 0.

Shew that the polynomial

a0 +a1x +·· · +an xn

has a root in
]

0 ;1
[

.

Problem 6.3.3 Let a,b,c be three functions such that a′ = b, b′ = c ,

and c ′ = a. Prove that the function a3 +b3 +c3 −3abc is constant.

Problem 6.3.4 Suppose that f :
[

0 ;1
]
→ R is differentiable, f (0) =

0 and f (x) > 0 for x ∈
]

0 ;1
[

. Is there a number d ∈
]

0 ;1
[

such that

2f ′(c)

f (c)
= f ′(1−c)

f (1−c)
?

Problem 6.3.5 Let n ≥ 1 be an integer and let f : [0;1] →R be differ-

entiable and such that f (0) = 0 and f (1) = 1. Prove that there exist

distinct points 0 < a0 < a2 < ·· · < an−1 < 1 such that

n−1∑

k=0

f ′(ak ) = n.

Problem 6.3.6 Let n ≥ 1 be an integer and let f : [0;1] →R be differ-

entiable and such that f (0) = 0 and f (1) = 1. Prove that there exist

distinct points 0 < a0 < a2 < ·· · < an−1 < 1 such that

n−1∑

k=0

1

f ′(ak )
= n.

Problem 6.3.7 (Putnam 1946) Let p(x) is a quadratic polynomial

with real coefficients satisfying max

x∈
[
−1 ;1

]
∣∣f (x)

∣∣ ≤ 1. Prove that

max

x∈
[
−1 ;1

]
∣∣f ′(x)

∣∣≤ 4.

Problem 6.3.8 (Generalised Mean Value Theorem) Let f , g be

continuous of
[

a ;b
]

and differentiable on
]

a ;b
[

. Then there is

c ∈
]

a ;b
[

such that

(f (b)− f (a))g ′(c) = (g (b)−g (a))f ′(c).

Problem 6.3.9 (First L’Hôpital Rule) Let I be an open interval (fi-

nite or infinite) having c has an endpoint (which may be finite or

infinite). Assume f , g are differentiable on I , g and g ′ never vanish

on I and that lim
x→c

f (x) = 0 = lim
x→c

g (x). Prove that if lim
x→c

f ′(x)

g ′(x)
= L

(where L is finite or infinite), then lim
x→c

f (x)

g (x)
= L
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Problem 6.3.10 (Second L’Hôpital Rule) Let I be an open interval

(finite or infinite) having c has an endpoint (which may be finite

or infinite). Assume f , g are differentiable on I , g and g ′ never

vanish on I and that lim
x→c

∣∣f (x)
∣∣ = lim

x→c

∣∣g (x)
∣∣ = +∞. Prove that if

lim
x→c

f ′(x)

g ′(x)
= L (where L is finite or infinite), then lim

x→c

f (x)

g (x)
= L

Problem 6.3.11 If f ′ exists on an interval containing c , then

f ′(c) = lim
h→0

f (c +h)− f (c −h)

2h
.

Problem 6.3.12 If f ′′ exists on an interval containing c , then

f ′′(c) = lim
h→0

f (c +h)+ f (c −h)−2c

h2
.

6.4 Extrema

370 Definition Let X jR, f : X →R.

1. We say that f has a local maximum at a if there exists a neighbourhood of a, Na such that ∀x ∈Na , f (x) ≤ f (a).

2. We say that f has a local minimum at a if there exists a neighbourhood of a, Na such that ∀x ∈Na , f (x) ≥ f (a).

3. We say that f has a strict local maximum at a if there exists a neighbourhood of a, Na such that∀x ∈Na , f (x) < f (a).

4. We say that f has a strict local minimum at a if there exists a neighbourhood of a, Na such that ∀x ∈Na , f (x) > f (a).

5. We say that f has a local extremum at a if f has either a local maximum or a local minimum at a.

6. We say that f has a strict local extremum at a if f has either a strict local maximum or a strict local minimum at a.

The plural of extremum is extrema.

371 THEOREM If f : I → R is continuous on the interval I , differentiable on I̊ , and if f has a local extremum at a ∈ I̊ , then

f ′(a) = 0.

Proof: Suppose f admits a local maximum at a. Let h 6= 0 be so small that a +h ∈ I . Now

h > 0 =⇒ f (a +h)− f (a)

h
≤ 0, h < 0 =⇒ f (a +h)− f (a)

h
≥ 0.

Upon taking limits as h → 0, f ′(a) ≤ 0 and f ′(a) ≥ 0, whence f ′(a)= 0. ❑

372 Definition Let f : I →R. The points x ∈ I where f ′(x) = 0 are called critical points or stationary points of f .

373 THEOREM Let f :
[

a ;b
]
→ R be a twice differentiable function having a critical point at c ∈

]
a ;b

[
. If f ′′(c) < 0 then f

has a relative maximum at x = c , and if f ′′(c) > 0 then f has a relative minimum at x = c .

Proof: Assume that f ′(c) = 0 and f ′′(c) < 0. Since

lim
x→c

f ′(x)

x −c
= lim

x→c

f ′(x)− f ′(c)

x −c
= f ′′(c) < 0,

there exists δ > 0 such that f ′(x) > 0 when c −δ < x < c and f ′(x) > 0 when c < x < x +δ. Consequently, f is

strictly increasing on
]

c −δ ;c
[

and strictly decreasing on
]

c ;c +δ
[

. Hence

|x −c | <δ =⇒ f (x) ≤ f (c),

and so x = c is a local maximum. If f ′′ > 0 then we apply what has been proved to − f . ❑

374 THEOREM (Darboux’s Theorem) Let f be differentiable on
[

a ;b
]

and suppose that f ′(a)<C < f ′(b). Then there exists

c ∈
]

a ;b
[

such that f ′(c) =C .
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Proof: Put g (x) = f (x) −C x. Then g is differentiable on
[

a ;b
]

. Now g ′(a) = f ′(a) −C < 0 so g is strictly

increasing at x = a. Similarly, g ′(b) = f ′(b)−C < 0 so g is strictly decreasing at x = b. Since g is continuous, g

must have a local maximum at some point c ∈
]

a ;b
[

, where g ′(c) = f ′(c)−C = 0, proving the theorem. ❑

Homework

Problem 6.4.1 Let f be a polynomial with real coefficients of degree

n such that ∀x ∈R f (x) ≥ 0. Prove that

∀x ∈R f (x)+ f ′(x)+ f ′′(x)+·· · + f (n)(x) ≥ 0.

Problem 6.4.2 Put f (0) = 1, f (x) = xx for x > 0. Find the mini-

mum value of f .

6.5 Convex Functions

375 Definition Let I jR be an interval. A function f : I →R is said to be convex if

∀(a,b) ∈ I 2,∀λ ∈
[

0 ;1
]

, f (λa + (1−λ)b) ≤λf (a)+ (1−λ) f (b).

We say that f is concave if − f is convex.

☞ f is convex if given any two points on its graph, the straight line joining these two points lies above the graph of f . See

figure 6.1.

b

b

b

b

Figure 6.1: A convex curve

b

b

b

b

Figure 6.2: A concave curve.

376 Definition Let (x1, x2, . . . , xn ) ∈R
n and let λk ∈

[
0 ;1

]
be such that

n∑
k=1

λk = 1. The sum

n∑
k=1

λk xk

is called a convex combination of the xk .

377 THEOREM If (x1, x2, . . . , xn ) ∈
[

a ;b
]n

, then any convex combination of the xk also belongs to
[

a ;b
]

.

Proof: Assume λk ∈
[

0 ;1
]

be such that
n∑

k=1

λk = 1. Since the λk ≥ 0 we have

a ≤ xk ≤ b =⇒ λk a ≤λk xk ≤λk b.

Adding, and bearing in mind that
n∑

k=1

λk = 1,

(
n∑

k=1

λk

)
a ≤

n∑
k=1

λk xk ≤
(

n∑
k=1

λk

)
b =⇒ a ≤

n∑
k=1

λk xk ≤ b,

proving the theorem. ❑
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378 THEOREM (Jensen’s Inequality) Let I j R be an interval and let f : I →R be a convex function. Let n ≥ 1 be an integer,

xk ∈ I , and λk ∈
[

0 ;1
]

be such that
n∑

k=1

λk = 1. Then

f

(
n∑

k=1

λk xk

)
≤

n∑
k=1

λk f (xk ).

Proof: The proof is by induction on n. For n = 2 we must shew that given (x1, x2) ∈
[

a ;b
]2

,

f (λ1x1 +λ2x2) ≤λ1 f (x1)+λ2 f (x2).

As λ1 +λ2 = 1, we may put λ=λ2 = 1−λ1 and so the above inequality becomes

f (λx1 + (1−λ) x2) ≤λf (x1)+ (1−λ) f (x2),

retrieving the definition of convexity.

Assume now that f

(
n−1∑
k=1

µk xk

)
≤

n−1∑
k=1

µk f (xk ), when
n−1∑
k=1

µk = 1, µk ∈
]

0 ;1
[

. We must prove that f

(
n∑

k=1

λk xk

)
≤

n∑
k=1

λk f (xk ), when
n∑

k=1

λk = 1, λk ∈
]

0 ;1
[

.

If λn = 1 the assertion is trivial, since then λ1 = ·· · =λn−1 = 0. So assume that λn 6= 1. Observe that
n−1∑
k=1

λk

1−λn
=

(∑n
k=1

λk

)
−λn

1−λn
= 1−λn

1−λn
= 1 so that

n−1∑
k=1

λk

1−λn
xk is a convex combination of the xk and hence also belongs to

[
a ;b

]
, by Theorem 377. Since f is convex,

f

(
n∑

k=1

λk xk

)
= f

(
n−1∑
k=1

λk xk +λn xn

)

= f

(
(1−λn )

n−1∑
k=1

λk

1−λn
xk +λn xn

)

≤ (1−λn ) f

(
n−1∑
k=1

λk

1−λn
xk

)
+λn f (xn )

By the inductive hypothesis, with µk = λk

1−λn
= 1,

f

(
n−1∑
k=1

λk

1−λn
xk

)
≤

n−1∑
k=1

λk

1−λn
f (xk ) .

Finally, we gather,

f

(
n∑

k=1

λk xk

)
≤ (1−λn ) f

(
n−1∑
k=1

λk

1−λn
xk

)
+λn f (xn )

≤ (1−λn )
n−1∑
k=1

λk

1−λn
f (xk )+λn f (xn )

=
n−1∑
k=1

λk f (xk )+λn f (xn )

=
n∑

k=1

λk f (xk ) ,

proving the theorem. ❑
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379 THEOREM Let I jR be an interval and let f : I →R. For a ∈ I we put

Ta :
I \ {a} → R

x 7→ f (x)− f (a)

x −a

.

Then f is convex if and only if ∀a ∈ I , Ta is increasing over I \ {a}.

Proof: Let a < b < c as in figure 6.3. Consider the points A(a, f (a)), B (b, f (b)), and C (c , f (c)). The slopes

mAB = f (b)− f (a)

b −a
, mBC = f (c)− f (b)

c −b
, mC A = f (c)− f (a)

c −a
,

satisfy

mAB ≤ mAC , mAC ≤ mBC , mAB ≤ mBC ,

and the theorem follows. An analytic proof may be obtained by observing that from Theorem 377, anyλa + (1−λ)c

lies in the interval
[

a ;c
]

for λ ∈
[

0 ;1
]

. Conversely, given b ∈
[

a ;c
]

, we may solve for λ the equation

b =λa + (1−λ)c =⇒ λ= c −b

c −a
∈

[
0 ;1

]
.

Hence

f (λa + (1−λ)c) ≤λf (a)+ (1−λ) f (c) ⇐⇒ f (b) ≤ c −b

c −a
f (a)+ b −a

c −a
f (c) ⇐⇒ f (b)− f (a)

b −a
≤ f (c)− f (b)

c −b
.

(6.1)

This gives
f (b)− f (a)

b −a
≤ f (c)− f (a)

c −a
≤ f (c)− f (b)

c −b
(6.2)

from where the theorem follows.

❑

A

C

B

a b c

Figure 6.3: Theorem 379.

380 THEOREM Let I jR be an interval and let f : I →R be a convex function. Then f is left and right differentiable on every

point of I̊ and for (a,b,c) ∈ I 3 with a < b < c ,

f (b)− f (a)

b −a
≤ f−(b) ≤ f+(b) ≤ f (c)− f (b)

c −b
.

Proof: Since f is convex, ∀b ∈ I̊ , Tb :
I \ {b} → R

x 7→ f (x)− f (b)

x −b

is increasing, by virtue of Theorem 379. Thus

∀u ∈
[

a ;b
[

, ∀v ∈
[

b ;c
[

Tb (a)≤ Tb (u) ≤ Tb (v )≤ Tb(c).
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This means that Tb is increasing on
[

b ;c
[

and bounded below by Tb(u). It follows by Theorem 333 that Tb(b+)

exists, and so f is right-differentiable at b. Moreover,

Tb(a) ≤ Tb(u) ≤ f ′
+(b) ≤ Tb (c).

Similarly, Tb is increasing and bounded above by f ′
+(b). Appealing again to Theorem 333, f is left-differentiable

at b and

Tb (a)≤ f ′
−(b) ≤ f ′

+(b) ≤ Tb(c).

❑

381 COROLLARY If f is convex on an interval I , then f is continuous on I̊ .

Proof: Given b ∈ I̊ , we know that f is both left and right differentiable at b (though we may have f ′
−(b) < f ′

+(b)).

Regardless, this makes f left and right continuous at b: hence both f (b−) = f (b) and f (b+) = f (b). But then

f (b−) = f (b+) and so f is continuous at b. ❑

382 THEOREM Let I jR be an interval and let f : I →R be differentiable on I . Then f is convex if and only if f ′ is increasing

on I .

Proof:

=⇒ Assume f is convex. Let a < x < c . By (6.2),

f (x)− f (a)

x −a
≤

f (c)− f (a)

c −a
≤

f (c)− f (x)

c − x
.

Taking limits as x → a+,

f ′
+(a)≤ f (c)− f (a)

c −a
.

Taking limits as x → c−,
f (c)− f (a)

c −a
≤ f ′

−(c).

Thus f ′
+(a) ≤ f ′

−(c). Since f is differentiable, f ′
+(a) = f ′(a) and f ′

−(c) = f ′(c), and so f ′(a) ≤ f ′(c) proving

that f ′ is increasing.

⇐ Assume f ′ is increasing and that a < x < b. By the Mean Value Theorem, there exists α ∈
]

a ; x
[

and

α′ ∈
]

x ;b
[

such that

f (x)− f (a)

x −a
= f (α),

f (b)− f (x)

b − x
= f (α′).

Since f ′(α) ≤ f (α′) we must have
f (x)− f (a)

x −a
≤ f (b)− f (x)

b − x
,

and so f is convex in view of (6.1).

❑

383 COROLLARY Let I jR be an interval and let f : I →R be twice differentiable on I . Then f is convex if and only if f ′′ ≥ 0.

Proof: This follows from Theorems 368 and 382. ❑

384 Definition An inflexion point is a point on the graph of a function where the graph changes from convex to concave or

viceversa.

Homework
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Problem 6.5.1 (Putnam 1991) A there any polynomials p(x) with

real coefficients of degree n ≥ 2 all whose n roots are distinct real

numbers and all whose n −1 zeroes of p ′(x) are the midpoints be-

tween consecutive roots of p(x)?

Problem 6.5.2 Prove that the inflexion points of x 7→
x

tan x
are

aligned.

Problem 6.5.3 By considering f :
[0;+∞[ → R

x 7→ xk −k(x −1)

for 0 < k < 1 and using first and second derivative arguments, ob-

tain a new proof of Young’s Inequality 314.

6.6 Inequalities Obtained Through Differentiation

385 THEOREM Let x > 0. Then
x2

2
< exp(x).

Proof: Let f (x) = exp(x)− x2

2
. Then f ′(x) = exp(x)−x and f ′′(x) = exp(x)−1. Since x > 0, f ′′(x) > 0 and so f ′

is strictly increasing. Thus f ′(x) > f ′(0) = 1 > 0 and so f is increasing. Thus

f (x) > f (0) =⇒ exp(x)− x2

2
> 0,

proving the theorem.❑

386 THEOREM lim
x→+∞

x

exp(x)
= 0.

Proof: From Theorem 385, for x > 0,

0 <
x

exp(x)
<

2

x
=⇒ 0 ≤ lim

x→+∞
x

exp(x)
≤ lim

x→+∞
2

x
= 0,

and the theorem follows from the Sandwich Theorem. ❑

387 THEOREM Let α ∈R. Then lim
x→+∞

xα

exp(x)
= 0.

Proof: If α< 1 then
xα

exp(x)
= x

exp(x)
·xα−1 → 0 ·0,

by Lemma 386. If α≥ 1 then
xα

exp(x)
=α−α

(
αx

exp(αx)

)α
→α−α ·0α = 0,

by continuity and by Lemma 386. ❑

388 THEOREM Let x > 0. Then log x < x.

Proof: Put f (x) = x − log x. Then f ′(x) = 1− 1

x
. For x < 1, f ′(x) < 0, for x = 1, f ′(x) = 0, and for x > 1, f ′(x) > 0,

which means that f has a minimum at x = 1. Thus

f (x) > f (1) =⇒ x − log x > 1.

Since x − log x > 1 then a fortiori we must have x − log x > 0 and the theorem follows.❑

389 LEMMA lim
x→+∞

log x

x
= 0.
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Proof: From Theorem 388, log x2 < x2. For x > 1, log x > 0 and hence,

x > 1 =⇒ 0 < log x

x
< 1

2x
,

whence lim
x→+∞

log x

x
= 0 by the Sandwich Theorem. ❑

390 THEOREM Let α ∈
]

0 ;+∞
[

. Then lim
x→+∞

log x

xα
= 0.

Proof: If α> 1 then

log x

xα
= log x

x
·x1−α → 0 ·0,

by Lemma 389. If 0 <α≤ 1 then

log x

xα
= log xα

αxα
→ 1

α
·0 = 0,

by continuity and by Lemma 389. ❑

391 THEOREM For x ∈
]

0 ;
π

2

[
, sin x < x < tan x.

Proof: Observe that we gave a geometrical argument for this inequality in Theorem 344. First, let f(x)= sin x −
x. Then f ′(x) = cos x − 1 < 0, since for x ∈

]
0 ;

π

2

[
, the cosine is strictly positive. This means that f is strictly

decreasing. Thus for all x ∈
]

0 ;
π

2

[
,

f (0) > f (x) =⇒ 0 > sin x − x =⇒ sin x < x,

giving the first half of the inequality.

For the second half, put g (x) = tan x −x. Then g ′(x) = sec2 x −1. Now, since |cos x| < 1 for x ∈
]

0 ;
π

2

[
, sec2 x > 1.

Hence g ′(x) > 0, and so g is strictly increasing. This gives

g (0)< g (x) =⇒ 0 < tan x − x =⇒ x < tan x,

obtaining the second inequality.❑

π/2

1

Figure 6.4: Jordan’s Inequality

392 THEOREM (Jordan’s Inequality) For x ∈
]

0 ;
π

2

[
,

2

π
x < sin x < x.

124



Chapter 6

Proof: This inequality says that the straight line joining (0,0) to
(π

2
,1

)
lies below the curve y = sin x for x ∈

]
0 ;

π

2

[
. See figure 6.4. Put f (x) =

sin x

x
for x 6= 0 and f (0) = 1. Then f ′(x) = (cos x)

(
x − tan x

x2

)
< 0 since

cos x > 0 and x − tan x < 0 for x ∈
]

0 ;
π

2

[
. Thus f is strictly decreasing for x ∈

]
0 ;

π

2

[
and so

f (x) > f
(π

2

)
=⇒ sin x

x
> 2

π
,

proving the theorem.❑

393 Definition If w1, w2, . . . , wn are positive real numbers such that w1+w2+·· ·+wn = 1, we define the r -th weighted power

mean of the xi as:

Mr
w (x1, x2, . . . , xn ) =

(
w1xr

1 +w2xr
2 +·· ·+wn xr

n

)1/r
.

When all the wi =
1

n
we get the standard power mean. The weighted power mean is a continuous function of r , and

taking limit when r → 0 gives us

M0
w = x

w1

1 x
w2

2 · · ·w
wn
n .

394 THEOREM (Generalisation of the AM-GM Inequality) If r < s then

Mr
w (x1, x2, . . . , xn ) ≤ M s

w (x1, x2, . . . , xn ).

Proof: Suppose first that 0 < r < s are real numbers, and let w1, w2, . . . , wn be positive real numbers such that

w1 +w2 +·· ·+wn = 1.

Put t =
s

r
> 1 and yi = xr

i for 1 ≤ i ≤ n. This implies that y t
i = xs

i . The function f :]0;+∞[→]0;+∞[, f (x) = x t is

strictly convex, since its second derivative is f ′′(x) = 1

t(t −1)
x t−2 > 0 for all x ∈]0;+∞[. By Jensen’s inequality,

(w1 y1 +w2 y2 +·· ·+wn yn )t = f (w1 y1 +w2 y2 +·· ·+wn yn )

≤ w1 f (y1)+w2 f (y2)+·· ·+wn f (yn )

= w1 y t
1 +w2 y t

2 +·· ·+wn y t
n .

with equality if and only if y1 = y2 = ·· · = yn . By substituting t = s

r
and yi = xr

i back into this inequality, we get

(w1xr
1 +w2xr

2 +·· ·+wn xr
n )s/r ≤ w1xs

1 +w2xs
2 +·· ·+wn xs

n

with equality if and only if x1 = x2 = ·· · = xn . Since s is positive, the function x 7→ x1/s is strictly increasing, so

raising both sides to the power 1/s preserves the inequality:

(w1xr
1 +w2xr

2 +·· ·+wn xr
n )1/r ≤ (w1xs

1 +w2xs
2 +·· ·+wn xs

n )1/s ,

which is the inequality we had to prove. Equality holds if and only if all the xi are equal.

The cases r < 0 < s and r < s < 0 can be reduced to the case 0 < r < s.❑

Homework

Problem 6.6.1 Complete the following steps (due to George Pólya)

in order to prove the AM-GM Inequality (Theorem 86).

1. Prove that ∀x ∈R, x ≤ ex−1.

2. Put

Ak =
nak

a1 +a2 +·· ·+an
,
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and Gn = a1a2 · · ·an . Prove that

A1 A2 · · · An =
nnGn

(a1 +a2 +·· ·+an )n
,

and that

A1 + A2 +·· ·+ An = n.

3. Deduce that

Gn ≤
( a1 +a2 +·· ·+an

n

)n
.

4. Prove the AM-GM inequality by assembling the results above.

6.7 Asymptotic Preponderance

395 Definition Let I jR be an interval, and let a ∈ I . A function α : I →R is said to be infinitesimal as x → a if lim
x→a

α(x) = 0.

We say that α is negligible in relation to β as x → a or that β is preponderant in relation to α as x → a, if ∀ε> 0,∃δ> 0 such

that

x ∈
]

a −δ ; a +δ
[
=⇒ |α(x)| ≤ ε

∣∣β(x)
∣∣ .

We express the condition above with the notation α(x) = ox→a

(
β(x)

)
(read “α of x is small oh of β of x as x tends to a”).

Finally, we say that α is Big Oh of β around x = a—written α(x) = Ox→a

(
β(x)

)
, or α(x) <<x→a

(
β(x)

)
—if ∃C > 0 and

∃δ> 0 such that ∀x ∈
]

a −δ ; a +δ
[

, |α(x)| ≤C
∣∣β(x)

∣∣.

☞Notice that a above may be finite or ±∞. If a is understood, we prefer to write α(x) = o
(
β(x)

)
ratherα(x) = ox→a

(
β(x)

)
.

Also

α= ox→a
(
β

)
⇐⇒ lim

x→a

α(x)

β(x)
= 0 and β(a) = 0 =⇒ α(a) = 0.

396 Example sin : R→ [−1;1] is infinitesimal as x → 0, since lim
x→0

sin x = 0.

397 Example f : R\ {0} →R, x 7→ 1

x
is infinitesimal as x →+∞, since lim

x→+∞
1

x
= 0.

398 Example We have x2 = o(x) as x → 0 since

lim
x→0

x2

x
= lim

x→0
x = 0.

399 Example We have x = o
(
x2

)
as x →+∞ since

lim
x→+∞

x

x2
= lim

x→+∞
1

x
= 0.

400 Definition We write α(x) = γ(x)+o
(
β(x)

)
as x → a if α(x)−γ(x) = o

(
β(x)

)
as x → a. Similarly, α(x) = γ(x)+O

(
β(x)

)

as x → a means that α(x)−γ(x) = O
(
β(x)

)
as x → a.

401 Example We have sin x = x +o(x) as x → 0 since

lim
x→0

sin x − x

x
= lim

x→0

sin x

x
− lim

x→0
1 = 1−1 = 0.

