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Preface

These notes started during the Spring of 2003. They are meant to be a gentle introduction to multi-
variable and vector calculus.

Throughout these notes I use Maple version 10 commands in order to illustrate some points of the
theory.

I would appreciate any comments, suggestions, corrections, etc., which can be addressed to the
email below.

David A. SANTOS

dsantos@ccp.edu
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1 Vectors and Parametric Curves

1.1 Points and Vectors on the Plane
pbkl7tWe start with a naı̈ve introduction to some linear algebra necessary for the course. Those inter-
ested in more formal treatments can profit by reading [BlRo] or [Lan].

1 Definition (Scalar, Point, Bi-point, Vector) A scalar α ∈ R is simply a real number. A point r ∈ R2 is an
ordered pair of real numbers, r = (x, y) with x ∈ R and y ∈ R. Here the first coordinate x stipulates
the location on the horizontal axis and the second coordinate y stipulates the location on the vertical
axis. See figure 1.1. We will always denote the origin, that is, the point (0, 0) by O = (0, 0). Given two
points r and r′ in R2 the directed line segment with departure point r and arrival point r′ is called the
bi-point r, r′1 and is denoted by [r, r′]. See figure 1.2 for an example. The bi-point [r, r′] can be thus
interpreted as an arrow starting at r and finishing, with the arrow tip, at r′. We say that r is the tail of
the bi-point [r, r′] and that r′ is its head. A vector −→a ∈ R2 is a codification of movement of a bi-point:

given the bi-point [r, r′], we associate to it the vector
−→
rr′ =

[
x′ − x

y′ − y

]
stipulating a movement of x′ − x

units from (x, y) in the horizontal axis and of y′−y units from the current position in the vertical axis.

The zero vector
−→
0 =

[
0

0

]
indicates no movement in either direction.

x axis

y axis

b

b r = (x, y)

Figure 1.1: A point in R2.

b

b

r

r′

Figure 1.2: A bi-point in R2.

b

b

b

b

b

b

a1

b1

a2

b2

O

b

Figure 1.3: Example 2.

Notice that infinitely many different choices of departure and arrival points may give the same vector.

2 Example Consider the points

a1 = (1, 2), b1 = (3,−4), a2 = (3, 5), b2 = (5,−1), O = (0, 0) b = (2,−6).

1Some authors use the terminology “fixed vector” instead of “bi-point.”
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Points and Vectors on the Plane

Though the bi-points [a1,b1], [a2,b2] and [O,b] are in different locations on the plane, they represent
the same vector, as [

3− 1

−4− 2

]
=

[
5− 3

−1− 5

]
=

[
2− 0

−6− 0

]
=

[
2

−6

]
.

The instructions given by the vector are all the same: start at the point, go two units right and six units
down. See figure 1.3.

In more technical language, a vector is an equivalence class of bi-points, that is, all bi-points that
have the same length, have the same direction, and point in the same sense are equivalent, and the
name of this equivalence is a vector. As an simple example of an equivalence class, consider the set of
integers Z. According to their remainder upon division by 3, each integer belongs to one of the three
sets

3Z = {. . . ,−6,−3, 0, 3, 6, . . .}, 3Z+1 = {. . . ,−5,−2, 1, 4, 7, . . .}, 3Z+2 = {. . . ,−4,−1, 2, 5, 8, . . .}.

The equivalence class 3Z comprises the integers divisible by 3, and for example,−18 ∈ 3Z. Analogously,

in example 2, the