402 THEOREM Let f , g ,α,β,u, v be real-valued functions defined on an interval containing a ∈ R. Let λ ∈ R be a constant.

Let h be a real valued function defined on an interval containing b ∈R. Then

1. f = o
(
g

)
=⇒ f = O

(
g

)
.

2. f = o(α) =⇒ λf = o(α).

3. f = o(α) , g = o(α) =⇒ f + g = o(α).

4. f = o(α) , g = o
(
β

)
=⇒ f g = o

(
αβ

)
.
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5. f = O (α) =⇒ λf = O (α).

6. f = O (α) , g = O (α) =⇒ f + g = O (α).

7. f = O (α) , g = O
(
β

)
=⇒ f g = O

(
αβ

)
.

8. f = O (α) , g = o
(
β

)
=⇒ f g = o

(
αβ

)
.

9. f = O (α) ,α= O
(
β

)
=⇒ f = O

(
β

)
.

10. f = o(α) ,α= O
(
β

)
=⇒ f = o

(
β

)
.

11. f = O (α) ,α= o
(
β

)
=⇒ f = o

(
β

)
.

12. f = o(α) , lim
x→b

h(x) = a =⇒ f ◦h = ox→b (α◦h).

13. f = O (α) , lim
x→b

h(x) = a =⇒ f ◦h = Ox→b (α◦h).

Proof: These statements follow directly from the definitions.

1. If f = o
(
g

)
then ∀ε> 0 there exists δ> 0 such that

x ∈
]

a −δ ; a +δ
[
=⇒

∣∣∣∣
f (x)

g (x)
−0

∣∣∣∣< ε =⇒
∣∣ f (x)

∣∣< ε
∣∣g (x)

∣∣ =⇒ f = O
(
g

)
,

using C = ε in the definition of Big Oh.

2. This follows by Theorem 272.

3. This follows by Theorem 272.

4. Both lim
x→a

f (x)

α(x)
= 0 and lim

x→a

g (x)

β(x)
= 0. Hence lim

x→a

f (x)g (x)

α(x)β(x)
= lim

x→a

f (x)

α(x)
· lim

x→a

g (x)

β(x)
= 0 =⇒ f g = o

(
αβ

)
.

5. If f = O (α) then there is δ> 0 and C > 0 such that

x ∈
]

a −δ ; a +δ
[
=⇒

∣∣ f (x)
∣∣≤C

∣∣g (x)
∣∣ =⇒

∣∣λf (x)
∣∣≤C |λ| ·

∣∣g (x)
∣∣ =⇒ λf = O (α)

6. There exists δ1 > 0,δ2 > 0 and C1 > 0, C2 > 0 such that

x ∈
]

a −δ1 ; a +δ1

[
=⇒

∣∣f (x)
∣∣≤C1 |α(x)| and x ∈

]
a −δ2 ; a +δ2

[
=⇒

∣∣g (x)
∣∣≤C2 |α(x)| .

Thus if δ= min(δ1,δ2),

x ∈
]

a−δ ; a+δ
[
=⇒

∣∣ f (x)+ g (x)
∣∣≤

∣∣f (x)
∣∣+

∣∣g (x)
∣∣≤C1α(x)+C2α(x) = (C1+C2)α(x) =⇒ f +g = O (α) .

7. There exists δ1 > 0,δ2 > 0 and C1 > 0, C2 > 0 such that

x ∈
]

a −δ1 ; a +δ1

[
=⇒

∣∣f (x)
∣∣≤C1 |α(x)| and x ∈

]
a −δ2 ; a +δ2

[
=⇒

∣∣g (x)
∣∣≤C2

∣∣β(x)
∣∣ .

Thus if δ= min(δ1,δ2),

x ∈
]

a−δ ; a+δ
[
=⇒

∣∣ f (x)g (x)
∣∣=

∣∣ f (x)
∣∣ ∣∣g (x)

∣∣≤C1 |α(x)|·C2

∣∣β(x)
∣∣= (C1C2)

∣∣α(x)β(x)
∣∣ =⇒ f g = O

(
αβ

)
.

8. There exists δ1 > 0,δ2 > 0 and C1 > 0, such that ∀ε> 0

x ∈
]

a −δ1 ; a +δ1

[
=⇒

∣∣ f (x)
∣∣≤C1 |α(x)| and x ∈

]
a −δ2 ; a +δ2

[
=⇒

∣∣g (x)
∣∣≤ ε

∣∣β(x)
∣∣ .

Thus if δ= min(δ1,δ2),

x ∈
]

a −δ ; a +δ
[
=⇒

∣∣f (x)g (x)
∣∣=

∣∣f (x)
∣∣ ∣∣g (x)

∣∣≤C1 |α(x)| ·ε
∣∣β(x)

∣∣= ε(C1)
∣∣α(x)β(x)

∣∣ =⇒ f g = o
(
αβ

)
.
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9. There exists δ1 > 0,δ2 > 0 and C1 > 0, C2 > 0 such that

x ∈
]

a −δ1 ; a +δ1

[
=⇒

∣∣f (x)
∣∣≤C1 |α(x)| and x ∈

]
a −δ2 ; a +δ2

[
=⇒ |α(x)| ≤C2

∣∣β(x)
∣∣ .

Thus if δ= min(δ1,δ2),

x ∈
]

a −δ ; a +δ
[
=⇒

∣∣f (x)
∣∣≤C1 |α(x)| ≤C1C2

∣∣β(x)
∣∣ =⇒ f = O

(
β

)
.

10. There exists δ1 > 0,δ2 > 0 and C > 0, such that ∀ε> 0

x ∈
]

a −δ1 ; a +δ1

[
=⇒

∣∣f (x)
∣∣≤ ε |α(x)| and x ∈

]
a −δ2 ; a +δ2

[
=⇒ |α(x)| ≤C

∣∣β(x)
∣∣ .

Thus if δ= min(δ1,δ2),

x ∈
]

a −δ ; a +δ
[
=⇒

∣∣f (x)
∣∣≤ ε |α(x)| ≤Cε

∣∣β(x)
∣∣ =⇒ f = o

(
β

)
.

11. There exists δ1 > 0,δ2 > 0 and C > 0, such that ∀ε> 0

x ∈
]

a −δ1 ; a +δ1

[
=⇒

∣∣f (x)
∣∣≤C |α(x)| and x ∈

]
a −δ2 ; a +δ2

[
=⇒ |α(x)| ≤ ε

∣∣β(x)
∣∣ .

Thus if δ= min(δ1,δ2),

x ∈
]

a −δ ; a +δ
[
=⇒

∣∣f (x)
∣∣≤C |α(x)| ≤Cε

∣∣β(x)
∣∣ =⇒ f = o

(
β

)
.

12. There exists δ1 > 0,δ2 > 0 such that ∀ε> 0

x ∈
]

a−δ1 ; a+δ1

[
=⇒

∣∣ f (x)
∣∣≤ ε |α(x)| and x ∈

]
b−δ2 ;b+δ2

[
=⇒ |h(x)−a| ≤ ε =⇒ h(x) ∈

]
a−ε ; a+ε

[
.

Thus if δ= min(δ1,δ2,ε),

x ∈
]

b −δ ;b +δ
[
=⇒

∣∣( f ◦h)(x)
∣∣≤ ε |(α◦h)(x)| =⇒ f ◦h = ox→b (α◦h) .

13. There exists δ1 > 0,δ2 > 0,C > 0 such that ∀ε> 0

x ∈
]

a−δ1 ; a+δ1

[
=⇒

∣∣ f (x)
∣∣≤C |α(x)| and x ∈

]
b−δ2 ;b+δ2

[
=⇒ |h(x)−a| ≤ ε =⇒ h(x) ∈

]
a−ε ; a+ε

[
.

Thus if δ= min(δ1,δ2,ε),

x ∈
]

b −δ ;b +δ
[
=⇒

∣∣( f ◦h)(x)
∣∣≤C |(α◦h)(x)| =⇒ f ◦h = Ox→b (α◦h) .

❑

☞ In the above theorem, (8), (10), and (11) essentially say that O(o) = o(O) = o(o) = o and (9) says that O(O) = O.

The following corollary is immediate.

403 COROLLARY Let α and β be infinitesimal functions as x → a. Then the following hold.

1. The sum of two infinitesimals is an infinitesimal:

o
(
β(x)

)
+o

(
β(x)

)
= o

(
β(x)

)
.

2. The difference of two infinitesimals is an infinitesimal:

o
(
β(x)

)
−o

(
β(x)

)
= o

(
β(x)

)
.

3. ∀c ∈R\ {0},o
(
cβ(x)

)
= o

(
β(x)

)
.

4. ∀n ∈N,n ≥ 2,1 ≤ k ≤ n −1, o
(
(β(x))n

)
= o

(
(β(x))k

)
.
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5. o
(
o
(
β(x)

))
= o

(
β(x)

)
.

6. ∀n ∈N,n ≥ 1, (β(x))no
(
β(x)

)
= o

(
(β(x))n+1

)
.

7. ∀n ∈N,n ≥ 2,
o
(
(β(x))n

)

β(x)
= o

(
(β(x))n−1

)
.

8.
o
(
β(x)

)

β(x)
= o(1).

9. If ck are real numbers, then o

(
n∑

k=1

ck (β(x))k

)
= o

(
β(x)

)
.

10. (αβ)(x) = o(α(x)) and (αβ)(x) = o
(
β(x)

)
.

11. If α∼β, then (α−β)(x) = o(α(x)) and (α−β)(x) = o
(
β(x)

)
.

404 THEOREM (Canonical small oh Relations) The following relationships hold

1. ∀(α,β) ∈R2, xα = ox→+∞
(

xβ
)
⇐⇒ α<β.

2. ∀(α,β) ∈R2, xα = ox→0+
(

xβ
)
⇐⇒ α>β.

3. log x = ox→+∞ (x).

4. ∀(α,β) ∈R2,β> 0, (log x)α = ox→+∞
(

xβ
)
.

5. ∀(α,β) ∈R2,β< 0,
∣∣log x

∣∣α = ox→0+
(

xβ
)
.

6. ∀(α, a) ∈R
2, a > 1, xα = ox→+∞

(
ax

)

7. ∀(α, a) ∈R2, a > 1, ax = ox→−∞
(
|x|α

)

Proof:

1. Immediate.

2. Immediate.

3. This follows from Lemma 389.

4. If α= 0 then eventually (log x)α = 1 and so the assertion is immediate. If α< 0 the assertion is also imme-

diate, since then (log x)α → 0 as x →+∞. If α> 0, by Theorem 390,

log x

xβ/α
→ 0,

whence
(log x)α

xβ
=

(
log x

xβ/α

)α
→ 0α = 0.

5. If x → 0+ then
1

x
→+∞. Hence by the preceding part and by continuity, as x → 0+ and for γ> 0,

(∣∣∣∣log
1

x

∣∣∣∣
)α

(
1

x

)γ → 0.

But (∣∣∣∣log
1

x

∣∣∣∣
)α

(
1

x

)γ =
(∣∣− log x

∣∣)α
(

1

x

)γ = xγ
∣∣log x

∣∣α ,

and so
∣∣log x

∣∣α = ox→0+
(
x−γ)

, and so putting β=−γ< 0 we have
∣∣log x

∣∣α = ox→0+
(

xβ
)
.
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6. For α< 1 we have
xα

ax
= x log a

exp
(
x log a

) · xα−1

log a
→ 0 ·0,

since
x log a

exp
(
x log a

) → 0 by continuity and Theorem 387, and
xα−1

log a
→ 0 since α−1 < 0. If α> 1 then

xα

ax
=

(
x(

a1/α
)x

)α
=

αα

(log a)α
·




x
log a

α

exp

(
x

log a

α

)




α

→
αα

(log a)α
·0α = 0,

by continuity and Theorem 387.

7. If α > 0, a > 1 then |x|α →+∞ but ax → 0 as x →−∞, hence there is nothing to prove. If α= 0, again the

result is obvious. Assume α< 0. If x →−∞ then −x →+∞ and so by the preceding part

|x|−α

a−x
→ 0

since the above result is valid regardless of the sign of α. Now

ax

|x|α
=

|x|−α

a−x
,

proving the result.

❑

405 Example In view of Corollary 403 and Theorem 404, we have

o
(
−2x3 +8x2

)
= o(x) ,

as x → 0.

406 Example In view of Corollary 403 and Theorem 404, we have

o
(
−2x3 +8x2

)
= o

(
x4

)
,

as x →+∞.

Homework

Problem 6.7.1 Which one is faster as x → +∞, (log log x)log x or (log x)log log x ?

6.8 Asymptotic Equivalence

407 Definition Let I j R be an interval, and let a ∈ I . We say that α is asymptotic to a function β : I → R as x → a, and we

write α∼β, if α∼β ⇐⇒ α−β= oa

(
β

)
.

☞ If in a neighbourhood Na of a β 6= 0 then

α∼β ⇐⇒





α

β
∼ 1

β(a) = 0 =⇒ α(a) = 0

408 Example We have sin x ∼ x as x → 0, since lim
x→0

sin x

x
= 1.
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409 Example We have x2 + x ∼ x as x → 0, since lim
x→0

x2 + x

x
= 1.

410 Example We have x2 + x ∼ x2 as x →+∞, since lim
x→+∞

x2 + x

x2
= 1.

411 THEOREM

α∼β =⇒





α= O
(
β

)

β= O (α)

Proof: If α−β= o
(
β

)
there is a neighbourhood Na of a such that

∀ε> 0, x ∈Na =⇒
∣∣α(x)−β(x)

∣∣≤ ε
∣∣β(x)

∣∣ .

In particular, for ε= 1

2
, we have

x ∈Na =⇒
∣∣α(x)−β(x)

∣∣≤ 1

2

∣∣β(x)
∣∣ .

Hence

x ∈Na =⇒ |α(x)| =
∣∣α(x)−β(x)+β(x)

∣∣ ≤
∣∣α(x)−β(x)

∣∣+
∣∣β(x)

∣∣≤ 3

2

∣∣β(x)
∣∣ =⇒ α= O

(
β

)
,

and

x ∈Na =⇒
∣∣β(x)

∣∣=
∣∣β(x)−α(x)+α(x)

∣∣≤
∣∣β(x)−α(x)

∣∣+|α(x)| ≤
1

2

∣∣β(x)
∣∣+|α(x)| =⇒

∣∣β(x)
∣∣≤ 2 |α(x)| =⇒ β= O (α) .

❑

412 THEOREM The relation of asymptotic equivalence ∼ is an equivalence relation on the set of functions defined on a

neighbourhood of a.

Proof: We have

Reflexivity α−α= 0 = o(α).

Symmetry α−β= o
(
β

)
=⇒ β= O (α) by Theorem 411. Now by (10) of Theorem 402,

α−β= o
(
β

)
andβ= O (α) =⇒ α−β= o(α) =⇒ β−α= o(α) ,

whence β∼α.

Transitivity Assume α−β= o
(
β

)
and β−γ= o

(
γ

)
. Then by Theorem 411 we also have β= O

(
γ

)
. Hence α−β= o

(
γ

)

by (10) of Theorem 402. Finally α−β= o
(
γ

)
and β−γ= o

(
γ

)
give α−γ= o

(
γ

)
by (3) of Theorem 402.

❑

The relationship between o,O, and ∼ is displayed in figure 6.5.

413 THEOREM The relation of asymptotic equivalence ∼ possesses the following properties.

1.





α∼β

γ∼δ

=⇒ αγ∼βδ.
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f ∼ g

f = o
(
g

)
g = o

(
f
)

f = O
(
g

)
g = O

(
f
)

Figure 6.5: Diagram of Big Oh relations.

2.





α∼β

n ∈N\ {0}

=⇒ αn ∼βn

3. if α∼β and if there is a neighbourhood Na of a where ∀x ∈Na \ {a},β(a) 6= 0, then
1

α
and

1

β
are defined on Na \ {a}

and
1

α
∼a

1

β
.

4.





α= o
(
β

)

β∼γ

=⇒ α= o
(
γ

)
.

5.





α∼β

β= o
(
γ

) =⇒ α= o
(
γ

)
.

6. if α∼β and if there is a neighbourhood Na of a where ∀x ∈Na \ {a},β(a) > 0, and if r ∈R then αr ∼a βr .

7. (Dextral Composition) If α∼a β and if lim
x→b

γ(x) = a, then α◦γ∼a β◦γ.

Proof: We prove the assertions in the given order.

1. Since α−β= o
(
β

)
and γ−δ= o(δ) then α= O

(
β

)
, and so

αγ−βδ=α(γ−δ)−δ(β−α) = O
(
β

)
o(δ)−δo

(
β

)
= o

(
βδ

)
.

2. This follows upon applying the preceding product rule n −1 times, using γ=α and δ=β.

3. Observe that
1

α
− 1

β
= β−α

αβ
= o(α)

αβ
= o

(
1

β

)
,

upon using β−α= o(α) and (8) of Corollary 403.

4. We have α= o
(
β

)
and β−γ= o

(
γ

)
. This last implies that β= O

(
γ

)
by Theorem 411. Hence

α= o
(
β

)
= o

(
O

(
γ

))
= o

(
γ

)
.

5. We have α−β= o
(
β

)
and β= o

(
γ

)
. This last implies that α= O

(
β

)
by Theorem 411. Hence

α= O
(
β

)
= O

(
o
(
γ

))
= o

(
γ

)
.

6. Since β is eventually strictly positive, so is α. Hence α ∼ β ⇐⇒ α

β
(x) → 1 as x → a. Since the function

x 7→ xr is continuous in
]

0 ;+∞
[

,

α

β
(x) → 1 =⇒ αr

βr
(x) → 1 =⇒ αr ∼βr .
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7. We have
α(x)−β(x)

β(x)
→ 0 as x → a. Now if γ(x) → a as x → b then as x → b,

α(γ(x))−β(γ(x))

β(γ(x))
→ 0.

❑

414 THEOREM (Exponential Composition) exp(α) ∼a exp(β) ⇐⇒ α−β∼a 0.

Proof: We have

exp(α) ∼a exp(β) ⇐⇒ exp(α)−exp(β) = o
(
exp(β)

)

⇐⇒
(
exp(−β)

)(
exp(α)−exp(β)

)
=

(
exp(−β)

)
o
(
exp(β)

)

⇐⇒ exp(α−β)−1 = o(1)

⇐⇒ α−β= o(0) .

❑

☞ The above theorem does not say that α∼ β =⇒ exp(α) ∼ exp(β). That this last assertion is false can be seen from the

following counterexample: x +1 ∼ x as x → 0, but exp(x +1) = e exp(x) is not asymptotic to exp(x).

415 THEOREM (Logarithmic Composition) Suppose there is a neighbourhood of a Na such that

∀x ∈ Na \ {a},β(x) > 0. Suppose, moreover, that α ∼a β and that lim
x→a

β(x) = l with l ∈
[

0 ;+∞
]

\ {1}. Then log◦α ∼a

log◦β.

Proof: Either l ∈
]

0 ;+∞
[

\ {1} or l =+∞ or l = 0.

In the first case, logα(x) → logl and logβ(x) → logl as x → a hence

logα∼ logl ∼ logβ, as x → a.

In the second case β(x) > 1 eventually, and thus logβ(x) 6= 0. Hence

logα(x)

logβ(x)
−1 = logα(x)− logβ(x)

logβ(x)
=

log
α(x)

β(x)

logβ(x)
→ log1

+∞
= 0,

since
α(x)

β(x)
→ 1 and logβ(x) →+∞ as x →+∞.

The third case becomes the second case upon considering
1

α
and

1

β
. ❑

416 THEOREM (Addition of Positive Terms) If α ∼ β and γ ∼ δ and there exists a neighbourhood of a Na such that ∀x ∈
Na \ {a},β(x) > 0,δ(x) > 0 then

α+γ∼β+δ.
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Proof: We have α−β= o
(
β

)
and γ−δ= o(δ). Hence

(α+γ)− (β+δ) = (α−β)+ (γ−δ)

= o
(
β

)
+o(δ)

= o
(
β+δ

)
,

which means α+γ∼β+δ. ❑

417 THEOREM The following asymptotic expansions hold as x → 0 :

1. exp(x)−1 ∼ x and thus exp(x) = 1+ x +o(x)

2. log(1+ x) ∼ x and thus log(1+ x) = x +o(x)

3. sin x ∼ x and thus sin(x) = x +o(x)

4. tan x ∼ x and thus tan(x) = x +o(x)

5. arcsin x ∼ x and thus arcsin(x) = x +o(x)

6. arctanx ∼ x and thus tan(x) = x +o(x)

7. for α ∈R constant, (1+ x)α−1 ∼αx and thus (1+ x)α = 1+αx +o(x)

8. 1−cos x ∼ x2

2
and thus cos(x) = 1− x2

2
+o

(
x2

)

Proof: Results 1—7 follow from the fact that

f ′(a) 6= 0,
f (x)− f (a)

x −a
→ f ′(a) =⇒ f (x)− f (a)∼ f ′(a)(x −a).

Property 8 follows from the identity 1−cos x = 2 sin2 x

2
. ❑

418 Example Since tan x = x +o(x), we have

tan
x2

2
= x2

2
+o

(
x2

2

)
= x2

2
+o

(
x2

)
,

as x → 0. Also,

(tan x)3 = (x +o(x))3 = x3 +3x2o(x)+3xo
(

x2
)
+ (o(x))3 = x3 +o

(
x3

)
.

419 Example Since cos x = 1−
x2

2
+o

(
x2

)
, we have

cos3x2 = 1− 9x4

2
+o

(
x4

)
.

420 Example Find an asymptotic expansion of cot2 x of type o
(
x−2

)
as x → 0.

Solution: Since tan x ∼ x we have

cot2 x ∼ 1

x2
.

We can write this as cot2 x = 1

x2
+o

(
1

x2

)
.
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421 Example Calculate

lim
x→0

sin sin tan
x2

2
logcos3x

.

Solution: We use theorems 417 and 403.

sin sin tan
x2

2
= sin sin

(
x2

2
+o

(
x2

))

= sin

(
x2

2
+o

(
x2

)
+o

(
x2

2
+o

(
x2

)))

= sin

(
x2

2
+o

(
x2

))

= x2

2
+o

(
x2

)
,

and

log cos3x = log

(
1− 9x2

2
+o

(
x2

))

= −9x2

2
+o

(
x2

)
+o

(
−9x2

2!
+o

(
x2

))

= −
9x2

2
+o

(
x2

)

The limit is thus equal to

lim
x→0

x2

2
+o

(
x2

)

−
9x2

2
+o

(
x2

) = lim
x→0

1

2
+o(1)

−9

2
+o(1)

=−
1

9
.

422 Example Find lim
x→0

(cos x)(cot2 x).

Solution: By example 420, we have cot2 x = 1

x2
+o

(
1

x2

)
. Also,

logcos x = log

(
1− x2

2
+o

(
x2

))
=− x2

2
+o

(
x2

)
.

Hence

(cos x)cot2 x = exp
(
(cot2 x) logcos x

)

= exp

((
1

x2
+o

(
1

x2

))(
− x2

2
+o

(
x2

)))

= exp(−
1

2
+o(1))

→ e−1/2,

as x → 0.

Homework

Problem 6.8.1 Prove that
log(1+2tan x)

sin x
→ 2 as x → 0. Problem 6.8.2 Prove that

(
1+

1

x

)x

→ e as x →+∞.

Problem 6.8.3 Prove that (tan x)cot 4x → e1/2 as x →
π

4
.
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6.9 Asymptotic Expansions

423 Definition Let n ∈N and let f : N0 →R where N0 is a neighbourhood of 0. We say that f admits an asymptotic expan-

sion of order n about x = 0 if there exists a polynomial p of degree n such that

∀x ∈N0, f (x) = p(x)+o0

(
xn

)
.

The polynomial p is called the regular part of the asymptotic expansion about x = 0 of f .

424 THEOREM If f admits an asymptotic expansion about 0, its regular part is unique.

Proof: Assume f (x) = p(x)+o0

(
xn

)
and f (x) = q(x)+o0

(
xn

)
, where p(x) = pn xn +·· ·+p1x +p0 and q(x) =

qn xn+·· ·+q1x+q0 are polynomials of degree n. If p 6= q let k be the largest k for which pk 6= qk . Then subtracting

both equivalencies, as x → 0,

p(x)−q(x) = o
(
xn

)
=⇒ (pn−qn )xn+(pn−1−qn−1)xn−1+·· ·+(p1−q1)x = o

(
xn

)
=⇒ (pk−qk )xk+·· ·+·· · = o

(
xn

)
.

But (pk −qk )xk +·· ·+ ·· ·O
(

xk
)

as x → 0, a contradiction, since k ≤ n. ❑

425 Definition Let n ∈N, a ∈R, and let f : Na → R where Na is a neighbourhood of a. We say that f admits an asymptotic

expansion of order n about x = a if there exists a polynomial p of degree n such that

∀x ∈Na , f (x) = p(x −a)+oa

(
(x −a)n

)
.

The polynomial p is called the regular part of the asymptotic expansion about x = a of f .

426 Definition Let n ∈N, and let f : N+∞ → R where N+∞ is a neighbourhood of +∞. We say that f admits an asymptotic

expansion of order n about +∞ if there exists a polynomial p of degree n such that

∀x ∈Na ∩
]

0 ;+∞
[

, f (x) = p

(
1

x

)
+o+∞

(
1

xn

)
.

The polynomial p is called the regular part of the asymptotic expansion about +∞ of f .

427 THEOREM Let f : N0 → R be a function with an asymptotic expansion f (x) = p(x)+o0

(
xn

)
, where p is a polynomial.

Then, if f is even, then p is even and if f is odd, then p is odd.

Proof: Let f (x) = p(x)+o
(
xn

)
as x → 0, where p is a polynomial of degree n. Then f (−x) = p(−x)+o

(
xn

)
. If f

is even then

p(x)+o
(

xn
)
= f (x) = f (−x) = p(−x)+o

(
xn

)
,

and so by uniqueness of the regular part of an asymptotic expansion we must have p(x) = p(−x), so p is even.

Similarly if f is odd then

−p(x)+o
(

xn
)
=− f (x) = f (−x) = p(−x)+o

(
xn

)
,

and so by uniqueness of the regular part of an asymptotic expansion we must have −p(x) = p(−x), so p is odd.

❑

We want to expand the function f in powers of x −a:

f (x) = a0 +a1(x −a)+a2(x −a)2 +·· ·+an (x −a)n +·· · ,

and that we will truncate at the n-th term, obtaining thereby a polynomial of degree n in powers of x−a. We must determine

what the coefficients ak are, and what the remainder

f (x)−a0 −a1(x −a)−a2(x −a)2 −·· ·−an (x −a)n = R(x)

136



Chapter 6

is. We hope that this remainder is oa

(
(x −a)n

)
. The coefficients ak are easily found. For 0 ≤ k ≤ n since f is n +1 times

differentiable, differentiating k times,

f (k)(x) = k !ak + ((k +1)(k) · · ·2)ak+1(x −a)+ ((k +2)(k +1) · · ·3)ak+2(x −a)2 +·· ·+R(k)(x), =⇒ f (k)(a)

k !
= ak ,

as long as R(a) = R ′(a) = R ′′(a) = ·· · = R(n)(a) = 0. We write our ideas formally in the following theorems.

428 THEOREM (Taylor-Lagrange Theorem) Let I jR, I 6=∅ be an interval of R and let f : I →R be n +1 times differentiable

in I . Then if (x, a) ∈ I 2,, there exist c with inf(x, a) < c < sup(x, a) such that

f (x) = f (a)+ f ′(a)(x −a)+ f ′′(a)

2!
(x −a)2 + f (3)(a)

3!
(x −a)3 +·· ·+ f (n)(a)

n!
(x −a)n + f (n+1)(c)

(n +1)!
(x −a)n+1.

Proof: If x = a then there is nothing to prove. If x < a then replace x 7→ f (x) with x 7→ f (−x), which then verifies

the same hypotheses given in the theorem. Thus it remains to prove the theorem for x > a. Consider the function

φ :
[

a ; x
]
→R with

φ(t) = f (x)−
n∑

k=0

f (k)(t)
(x − t)k

k !
−R

(x − t)n+1

(n +1)!
,

where R is a constant. Observe that φ(x) = 0. We now choose the constant R so that φ(a) = 0. Observe that φ is

differentiable and that it satisfies the hypotheses of Rolle’s Theorem on
[

a ; x
]

. Therefore, there exists c ∈
]

a ; x
[

such that φ′(c) = 0. Now

φ′(t) =−
n∑

k=1

(
f (k+1)(t)

(x − t)k

k !
− f (k)(t)

(x − t)k−1

(k −1)!

)
+R

(x − t)n

n!
=− (x − t)n

n!
f (n+1)(t)+R

(x − t)n

n!
,

from where we gather, that R = f (n+1)(c) and the theorem follows. ❑

429 COROLLARY (Taylor-Young Theorem) Let f : Na →R be n+1 times differentiable in Na . Then f admits the asymptotic

expansion of order n about a:

f (x) = f (a)+ f ′(a)(x −a)+
f ′′(a)

2!
(x −a)2 +

f (3)(a)

3!
(x −a)3 +·· ·+

f (n)(a)

n!
(x −a)n +oa

(
(x −a)n

)
.

Proof: Follows at once from Theorem 428. ❑

The following theorem follows at once from Corollary 429.

430 THEOREM Let x → 0. Then

1. sin x = x − x3

3!
+ x5

5!
−·· ·+ (−1)n x2n+1

(2n +1)!
+o

(
x2n+2

)
.

2. cos x = 1− x2

2!
+ x4

4!
−·· ·+ (−1)n x2n

(2n)!
+o

(
x2n+1

)
.

3. tan x = x +
x3

3
+

2x5

15
+o

(
x5

)
.

4. ex = 1+ x + x2

2!
+ x3

3!
+·· ·+ xn

n!
+o

(
xn

)

5. log(1+ x) = x −
x2

2
+

x3

3
−·· ·+ (−1)n+1 xn

n
+o

(
xn

)
.
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6. (1+ x)τ = 1+τx +
τ(τ−1)

2
x2 +·· ·+

τ(τ−1)(τ−2)(τ−3) · · · (τ−n +1)

n!
xn +o

(
xn

)
.

431 Example Find an asymptotic development of log(2 cos x +sin x) around x = 0 of order o
(
x4)

.

Solution: By theorem 430,

2 cos x +sin x = 2

(
1− x2

2
+ x4

24
+o

(
x5

))
+

(
x − x3

6
+o

(
x4

))

= 2+ x − x2 −
x3

6
+

x4

12
+o

(
x4

)

= 2

(
1+ x

2
− x2

2
− x3

12
+ x4

24
+o

(
x4

))
,

and so,

log(2 cos x +sin x) = log2

(
1+

x

2
−

x2

2
−

x3

12
+

x4

24
+o

(
x4

))

= log2+ log

(
1+ x

2
− x2

2
− x3

12
+ x4

24
+o

(
x4

))

= log2+
(

x

2
− x2

2
− x3

12
+ x4

24
+o

(
x4

))

− 1

2

(
x

2
− x2

2
− x3

12
+ x4

24
+o

(
x4

))2

+ 1

3

(
x

2
− x2

2
− x3

12
+ x4

24
+o

(
x4

))3

− 1

4

(
x

2
− x2

2
− x3

12
+ x4

24
+o

(
x4

))4

+o
(
x4

)

= log2+
(

x

2
− x2

2
− x3

12
+ x4

24

)
− 1

2

(
x2

4
− x3

2
+ x4

6

)

+
1

3

(
x3

8
−

3x4

8

)
−

1

4
·

x4

16
+o

(
x4

)

= log2+ x

2
− 5x2

8
+ 5x3

24
− 35x4

192
+o

(
x4

)

as x → 0.

Homework

Problem 6.9.1 Prove that the limit

lim
n→+∞

(
1+

1

2
+

1

3
+·· ·+

1

n

)
− log n,

exists. The constant

γ= lim
n→+∞

(
1+

1

2
+

1

3
+·· · +

1

n

)
− log n

is called the Euler-Mascheroni constant. It is not known whether γ

is irrational.
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Integrable Functions

7.1 The Area Problem

432 Definition Let f :
[

a ;b
]
→ R be bounded, say with m ≤ f (x) ≤ M for all x ∈

[
a ;b

]
. Corresponding to each partition

P = {x0, x1, . . . , xn } of
[

a ;b
]

, we define the upper Darboux sum

U ( f ,P) =
n∑

k=1

( sup
xk−1≤x≤xk

f (x))(xk − xk−1),

and the lower Darboux sum

L( f ,P) =
n∑

k=1

( inf
xk−1≤x≤xk

f (x))(xk − xk−1).

Clearly

L( f ,P) ≤U ( f ,P).

Finally, we put
∫b

a
f (x)dx = inf

P is a partition of

[
a ;b

]U ( f ,P),

which we call the upper Riemann integral of f and

∫b

a

f (x)dx = sup

P is a partition of

[
a ;b

]L( f ,P).

which we call the lower Riemann integral of f .

433 Definition Let f :
[

a ;b
]
→ R be bounded. We say that f is Riemann integrable if

∫b

a
f (x)dx =

∫b

a

f (x)dx. In this case,

we denote their common value by

∫b

a
f (x)dx and call it the Riemann integral of f over

[
a ;b

]
.

434 THEOREM Let f be a bounded function on
[

a ;b
]

and let P jP
′ be two partitions of

[
a ;b

]
. Then

L( f ,P) ≤ L( f ,P ′) ≤U ( f ,P ′) ≤U ( f ,P).

Proof: Clearly is enough to prove this when P
′ has exactly one more point than P . Let

P = {x0, x1, . . . , xn }
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with a = x0 < x1 < ·· · < xn−1 < xn = b. Let P
′ have the extra point x∗ with xi < x∗ < xi+1. Observe that we

have both inf
xi ≤x≤xi+1

f (x) ≤ inf
xi ≤x≤x∗

f (x) and inf
xi ≤x≤xi+1

f (x) ≤ inf
x∗≤x≤xi+1

f (x) since the larger interval may contain

smaller values of f . Then

inf
xi ≤x≤xi+1

f (x)(xi+1 − xi ) = inf
xi ≤x≤xi+1

f (x)(xi+1 − x∗+ x∗− xi )

= inf
xi ≤x≤xi+1

f (x)(x∗− xi )+ inf
xi ≤x≤xi+1

f (x)(xi+1 − x∗)

≤ inf
xi ≤x≤x∗

f (x)(x∗− xi )+ inf
x∗≤x≤xi+1

f (x)(xi+1 − x∗).

Thus

L( f ,P) = ( inf
x0≤x≤x1

f (x))(x1 − x0)+·· ·+ ( inf
xi ≤x≤xi+1

f (x))(xi+1 − xi )+·· ·+ ( inf
xn−1≤x≤xn

f (x))(xn − xn−1)

≤ ( inf
x0≤x≤x1

f (x))(x1 − x0)+·· ·+ ( inf
xi ≤x≤x∗

f (x))(x∗− xi )+ ( inf
x∗≤x≤xi+1

f (x))(xi+1 − x∗)+·· ·+ ( inf
xn−1≤x≤xn

f (x))(xn − xn−1)

= L( f ,P ′).

A similar argument shews that U ( f ,P ′) ≤U ( f ,P). The we have

L( f ,P) ≤ L( f ,P ′) ≤U ( f ,P ′) ≤U ( f ,P)

proving te theorem.❑

435 THEOREM Let f be a bounded function on
[

a ;b
]

and let P1 and P2 be any two partitions of
[

a ;b
]

. Then

L( f ,P1) ≤U ( f ,P2)

Proof: Let P
′ =P1 ∪P2 be a common refinement for P1 and P2. By Theorem 434,

L( f ,P1) ≤ L( f ,P1 ∪P2) ≤U ( f ,P1 ∪P2) ≤U ( f ,P1),

and

L( f ,P2) ≤ L( f ,P1 ∪P2) ≤U ( f ,P1 ∪P2) ≤U ( f ,P2),

whence the theorem follows.❑

436 THEOREM Let f be a bounded function on
[

a ;b
]

. Then

∫b

a

f (x)dx ≤
∫b

a
f (x)dx.

Proof: By Theorem 435,

L( f ,P1) ≤U ( f ,P2) =⇒
∫b

a

f (x)dx = sup

P1 is a partition of

[
a ;b

]L( f ,P1) ≤U ( f ,P2),

and so ∫b

a

f (x)dx ≤U ( f ,P2.

Taking now the infimum,

∫b

a

f (x)dx ≤ inf

P2 is a partition of

[
a ;b

]U ( f ,P2) =
∫b

a
f (x)dx,

and the result is established.❑
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437 THEOREM Let f be a bounded function on
[

a ;b
]

. Then f is Riemann integrable if and only if ∀ε > 0, ∃P a partition

of
[

a ;b
]

such that

U ( f ,P)−L( f ,P) < ε.

Proof:

⇐ If for all ε> 0, U ( f ,P)−L( f ,P) < ε then by Theorem 436,

L( f ,P) ≤
∫b

a

f (x)dx ≤
∫b

a
f (x)dx ≤U ( f ,P) =⇒ 0 ≤

∫b

a
f (x)dx −

∫b

a

f (x)dx < ε,

and so

∫b

a
f (x)dx =

∫b

a

f (x)dx, which means that f is Riemann-integrable.

=⇒ Suppose f is Riemann integrable. By the Approximation property of the supremum and infimum, for all

ε> 0 there exist partitions P1 and P2 such that

U ( f ,P2)−
∫b

a
f (x)dx < ε

2
,

∫b

a
f (x)dx −L( f ,P1) < ε

2
.

Hence by taking P =P1 ∪P2 then

U ( f ,P) ≤U ( f ,P2) <
∫b

a
f (x)dx + ε

2
< L( f ,P1)+ε< L( f ,P)+ε,

from where U ( f ,P)−L( f ,P) < ε.

❑

438 Example • f (x) =
{

0 x irrational,

1 x rational.
x ∈ [0;1]

Then U ( f ,P) = 1,L( f ,P) = 0, for any partition P , and so f is not Riemann integrable.

• f (x) =





0 x irrational,
1

q
x rational =

p

q
in lowest terms.

x ∈ [0;1]

is Riemann integrable with
∫1

0
f (x) dx = 0

439 Definition Let f be a bounded function on
[

a ;b
]

and let P = {x0, x1, . . . , xn } be a partition of
[

a ;b
]

. If tk are selected

so that xk−1 ≤ tk ≤ xk , put

S( f ,P) =
n∑

k=1

f (tk )(xk − xk−1),

is the Riemann sum of f associated with P .

440 THEOREM Let f1, f2, . . . , fm be Riemann integrable over
[

a ;b
]

, and let f :
[

a ;b
]
→ R. If for any subinterval I j

[
a ;b

]

there exists strictly positive numbers a1, a2, . . . , am such that

ω( f , I ) ≤ a1ω( f1, I )+a2ω( f2, I )+·· · +amω( fm , I ),

then f is also Riemann integrable.
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Proof: Let P = {a = x0 < x1 < ·· · < xn = b} be a partition of
[

a ;b
]

selected so that for all j ,

U ( f j ,P)−L( f j ,P) < ε

a1 +a2 +·· ·+am
.

Using the notation of the preceding theorem,

U ( f ,P)−L( f ,P) = Z ( f ,P)

=
n∑

k=1

ω( f ,
[

xk−1 ; xk

]
)(xk − xk−1)

≤
n∑

k=1

m∑
j=1

a jω( f j ,
[

xk−1 ; xk

]
)(xk − xk−1)

=
m∑

j=1

a j

n∑
k=1

ω( f j ,
[

xk−1 ; xk

]
)(xk − xk−1)

=
m∑

j=1

a j

(
U ( f j ,P)−L( f j ,P)

)

< ε,

and the theorem follows from Theorem 437. ❑

441 THEOREM (Algebra of Riemann Integrable Functions) Let f and g be Riemann integrable functions on
[

a ;b
]

and let

λ ∈R be a constant. Then the following are also Riemann integrable

1. f +λg

2.
∣∣f

∣∣

3. f g

4. provided inf
x∈[a;b]

∣∣g (x)
∣∣> 0, also

1

g

5. provided inf
x∈[a;b]

∣∣g (x)
∣∣> 0, also

f

g

Proof: Since

∣∣ f (x)+λg (x)− f (t)−λg (t)
∣∣≤

∣∣ f (x)− f (t)
∣∣+|λ|

∣∣g (x)− g (t)
∣∣ , and

∣∣∣∣f (x)−
∣∣ f (t)

∣∣∣∣∣∣≤
∣∣f (x)− f (t)

∣∣ ,

we have

ω( f +λg , I ) ≤ω( f , I )+|λ|ω(g , I ) and ω(
∣∣ f

∣∣ , I ) ≤ω( f , I ),

from where the first two assertions follow, upon appealing to Theorem 440.

To prove the third assertion, put a1 = sup
u∈[a;b]

∣∣f (u)
∣∣ and a2 = sup

u∈[a;b]

∣∣g (u)
∣∣

∣∣f (x)g (x)− f (t)g (t)
∣∣ =

∣∣ f (x)(g (x)− g (t))+ g (t)( f (x)− f (t))
∣∣

≤
∣∣ f (x)

∣∣ ∣∣g (x)− g (t)
∣∣+

∣∣g (t)
∣∣∣∣f (x)− f (t)

∣∣

≤
(

sup
u∈[a;b]

∣∣f (u)
∣∣
)
∣∣g (x)− g (t)

∣∣+
(

sup
u∈[a;b]

∣∣g (u)
∣∣
)
∣∣ f (x)− f (t)

∣∣

= a1

∣∣g (x)− g (t)
∣∣+a2

∣∣f (x)− f (t)
∣∣ ,
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which gives

ω( f g , I ) ≤ a1ω( f , I )+a2ω(g , I ),

and so the third assertion follows from Theorem 440.

To prove the fourth assertion, with a = inf
x∈[a;b]

∣∣g (x)
∣∣> 0, observe that we have

∣∣∣∣
1

g (x)
−

1

g (t)

∣∣∣∣ =
1∣∣g (x)g (t)

∣∣
∣∣g (x)− g (t)

∣∣

≤
1

a2

∣∣g (x)− g (t)
∣∣ ,

and this gives ω(
1

g
, I ) ≤ 1

a2
ω(g , I ). The fourth assertion now follows by again appealing to Theorem 440.

The fifth assertion follows from the third and the fourth.❑

442 THEOREM Let f and g be Riemann integrable functions on
[

a ;b
]

and let λ ∈R be a constant. Then

∫b

a
( f (x)+λg (x))dx =

∫b

a
f (x)dx +λ

∫b

a
g (x)dx.

Proof: Let P = {a = x0 < x1 < ·· · < xn = b} be a partition of
[

a ;b
]

and choose tk such that tk ∈
[

xk−1 ; xk

]
.

Then for any ε> 0 there exist δ> 0 and δ′ > 0 such that
∣∣∣∣∣

n∑
k=1

f (tk )(xk − xk−1)−
∫b

a
f (x)dx

∣∣∣∣∣<
ε

2
if

∣∣∣
∣∣∣P

∣∣∣
∣∣∣<δ,

∣∣∣∣∣λ
n∑

k=1

g (tk )(xk − xk−1)−λ

∫b

a
g (x)dx

∣∣∣∣∣<
ε

2
if

∣∣∣
∣∣∣P

∣∣∣
∣∣∣<δ′.

Hence, if
∣∣∣
∣∣∣P

∣∣∣
∣∣∣< min(δ,δ′),

∣∣∣∣∣
n∑

k=1

(
f (tk )+λg (tk )

)
(xk − xk−1)−

∫b

a
f (x)dx −λ

∫b

a
g (x)dx

∣∣∣∣∣

≤
∣∣∣∣∣

n∑
k=1

f (tk )(xk − xk−1)−
∫b

a
f (x)dx

∣∣∣∣∣+
∣∣∣∣∣λ

n∑
k=1

g (tk )(xk − xk−1)−λ

∫b

a
g (x)dx

∣∣∣∣∣

< ε

proving the theorem.❑

443 THEOREM Let f and g be Riemann integrable functions on
[

a ;b
]

with f (x) ≤ g (x) for all x ∈
[

a ;b
]

. Then

∫b

a
f (x)dx ≤

∫b

a
g (x)dx.

Proof: The function h = g − f is positive for all x ∈ [a;b] and hence L(h,P) ≥ 0 for all partitions P . It is also

integrable by Theorem 442. Thus ∫b

a
h(x)dx =

∫b

a

h(x)dx ≥ 0.

But ∫b

a
h(x)dx ≥ 0 =⇒ 0≤

∫b

a
(g (x)− f (x))dx =

∫b

a
g (x)dx −

∫b

a
f (x)dx,

and so

∫b

a
f (x)dx ≤

∫b

a
g (x)dx, as claimed. ❑
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444 THEOREM (Triangle Inequality for Integrals) Let f be a Riemann integrable function on
[

a ;b
]

. Then

∣∣∣∣
∫b

a
f (x)dx

∣∣∣∣≤
∫b

a

∣∣ f (x)
∣∣dx.

Proof: By Theorem 441,
∣∣f

∣∣ is integrable. Now, since −
∣∣ f

∣∣≤ f ≤
∣∣ f

∣∣ we just need to apply Theorem 443 twice. ❑

445 THEOREM (Chasles’ Rule) Let f be a Riemann integrable function on
[

a ;b
]

and let c ∈
]

a ;b
[

. Then f is Riemann

integrable function on
[

a ;c
]

and
[

c ;b
]

. Moreover,

∫b

a
f (x)dx =

∫c

a
f (x)dx +

∫b

c
f (x)dx.

Conversely, if c ∈
]

a ;b
[

and f is Riemann integrable on
[

a ;c
]

and
[

c ;b
]

then f is Riemann integrable on
[

a ;b
]

and

∫b

a
f (x)dx =

∫c

a
f (x)dx +

∫b

c
f (x)dx.

Proof: Consider the partitions

P = {a = x0 < x1 < ·· · < xm = c < xm+1 < ·· · < xn = b}, P
′ = {a = x0 < x1 < ·· · < xm = c}, P

′′ = {c = xm < xm+1 < ·· · < xn = b}.

where by virtue of Theorem 437, given ε> 0, we choose P so that

U ( f ,P)−L( f ,P) < ε.

It follows that (
U ( f ,P ′)−L( f ,P ′)

)
+

(
U ( f ,P ′′)−L( f ,P ′′)

)
=U ( f ,P)−L( f ,P) < ε.

Hence f is Riemann-integrable over both [a;c] and [c ;b]. Observe that

0 ≤U ( f ,P ′)−
∫c

a
f (x)dx < ε, 0 ≤U ( f ,P ′′)−

∫b

c
f (x)dx < ε,

0 ≤
∫c

a
f (x)dx −L( f ,P ′) < ε, 0 ≤

∫b

c
f (x)dx −L( f ,P ′′) < ε,

and upon addition,

0 ≤U ( f ,P)−
(∫c

a
f (x)dx +

∫b

c
f (x)dx

)
< 2ε,

0≤
(∫c

a
f (x)dx +

∫b

c
f (x)dx

)
−L( f ,P) < 2ε,

whence ∫b

a
f (x)dx =

∫c

a
f (x)dx +

∫b

c
f (x)dx,

as required. ❑

446 THEOREM (Converse of Chasles’ Rule) Let f be a function defined on the interval [a;b] and let c ∈]a;b[. If f is Riemann-

integrable on [a;c] and [c ;b] then it is also Riemann integrable in [a;b] and

∫b

a
f (x)dx =

∫c

a
f (x)dx +

∫b

c
f (x)dx.
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Proof: Since f is Riemann-integrable on both subintervals, it is bounded there, and so it is bounded on the

larger subinterval. By Theorem 437, given ε> 0 there exist partitions P
′ and P

′′ such that

U[a;c]( f ,P ′)−L[a;c]( f ,P ′) < ε, U[c ;b]( f ,P ′′)−L[c ;b]( f ,P ′′) < ε.

The above inequalities also hold in the refinement P =P
′∪P

′′, and

U ( f ,P) =U[a;c]( f ,P)+U[c ;b]( f ,P), L( f ,P) = L[a;c]( f ,P)+L[c ;b]( f ,P).

We then deduce that

U ( f ,P)−L( f ,P) =
(
U[a;c]( f ,P)+U[c ;b]( f ,P)

)
−

(
L[a;c]( f ,P)+L[c ;b]( f ,P)

)

=
(
U[a;c]( f ,P)−L[a;c]( f ,P)

)
−

(
U[a;c]( f ,P)−L[c ;b]( f ,P)

)

< 2ε,

and so f is Riemann integrable in [a;b] by virtue of Theorem 437. Now

∫b

a
f (x)dx ≤ U ( f ,P)

< L( f ,P)+ε

= L[a;c]( f ,P)+L[c ;b]( f ,P)+ε

≤
∫c

a
f (x)dx +

∫b

c
f (x)dx +ε,

and similarly
∫b

a
f (x)dx ≥ L( f ,P)

> U ( f ,P)−ε

= U[a;c]( f ,P)+U[c ;b]( f ,P)−ε

≥
∫c

a
f (x)dx +

∫b

c
f (x)dx −ε,

hence ∫c

a
f (x)dx +

∫b

c
f (x)dx −ε≤

∫b

a
f (x)dx ≤

∫c

a
f (x)dx +

∫b

c
f (x)dx +ε

giving the desired equality between integrals.❑

447 THEOREM Let f be Riemann integrable over [a;b] and let g :
[

inf
u∈[a;b]

f (u) ; sup
u∈[a;b]

f (u)
]
→R be continuous. Then g ◦ f

is Riemann integrable on [a;b].

Proof: Since g is uniformly continuous on the compact interval
[

inf
u∈[a;b]

f (u) ; sup
u∈[a;b]

f (u)
]

, for given ε > 0 we

may find δ′ such that

(s, t) ∈
[

inf
t∈[a;b]

f (t) ; sup
u∈[a;b]

f (u)
]2

; |s − t | <δ′ =⇒
∣∣f (s)− f (t)

∣∣< ε.

Let δ = min(δ′,ε). Since f is Riemann-integrable, we may choose a partition P = {a = x0 < x1 < ·· · < xn = b}

such that

U ( f ,P)−L( f ,P) <δ2, (7.1)
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by virtue of Theorem 437. Let

mk = inf
xk−1≤x≤xk

f (x); Mk = sup
xk−1≤x≤xk

f (x);

m∗
k = inf

xk−1≤x≤xk

(g ◦ f )(x); M∗
k = sup

xk−1≤x≤xk

(g ◦ f )(x).

We split the set of indices {1,2,. . . ,n} into two classes:

A = {k : 1 ≤ k ≤ n, Mk −mk <δ}; B = {k : 1 ≤ k ≤ n, Mk −mk ≥δ}.

If k ∈ A and xk−1 ≤ x ≤ y ≤ xk , then

∣∣f (x)− f (y)
∣∣≤ Mk −mk <δ≤ δ′ =⇒

∣∣(g ◦ f )(x)− ( f ◦g )(y)
∣∣< ε,

whence M∗
k −m∗

k ≤ ε. Therefore

∑
k∈A

(
M∗

k −m∗
k

)
(xk − xk−1) ≤ ε

n∑
k=1

(xk − xk−1) = ε(b −a).

If k ∈ B then Mk −mk ≥δ and by virtue of (7.1),

δ
∑

k∈B

(xk − xk−1) ≤
∑

k∈B

(Mk −mk )(xk − xk−1) ≤
∑

1≤k≤n

(Mk −mk )(xk − xk−1) =U ( f ,P)−L( f ,P) <δ2,

whence ∑
k∈B

(xk − xk−1) <δ≤ ε.

Upon assembling all these inequalities, and letting M = sup

t∈
[

infu∈[a;b] f (u) ;supu∈[a;b] f (u)

]
∣∣g (t)

∣∣, we obtain

U (g ◦ f ,P)−L(g ◦ f ,P) =
∑

k∈A

(
M∗

k −m∗
k

)
(xk − xk−1)+

∑
k∈B

(
M∗

k −m∗
k

)
(xk − xk−1)

≤ ε(b −a)+2M
∑

k∈B

(xk − xk−1)

≤ ε(b −a)+2Mε

= ε(b −a +2M),

whence the result follows from Theorem 437. ❑

448 Definition If b < a we define

∫b

a
f (x)dx =−

∫a

b
f (x)dx. Also,

∫a

a
f (x)dx = 0.

449 THEOREM A function f on
[

a ;b
]

is Riemann integrable on
[

a ;b
]

if and only if its set of discontinuities forms a set of

Lebesgue measure 0.

Proof:

=⇒ Given γ > 0 and δ > 0, put ε = γδ. Let f be Riemann integrable. There is a partition P = {a = x0 < x1 <
·· · < xn = b} such that

U ( f ,P)−L( f ,P) < ε.

Let x ∈
]

xi ; xi+1

[
be such that ω( f , x) ≥γ. Then

sup]
xi ;xi+1

[ f (x)− inf]
xi ;xi+1

[ f (x) ≥γ.
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Now observe that

{x ∈ [a;b] : ω( f , x) ≥δ} =
(

⋃
sup f −inf f ≥γ

]
xi ; xi+1

[)
∪ {x0, x1, . . . , xn }.

Hence

µ
(
{x ∈ [a;b] : ω( f , x) ≥γ}

)
≤

∑
sup]xi ;xi+1[ f (x)−inf]xi ;xi+1[ f (x)≥γ

|xi+1 − xi |

≤ 1

γ

∑
i

|xi+1 − xi |


 sup]

xi ;xi+1

[ f (x)− inf]
xi ;xi+1

[ f (x)




≤
1

γ

(
U ( f ,P)−L( f ,P)

)

< ε

γ

= δ.

Lettingδ→ 0+ andγ→ 0+we getµ
(
{x ∈ [a;b] : ω( f , x) ≥ 0}

)
= 0, and in particular,µ

(
{x ∈ [a;b] : ω( f , x) > 0}

)
=

0 which means hat the set of discontinuities is a set of measure 0.

⇐ Conversely, assume µ
(
{x ∈ [a;b] : ω( f , x) > 0}

)
= 0. We can write

{x ∈ [a;b] : ω( f , x) > 0} =
⋃

K≥1

{x ∈ [a;b] : ω( f , x) > 1

K
}.

Fix K large enough so that
1

K
< ε. Since µ

(
{x ∈ [a;b] : ω( f , x) ≥ 1

K
}

)
= 0, we can find open intervals I j (K )

such that

{x ∈ [a;b] : ω( f , x) ≥ 1

K
}j

⋃
j≥1

I j (K ),
∑
j≥1

µ
(
I j (K )

)
< ε.

It is easy to shew that

{
x ∈ [a;b] : ω( f , x) > 1

K

}
is closed and bounded and hence compact, so we may find

a finite subcover with

{x ∈ [a;b] : ω( f , x) > 1

K
}j I j1 ∪ I j2 ∪·· ·∪ I jN .

Now [
a ;b

]
\
(
I j1 ∪ I j2 ∪·· ·∪ I jN

)

is a finite disjoint union of closed intervals, say J1∪ J2∪·· ·∪ JM . If x ∈ Ji then ω( f , x) < 1

K
. Thus on each of

the Ji we may find so fine a partition that ω( f ,L) < 1

K
for every interval such partition. All these partitions

and the endpoints of the I jk
form a partition, say P . Write S = S1 ∪S2 ∪ ·· · ∪SM for the intervals of the

partition P that are not the I jk
. Observe that ω( f ,Sk ) < 1

K
. Then

U ( f ,P)−L( f ,P) =
∑
I jk

(
sup
I jk

f − inf
I jk

f

)
(
µ

(
I jk

))
+

∑
Sk

(
sup

Sk

f − inf
Sk

f

)
(
µ(Sk )

)

≤ 2 sup
[a;b]

∣∣ f
∣∣

N∑
k=1

µ
(
I jk

)
+ 1

K

∑
Sk

µ(Sk )

≤ 2 sup
[a;b]

∣∣ f
∣∣ε+ (b −a)ε

=
(

2 sup
[a;b]

∣∣f
∣∣+ (b −a)

)
ε.

This proves the theorem.
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❑

450 COROLLARY Every continuous function f on [a;b] is Riemann integrable on
[

a ;b
]

.

Proof: This is immediate from Theorem 449. ❑

451 COROLLARY Every monotonic function f on
[

a ;b
]

is Riemann integrable on
[

a ;b
]

.

Proof: Since a countable set has measure 0, and since the set of discontinuities of a monotonic function is

countable (Theorem 335), the result is immediate.❑

0

1

2

−1

−2

1 2 3 4 5 6 7 8 9

f (x) = 2 ·
p

x ·cos(log x) ·sin x

Homework

Problem 7.1.1 Let f be a bounded function on
[

a ;b
]

. Then f is

Riemann integrable if and only if ∀ε > 0, ∃δ > 0 such that for all

partitions P of
[

a ;b
]

,

∣∣∣
∣∣∣P

∣∣∣
∣∣∣< δ =⇒ U (f ,P)−L(f ,P) < ε.

Problem 7.1.2 Let f be a bounded function on
[

a ;b
]

. Then f is

Riemann integrable on
[

a ;b
]

if and only if

lim∣∣∣
∣∣∣P

∣∣∣
∣∣∣→0

S(f ,P)

exists and is finite. In this case we write lim∣∣∣
∣∣∣P

∣∣∣
∣∣∣→0

S(f ,P) =

∫b

a
f (x)dx .

Problem 7.1.3 Let f be bounded on
[

a ;b
]

. Then f is Riemann

integrable on
[

a ;b
]

if and only if for every ε > 0,ε′ > 0 there is a

partition P of
[

a ;b
]

such that

n∑

k=1

(xk −xk−1)χ{x∈[a;b]:ω(f ,[xk−1 ;xk ])≥ε′} < ε.

Here χ(.) is the indicator function defined on a set E as

χE (x) =





1 if x ∈E

0 if x 6∈E

.

7.2 Integration

452 THEOREM (First Fundamental Theorem of Calculus) Let f :
[

a ;b
]
→R be Riemann integrable on

[
a ;b

]
. If there exists

a differentiable function F :
[

a ;b
]
→R such that F ′ = f then

∫b

a
f (x)dx = F (b)−F (a).
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Proof: Given ε> 0, in view of Theorem 437, there is a partition P = {a = x0 < x1 < ·· · < xn = b} such that

U ( f ,P)−L( f ,P) < ε.

Since F is differentiable on [a;b], it is continuous on [a;b]. Applying the Mean Value Theorem to each partition

subinterval [xk−1; xk ], we obtain ck ∈]xk−1; xk [ such that

F (xk )−F (xk−1) = f (ck )(xk − xk−1).

This gives

F (b)−F (a) =
∑

1≤k≤n

(F (xk )−F (xk−1)) =
∑

1≤k≤n

f (ck ) (xk − xk−1) ,

and since inf
u∈[xk−1 ;xk ]

f (u) ≤ f (ck ) ≤ sup
u∈[xk−1;xk ]

f (u), we deduce that

L( f ,P) ≤ F (b)−F (a) ≤U ( f ,P).

Furthermore, we know that L( f ,P) ≤
∫b

a
f (x)dx ≤U ( f ,P). Hence, combining these two last inequalities,

∣∣∣∣F (b)−F (a)−
∫b

a
f (x)dx

∣∣∣∣< ε,

and the theorem follows.❑

453 THEOREM (Second Fundamental Theorem of Calculus) Let f :
[

a ;b
]
→R be Riemann integrable on

[
a ;b

]
, and let

F (x) =
∫x

a
f (t)dt , x ∈

[
a ;b

]
.

Then F is continuous on
[

a ;b
]

. Moreover, if f is continuous at c ∈
]

a ;b
[

, then F is differentiable at c and F ′(c) = f (c).

Proof: There is M > 0 such that ∀x ∈ [a;b],
∣∣f (x)

∣∣≤ M . Now, if a ≤ x < y ≤ b with
∣∣x − y

∣∣< ε

M
, then

∣∣F (y)−F (x)
∣∣ =

∣∣∣∣
∫y

x
f (t)dt

∣∣∣∣≤
∫y

x

∣∣ f (t)
∣∣dt ≤

∫y

x
Mdt = M(y − x) < ε

Thus F is continuous on [a;b] and by Heine’s Theorem, uniformly continuous on [a;b]. Now, take u ∈]a;b[, and

observe that

x 6= u =⇒
F (x)−F (u)

x −u
=

1

x −u

∫x

u
f (t)dt .

Moreover,

f (u) = 1

x −u

∫x

u
f (u)dt ,

and therefore,
F (x)−F (u)

x −u
− f (u) =

1

x −u

∫x

u

(
f (t)− f (u)

)
dt .

Since f is continuous at u, there is δ> 0 such that

t ∈ [a;b], |t −u| < δ =⇒
∣∣f (t)− f (u)

∣∣< ε.

This gives ∣∣∣∣
F (x)−F (u)

x −u
− f (u)

∣∣∣∣< ε

for x ∈]a;b[ with |x −u| <δ. From this it follows that F ′(u) = f (u).❑
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454 THEOREM (Young’s Inequality for Integrals) Let f be a strictly increasing continuous function on
[

0 ;+∞
[

and let f (0) =
0. If A > 0 and B > 0 then

AB ≤
∫A

0
f (x)dx +

∫B

0
f −1(x)dx.

Proof: The inequality is evident from Figure 7.1. The rectangle of area AB fits nicely in the areas under the

curves y = f (x), x ∈ [0; A] and x = f −1(y), y ∈ [0;B ]. ❑

455 THEOREM (Hölder’s Inequality for Integrals) Let p > 1 and put
1

q
= 1− 1

p
. If f and g are Riemann integrable on

[
a ;b

]

then ∣∣∣∣
∫b

a
f (x)g (x)dx

∣∣∣∣≤
(∫b

a

∣∣f (x)
∣∣p

dx

)1/p (∫b

a

∣∣g (x)
∣∣q

dx

)1/q

.

Proof: First observe that all of
∣∣f g

∣∣ ,
∣∣ f

∣∣p
and

∣∣g
∣∣q

are Riemann-integrable, in view of Theorem 441. Now, with

f (x) = xp−1 in Young’s Inequality (Theorem 454), we obtain,

AB ≤
Ap

p
+

B 1/(p−1)+1

1/(p −1)+1
=

Ap

p
+

B q

q
. (7.2)

If any of the integrals in the statement of the theorem is zero, the result is obvious. Otherwise put Ap =
∫b

a

∣∣f (x)
∣∣p

dx,

B q =
∫b

a

∣∣g (x)
∣∣p

dx. Then by (7.2),

∣∣f (x)g (x)
∣∣

AB
≤

A−p
∣∣f (x)

∣∣p

p
+

B−q
∣∣g (x)

∣∣q

q
.

Integrating throughout the above inequality,

1

AB

∫b

a

∣∣ f (x)g (x)
∣∣dx ≤ 1

p Ap

∫b

a

∣∣ f (x)
∣∣p

dx + 1

qB q

∫b

a

∣∣g (x)
∣∣q

dx = 1

p
+ 1

q
= 1,

whence the theorem follows. ❑

A

B

Figure 7.1: Young’s Inequality (Theorem 454).

456 THEOREM Let f :
[

a ;b
]
→R. Then

1. If f is continuous on
[

a ;b
]

, ∀x ∈
[

a ;b
]

, f (x) ≥ 0, ∃c ∈
[

a ;b
]

with f (c) > 0 then

∫b

a
f (x)dx > 0.

2. If f , g are continuous on
[

a ;b
]

, ∀x ∈
[

a ;b
]

, f (x) ≤ g (x), and ∃c ∈
[

a ;b
]

with f (c) < g (c) then

∫b

a
f (x)dx <

∫b

a
g (x)dx.
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Proof: The second part follows from the first by considering f − g . Let us prove the first part.

Assume first that c ∈]a;b[. Then there is a neighourhood ]c −δ;c +δ[j]a;b[ of c , with δ > 0, such that ∀x ∈

]c −δ;c +δ[, f (x) ≥ f (c)

2
. Therefore

∫b

a
f (x)dx ≥

∫c+δ

c−δ
f (x)dx >

∫c+δ

c−δ

f (c)

2
dx = δ f (c) > 0.

If c = a then we consider a neighbourhood of the form ]a; a +δ[, and similarly if c = b, we consider a neighbour-

hood of the form ]b −δ;b[ ❑

457 THEOREM (First Mean Value Theorem for Integrals) Let f , g be continuous on
[

a ;b
]

, with g of constant sign on
[

a ;b
]

.

Then there exists c ∈
]

a ;b
[

such that
∫b

a
f (x)g (x)dx = f (c)

∫b

a
g (x)dx.

Proof: If g is identically 0, there is nothing to prove. Similarly, if f is constant in [a;b] there is nothing to prove.

Otherwise, g is always strictly positive or strictly negative in the interval [a;b]. Let

m = inf
x∈[a;b]

f (x); M = sup
x∈[a;b]

f (x).

Then

m <
∫b

a f (x)g (x)dx
∫b

a g (x)dx
< M .

By the Intermediate Value Theorem, there is c ∈]a;b[ such that

f (c) =

∫b

a
f (x)g (x)dx

∫b

a
g (x)dx

,

proving the theorem.❑

458 THEOREM (Integration by Parts) Let f , g be differentiable functions on [a;b] with f ′ and g ′ integrable on [a;b]. Then

∫b

a
f ′(x)g (x)dx +

∫b

a
f (x)g ′(x)dx = f (x)g (x)

∣∣∣
b

a
= f (b)g (b)− f (a)g (a).

Proof: This follows at once from the Product Rule for Derivatives and the Second Fundamental Theorem of

Calculus, since

( f g )′ = f ′g + f g ′ =⇒ f (b)g (b)− f (a)g (a)=
∫b

a

(
f (x)g (x)

)′
dx

∫b

a
f ′(x)g (x)dx +

∫b

a
f (x)g ′(x)dx.

❑

459 COROLLARY (Repeated Integration by Parts) Let n ∈N. If the n +1-th derivatives f (n+1) and g (n+1) are continuous on

[a;b] then

∫b

a
f (x)g (n+1)(x)dx =

(
f (x)g (n)(x)− f ′(x)g (n−1)(x)+ f ′′(x)g (n−1)(x)−·· ·+ (−1)n f (n)(x)g (x)

)∣∣∣
b

a
+(−1)n+1

∫b

a
f (n+1)(x)g (x)dx.

Proof: Follows by inducting on n and applying Theorem 458. ❑
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460 THEOREM (Integration by Substitution) Let g be a differentiable function on an open interval I such that g ′ is continu-

ous on I . If f is continuous on g (I ) then f ◦g is continuous on I and ∀(a,b) ∈ I 2,

∫b

a
( f ◦g )(x)g ′(x)dx =

∫g (b)

g (a)
f (u)du.

Proof: Fix c ∈ I and put F (x) =
∫x

c
f (u)du. By The Second Fundamental Theorem of Calculus, ∀x ∈ I ,F ′(x) =

f (x). Furthermore, let t(x) = F (g (x)). By The Chain Rule, t ′ = (F ′ ◦g )g ′ = ( f ◦g )g ′. Therefore

∫b

a
( f ◦g )(x)g ′(x)dx =

∫b

a
t ′(x)dx

= t(b)− t(a)

= F (g (b))−F (g (a))

=
∫g (b)

c
f (u)du −

∫g (a)

c
f (u)du

=
∫g (b)

g (a)
f (u)du,

as was to be shewn. ❑

461 THEOREM (Second Mean Value Theorem for Integrals) Let f , g be continuous on
[

a ;b
]

, with g monotonic on
[

a ;b
]

.

Then there exists c ∈
]

a ;b
[

such that

∫b

a
f (x)g (x)dx = g (a)

∫c

a
f (x)dx + g (b)

∫b

c
f (x)dx.

Proof: Put F (x) =
∫x

a
f (t)dt . Then F ′(x) = f (x). Hence

∫b

a
f (x)g (x)dx =

∫b

a
F ′(x)g (x)dx = F (x)g (x)

∣∣∣
b

a
−

∫b

a
F (x)g ′(x)dx

and therefore ∫b

a
f (x)g (x)dx = F (b)g (b)−F (a)g (a)−

∫b

a
F (x)g ′(x)dx.

By the First Mean Value Theorem for Integrals and by the First Fundamental Theorem of Calculus, there is a

c ∈]a;b[ such that ∫b

a
F (x)g ′(x)dx = F (c)

∫b

a
g ′(x)dx = F (c)(g (b)− g (a)).

Assembling all the above,

∫b

a
f (x)g (x)dx = F (b)g (b)−F (a)g (a)−F (c)(g (b)− g (a))

= g (b)(F (b)−F (c))+ g (a)(F (c)−F (a))

= g (b)

∫b

c
f (x)dx + g (a)

∫c

a
f (x)dx,

as desired.❑

462 THEOREM (Generalisation of the AM-GM Inequality) Let ai ≥ 0, pi ≥ 0 with p1 +p2 +·· ·+pn = 1. Then

G = a
p1

1 a
p2

2 · · ·a
pn
n ≤ p1a1 +p2a2 +·· ·+pn an = A.

(Here we interpret 00 = 1.)
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Proof: There is a subindex k such that ak ≤G ≤ ak+1. Hence

k∑
i=1

pi

∫G

ai

(
1

x
−

1

G

)
dx +

n∑
i=k+1

pi

∫ai

G

(
1

G
−

1

x

)
dx ≥ 0,

as all the integrands are ≥ 0. Upon rearranging

n∑
i=1

pi

∫G

ai

1

x
dx ≤

n∑
i=1

pi

∫ai

G

1

G
dx =⇒

n∑
i=1

pi (log ai − logG) ≤
n∑

i=1

pi ·
ai −G

G
=⇒ 0 ≤ A

G
−1,

obtaining the inequality ❑

Homework

Problem 7.2.1 Let p be a polynomial of degree at most 4 such that

p(−1) = p(1) = 0 and p(0) = 1. If p(x) ≤ 1 for x ∈ [−1;1], find the

largest value of

∫1

−1
p(x)dx .

Problem 7.2.2 Compute

∫3

0
xTxUdx .

Problem 7.2.3 Let f be a differentiable function such that

f (x +h)− f (x) = ex+h −h −ex

and f (0) = 3. Find f (x).

Problem 7.2.4 Let f be a continuous function such that f (x)f (a −
x) = 1 and let a > 0. Find

∫a

0

1

f (x)+1
dx .

Problem 7.2.5 Let f be a Riemann integrable function over ev-

ery bounded interval and such that f (a +b) = f (a)+ f (b) for all

(a,b) ∈R2. Demonstrate that f (x) = x f (1).

Problem 7.2.6 Compute

∫2

0
xTx2Udx .

Problem 7.2.7 Find

∫2

−1
|x2 −1| dx .

Problem 7.2.8 Let n be a fixed integer. Let f : R→R be given by

f (x) =





x if x ≤ 0

2n if 2n −2n−2 < x ≤ 2n+1 −2n−1

Prove that

∫2n

0
f (x)dx =

∫2n

0
xdx = 22n−1.

Problem 7.2.9 (Putnam 1938) Evaluate the limit

lim
t→0

∫t

0
(1+sin 2x)1/x dx

t
.

Problem 7.2.10 Find the value of

∫1

0
max(x2,1−x)dx .

Problem 7.2.11 Let a > 0. Let f be a continuous function on
[

0 ; a
]

such that f (x) + f (a − x) does not vanish on
[

0 ; a
]

. Evaluate
∫a

0

f (x)dx

f (x)+ f (a −x)
.

Problem 7.2.12 Let a > 0. Let F be a differentiable function such

that ∀x ∈
[

0 ; a
]

F ′(a −x) = F ′(x). Evaluate

∫a

0
F (x)dx .

Problem 7.2.13 Let n ≥ 0 be an integer. Let a be the unique differ-

entiable function such that ∀x ∈R

(a(x))2n+1 +a(x) = x.

Evaluate

∫x

0
a(t )dt .

Problem 7.2.14 Find

∫π/2

0

sinxdx

sin x +cos x
.

Problem 7.2.15 Find

∫π/2

0

1dx

1+ (tan x)
p

2
.

Problem 7.2.16 Find

∫
1

x
√

x2 −1
dx .

Problem 7.2.17 Find

∫
1

1+
p

x +1
dx .

Problem 7.2.18 Find

∫
x1/2

x1/2 −x1/3
dx .

Problem 7.2.19 Find

∫
a2x

p
ax +1

dx , a > 0.

Problem 7.2.20 Find

∫
1

(ex −e−x )2
dx .
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Problem 7.2.21 Prove that

∫5

1

⌊x⌋
x

dx = 4log(5)−3log(2)− log(3).

Problem 7.2.22 Find

∫
eex+x dx .

Problem 7.2.23 Find

∫
tan x log(cos x) dx .

Problem 7.2.24 Find

∫
log log x

x log x
dx .

Problem 7.2.25 Find

∫
x18 −1

x3 −1
dx .

Problem 7.2.26 Find

∫
1

x8 +x
dx .

Problem 7.2.27 Find

∫
4x

2x +1
dx .

Problem 7.2.28 Find

∫
x2

(x +1)10
dx .

Problem 7.2.29 Find

∫
1

1+ex
dx .

Problem 7.2.30 Find

∫
1

1−sin x
dx .

Problem 7.2.31 Find

∫p
1+sin 2x dx .

Problem 7.2.32 Find

∫
x√

1−x4
dx .

Problem 7.2.33 Find

∫
sec4 xdx .

Problem 7.2.34 Find

∫
sec5 xdx .

Problem 7.2.35 Find

∫
ex1/3

dx .

Problem 7.2.36 Find

∫
log(x2 +1)dx .

Problem 7.2.37 Find

∫
xex cos xdx .

Problem 7.2.38 Find

∫
x2/3 log xdx .

Problem 7.2.39 Find

∫
sin(log x)dx .

Problem 7.2.40 Find

∫
log log x

x
dx .

Problem 7.2.41 (

∫
sec xdx in three ways) A traditional indefinite

integral is ∫
secxdx = log(tan x +sec x)+C .

Justify this formula.

Now, prove that
1

cos x
=

cos x

2(1+sin x)
+

cos x

2(1−sin x)
. Use this to

find a second formula for

∫
sec xdx .

A third way is as follows. Using sin2θ = 2sinθ cosθ shew that∫
csc xdx = log |tan

x

2
|+C . Now use csc(

π

2
+x) = sec x to find yet

another formula for

∫
secxdx .

Problem 7.2.42 Find

∫
(arcsin x)2dx .

Problem 7.2.43 Find

∫
dx

p
x +1+

p
x −1

.

Problem 7.2.44

∫
x arctan xdx .

Problem 7.2.45 Find

∫p
tan xdx .

Problem 7.2.46 Find

∫
2x +1

x2(x −1)
dx .

Problem 7.2.47 Find

∫
log(x +

p
x)dx .

Problem 7.2.48 Find

∫
1

x4 +1
dx .

Problem 7.2.49 Find

∫
1

x3 +1
dx .

Problem 7.2.50 Demonstrate that for all strictly positive integers n,
(

1+
1

n

)n (
1+

1

4n

)
< e <

(
1+

1

n

)n (
1+

1

2n

)
,

that is, e is contained in the second quarter of the interval
[(

1+ 1

n

)n

;

(
1+ 1

n

)n+1 ]
.
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7.3 Riemann-Stieltjes Integration

7.4 Euler’s Summation Formula
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Sequences and Series of Functions

8.1 Pointwise Convergence

463 Definition We say that a sequence of functions
{

fn

}+∞
n=1 fn : I → R defined on an interval I j R converges pointwise to

the function f if ∀x ∈ I , ∀ε> 0 ∃N > 0 (depending on ε and on x) such that

n ≥ N =⇒
∣∣fn (x)− f (x)

∣∣< ε.

464 Example The sequence of functions x 7→ xn ,n = 1,2,. . . converges pointwise on the interval
[

0 ;1
]

to the function

f :
[

0 ;1
]
→ {0,1} with

f (x) =





0 if x ∈
[

0 ;1
[

1 if x = 1

8.2 Uniform Convergence

465 Definition We say that a sequence of functions
{

fn

}+∞
n=1 fn : I → R defined on an interval I j R converges uniformly to

the function f if ∀x ∈ I , ∀ε> 0 ∃N > 0 (depending only on ε) such that

n ≥ N =⇒
∣∣fn (x)− f (x)

∣∣< ε.

In this case we write fn
unif−→ f .

466 THEOREM Let
{

fn

}+∞
n=1 be a sequence of functions defined over a common domain I . If there exists a numerical se-

quence {an}+∞n=1 with an → 0 as n →+∞, and a function f defined over I such that eventually
∣∣ fn (x)− f (x)

∣∣≤ an ,

then fn
unif−→ f .

467 THEOREM If the sequence of continuous functions
{

fn

}+∞
n=1 fn : I → R defined on an open interval I j R converges

uniformly to f on I , then f is continuous on I . Moreover, if x0 ∈ I then we may exchange the limits, as in

lim
n→+∞

(
lim

x→x0
fn (x)

)
= lim

x→x0

(
lim

n→+∞
fn (x)

)
= lim

x→x0
f (x).

468 THEOREM If the sequence of integrable functions
{

fn

}+∞
n=1 fn : I → R defined on an open interval I j R converges

uniformly to f on I , then f is integrable on I . Moreover, if (a,b) ∈ I 2 then we may exchange the limit with the integral, as

in

lim
n→+∞

(∫b

a
fn (x)dx

)
=

∫b

a

(
lim

n→+∞
fn (x)

)
dx =

∫b

a
f (x)dx.
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8.3 Integrals and Derivatives of Sequences of Functions

8.4 Power Series

A power series about x = a is a series of the form

f (x) =
+∞∑
n=0

an (x −a)n .

This is a function of x, and truncating it gives polynomial approximations to f . The goal is to approximate “decent” func-

tions about a given point x = a.

These expansions don’t necessarily make sense for all x. The region where the power series converges is called the

interval of convergence.

469 Example Find the interval of convergence of the series
∞∑

n=1

2n (x −3)n

p
n

.

Solution: By the ratio test, the series will converge if

∣∣∣2n+1(x −3)n+1

p
n +1

·
p

n

2n (x −3)n

∣∣∣= 2

√
n

n +1
|x −3|→ r < 1,

that is when

2|x −3| < 1 =⇒
5

2
< x <

7

2
.

The series converges absolutely when
5

2
< x < 7

2
. We must also test the endpoints. At x = 5

2
the series is

∞∑
n=1

(−1)n

p
n

,

which converges conditionally by Leibniz’s Test. At x = 5

2
the series is

∞∑
n=1

1
p

n
, which diverges.

8.5 Maclaurin Expansions to know by inspection

•

ex = 1+ x + x2

2!
+ x3

3!
+·· ·

• The sine is an odd function:

sin x = x − x3

3!
+ x5

5!
− x7

7!
+·· ·

• The cosine is an even function:

cos x = 1− x2

2!
+ x4

4!
− x6

6!
+·· ·

• If a is a real constant,

(1+ x)a = 1+ax + a(a −1)

2!
x2 + a(a −1)(a −2)

3!
x3 + a(a −1)(a −2)(a −3)

4!
x4 +·· ·

470 Example Expand f (x) = cos x around x = 1.

Solution: We have

cos x = cos(x −1+1)

= cos(x −1) cos1−sin(x −1) sin 1

= (cos1)

(
1− (x −1)2

2!
+ (x −1)4

4!
−·· ·

)
− (sin 1)

(
(x −1)− (x −1)3

3!
+ (x −1)5

5!
−·· ·

)
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Homework

Problem 8.5.1 Given a finite collection of closed squares of total

area 3, prove that they can be arranged to cover the unit square.

Problem 8.5.2 Given a finite collection of closed squares of total

area
1

2
, prove that they can be arranged to cover the unit square,

with no overlaps

8.6 Comparison Tests

Homework

Problem 8.6.1 Let {an }∞n=1 be a sequence of real numbers satisfying

0 < an < 1 for all n. Assume that
∞∑

n=1

an diverges but
∞∑

n=1

a2
n con-

verges. Let f be a function defined on
[

0 ;1
]

whose second derivative

exists and is bounded on
[

0 ;1
]

. Prove that if
∞∑

n=1

f (an ) converges,

so does
∞∑

n=1

∣∣f (an )
∣∣.

8.7 Taylor Polynomials

Homework

Problem 8.7.1 Evaluate

∫1

0
(log x)(log(1−x))dx .

Problem 8.7.2 Evaluate the infinite series
∞∑

n=1

arctan
2

n2
.

Problem 8.7.3 Find the sum of the infinite series

1− 1

4
+ 1

6
− 1

9
+ 1

11
− 1

14
+·· · .

8.8 Abel’s Theorem

Homework

Problem 8.8.1 Put

an = 1−
1

2
+

1

3
−

1

4
+·· · +

(−1)n+1

n
− log 2.

Prove that
∞∑

n=1

an converges and find its sum.

Problem 8.8.2 Evaluate the sum

∞∑
n=1

1+
1

2
+

1

3
+·· ·+

(1

n

n(n +1)
.

Problem 8.8.3 Evaluate the sum

∞∑

n=0

(
1

4n +1
+

1

4n +3
−

1

2n +2

)
.

Problem 8.8.4 Evaluate the limit

lim
α→0

1

α
·
∫π

0
tan (αsin x) dx.
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Appendix A

Answers and Hints

1.1.1 Observe that An = {0, n, 2n, 3n, . . .}.

1. A6 .

2. N.

3. {0}.

1.1.4 We have,

x ∈ (A∪B )∩C ⇐⇒ x ∈ (A∪B ) and x ∈C

⇐⇒ (x ∈ A or x ∈B ) and x ∈C

⇐⇒ (x ∈ A and x ∈C ) or (x ∈B and x ∈C )

⇐⇒ (x ∈ A∩C ) or (x ∈ B ∩C )

⇐⇒ x ∈ (A∩C )∪ (B ∩C ),

which establishes the equality.

1.1.13 We check the two statements

x ∈ A× (B \C ) ⇐⇒ x ∈ (A×B ) \ (A×C ).

Let us prove first=⇒. By definition of ×, x = (a, b), where a ∈ A, b ∈ B , b ∉C . Thus x ∈ A×B but x ∉ A×C . By definition of \ we are done. Now we prove the assertion ⇐=. By definition of × and \, x = (a, b) where a ∈ A, b ∈ B . Since

x ∉ A×C , we observe that b ∉C . Thus a ∈ A, b ∈ B \C , and we gather that x ∈ A× (B \C ).

1.1.14 Attach a binary code to each element of the subset, 1 if the element is in the subset and 0 if the element is not in the subset. The total number of subsets is the total number of such binary codes, and there are 2N
in number.

1.2.1 There are 22 = 4 such functions, namely:

➊ f1 given by f1(a) = f1 (b) = c . Observe that Im
(

f1
)
= {c}.

➋ f2 given by f2(a) = f2 (b) = d . Observe that Im
(

f2
)
= {d }.

➌ f3 given by f3(a) = c , f3 (b) = d . Observe that Im
(

f3
)
= {c , d }.

➍ f4 given by f4(a) =d , f4(b) = c . Observe that Im
(

f4
)
= {c , d }.

1.2.2 Each of the n elements of A must be assigned an element of B , and hence there are m ·m · · ·m︸ ︷︷ ︸
n factors

= mn
possibilities, and thus mn

functions.If a function from A to B is injective then we must have n ≤ m in view of Theorem 16. If

to different inputs we must assign different outputs then to the first element of A we may assign any of the m elements of B , to the second any of the m −1 remaining ones, to the third any of the m −2 remaining ones, etc., and so we have

m(m−1) · · ·(m−n+1) injective functions.

1.2.4 Rename the independent variable, say h(1− s) = 2s. Now, if 1− s = 3x then s = 1−3x. Hence

h(3x) = h(1− s) = 2s = 2(1−3x)= 2−6x.

1.2.5 Put

p(x) = (1−x2 +x4 )2003 = a0 +a1 x +a2 x2 +·· ·+a8012 x8012.

Then

➊ a0 = p(0) = (1−02 +04)2003 = 1.

➋ a0 +a1 +a2 +·· ·+a8012 = p(1) = (1−12 +14)2003 = 1.

➌

a0 −a1 +a2 −a3 +·· ·−a8011 +a8012 = p(−1)

= (1− (−1)2 + (−1)4)2003

= 1.

➍ The required sum is
p(1)+p(−1)

2
= 1.

➎ The required sum is
p(1)−p(−1)

2
= 0.
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1.2.6 We have

[
f

(
27+ y3

y3

)]
√

27
y

=
[

f

((
3

y

)3
+1

)]3

√
3
y

=




[
f

((
3

y

)3
+1

)]
√

3
y




3

= 53

= 125.

1.2.7 We have

f (2) = (−1)21−2 f (1) = 1−2 f (1)

f (3) = (−1)32−2 f (2) = −2−2 f (2)

f (4) = (−1)43−2 f (3) = 3−2 f (3)

f (5) = (−1)54−2 f (4) = −4−2 f (4)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f (999) = (−1)999998−2 f (998) = −998−2 f (998)

f (1000) = (−1)1000999−2 f (999) = 999−2 f (999)

f (1001) = (−1)10011000−2 f (1000) = −1000−2 f (1000)

Adding columnwise,

f (2)+ f (3)+·· ·+ f (1001)= 1−2+3−·· ·+999−1000−2( f (1)+ f (2)+·+ f (1000)).

This gives

2 f (1)+3( f (2)+ f (3)+·· ·+ f (1000))+ f (1001)=−500.

Since f (1)= f (1001) we have 2 f (1)+ f (1001)= 3 f (1). Therefore

f (1)+ f (2)+·· ·+ f (1000)=− 500

3
.

1.2.8 Set a = b = 0. Then ( f (0))2 = f (0) f (0) = f (0+0) = f (0). This gives f (0)2 = f (0). Since f (0) > 0 we can divide both sides of this equality to get f (0) = 1.

Further, set b =−a. Then f (a) f (−a) = f (a −a) = f (0) = 1. Since f (a) 6= 0, may divide by f (a) to obtain f (−a) = 1

f (a)
.

Finally taking a =b we obtain ( f (a))2 = f (a) f (a) = f (a +a) = f (2a). Hence f (2a) = ( f (a))2

1.2.9 To prove that f is injective, we prove that f (a) = f (b) =⇒ a =b. We have

f (a) = f (b) =⇒
a −1

a +1
=

b −1

b +1

=⇒ (a −1)(b +1) = (a +1)(b −1)

=⇒ ab +a −b −1 = ab −a +b −1

=⇒ 2a = 2b

=⇒ a =b,

whence f is injective. To prove that f is surjective we must prove that any y ∈R\ {1} has a pre-image a ∈R\ {−1} such that f (a) = y . That is,

a −1

a +1
= y =⇒ a −1 = ya + y =⇒ a − ya = 1+ y =⇒ a(1− y) = 1+ y =⇒ a =

1+ y

1− y
.

Thus f

(
1+ y

1− y

)
= y , and f is surjective. This also serves to prove that f −1(x) = 1+x

1−x
.

1.2.10 We have f [2](x) = f (x +1) = (x +1)+1= x +2, f [3](x) = f (x +2) = (x +2)+1 = x +3 and so, recursively, f [n] (x) = x +n.

1.2.14 We have f [2](x) = f (2x) = 22 x, f [3](x) = f (22x) = 23 x and so, recursively, f [n] (x) = 2n x.

1.2.15 Let y = 0. Then 2g (x) = 2x2
, that is, g (x) = x2. Let us check that g (x) = x2

works. We have

g (x + y)+g (x − y) = (x + y)2 + (x − y)2 = x2 +2x y + y2 +x2 −2x y + y2 = 2x2 +2y2 ,

which is the functional equation given. Our choice of g works.

1.2.16 Let x = 1. Then f (y) = y f (1). Since f (1) is a constant, we may let k = f (1). So all the functions satisfying the above equation satisfy f (y) = k y.

1.2.17 From f (x)+2 f (
1

x
) = x we obtain f (

1

x
) =

x

2
−

1

2
f (x). Also, substituting 1/x for x on the original equation we get

f (1/x)+2 f (x) = 1/x.

Hence

f (x) = 1

2x
− 1

2
f (1/x) = 1

2x
− 1

2

(
x

2
− 1

2
f (x)

)
,

which yields f (x) = 2

3x
− x

3
.
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1.2.18 We have

( f (x))2 · f

(
1−x

1+x

)
= 64x,

whence

( f (x))4 ·
(

f

(
1−x

1+x

)
)

)2
= 642x2 (I )

Substitute x by
1−x

1+x
. Then

f

(
1−x

1+x

)2
f (x) = 64

(
1−x

1+x

)
. (I I )

Divide (I) by (II),

f (x)3 = 64x2
(

1+x

1−x

)
,

from where the result follows.

1.2.19 We have (i) f [2](x) = ( f ◦ f )(x) = f ( f (x)) =
1

1− 1
1−x

=
x −1

x
.

(ii) f [3](x) = ( f ◦ f ◦ f )(x) = f ( f [2](x))) = f

(
x −1

x

)
=

1

1− x−1
x

= x .

(iii) Notice that f [4](x) = ( f ◦ f [3])(x) = f ( f [3](x)) = f (x) = f [1](x). We see that f is cyclic of period 3, that is, f [1] = f [14] = f [7] = . . . , f [2] = f [5] = f [8] = . . . , f [3] = f [6] = f [9] = . . .. Hence f [69](x) = f [3](x) = x.

1.2.20 To see (i) observe that

f (a) = f (b) =⇒ g ( f (a)) = g ( f (b)) =⇒ a =b,

whence f is injective. (The first implication is clear, the second implication follows because g ◦ f is injective.)

To see (ii), given y ∈C , ∃x ∈ A such that g ( f (x)) = y , since g ◦ f is surjective. But then, letting a = f (x) ∈B we have g (a) = y and g is surjective.

1.3.1 The map f : [0; 1]→ [a; b] f (x) =
x −a

b −a
is a bijection.

1.3.2 The map f :
]
−∞ ;+∞

[
→

]
0 ;+∞

[
f (x) = ex

is a bijection.

1.4.1 Both answers are “no.” If a =−b =
p

2, which we will prove later on to be irrational, we have a +b = 0, rational, and ab =−2, also rational.

1.4.2 Letω=−
1

2
+ i

p
3

2
. Then ω2 +ω+1 = 0 and ω3 = 1. Then

x = a3 +b3 +c3 −3abc = (a +b +c)(a +ωb +ω2 c)(a +ω2b +cω),

y =u3 +v3 +w3 −3uv w = (u+v +w)(u+ωv +ω2 w)(u+ω2 v +ωw).

Then

(a +b +c)(u+v +w) = au+av +aw +bu+bv +bw +cu+c v +c w,

(a +ωb +ω2 c)(u+ωv +ω2 w) = au+bw +c v

+ω(av +bu+c w)

+ω2(aw +bv +cu),

and

(a +ω2b +ωc)(u+ω2 v +ωw) = au+bw +c v

+ω(aw +bv +cu)

+ω2(av +bu+c w).

This proves that

x y = (au+bw +c v)3 + (aw +bv +cu)3 + (av +bu+c w)3

−3(au+bw +c v)(aw +bv +cu)(av +bu+c w),

which proves that S is closed under multiplication.

1.4.3 We have

x ◦ y = (x ◦ y)◦ (x ◦ y)

= [y ◦ (x ◦ y)]◦x

= [(x ◦ y)◦x]◦ y

= [(y ◦x)◦x]◦ y

= [(x ◦x)◦ y]◦ y

= (y ◦ y)◦ (x ◦x)

= y ◦x,

proving commutativity.

1.4.4 By (1.4)

x ∗ y = ((x ∗ y)∗x)∗x.

By (1.4) again

((x ∗ y)∗x)∗x = ((x ∗ y)∗ ((x ∗ y)∗ y))∗x.

By (1.3)

((x ∗ y)∗ ((x ∗ y)∗ y))∗x = (y)∗x = y ∗x,

which is what we wanted to prove.

To shew that the operation is not necessarily associative, specialise S =Z and x ∗ y =−x − y (the opposite of x minus y). Then clearly in this case ∗ is commutative, and satisfies (1.3) and (1.4) but

0∗ (0∗1)= 0∗ (−0−1)= 0∗ (−1)=−0− (−1)= 1,

and

(0∗0)∗1 = (−0−0)∗1= (0)∗1=−0−1 =−1,

evincing that the operation is not associative.
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1.4.5 1. Clearly, if a, b are rational numbers,

|a| < 1, |b| < 1 =⇒ |ab| < 1 =⇒ −1 < ab < 1 =⇒ 1+ab > 0,

whence the denominator never vanishes and since sums, multiplications and divisions of rational numbers are rational,
a +b

1+ab
is also rational. We must prove now that −1 <

a +b

1+ab
< 1 for (a, b) ∈]−1; 1[2

. We have

−1 <
a +b

1+ab
< 1 ⇔ −1−ab < a +b < 1+ab

⇔ −1−ab −a −b < 0 < 1+ab −a −b

⇔ −(a +1)(b +1) < 0 < (a −1)(b −1).

Since (a, b) ∈]−1; 1[2
, (a +1)(b +1) > 0 and so −(a +1)(b +1) < 0 giving the sinistral inequality. Similarly a −1 < 0 and b −1 < 0 give (a −1)(b −1) > 0, the dextral inequality. Since the steps are reversible, we have

established that indeed −1 <
a +b

1+ab
< 1.

2. Since a ⊗b = a +b

1+ab
= b +a

1+ba
= b ⊗a, commutativity follows trivially. Now

a ⊗ (b ⊗c) = a

(
b +c

1+bc

)

=
a +

(
b +c

1+bc

)

1+a

(
b +c

1+bc

)

= a(1+bc)+b +c

1+bc +a(b +c)
= a +b +c +abc

1+ab +bc +c a
.

One the other hand,

(a ⊗b)⊗c =
(

a +b

1+ab

)
c

=

(
a +b

1+ab

)
+c

1+
(

a +b

1+ab

)
c

=
(a +b)+c(1+ab)

1+ab + (a +b)c

=
a +b +c +abc

1+ab +bc +c a
,

whence⊗ is associative.

3. If a ⊗e = a then
a +e

1+ae
= a, which gives a +e = a +ea2

or e(a2 −1) = 0. Since a 6= ±1, we must have e = 0.

4. If a ⊗b = 0, then
a +b

1+ab
= 0, which means that b =−a, that is, a−1 =−a.

1.4.6 We must shew that ∀(a, b) ∈G2
we have ab =ba. But

ab = e(ab)e

= (b2)(ab)(a2 )

= b((ba)(ba))a

= b(ba)2 a

= b(e)a

= ba,

whence the result follows.

1.4.7 We have

(ab)3 = a3 b3 =⇒ ab(ab)ab = a(a2b2 )b

=⇒ baba = a2b2

=⇒ (ba)2 = a2 b2.

Similarly

(ab)5 = a5 b5 =⇒ (ba)4 = a4 b4.

But we also have

(ba)4 = ((ba)2)2 = (a2b2 )2 = a2(b2 a2)b2 ,

and so

a2(b2 a2 )b2 = (ba)4 = a4 b4 =⇒ b2 a2 = a2b2.

We have shewn that ∀(a, b) ∈G2

((ba)2 = a2b2) and (b2 a2 = a2 b2).

Hence

(ba)2 = a2b2 =b2 a2 =⇒ baba =b2 a2

=⇒ ab = ba,

proving that the group is abelian.
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1.4.8 Since

(ab)i+2 = (ab)(ab) · · · (ab)︸ ︷︷ ︸
i+2 times

= a(ba)i+1 b,

multiplying by a−1
on the left and by b−1

on the right the equality

(ab)i+2 = ai+2bi+2
(A.1)

we obtain

(ba)i+1 = (a)i+1(b)i+1. (A.2)

By hypothesis

(ab)i+1 = (a)i+1(b)i+1. (A.3)

Hence (A.2) and (A.3) yield

(ab)i+1 = (ba)i+1. (A.4)

Similarly, from (A.3) we obtain

(ab)i = (ba)i , (A.5)

from which

(ab)−i = (ba)−i . (A.6)

Multiplying (A.4) and (A.6) together, we deduce

ab = ba,

which is what we wanted to shew.

1.5.1 The first two follow immediately from the Binomial Theorem, the first by putting x = y = 1 and then x =−y = 1. The third follows by adding the first two and dividing by 2. The fourth follows by subtracting the second from the first and

then dividing by 2.

1.5.2 If a = 103, b = 2 then

1002004008016032= a5 +a4 b +a3 b2 +a2 b3 +ab4 +b5 =
a6 −b6

a −b
.

This last expression factorises as

a6 −b6

a −b
= (a +b)(a2 +ab +b2 )(a2 −ab +b2 )

= 1002 ·1002004 ·998004

= 4 ·4 ·1002 ·250501 ·k ,

where k < 250000. Therefore p = 250501.

1.5.4 From the Binomial Theorem,

(A+B )3 = A3 +3A2B +3AB 2 +B 3 =⇒ A3 +B 3 = (A+B )3 −3AB (A+B ).

Then

a3 +b3 +c3 −3abc = (a +b)3 +c3 −3ab(a +b)−3abc

= (a +b +c)3 −3(a +b)c(a +b +c)−3ab(a +b +c)

= (a +b +c)((a +b +c)2 −3ac −3bc −3ab)

= (a +b +c)(a2 +b2 +c2 −ab −bc −c a).

1.5.5 (
n

k

)
=

n!

k !(n−k)!
=

n

k
·

(n−1)!

(k −1)!(n−k)!
=

n

k

(
n−1

k −1

)
.

1.5.6 (
n

k

)
=

n!

k !(n−k)!
=

n(n−1)

k(k −1)
·

(n−2)!

(k −2)!(n−k)!
=

n

k
·

n−1

k −1
·
(

n−2

k −2

)
.

1.5.7 We use the identity k

(
n

k

)
= n

(
n−1

k −1

)
. Then

n∑

k=1

k

(
n

k

)
pk (1−p)n−k =

n∑

k=1

n

(
n−1

k −1

)
pk (1−p)n−k

=
n−1∑

k=0

n

(
n−1

k

)
pk+1(1−p)n−1−k

= np
n−1∑

k=0

(
n−1

k

)
pk (1−p)n−1−k

= np(p +1−p)n−1

= np.

1.5.8 We use the identity

k(k −1)

(
n

k

)
= n(n−1)

(
n−2

k −2

)
.

Then
n∑

k=2

k(k −1)

(
n

k

)
pk (1−p)n−k =

n∑

k=2

n(n−1)

(
n−2

k −2

)
pk (1−p)n−k

=
n−2∑

k=0

n(n−1)

(
n−2

k

)
pk+2(1−p)n−1−k

= n(n−1)p2
n−2∑

k=0

(
n−1

k

)
pk (1−p)n−2−k

= n(n−1)p2 (p +1−p)n−2

= n(n−1)p2 .
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1.5.9 We use the identity

(k −np)2 = k2 −2knp +n2 p2 = k(k −1)+k(1−2np)+n2 p2 .

Then

n∑

k=0

(k −np)2

(
n

k

)
pk (1−p)n−k =

n∑

k=0

(k(k −1)+k(1−2np)

+n2 p2 )

(
n

k

)
pk (1−p)n−k

=
n∑

k=0
k(k −1)

(
n

k

)
pk (1−p)n−k

+(1−2np)
n∑

k=0

k

(
n

k

)
pk (1−p)n−k

+n2 p2
n∑

k=0

(
n

k

)
pk (1−p)n−k

= n(n−1)p2 +np(1−2np)+n2 p2

= np(1−p).

1.5.11 Observe that the number of k-tuples with min((a1, a2, . . . , ak )) = t is (n− t +1)k − (n− t)k
.

1.7.2 The given equalities entail t

n∑

k=1
(x2

k
−xk )2 = 0.

A sum of squares is 0 if and only if every term is 0. This gives the result.

1.7.3 The given equality entails that

1

2

(
(x1 −x2)2 + (x2 −x3)2 +·· ·+ (xn−1 −xn )2 + (xn −x1)2

)
= 0.

A sum of squares is 0 if and only if every term is 0. This gives the result.

1.7.4 Since aB < Ab one has a(b +B ) = ab +aB < ab + Ab = (a + A)b so
a

b
< a + A

b +B
. Similarly B (a + A) = aB + AB < Ab + AB = A(b +B ) and so

a + A

b +B
< A

B
.

We have

7

10
< 11

15
=⇒ 7

10
< 18

25
< 11

15
=⇒ 7

10
< 25

35
< 18

25
< 11

15
.

Since
25

35
=

5

7
, we have q ≤ 7. Could it be smaller? Observe that

5

6
>

11

15
and that

4

6
<

7

10
. Thus by considering the cases with denominators q = 1, 2, 3, 4, 5, 6, we see that no such fraction lies in the desired interval. The smallest

denominator is thus 7.

1.7.5 We have

(r − s + t)2 − t2 = (r − s + t − t)(r − s + t + t) = (r − s)(r − s +2t).

Since t − s ≤ 0, r − s +2t = r + s +2(t − s) ≤ r + s and so

(r − s + t)2 − t2 ≤ (r − s)(r + s) = r 2 − s2

which gives

(r − s + t)2 ≤ r 2 − s2 + t2.

1.7.6 Using the CBS Inequality (Theorem 87) on

n∑

k=1
(ak bk )ck once we obtain

n∑

k=1
ak bk ck ≤

(
n∑

k=1
a2

k
b2

k

)1/2 (
n∑

k=1
c2

k

)1/2

.

Using CBS again on

(
n∑

k=1
a2

k
b2

k

)1/2

we obtain

n∑

k=1

ak bk ck ≤
(

n∑

k=1

a2
k

b2
k

)1/2 (
n∑

k=1

c2
k

)1/2

≤
(

n∑

k=1
a4

k

)1/4 (
n∑

k=1
b4

k

)1/4 (
n∑

k=1
c2

k

)1/2

,

which gives the required inequality.

1.7.7 This follows directly from the AM-GM Inequality applied to 1, 2, . . ., n:

n!1/n (1 ·2 · · ·n)1/n <
1+2+·· ·+n

n
=

n+1

2
,

where strict inequality follows since the factors are unequal for n > 1.

1.7.8 First observe that for integer k , 1 < k < n, k(n−k +1) = k(n−k)+k > 1(n−k)+k =n. Thus

n!2 = (1 ·n)(2 · (n−1))(3 · (n−2)) · · ·((n−1) ·2)(n ·1) >n ·n ·n · · ·n =nn .

1.7.9 From the Binomial Theorem, for n ≥ 2,

2n = (1+1)n =
(

n

0

)
+

(
n

1

)
+

(
n

2

)
+·· ·+

(
n

n

)
>

(
n

2

)
=

n(n−1)

2
=⇒ 2n+1 > n(n−1).

This establishes the inequality for n ≥ 2. For n = 0, 0 = 0(0−1) < 20+1
and for n = 1, 0 = 1(1−1)< 21+1

, so the inequality is true for all natural numbers.
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1.7.10 Assume without loss of generality that a ≥ b ≥ c . Then a ≥ b ≥ c is similarly sorted as itself, so by the Rearrangement Inequality

a2 +b2 +c2 = aa +bb +cc ≥ ab +bc +c a.

This also follows directly from the identity

a2 +b2 +c2 −ab −bc −c a =
(

a −
b +c

2

)2
+

3

4
(b −c)2 .

One can also use the AM-GM Inequality thrice:

a2 +b2 ≥ 2ab; b2 +c2 ≥ 2bc ; c2 +a2 ≥ 2c a,

and add.

1.7.11 Assume without loss of generality that a ≥ b ≥ c . Then a ≥ b ≥ c is similarly sorted as a2 ≥ b2 ≥ c2
, so by the Rearrangement Inequality

a3 +b3 +c3 = aa2 +bb2 +cc2 ≥ a2b +b2 c +c2 a,

and

a3 +b3 +c3 = aa2 +bb2 +cc2 ≥ a2c +b2 a +c2 b.

Upon adding

a3 +b3 +c3 = aa2 +bb2 +cc2 ≥
1

2

(
a2 (b +c)+b2 (c +a)+c2 (a +b)

)
.

Again, if a ≥ b ≥ c then

ab ≥ ac ≥bc ,

thus

a3 +b3 +c3 =≥ a2 b +b2 c +c2 a = (ab)a + (bc)b + (ac)c ≥ (ab)c + (bc)a + (ac)b = 3abc .

This last inequality also follows directly from the AM-GM Inequality, as

(a3b3 c3)1/3 ≤
a3 +b3 +c3

3
,

or from the identity

a3 +b3 +c3 −3abc = (a +b +c)(a2 +b2 +c2 −ab −bc −c a),

and the inequality of problem 1.7.10.

1.7.12 We apply n times the Rearrangement Inequality

ǎ1 b̂1 + ǎ2 b̂2 +·· ·+ ǎn b̂n ≤ a1 b1 +a2 b2 +·· ·+an bn ≤ â1 b̂1 + â2 b̂2 +·· ·+ ân b̂n

ǎ1 b̂1 + ǎ2 b̂2 +·· ·+ ǎn b̂n ≤ a1 b2 +a2 b3 +·· ·+an b1 ≤ â1 b̂1 + â2 b̂2 +·· ·+ ân b̂n

ǎ1 b̂1 + ǎ2 b̂2 +·· ·+ ǎn b̂n ≤ a1 b3 +a2 b4 +·· ·+an b2 ≤ â1 b̂1 + â2 b̂2 +·· ·+ ân b̂n

.

.

.

ǎ1 b̂1 + ǎ2 b̂2 +·· ·+ ǎn b̂n ≤ a1 bn +a2 b1 +·· ·+an bn−1 ≤ â1 b̂1 + â2 b̂2 +·· ·+ ân b̂n

Adding we obtain the desired inequalities.

1.7.14 Use the fact that (b −a)2 = (
p

b −
p

a)2(
p

b +
p

a)2
.

1.7.15 Let

A = 1

2
· 3

4
· 5

6
· · · 9999

10000

and

B =
2

3
·

4

5
·

6

7
· · ·

10000

10001
.

Clearly, x2 −1 < x2
for all real numbers x . This implies that

x −1

x
< x

x +1

whenever these four quantities are positive. Hence

1/2 < 2/3

3/4 < 4/5

5/6 < 6/7

.

.

.

.

.

.

.

.

.

9999/10000 < 10000/10001

As all the numbers involved are positive, we multiply both columns to obtain

1

2
·

3

4
·

5

6
· · ·

9999

10000
<

2

3
·

4

5
·

6

7
· · ·

10000

10001
,

or A <B . This yields A2 = A · A < A ·B . Now

A ·B = 1

2
· 2

3
· 3

4
· 4

5
· 5

6
· 6

7
· 7

8
· · · 9999

10000
· 10000

10001
= 1

10001
,

and consequently, A2 < A ·B = 1/10001. We deduce that A < 1/
p

10001< 1/100.
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1.7.16 Observe that for k ≥ 1, (x +k)2 > (x +k)(x +k −1) and so
1

(x +k)2
< 1

(x +k)(x +k −1)
= 1

x +k −1
− 1

x +k
.

Hence
1

(x +1)2
+

1

(x +2)2
+

1

(x +3)2
+·· ·+

1

(x +n−1)2
+

1

(x +n)2
<

1

x(x +1)
+

1

(x +1)(x +2)
+

1

(x +2)((x +3))
+·· ·+

1

(x +n−2)(x +n−1)
+

1

(x +n−1)(x +n)

=
1

x
−

1

x +1
+

1

x +1
−

1

x +2
+

1

x +2
−

1

x +3
+·· ·+

1

x +n−2
−

1

x +n−1
+

1

x +n−1
−

1

x +n

=
1

x
−

1

x +n
.

1.7.17 For 1 ≤ i ≤ n, we have ∣∣∣∣
2

i
−1−

1

n

∣∣∣∣≤ 1−
1

n
⇐⇒

(
2

i
−

(
1+

1

n

))2
≤

(
1−

1

n

)2
⇐⇒

4

i 2
−

4

i

(
1+

1

n

)
+

4

n
≤ 0 ⇐⇒

(i −n)(i −1)

i 2n
≤ 0.

Thus ∣∣∣∣∣
n∑

i=1

xi

i

∣∣∣∣∣=
1

2

∣∣∣∣∣
n∑

i=1

(
2

i
−

(
1+ 1

n

))
xi

∣∣∣∣∣ ,

as
∑

i=1
xi = 0. Now

∣∣∣∣∣
n∑

i=1

(
2

i
−

(
1+

1

n

))
xi

∣∣∣∣∣≤
n∑

i=1

∣∣∣∣
2

i
−1−

1

n

∣∣∣∣
∣∣xi

∣∣≤
(

1−
1

n

) n∑

i=1

∣∣xi
∣∣=

(
1−

1

n

)
.

1.7.18 Expanding the product
n∏

k=1
(1+xk ) = 1+

n∑

k=1
xk +

n∑

1≤i< j≤n
xi x j +·· · ≥ 1+

n∑

k=1
xk ,

since the xk ≥ 0. When n = 1 equality is obvious. When n > 1 equality is achieved when

n∑

1≤i< j≤n
xi x j = 0.

1.7.19 Assume a ≥ b ≥ c . Put s = a +b +c . Then

−a ≤−b ≤−c =⇒ s −a ≤ s −b ≤ s −c =⇒
1

s −a
≥

1

s −b
≥

1

s −c

and so the sequences a, b, c and
1

s −a
,

1

s −b
,

1

s −c
are similarly sorted. Using the Rearrangement Inequality twice:

a

s −a
+

b

s −b
+

c

s −c
≥

a

s −c
+

b

s −a
+

c

s −b
;

a

s −a
+

b

s −b
+

c

s −c
≥

a

s −b
+

b

s −c
+

c

s −a
.

Adding these two inequalities

2

(
a

s −a
+

b

s −b
+

c

s −c

)
≥

b +c

s −a
+

c +a

s −b
+

c +a

s −c
,

whence

2

(
a

b +c
+

b

c +a
+

c

a +b

)
≥ 3,

from where the result follows.

1.7.20 Let

P(n) :

√

a +
√

a +
√

a +·· ·+
p

a

︸ ︷︷ ︸
n radicands

<
1+

p
4a +1

2
.

Let us prove P(1), that is

∀a > 0,
p

a < 1+
p

4a +1

2
.

To get this one, let’s work backwards. If a > 1

4
p

a <
1+

p
4a +1

2
⇐⇒ 2

p
a < 1+

p
4a +1

⇐⇒ 2
p

a −1 <
p

4a +1

⇐⇒ (2
p

a −1)2 < (
p

4a +1)2

⇐⇒ 4a −4
p

a +1 < 4a +1

⇐⇒ −2
p

a < 0.

all the steps are reversible and the last inequality is always true. If a ≤
1

4
then trivially 2

p
a −1 <

p
4a +1. Thus P(1) is true. Assume now that P(n) is true and let’s derive P(n+1). From

√

a +
√

a +
√

a +·· ·+
p

a

︸ ︷︷ ︸
n radicands

<
1+

p
4a +1

2
=⇒

√

a +
√

a +
√

a +·· ·+
p

a

︸ ︷︷ ︸
n+1 radicands

<

√

a +
1+

p
4a +1

2
.

we see that it is enough to shew that

√

a + 1+
p

4a +1

2
= 1+

p
4a +1

2
.

But observe that

(
p

4a +1+1)2 = 4a +2
p

4a +1+2 =⇒ 1+
p

4a +1

2
=

√

a + 1+
p

4a +1

2
,

proving the claim.

1.7.21 From the AM-GM Inequality,

a +b ≥ 2
p

ab; b +c ≥ 2
p

bc ; c +a ≥ 2
p

c a,

and the desired inequality follows upon multiplication of these three inequalities.
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1.7.22 By the Rearrangement inequality
n∑

k=1

ak

k2
≥

n∑

k=1

ǎk

k2
≥

n∑

k=1

1

k
,

as ǎk ≥ k , the a’s being pairwise distinct positive integers.

1.7.23 By the AM-GM Inequality,

(
1

x1

1

x2
· · ·

1

xn

)1/n
≤

1

x1
+

1

x2
+·· ·+

1

xn

n
,

whence the inequality.

1.7.24 By the CBS Inequality, (
1 · x1 +1 · x2 +·· ·+1 · xn

)2 ≤
(
12 +12 +·· ·+12

)(
x2

1 +x2
2 +·· ·+x2

n

)
,

which gives the desired inequality.

1.7.25 Put

Tm =
∑

1≤k≤m

ak −
∑

m<k≤n

ak .

Clearly T0 =−Tn . Since the sequence T0, T1, . . . , Tn changes signs, choose an index p such that Tp−1 and Tp have different signs. Thus either Tp−1 −Tp = 2|ap | or Tp −Tp−1 = 2|ap |. We claim that

min
(∣∣∣Tp−1

∣∣∣ ,
∣∣Tp

∣∣
)
=≤ max

1≤k≤n

∣∣ak

∣∣ .

For

For, if contrariwise both

∣∣∣Tp−1

∣∣∣> max
1≤k≤n

∣∣ak

∣∣ and
∣∣Tp

∣∣> max
1≤k≤n

∣∣ak

∣∣, then 2|ap | = |Tp−1 −Tp | > 2 max
1≤k≤n

∣∣ak

∣∣, a contradiction.

1.7.26 It is enough to prove this in the case when a, b, c , d are all positive. To this end, put O = (0, 0), L = (a, b) and M = (a + c , b +d ). By the triangle inequality OM ≤ OL +LM , where equality occurs if and only if the points are

collinear. But then √
(a +c)2 + (b +d )2 =OM ≤OL +LM =

√
a2 +b2 +

√
c2 +d 2 ,

and equality occurs if and only if the points are collinear, that is
a

b
= c

d
.

1.7.31 Use Minkowski’s Inequality and the fact that 172 +1442 = 1452
. The desired value is S12 .

1.8.3 We have
∑

1≤i< j≤n
(x j −xi ) =

∑

1≤i< j≤n
x j −

∑

1≤i< j≤n
xi

=
n∑

j=2
( j −1)x j −

n−1∑

i=1
(n−1)xi

= −(n−1)x1 +
n−1∑

k=2

((k −1)− (n−k))xk + (n−1)xn

= −(n−1)x1 − (n−3)x2 −·· ·+ (n−3)xn−1 + (n−1)xn .

This sum is maximal when the negative coefficients of the xi are 0 and the positive coefficients of the xi are equal to 1. If n is even the maximum is

1+3+·· ·+ (n−1).

If n is odd, the maximum coefficient is

2+4+·· ·+ (n−1).

The result follows thus.

1.8.4 We claim that 3T2tU−2T3tU= 0,±1 or −2. We can then take

P(x, y) = (3x −2y)(3x −2y −1)(3x −2y +1)(3x −2y +2).

In order to prove the claim, we observe that TxU has unit period, so it is enough to prove the claim for t ∈ [0, 1). We divide [0; 1[ as

[0, 1[= [0; 1/3[∪[1/3; 1/2[∪[1/2; 2/3[∪[2/3; 1[.

If t ∈ [0, 1/3[, then both T2tU and T3tU are = 0, and so 3T2tU−2T3tU= 0. If t ∈ [1/3; 1/2[ then T3tU= 1 and T2tU= 0, and so 3T2tU−2T3tU=−2. If t ∈ [1/2; 2/3[, then T2tU= 1,T3tU= 1, and so 3T2tU−2T3tU=
1. If t ∈ [2/3; 1[, then T2tU= 1,T3tU= 2, and 3T2tU−2T3tU=−1.

1.8.5 By the Binomial Theorem

(1+
p

2)n + (1−
p

2)n = 2
∑

0≤k≤n/2

(2)k

(
n

2k

)
:= 2N ,

an even integer. Since−1 < 1−
p

2 < 0, it must be the case that (1−
p

2)n
is the fractional part of (1+

p
2)n

or (1+
p

2)n +1 depending on whether n is odd or even, respectively. Thus for odd n, (1+
p

2)n −1 < (1+
p

2)n +(1−
p

2)n <
(1+

p
2)n

, whence (1+
p

2)n + (1−
p

2)n =T(1+
p

2)n U, always even, and for n even 2N := (1+
p

2)n + (1−
p

2)n =T(1+
p

2)n U+1, and so T(1+
p

2)n U= 2N −1, always odd for even n.

471 Example Prove that the first thousand digits after the decimal point in

(6+
p

35)1980

are all 9’s.

Solution: Reasoning as in the preceding problem,

(6+
p

35)1980 + (6−
p

35)1980 = 2k ,

an even integer. But 0 < 6−
p

35 < 1/10, (for if
1

10
< 6−

p
35, upon squaring 3500< 3481, which is clearly nonsense), and hence 0 < (6−

p
35)1980 < 10−1980

which yields

2k −1+ 0.9 . . .9︸ ︷︷ ︸
1979 nines

= 2k −
1

101980
< (6+

p
35)1980 < 2k ,

This proves the assertion of the problem.
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1.8.7 By squaring, it is easy to see that p
4n+1 <

p
n +

p
n+1 <

p
4n+3.

Neither 4n+2 nor 4n+3 are squares since squares are either congruent to 0 or 1 mod 4, so

T
p

4n+2U=T
p

4n+3U,

and the result follows.

1.8.8 Let Tn be the n-th non-square. There is a natural number m such that m2 < Tn < (m+1)2
. As there are m squares less than Tn and n non-squares up to Tn , we see that Tn =n+m. We have then m2 < n+m < (m+1)2

or

m2 −m <n <m2 +m+1. Since n, m2 −m, m2 +m+1 are all integers, these inequalities imply m2 −m+
1

4
<n < m2 +m+

1

4
, that is to say, (m−1/2)2 < n < (m+1/2)2. But then m =T

p
n+

1

2
U. Thus the n-th non-square

is Tn = n+T
p

n +1/2U.

1.8.9 Assume on the contrary that

(a +2b)2

(a +b)2
≥ 2 =⇒ a2 +4ab +4b2 ≥ 2(a2 +2ab +b2 ) =⇒ 2b2 ≥ a2 =⇒

a2

b2
≥ 2,

a contradiction. By adding,

a2

b2
< 2,

(a +2b)2

(a +b)2
< 2 =⇒

a2

b2
+

(a +2b)2

(a +b)2
< 4 =⇒

(a +2b)2

(a +b)2
−2 < 2−

a2

b2
.

1.8.10 It needs to be proved that ∣∣∣∣
2x +5

x +2
−
p

5

∣∣∣∣<
∣∣∣x −

p
5
∣∣∣ .

1.8.11 Consider the set E = {x : x > 0, xn < a}. Shew that E is bounded above with supremum b = sup E . Then shew that bn = a by arguing by contradiction first against bn < a and then against bn > a. In the first case it may be

advantageous to prove

(
b +

a −bn

N

)n
< a for N large enough and use the Binomial Theorem to establish the inequality. In the second case consider bn

(
1+

bn

Ma

)−n
> a, for integral M sufficiently large, again using the Binomial Theorem

to establish the inequality.

2.2.1

[
500 ; 501

]
.

2.2.2

[
1 ; 2

]
.

2.2.3 R.

2.2.4 {1}.

2.2.5 ∅.

2.2.6 ∅.

2.2.8 Closure is immediate. Most of the other axioms are inherited from the larger setR. Observe 0F = 0, 1F = 1 and the multiplicative inverse of a +
p

2b, (a, b) 6= (0, 0) is

(a +
p

2b)−1 =
1

a +
p

2b
=

a −
p

2b

a2 −2b2
=

a

a2 −2b2
−

p
2b

a2 −2b2
.

Here a2 −2b2 6= 0 since
p

2 is irrational.

2.2.9 Assume (a, b) ∈ R2
with a < b. If ab < 0, then 0 ∈ D is between a and b. If 0 < a < b then

p
a <

p
b, and since Q is dense in R, there is a rational number r such that

p
a < r <

p
b =⇒ a < r 2 < b. If a < b < 0, thenp

−b <
p
−a, and since Q is dense in R, there is a rational number s such that

p
−b < s <

p
−a =⇒ −b < s2 <−a =⇒ a <−s2 < b.

2.2.10 Assume (a, b) ∈R2
with a < b. There is a strictly positive integer n such that n >

1

b −a
. Thus

0 <
1

2n <
1

n
< b −a.

Put m =T2n aU+1, and so by definition m−1 ≤ 2n x <m. Hence

a <
m

2n ≤ a +
1

2n < a +
1

n
< a +b −a = a.

2.6.6 For the proof of this let G be such a set (so that x + y is in G if x, y are, and G is closed), and suppose that we are not in cases (i) or (ii). Then it is enough to show that G contains arbitrarily small positive numbers, for then multiples of

these will be dense in R , but G being closed forces G =R. To achieve this let I = inf{x : x ∈G, x > 0}. If I = 0 we are done; but if I > 0 there cannot be numbers x ∈G arbitrarily close to and greater than I , for then x −I would run

through small positive members of G, in particular smaller than I , contradicting its definition. This means that I belongs itself to G, and from there it is easy to see that we are in case (ii) contrary to the assumption. Hence indeed I = 0,

G =R.

3.2.1 No. Take an =
1

n
. Then an > 0 always, but L = 0.

3.2.9 We have for n > 1,

n2

n2 +n
=

n

n2 +n
+·· ·+

n

n2 +n︸ ︷︷ ︸
n times

<
n∑

i=1

n

n2 + i
<

n

n2 +1
+·· ·+

n

n2 +1︸ ︷︷ ︸
n times

=
n2

n2 +1
,

and the result follows by the Sandwich Theorem since each of the sequences on the extremes converges to 1.

3.2.10 Evidently n! ≤nn
. By problem 1.7.8, if n > 2 then nn/2 ≤ n!. Thus

1

n
≤ 1

(n!)1/n
≤ 1

n1/2

and the result follows by the Sandwich Theorem.

3.2.11 For n ≥ 2 we have

2n

n!
= 2

1
· 2

2
· 2

3
· · · 2

n
≤ 2 ·1 ·1 · · ·1 · 2

n
= 4

n
→ 0.
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3.2.12 There is a positive integer m with m2 ≤ n < (m+1)2
. Consider ∣∣∣∣

s
m2

m2
− sn

n

∣∣∣∣ .

3.2.13 Since −1 ≤ sin n ≤ 1, any possible limit must be finite. By way of contradiction assume that sin n → a as n →+∞. Then

lim
n→+∞

sin n = a =⇒ lim
n→+∞

sin(n+2) = a,

whence

lim
n→+∞

(sin(n+2)−sin n) = a −a = 0.

Now,

sin(n+2)−sin n = 2(sin1) cos(n+1) =⇒ cos(n+1) → 0, as n →+∞.

From

cos(n+1) = cosn cos1−sin n sin 1

we obtain

sin n =
1

sin 1
(cosn cos 1−cos(n+1)) →

1

sin 1
(0 ·cos1−0)= 0,

and so a = 0. But then

1 = sin2 n+cos2 n → 02 +02 = 0,

a contradiction.

3.2.14 By problem 1.7.8, (n!)1/n >
p

n for n ≥ 3. Hence, for all M > 0, as long as n > M2
we will have

(n!)1/n >
p

n > M,

giving the result.

3.2.16 We have p
n+1−

p
n = n+1−n

p
n+1+

p
n

= 1
p

n+1+
p

n
< 1

2
p

n
.

Hence, as long as
1

2
p

n
< ε that is, as long as n >

1

4ε2
we will have

∣∣∣
p

n+1−
p

n
∣∣∣< 1

2
p

n
< ε.

3.2.17 Write

2M∑

n=1

1

n
=

M∑

m=1

2m∑

n=2m−1+1

1

n
.

Since 1/n ≥ 1/N when n ≤ N , we gather that

2m∑

n=2m−1+1

1

n
≥

2m∑

n=2m−1+1

2−m = (2m −2m−1)2−m = 1

2
.

Thus

2M∑

n=1

1

n
≥ M

2

and the sequence can be made arbitrarily large.

3.2.18 Observe that for n ≥ 2, p
(n−1)!

(1+
p

1)(1+
p

2)(1+
p

3) · · ·(1+
p

n−1)
−

p
(n)!

(1+
p

1)(1+
p

2)(1+
p

3) · · ·(1+
p

n)

=
p

(n−1)!

(1+
p

1)(1+
p

2)(1+
p

3) · · ·(1+
p

n−1)

(
1−

p
n

1+
p

n

)

=
p

(n−1)!

(1+
p

1)(1+
p

2)(1+
p

3) · · ·(1+
p

n)
.

Therefore
K∑

n=1

p
(n−1)!

(1+
p

1)(1+
p

2)(1+
p

3) · · ·(1+
p

n)
= 1−

p
K !

(1+
p

1)(1+
p

2) · · ·(1+
p

K )
.

Now prove that uK =
p

K !

(1+
p

1)(1+
p

2) · · ·(1+
p

K )
decreases to 0.

3.2.19 Put x1 = 1, xn+1 =
√

1+xn , n ≥ 0. We claim that the sequence {xn }+∞n=1 is increasing and bounded above. By Theorem 165 the sequence must have a limit L. To prove that the sequence is increasing consider xn+1 −xn (fill

in this gap). To prove that the sequence is bounded, we claim that for all n ≥ 1, xn < 4. For this is clearly true for n = 1. So assume that xn < 4. Then

xn+1 =
√

1+xn <
p

1+4 =
p

5 < 4,

and so the assertion follows by induction.

Since we have shewn that L exists we now may compute

L = lim
n→+∞xn+1 = lim

n→+∞
√

1+xn =
p

1+L =⇒ L =
p

1+L =⇒ L2 −L −1 = 0 =⇒ L =
1+

p
5

2
,

where we have chosen the positive root as the sequence is clearly strictly positive.

3.2.20 By Theorem 56, 1+2+·· ·+n =
n2 +n

2
, and the desired result follows.

3.2.21
1

3
; 1;

1

4
.
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3.2.22 Put x1 = 1, xn+1 =
1

1+xn
, n ≥ 0. We claim that the sequence {xn }+∞n=1 is increasing and bounded above. By Theorem 165 the sequence must have a limit L. To prove that the sequence is increasing consider xn+1 −xn (fill in

this gap). To prove that the sequence is bounded, we claim that for all n ≥ 1, prove by induction that xn < 4 (fill in this gap).

Since we have shewn that L exists we now may compute

L = lim
n→+∞xn+1 = lim

n→+∞
1

1+xn
=

1

1+L
=⇒ L =

1

1+L
=⇒ L2 +L −1 = 0 =⇒ L =

p
5−1

2
,

where we have chosen the positive root as the sequence is clearly strictly positive.

3.2.24 Assume that

{
an

bn

}+∞

n=1
is increasing. Then

a1
b1

≤
a2
b2

≤ ·· · ≤
an

bn
≤

an+1
bn+1

.

Using Theorem 79,

a1 +a2 +·· ·+an

b1 +b2 +·· ·+bn
≤

an

bn
≤

an+1
bn+1

=⇒
a1 +a2 +·· ·+an

b1 +b2 +·· ·+bn
≤

a1 +a2 +·· ·+an+1
b1 +b2 +·· ·+bn+1

≤
an+1
bn+1

,

proving that

{
a1 +a2 +·· ·+an

b1 +b2 +·· ·+bn

}+∞

n=1
is also increasing. If

{
an

bn

}+∞

n=1
were decreasing,

{
−

an

bn

}+∞

n=1
is increasing and we apply what we just have proved.

3.2.26 We have
n∏

k=2

k3 −1

k3 +1
=

n∏

k=2

k −1

k +1

n∏

k=2

k2 +k +1

k2 −k +1
.

Now
n∏

k=2

k −1

k +1
=

(n−1)!

(n+1)!
2

=
2

n(n+1)
.

By observing that (k +1)2 − (k +1)+1 = k2 +k +1, we gather that

n∏

k=2

k2 −k +1

k2 +k +1
= 32 +3+1

22 −2+1
· 42 +4+1

32 +3+1
· 52 +5+1

42 +4+1
· · · n2 +n+1

(n−1)2 + (n−1)+1
= n2 +n+1

3
.

Thus
n∏

k=2

k3 −1

k3 +1
=

2

3
·

n2 +n+1

n(n+1)
→

2

3
,

as n →+∞.

3.2.27 Clearly xn < xn + 1

(n+1)2
= xn+1 , and so the sequence is strictly increasing. By shewing that xn < 2− 1

n
< 2 we will be shewing that it is bounded above, and hence convergent by Theorem 165. For n = 1, x1 = 1 = 2− 1

1
and

so the assertion is true. Assume that xn < 2−
1

n
. Then

xn+1 = xn +
1

(n+1)2
< 2−

1

n
+

1

(n+1)2
= 2+

n− (n+1)2

n(n+1)2
= 2−

n2 +n+1

n(n+1)2
< 2−

n2 +n

n(n+1)2
= 2−

1

n+1
,

and the claimed inequality follows by induction. We will prove later on a result of Euler:

1+
1

22
+

1

32
+·· ·+

1

n2
+·· · =

π2

6
.

3.3.1 The product rule for limits only applies to a finite number of factors. Here the number of factors grows with n.

3.3.3 From Theorem 177, and since x 7→ log x is increasing,
(

1+
1

k +1

)k+1
< e <

(
1+

1

k

)k+1
=⇒ (k +1) log

(
1+

1

k +1

)
< 1 < (k +1) log

(
1+

1

k

)
.

Rearranging,

log
k +2

k +1
< 1

k +1
< log

k +1

k
.

Summing from k =n−1 to k = 2n−1,

2n−1∑

k=n−1

log
k +2

k +1
<

2n−1∑

k=n−1

1

k +1
<

2n−1∑

k=n−1

log
k +1

k
=⇒ log

2n+1

n
< 1

n
+ 1

n+1
+·· ·+ 1

2n
< log

2n

n−1

=⇒ log

(
2+

1

n

)
<

1

n
+

1

n+1
+·· ·+

1

2n
< log

(
2+

2

n−1

)

and the result follows from the Sandwich Theorem.

3.3.4 Observe that (
1+

1

2
+

1

3
+

1

4
+·· ·+

1

2n−1
+

1

2n

)

−2

(
1

2
+

1

4
+

1

6
+·· ·+

1

2n

)

=
(

1+ 1

2
+ 1

3
+ 1

4
+·· ·+ 1

2n−1
+ 1

2n

)

−2 · 1

2

(
1+ 1

2
+ 1

3
+ 1

4
+·· ·+ 1

n

)

=
(

1+
1

2
+

1

3
+

1

4
+·· ·+

1

2n−1
+

1

2n

)

−
(

1+
1

2
+

1

3
+

1

4
+·· ·+

1

n

)

=
1

n+1
+

1

n+2
+·· ·+

1

2n
,

and use the result of problem 3.3.3.
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3.3.7 We begin by looking at the Taylor series for ex
:

ex =
∞∑

k=0

xk

k !
.

This converges for every x ∈R, so e =
∞∑

k=0

1

k !
and e−1 =

∞∑

k=0

(−1)k 1

k !
. Arguing by contradiction, assume ae2 +be +c = 0 for integers a, b and c . That is the same as ae +b +ce−1 = 0.

Fix n > |a| + |c |, then a, c | n! and ∀k ≤n, k ! | n! . Consider

0 =n!(ae +b +ce−1 ) = an!
∞∑

k=0

1

k !
+b +cn!

∞∑

k=0
(−1)k 1

k !

=b +
n∑

k=0

(a +c(−1)k )
n!

k !
+

∞∑

k=n+1

(a +c(−1)k )
n!

k !

Since k ! | n! for k ≤n, the first two terms are integers. So the third term should be an integer. However,

∣∣∣∣∣
∞∑

k=n+1
(a +c(−1)k )

n!

k !

∣∣∣∣∣≤ (|a|+ |c |)
∞∑

k=n+1

n!

k !

= (|a|+ |c |)
∞∑

k=n+1

1

(n+1)(n+2) · · ·k

≤ (|a|+ |c |)
∞∑

k=n+1
(n+1)n−k

= (|a|+ |c |)
∞∑

t=1
(n+1)−t

= (|a|+ |c |)
1

n

is less than 1 by our assumption that n > |a|+ |c |. Since there is only one integer which is less than 1 in absolute value, this means that

∞∑

k=n+1

(a +c(−1)k )
1

k !
= 0 for every sufficiently large n which is not the case because

∞∑

k=n+1

(a +c(−1)k )
1

k !
−

∞∑

k=n+2

(a +c(−1)k )
1

k !
= (a +c(−1)n+1 )

1

(n+1)!

is not identically zero. The contradiction completes the proof.

3.3.9 Apply Problem 2.6.6 We can apply this to the stated problem by observing that for a fixed d , a positive integer without square factors, the numbers a +b
p

d are quadratic integers if a, b are rational integers, and that the set of such

numbers is an additive group of reals. Clearly the closure of this group (it, together with its set of limit points) is a group too, for if xn → x and yn → y then xn + yn → x + y . The new group is not of form (i) or (ii), hence must be all reals, and

the proof (of a slightly stronger theorem) is complete.

3.5.5 an = o
(
n2

)
does, since this says that lim

n→+∞
an

n2
= 0, whereas an = O

(
n2

)
says that

an

n2
is bounded by some positive constant.

3.5.6 False. Take an = 2n, for example. Then an <<n,
an

n
= 2, and so

an

n
9 0.

3.5.7 True.
an

n
→ 0 and so by Theorem 195, an << n.

3.5.8 False. Take an = n3/2
. Then

an

n2
→ 0 but an 6=O (n).

3.5.9 True.
an

n
→ 0 and so by Theorem 195, an << n. Since n << n2

, the assertion follows by transitivity.

4.1.1 This is a geometric series with common ratio |r | = 2

e
< 1, so it converges. We have

∞∑

n=3

2n

en+1
=

23

e4
+

24

e5
+·· · =

23

e4

1− 2
e

=
8

e4 −2e3
.

4.1.2 Observe that

1

4n2 −1
=

1

2(2n−1)
−

1

2(2n+1)
.

Hence

+∞∑

n=2

1

4n2 −1
=

(
1

2(1)
−

1

2(3)

)
+

(
1

2(3)
−

1

2(5)

)
+

(
1

2(5)
−

1

2(7)

)
+·· · =

1

2(1)
=

1

2
.

4.1.3 Since tan(x − y) =
tan x − tan y

1+ tan x tan y
, observe that arctan

1

n2 +n+1
= arctan(n+1)−arctann. Hence the series telescopes to lim

n→+∞
arctan(n+1)−arctan1 =

π

4
.

4.1.7 By unique factorisation of the integers, the desired sum is (
1+

1

2
+

1

22
+

1

23
+·· ·

)(
1+

1

3
+

1

32
+

1

33
+·· ·

)
=

1

1−
1

2

·
1

1−
1

3

= 3.

4.1.9 Since the sum of two convergent series is convergent by Theorem 232, if
∑

n≥0
(an +bn ) then from the identity bn = (an +bn )−an we would deduce that

∑

n≥0
bn converges, a contradiction.
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4.1.10 Put sN =
∑

1≤n≤N
an . There is a positive constant M such that ∀N > 0, sN ≤ M . Observe that because the terms are positive

sN+1 = sN +aN+1 ≥ sN ,

and so the sequence
{

sN
}+∞

N=1 is a monotonically increasing bounded above sequence and so it converges by Theorem 165.

This is not necessarily true if the series does not have positive terms. For example, the series
∑

n≥1
(−1)n+1

has bounded partial sums, in fact they are either 1 or 0. But the sequence of partial sums then is

1, 0, 1, 0, 1, 0, . . .

which does not converge.

4.2.2 True. For, we must have an → 0 and so eventually 0 < an ≤ 1. This means that eventually a2
n ≤ an and the series of squares converges by direct comparison to the original series.

4.2.3 True. Since an → 0, we must have sin an → an and so the series converges by asymptotic comparison to the original series. (Recall that lim
x→0

sin x

x
= 1.)

4.2.4 True. Since an → 0, we must have tan an → an and so the series converges by asymptotic comparison to the original series. (Recall that lim
x→0

tan x

x
= 1.)

4.2.5 False. Since an → 0, we must have cos an → 1 and so the series diverges by the n-th Term Test.

4.2.6 Only the fact that
an

n
≤ an is needed here.

4.2.7 Take an =
1

2n . Then an <<
1

n2
and

+∞∑

n=1

1

2n = 1.

4.2.8 Take an = 1

2n2
or an = 1

n2n
.

4.2.9 Take an =
1

2n or an =
1

nn .

4.2.10 For even n ≥ 0 take an =
1

2n and for odd n ≥ 1 take an =
1

3n . Then

+∞∑

n=0
an =

+∞∑

n=0

1

22n
+
+∞∑

n=1

1

32n−1
,

and both series on the right are geometric convergent series. However if n is even, (an )1/n =
1

2
and if n is odd (an )1/n =

1

3
meaning that lim

n→+∞(an )1/n
does not exist.

4.2.11 By the root test

a1/n
n =

(
3n

n2n

)1/n
= 3

n
→ 0 < 1,

and the series converges. By direct comparison, for n ≥ 3 we have

3n

n2n
=

3n

nn ·
1

nn ≤ 1
1

nn ≤
1

n3
,

and the series converges by direct comparison to

∞∑

n=1

1

n3
.

4.2.12 We divide the sum into decimal blocks. There are 9k k-digit integers in the interval [10k ; 10k+1[ that do not have a 0 in their decimal representation. Thus

∑

n∈S

1

n
=

+∞∑

k=0

∑

n∈[10k ;10k+1[∩S

1

n
≤

+∞∑

k=0

9k
(

1

10k

)
= 10.

4.2.15

1. an ∼−
e

2n
=⇒ diverges.

2. an ∼
α

2α−1
en(α−2) =⇒ converges iff α< 2.

3. an ∼− 3

n2
=⇒ converges.

4. an ∼
1

n2
=⇒ converges.

5. an ∼
√

2

n3
=⇒ converges.

6. converges iff |a| 6= 1.

7. Converges.

8. an ≤ (n−1)(n−1)!+n!

(n+2)!
≤ 2

(n+1)(n+2)
=⇒ converges.

9. Converges.

10. an 6−→ 0 =⇒ diverges.

11. an =
1

nlog logn
=⇒ converges.

5.1.1 Put an = 1(
2n−

1

2

)
π

, bn = 1(
2n+

1

2

)
π

for integer n ≥ 1. Then an → 0 and bn → 0, but sin
1

an
→−1 and sin

1

bn
→+1, so the limit does not exist in view of Proposition 267.

5.2.10 f (0) = 0, but for x > 0, f (x) =
1+

p
1+4x

2
, so f is not right-continuous at x = 0.

172



Appendix A

5.6.2 Consider a unit circle and take any point P on the circumference of the circle.

Drop the perpendicular from P to the horizontal line, M being the foot of the perpendicular and Q the reflection of P at M . (refer to figure)

Let x =∠POM.

For x to be in [0,
π

2
], the point P lies in the first quadrant, as shown.

The length of line segment P M is sin(x). Construct a circle of radius MP , with M as the center.

Length of line segment PQ is 2 sin(x).

Length of arc PAQ is 2x .

Length of arc PBQ is πsin(x).

Since PQ ≤ length of arc PAQ (equality holds when x = 0) we have 2 sin(x) ≤ 2x . This implies

sin(x) ≤ x

Since length of arc PAQ is ≤ length of arc PBQ (equality holds true when x = 0 or x = π

2
), we have 2x ≤πsin(x). This implies

2

π
x ≤ sin(x)

Thus we have
2

π
x ≤ sin(x) ≤ x,∀ x ∈ [0,

π

2
]

5.9.1 If p had odd degree, then, by the Intermediate Value Theorem it would have a real root. Letα be its largest real root. Then

0 = p(α)q(α)= p(α2 +α+1)

meaning that α2 +α+1 >α is a real root larger than the supposedly largest real rootα, a contradiction.

5.9.2 Observe that f (1000) f ( f (1000))= 1 =⇒ f (999)= 1

999
. So the range of f include all numbers from

1

999
to 999. By the intermediate value theorem, there is a real number a such that f (a) = 500. Thus

f (a) f ( f (a)) = 1 =⇒ f (500)=
1

500
.

5.9.5

5.9.10 If either f (0) = 1 or f (1) = 0, we are done. So assume that 0 ≥ f (0) < 1 and 0 < f (1) ≤ 1. Put g (x) = f (x)+x−1. Then g (0) = f (0)−1< 0 and g (1) = f (1)> 0. By Bolzano’s Theorem there is a c ∈
]

0 ; 1
[

such that g (c) = 0,

that is, f (c)+c −1 = 0, as required.

5.9.11 Consider g (x) = f (x)− f (x +1/n), which is clearly continuous. If g is never 0 in

[
0 ; 1

]
then by Corollary 321 g must be either strictly positive or strictly negative. But then

0 = f (0)− f (1)=
(

f (0)− f

(
1

n

))
+

(
f

(
1

n

)
− f

(
2

n

))
+

(
f

(
2

n

)
− f

(
3

n

))
+·· ·+

(
f

(
n−1

n

)
− f

( n

n

))
.

The sum of each parenthesis on the right is strictly positive or strictly negative and hence never 0, a contradiction.

5.9.12 Consider the function f :
[

0 ; 1
]
→

[
0 ; 1

]
, x 7→

sin 2πx
a

sin 2π
a

−x .

6.2.1 Observe that that
1

x −1
− 1

x +1
= (x +1)− (x −1)

(x −1)(x +1)
= 2

x2 −1
.

If f (x) = (x −1)−1
then

f ′(x) =−1(x −1)−2; f ′′(x) = (−1)(−2)(x−1)−3; (−1)(−2)(−3)(x−1)−4; . . . ; f (100)(x) = 100!(x −1)−101.

Similarly, if g (x) = (x +1)−1
then

g ′(x) =−1(x +1)−2; g ′′(x) = (−1)(−2)(x +1)−3; (−1)(−2)(−3)(x+1)−4; . . . ; g (100)(x) = 100!(x +1)−101.

Hence

d100

dx100

2

x2 −1
= f (100)(x)−g (100)(x) = 100!(x −1)−101 −100!(x +1)−101.

6.2.2 We use Leibniz’s Rule and the observation that the third derivative of x 7→ x2
is 0. Also (sin x)(4n) = sin x , (sin x)(4n+2) =−sin x , (sin x)(4n+1) = cosx , and (sin x)(4n+3) =−cos x , Then

d100

dx100
x2 sin x =

(
100

0

)
x2 (sin x)(100) +

(
100

1

)
(x2)′(sin x)(99) +

(
100

2

)
(x2)′′(sin x)(98) = x2 sin x −200x cosx −9900 sin x.

6.3.1 Put f (x) = x5 −2x2 +x . Then f (0) = f (1) = 0 and by Rolle’s Theorem there is c ∈]0; 1[ such that f ′(c) = 5c4 −4c +1 = 0.

6.3.2 Set

f (x) = a0 x +
a1 x2

2
+

a2 x3

3
+·· ·+

an xn+1

n+1
,

and use Rolle’s Theorem.

6.3.4 Set g (x) = f (x)2 f (1−x). Since g (0) = g (1) = 0, g satisfies the hypotheses of Rolle’s Theorem. There is a c ∈
]

0 ; 1
[

such that

g ′(c) = 0 =⇒ 2 f ′(c) f (c) f (1−c)− f (c)2 f ′(1−c) = 0.

Since by assumption f (c) f (1−c) 6= 0 we must have, upon dividing by every term by f (c)2 f (1−c), the assertion.

6.3.5 For 0 ≤ k ≤ n−1, consider the interval

[ k

n
;

k +1

n

]
. By the Mean Theorem, there are ak ∈

] k

n
;

k +1

n

[
such that

f ′(ak ) =
f

(
k +1

n

)
− f

(
k

n

)

1

n

=n

(
f

(
k +1

n

)
− f

(
k

n

))
.

Summing from k = 0 to k = n−1 and noting that the dextral side telescopes,

n−1∑

k=0

f ′(ak ) =n
n−1∑

k=0

(
f

(
k +1

n

)
− f

(
k

n

))
=n( f (1)− f (0))= n.

173



Answers and Hints

6.3.6 Let ki ∈
[

0 ; 1
]

be the smallest number such that f (ki ) =
i

n
, 1 ≤ i ≤ n −1. Put k0 = 0, kn = 1. The existence of the ki is guaranteed by the Intermediate Value Theorem. Moreover, since the ki are chosen to be the first time f is

i

n
, once again, by the Intermediate Value Theorem we must have

0 < k1 < k2 < ·· · < kn−1 < 1.

Hence, by the Mean Value Theorem, there exists ai ∈
]

ki ; ki+1

[
, 0 ≤ i ≤ n−1, such that

f ′(ai ) =
f (ki+1)− f (ki )

ki+1 −ki
=

1

n(ki+1 −ki )
=⇒

1

f ′(ai )
= n(ki+1 −ki ).

Summing,

n−1∑

k=0

1

f ′(ak )
=n

n−1∑

k=0
(ki+1 −ki ) = n(kn −k0 ) =n.

6.4.2 We have f ′(x) = xx (log x +1) whence f ′(x) = 0 =⇒ x = e−1
. Since f ′(x) < 0 for 0 < x < e−1

and f ′(x) > 0 for x > e−1
, x = e−1

is a local (relative) minimum. Thus f (x) ≥ f (e−1) =
(

1

e

)1/e
.

6.5.3 Let 0 < k < 1, and consider the function

f :
[0;+∞[ → R

x 7→ xk −k(x −1)
.

Then 0 = f ′(x) = k xk−1 −k ⇔ x = 1. Since f ′′(x) = k(k −1)xk−2 < 0 for 0 < k < 1, x ≥ 0, x = 1 is a maximum point. Hence f (x) ≤ f (1) for x ≥ 0, that is xk ≤ 1+k(x −1). Letting k =
1

p
and x =

ap

bq we deduce

a

bq/p
≤ 1+

1

p

(
ap

bq −1

)
.

Rearranging gives

ab ≤ b1+p/q +
ap b1+p/q−p

p
−

b1+p/q

p

from where we obtain the inequality.

6.6.1 We have:

1. Put f : R→ R, f (x) = ex−1 −x. Clearly f (1) = e0 −1 = 0. Now,

f ′(x) = ex−1 −1,

f ′′(x) = ex−1 .

If f ′(x) = 0 then ex−1 = 1 implying that x = 1. Thus f has a single minimum point at x = 1. Thus for all real numbers x

0 = f (1) ≤ f (x) = ex−1 −x,

which gives the desired result.

2. Easy Algebra!

3. Easy Algebra!

4. By the preceding results, we have

A1 ≤ exp(A1 −1),

A2 ≤ exp(A2 −1),

.

.

.

An ≤ exp(An −1).

Since all the quantities involved are positive, we may multiply all these inequalities together, to obtain,

A1 A2 · · ·An ≤ exp(A1 + A2 +·· ·+ An −n).

In view of the observations above, the preceding inequality is equivalent to

nn Gn

(a1 +a2 +·· ·+an )n ≤ exp(n−n) = e0 = 1.

We deduce that

Gn ≤
(

a1 +a2 +·· ·+an

n

)n
,

which is equivalent to

(a1 a2 · · ·an )1/n ≤
a1 +a2 +·· ·+an

n
.

Now, for equality to occur, we need each of the inequalities Ak ≤ exp(Ak −1) to hold. This occurs, in view of the preceding lemma, if and only if Ak = 1, ∀k , which translates into a1 = a2 = . . . = an . This completes the proof.

6.7.1 (loglog x)log x = exp((log x)(logloglog x)) and (log x)log log x = exp((loglog x)2). Now, lexicographically,

(loglog x)2 << (log x)(logloglog x) =⇒ exp((loglog x)2) << exp((log x)(logloglog x))

and thus (loglog x)log x
is faster.

7.1.1 ⇐ This follows directly from Theorem 437.
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=⇒ If f is Riemann integrable, let ε> 0 and let P
′ = {a = y0 < y1 < . . . < ym =b} be a partition with m+1 points such that

U ( f ,P′)−L( f ,P′) <
ε

2
.

As f is bounded, there is M > 0 such that ∀x ∈
[

a ; b
]

,
∣∣ f (x)

∣∣≤ M . Take δ=
ε

8mM
and consider now an arbitrary partition P = {a = x0 < x1 < . . . < xn = b} with norm

∣∣∣
∣∣∣P

∣∣∣
∣∣∣ < δ. Put P

′′ =P∪P
′

. Arguing

as in Theorem 434, we obtain

L( f ,P′′)−L( f ,P) < 2mM
∣∣∣
∣∣∣P

∣∣∣
∣∣∣< 2mMδ= ε

4
.

Since by Theorem 435 L( f ,P′) ≤L( f ,P′′) we gather

L( f ,P′)−L( f ,P) <
ε

4
.

In a similar fashion we establish that

U ( f ,P)−U ( f ,P′) < ε

4
,

and upon assembling the inequalities,

U ( f ,P)−L( f ,P)<U ( f ,P′)−L( f ,P′)+ ε

2
< ε,

since we had assumed that U ( f ,P′)−L( f ,P′) <
ε

2
.

7.1.2 =⇒ Assume f is Riemann-integrable. For ε> 0 letδ> 0 be chosen so that the conditions of Theorem ?? be fulfilled. By definition of a Riemann sum,

L( f ,P) ≤ S( f ,P) ≤U ( f ,P),

and therefore

U ( f ,P) <L( f ,P)+ε≤
∫b

a
f (x)dx +ε=

∫b

a
f (x)dx +ε

and

L( f ,P) >U ( f ,P)−ε≥
∫b

a
f (x)dx −ε=

∫b

a
f (x)dx −ε.

These inequalities give ∣∣∣∣∣S( f ,P)−
∫b

a
f (x)dx

∣∣∣∣∣< ε,

whence lim∣∣∣
∣∣∣P

∣∣∣
∣∣∣→0

S( f ,P) =
∫b

a
f (x)dx.

⇐ Suppose that lim∣∣∣
∣∣∣P

∣∣∣
∣∣∣→0

S( f ,P) = L, existing and finite. Givenε> 0 there is δ> 0 such that

∣∣∣
∣∣∣P

∣∣∣
∣∣∣<δ implies

L − ε

3
< S( f ,P) < A+ ε

3
. (A.7)

Now, choose P = {a = x0 < x1 < ·· · < xn = b}. By letting tk range over

[
xk−1 ; xk

]
we gather, from (A.7)

L − ε

3
≤ L( f ,P) ≤U ( f ,P)≤L + ε

3
,

whence

U ( f ,P)−L( f ,P)≤ 2

3
ε< ε,

meaning that f is Riemann-integrable over

[
a ; b

]
by Theorem 437. Thus

L( f ,P) ≤
∫b

a
f (x)dx ≤U ( f ,P),

and so lim∣∣∣
∣∣∣P

∣∣∣
∣∣∣→0

S( f ,P) =
∫b

a
f (x)dx .

7.1.3 =⇒ Let P = {a = x0 < x1 < ·· · < xn =b} be a partition of

[
a ; b

]
. Set

Z ( f ,P) =
n∑

k=1

ω( f ,
[

xk−1 ; xk

]
)(xk −xk−1 ) =U ( f ,P)−L( f ,P), Ω= sup

x∈[a;b]
f (x)− inf

x∈[a;b]
f (x).

Let

δ=
n∑

k=1
(xk −xk−1 )χ

{x∈[a;b]:ω( f ,[xk−1 ;xk ])≥ε′} .

Then Z ( f ,P) ≥δε′ . Since we are assuming that f is Riemann-integrable, there exists a partition P (by Theorem 437) such that

Z ( f ,P) ≤ ε′ε.

Thus we have δε′ < εε′ from where δ< ε.

⇐ Assume there is a partition P for which δ< ε. In the intervals I = [xk−1 ; xk ] where ω( f , I ) ≥ ε′ the oscillation of f is at mostΩ, and in the remaining intervals (the sum of which is b −a −δ, the oscillation is less than ε′ . Hence

Z ( f ,P) ≤ δΩ+ (b −a −δ)ε′ .

Choose now

ε′ =
ε′′

2(b −a)
, δ=

ε′′

2Ω
.

Since b −a −δ ≤b −a,

Z ( f ,P) ≤δΩ+ (b −a −δ)ε′ ≤ ε′′

2
+ ε′′

2
= ε′′ ,

whence f is Riemann-integrable by Theorem 437.
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7.2.1
8

5

7.2.2 ∫3

0
xTxU dx =

∫1

0
xTxU dx +

∫2

1
xTxU dx +

∫3

2
xTxU dx

= 0

∫1

0
x dx +1

∫2

1
x dx +2

∫3

2
x dx

=
x2

2

∣∣∣2
1
+x2

∣∣∣3
2

= (2−
1

2
)+ (9−4)

=
13

2
.

7.2.3 We have

f ′(x) = lim
h→0

f (x +h)− f (x)

h
= lim

h→0

ex+h −h −ex

h
= lim

h→0

ex+h −ex

h
− lim

h→0

h

h
= ex −1,

whence f (x) = ex −x +C . Since 3 = f (0)= e0 −0+C =⇒ C = 2, we deduce that f (x) = ex −x +2.

7.2.4 Put I =
∫a

0

1

f (x)+1
dx . We have

I =
∫a

0

1

f (u)+1
du =

∫a

0

f (u) f (a −u)

f (u)+ f (u) f (a −u)
du =

∫a

0

f (a −u)

1+ f (a −u)
du =−

∫0

a

f (v)

1+ f (v)
dv =

∫a

0

f (u)

1+ f (u)
du,

whence

2I =
∫a

0

f (u)

1+ f (u)
du+

∫a

0

f (a −u)

1+ f (a −u)
du =

∫a

0

2+ f (u)+ f (a −u)

2+ f (u)+ f (a −u)
du = a,

and so I =
a

2
.

7.2.5 Observe first that f (0+0) = f (0)+ f (0) and so f (0)= 0. Integrate f (u+ y) = f (u)+ f (y) for u ∈ [0; x]keeping y constant, getting

∫x

0
f (u+ y)du =

∫x

0
f (u)du+

∫x

0
f (y)du =

∫x

0
f (u)du+x f (y).

Also, by substitution, ∫x

0
f (u+ y)du =

∫y+x

y
f (u)du =

∫y+x

0
f (u)du−

∫y

0
f (u)du.

Hence

x f (y) =
∫y+x

0
f (u)du−

∫y

0
f (u)du−

∫x

0
f (u)du. (A.8)

Exchanging x and y :

y f (x) =
∫y+x

0
f (u)du−

∫x

0
f (u)du−

∫y

0
f (u)du. (A.9)

From (A.8) and (A.9) we gather that x f (y) = x f (y). If x y 6= 0 then
f (x)

x
= f (y)

y
. This means that for

f (x)

x
is constant, and so for x 6= 0, f (x) = c x for some constant c . Since f (0) = 0, f (x) = c x for all x . Taking x = 1, f (1)= c .

7.2.7 We have ∫2

−1
|x2 −1| dx =

∫1

−1
(1−x2) dx +

∫2

1
(x2 −1) dx

= (x − x3

3
)
∣∣∣1−1

+ (
x3

3
−x)

∣∣∣2

1

= 2(1− 1

3
)+ (

8

3
−2)− (

1

3
−1)

= 4

3
+ 2

3
+ 2

3

=
8

3

7.2.16 Put u =
√

x2 −1; u2 = x2 −1 so that 2udu = 2xdx and
dx

x
=

xdx

x2
=

udu

u2 +1
. Thus

∫
1

x
√

x2 −1
dx =

∫
u

(u2 +1)u
du =

∫
1

u2 +1
du = arctanu+C = arctan

√
x2 −1+C .

7.2.17 Put u =
p

x +1; u2 = x +1; from where dx = 2udu. Whence

∫
1

1+
p

x +1
dx =

∫
2u

1+u
du =

∫(
2− 2

1+u

)
du = 2u−2 log |1+u|+C = 2

p
1+x −2 log |1+

p
1+x|+C .

7.2.18 Put x =u6 ; dx = 6u5du, giving
∫

x1/2

x1/2 −x1/3
dx =

∫
(u3 )(6u5)

u3 −u2
du

=
∫

6u6

u−1
du

= 6

∫(
u5 +u4 +u3 +u2 +u+1+

1

u−1

)
du

= 6

(
u6

6
+ u5

5
+ u4

4
+ u3

3
+ u2

2
+u+ log |u−1|

)
+C

= x + 6x5/6

5
+ 3x2/3

2
+2x1/2 +3x1/3 +6x1/6 +6 log |x1/6 −1|+C .

7.2.19 Put u2 = ax +1; 2udu = (log a)ax dx and so

∫
a2x

p
ax +1

dx =
∫

2u(u2 −1)

u log a
du =

∫
2u2 −2

log a
du = 2u3

3 log a
− 2u

log a
+C = 2(ax +1)3/2

3 loga
− 2(ax +1)1/2

log a
+C .
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7.2.20 Observe that (ex −e−x )2 = (e−x (e2x −1))2 = e−2x (e2x −1)2
, and so

∫
1

(ex −e−x )2
dx =

∫
e2x

(e2x −1)2
dx =

∫
1

2u2
du =− 1

2u
+C =− 1

2(e2x −1)
+C ,

on putting u = e2x −1.

7.2.21 We have ∫5

1

⌊x⌋
x

dx =
∫2

1

⌊x⌋
x

dx +
∫3

2

⌊x⌋
x

dx +
∫4

3

⌊x⌋
x

dx +
∫5

4

⌊x⌋
x

dx

=
∫2

1

1

x
dx +

∫3

2

2

x
dx +

∫4

3

3

x
dx +

∫5

4

4

x
dx

= (log2− log1)+2(log3− log2)+3(log4− log3)+4(log5− log4)

= 4 log(5)−3 log(2)− log(3).

7.2.22 Put u = ex
, etc. ∫

eex +x dx =
∫

ex eex
dx =

∫
eex

dex = eex
+C

7.2.23 Put u = log(cosx), etc.

∫
tan x log(cos x)dx =

∫
(log(cosx))d(− log(cos(x))) =−

(log(cos x))2

2
+C

7.2.24 Put u = log log x , etc.
∫

loglog x

x log x
dx =

∫
loglog xd

(
loglog x

)
=

log log x

2
+C

7.2.25 Carry out the long division.

∫
x18 −1

x3 −1
dx =

∫
(x15 +x12 +x9 +x6 +x3 +1)dx = x16

16
+ x13

13
+ x10

10
+ x7

7
+ x4

4
+x +C

7.2.26 After an algebraic trick, put u = 1+x−7
, etc.

∫
1

x8 +x
dx =

∫
x−8

1+x−7
dx =−

1

7

∫
d(1+x−7)

1+x−7
=−

1

7
log |1+x−7 |+C

7.2.27 Put u = 2x +1 ∫
2x 2x

2x +1
dx =

1

log2

∫
2x

2x +1
d(2x +1) =

1

log 2

∫
u−1

u
du =

1

log2

(
u− log |u|

)
+C =

1

log2

(
2x +1− log |2x +1|

)
+C

7.2.28 Put u = x +1. Then x2 = (u−1)2 = u2 −2u+1, and hence

∫
x2

(x +1)10
dx =

∫
u2 −2u+1

u10
du

=
∫

u−8 −2u−9 +u−10du

= −
u−7

7
+

u−8

4
−

u−9

9
+C

= − (x +1)−7

7
+ (x +1)−8

4
− (x +1)−9

9
+C

7.2.29 Algebraic trick, and then u = e−x +1, etc.
∫

1

1+ex dx =
∫

e−x

e−x +1
dx =−

∫
1

e−x +1
d(e−x +1) =− log |e−x +1|+C

7.2.30 ∫
1

1−sin x
dx =

∫
1+sin x

1−sin2 x
dx =

∫
1+sin x

cos2 x
dx =

∫
sec2 x +sec x tan xdx = tan x +sec x +C

7.2.31 ∫p
1+sin 2xdx =

∫√
sin2 x +2 sin x cos x +cos2 xdx

=
∫√

(sin x +cosx)2dx

=
∫

|sin x +cosx|dx

= ∓cos x ±sin x +C

7.2.32 Put u = x2
, etc. ∫

x√
1− (x2)2

dx = 1

2

∫
1√

1−u2
du = 1

2
arcsinu+C = 1

2
arcsin x2 +C

7.2.33 We have ∫
sec4 xdx =

∫
sec2 x(tan2 x +1)dx

=
∫

sec2 x tan2 xdx +
∫

sec2 xdx

=
∫

(tan x)2d(tanx)+
∫

sec2 xdx

=
tan3 x

3
+ tan x +C .

.
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7.2.34 We have ∫
sec5 xdx =

∫
sec3 x sec2 xdx

=
∫

sec3 xd(tan x)

= sec3 x tan x −
∫

tan xd(sec3 x)

= sec3 x tan x −3

∫
tan2 x sec2 x sec xdx

= sec3 x tan x −3

∫
(sec2 x −1) sec3 xdx

= sec3 x tan x −3

∫
sec5 xdx +3

∫
sec3 xdx

The above implies that
∫

sec5 xdx =
tan x sec3 x

4
+

3

4

∫
sec3 xdx

=
tan x sec3 x

4
+

3 tanx sec x

8
+

3

8
log |sec x + tan x|+C ,

upon recalling from class that ∫
sec3 xdx =

tan x sec x

2
+

1

2
log |sec x + tan x|+C

7.2.35 First put t = x1/3
, then t3 = x =⇒ 3t2dt =dx . Thus ∫

ex1/3
dx =

∫
3t2et dt

= 3t2et −6tet −6et +C

= 3x2/3ex1/3
−6x1/3ex1/3

−6ex1/3
+C ,

where the penultimate step results from tabular integration by parts.

7.2.36 We have ∫
log(x2 +1)dx = x log(x2 +1)−

∫
xd(log(x2 +1))

= x log(x2 +1)−2

∫
x2

x2 +1
dx

= x log(x2 +1)−2

∫
x2 +1−1

x2 +1
dx

= x log(x2 +1)−2

∫(
1− 1

x2 +1

)
dx

= x log(x2 +1)−2(x −arctanx)+C

7.2.37 Put

I =
∫

xex cos x := (Ax +B )ex cos x + (C x +D)ex sin x +K .

Differentiating both sides,

xex cos x = Aex cosx + (Ax +B )ex cosx − (Ax +B )ex sin x +C ex sin x + (C x +D)ex sin x + (C x +D)ex cos x.

Equating coefficients,

xex cosx : 1 = A+C

xex sin x : 0 =−A+C

ex cosx : 0 = A+B +D

ex sin x : 0 =−B +C +D

From the first two equations C =
1

2
, A =

1

2
. Then the third and fourth equations become −

1

2
=B +D;−

1

2
=−B +D , whence D =−

1

2
, and B = 0. We conclude that

∫
xex cosx =

x

2
ex cos x +

(
x −1

2

)
ex sin x +K .

7.2.38 We will do this one two ways: first, by making the substitution

t = log x =⇒ et = x =⇒ et dt =dx.

Observe also that x2/3 = e2t/3
. Then ∫

x2/3 log xdx =
∫

te2t/3 et dt

=
3t

5
e5t/3 −

9

25
e5t/3 +C

=
3(logx)

5
x5/3 −

9

25
x5/3 +C .

Aliter: By directly integrating by parts,
∫

x2/3 log xdx =
∫

log xd

(
3x5/3

5

)

=
3x5/3

5
log x −

3

5

∫
x5/3d(log x)

=
3(log x)

5
x5/3 −

3

5

∫
x2/3 dx

= 3(log x)

5
x5/3 − 9

25
x5/3 +C ,

as before.

7.2.39 This integral can be done multiple ways. For example, you may integrate by parts directly and then “solve” for the integral. Another way is the following. Start by putting

t = log x =⇒ et = x =⇒ et dt =dx.

Then ∫
sin(log x)dx =

∫
et sin tdt ,
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an integral that we found in class. We will find it again, using a method similar of problem 7.2.37. Put

I =
∫

et costdt := Aet cos t +B et sin t +K .

Differentiating both sides

et cos t = Aet cost − Aet sin t +B et sin t +B et cos t .

Equating coefficients,

et cos t : 1 = A+B

et sin t : 0 =−A+B

and so A =B =
1

2
. We have thus

∫
sin(log x)dx =

∫
et sin tdt

=
1

2
et cos t +

1

2
et sin t +K

=
1

2
x cos log x +

1

2
x sin log x +K .

7.2.40 Put t = loglog x =⇒ eet
= x =⇒ et eet

dt = dx . Hence

∫
loglog x

x
dx =

∫
tet eet

eet
dt

= tet −et +C

= (log x)(loglog x)− (log x)+C ,

where the penultimate equality follows from a tabular integration by parts.

7.2.41 Observe that ∫
sec xdx =

∫
sec x tan x +sec2 x

tan x +sec x
dx =

∫
d

(
log(tan x +sec x)

)
= log(tan x +sec x)+C ,

For the second way, simple algebra will yield the identity. We have ∫
sec xdx =

∫
cos x

2(1+sin x)
dx +

∫
cos x

2(1−sin x)
dx

=
1

2
log |1+sin x|−

1

2
log |1−sin x|+C

=
1

2
log

∣∣∣ 1+sin x

1−sin x

∣∣∣+C

.

For the third way, we have ∫
csc xdx =

∫
1

sin x
dx

=
∫

1

2 sin x
2 cos x

2

dx

=
∫ cos x

2

2 sin x
2 cos2 x

2

dx

=
∫ sec2 x

2

2 tan x
2

dx

u=tan x
2=

∫
du

u

= log | tan
x

2
|+C .

Thus ∫
sec xdx =

∫
csc(

π

2
+x)dx =

∫
csc(

π

2
+x)d(

π

2
+x) = log

∣∣∣tan(
π

4
+

x

2
)
∣∣∣+C .

7.2.42 Putting t = arcsin x we have

sin t = x =⇒ costdt =dx,

whence ∫
(arcsin x)2dx =

∫
t2 costdt

= t2 sin t +2t cos t −2 sin t +C

= (arcsin x)2 x +2(arcsin x) cos(arcsin x)−2x +C

= (arcsin x)2 x +2(arcsin x)

√
1−x2 −2x +C

7.2.43 We have ∫
dx

p
x +1+

p
x −1

=
∫

(
p

x +1−
p

x −1)dx

2

=
1

3
(x +1)3/2 −

1

3
(x −1)3/2 +C

.

7.2.44 We have ∫
x arctan xdx =

∫
arctan xd

(
x2

2

)

=
x2

2
arctan x −

∫
x2

2
d(arctanx)

=
x2

2
arctan x −

∫
1

2

x2

1+x2
dx

= x2

2
arctan x −

∫
1

2

x2 +1−1

1+x2
dx

=
x2

2
arctan x −

x

2
+

1

2
arctan x +C

.
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7.2.45 Put u =
p

tan x and so u2 = tan x , 2udu = sec2 xdx = (tan2 x +1)dx = (u4 +1)dx . Hence the integral becomes

∫p
tan xdx = 2

∫
u2

u4 +1
du.

To decompose the above fraction into partial fractions observe (Sophie Germain’s trick) that u4 +1 = u4 +2u2 +1−2u2 = (u2 +u
p

2+1)(u2 −u
p

2+1) and hence

∫p
tan xdx = 2

∫
u2

u4 +1
du

= −
p

2

2

∫
u

u2 +u
p

2+1
du+

p
2

2

∫
u

u2 −u
p

2+1
du

= −
p

2

4
log(u2 +u

p
2+1)+

p
2

4
log(u2 −u

p
2+1)+

p
2

2
arctan(

p
2u+1)−

p
2

2
arctan(−

p
2u+1)+C

= −
p

2

4
log(tan x +

p
2 tanx +1)+

p
2

4
log(tanx −

p
2 tan x +1)

+
p

2

2
arctan(

p
2 tanx +1)−

p
2

2
arctan(−

p
2 tanx +1)+C

7.2.46 Put
2x +1

x2(x −1)
=

A

x
+

B

x2
+

C

x −1
=⇒ 2x +1 = Ax(x −1)+B (x −1)+C x2.

Letting x = 1 we get 3 =C . Letting x = 0 we get 1 =−B =⇒ B =−1. To get A observe that equating the coefficients of x2
on both sides we get 0 = A+C , whence A =−3. Thus

∫
2x +1

x2(x −1)
dx = −3

∫
1

x
dx −

∫
1

x2
dx +3

∫
1

x −1
dx

= −3 log |x|+
1

x
+3 log |x −1|+C

= 3 log
∣∣∣ x −1

x

∣∣∣+ 1

x
+C .

7.2.47 Integrating by parts, ∫
log(x +

p
x)dx = x log(x +

p
x)−

∫
xd log(x +

p
x)

= x log(x +
p

x)−
∫ x(1+

1

2
p

x
)

x +
p

x
dx

= x log(x +
p

x)−
∫(

1− 1

2
·

p
x

x +
p

x

)
dx

= x log(x +
p

x)−x +
1

2

∫ p
x

x +
p

x
dx

u=
p

x= x log(x +
p

x)−x +
∫

u2

u2 +u
du

u=
p

x
= x log(x +

p
x)−x +

∫
1−

1

u+1
du

= x log(x +
p

x)−x +u− log(u+1)+C

= x log(x +
p

x)−x +
p

x − log(
p

x +1)+C

7.2.48 We use Sophie Germain’s trick to factor

x4 +1 = x4 +2x2 +1−2x2 = (x2 +1)2 −2x2 = (x2 −
p

2x +1)(x2 +
p

2x +1),

and seek the partial fraction decomposition

1

x4 +1
=

Ax +B

x2 −
p

2x +1
+

C x +D

x2 +
p

2x +1
=⇒ 1 = (Ax +B )(x2 +

p
2x +1)+ (C x +D)(x2 −

p
2x +1).

Equating coefficients

x3 : 0 = A+C

x2 : 0 =B +D +
p

2(A−C )

x : 0 = A+C +
p

2(B −D)

x0 : 1 =B +D

From the first and third equation it follows that A =−C and that B = D . From the fourth equation B = D =
1

2
and from the second equation A =−

1

2
p

2
=−C . Hence we must integrate

∫
1

x4 +1
dx =

∫ p
2x +2

4(x2 +
p

2x +1)
dx −

∫ p
2x −2

4(x2 −
p

2x +1)
dx

=
p

2

8

∫
2x +

p
2

x2 +
p

2x +1
dx +

1

4

∫
1

x2 +
p

2x +1
dx −

p
2

8

∫
2x +

p
2

x2 −
p

2x +1
dx +

1

4

∫
1

x2 −
p

2x +1
dx

=
p

2

8
log(x2 +x

p
2+1)−

p
2

8
log(x2 −x

p
2+1)+

1

2

∫
dx

(x
p

2+1)2 +1
+

1

2

∫
dx

(−x
p

2+1)2 +1

=
p

2

8
log(x2 +x

p
2+1)−

p
2

8
log(x2 −x

p
2+1)+

p
2

4
arctan(x

p
2+1)−

p
2

4
arctan(−x

p
2+1)+C

7.2.49 We begin by observing that

1

x3 +1
=

A

x +1
+

B x +C

x2 −x +1
=⇒ 1 = A(x2 −x +1)+ (B x +C )(x +1).

Letting x =−1 we obtain 1 = 3A =⇒ A =
1

3
. Letting x = 0 we obtain 1 = A+C =⇒ C = 1− A =

2

3
. Finally, we must have A+B = 0, since the coefficient of x2

must be zero. thus B =−
1

3
. We must then integrate

∫
dx

3(x +1)
−

∫
x −2

3(x2 −x +1)
dx =

1

3
log |x +1|−

∫ x − 1
2

3(x − 1
2 )2 + 3

4

+
1

2

∫
1

(x − 1
2 )2 + 3

4

=
1

3
log |x +1|−

1

6
log |(x −

1

2
)2 +

3

4
|+

2

3

∫
1

4
3 (x − 1

2 )2 +1

=
1

3
log |x +1|−

1

6
log |(x −

1

2
)2 +

3

4
|+

2

3
·
p

3

2
arctan(x −

1

2
)

= 1

3
log |x +1|− 1

6
log |x2 −x +1|+

p
3

3
arctan

2
p

3
(x − 1

2
)

8.8.1

8.8.2

8.8.3

8.8.4
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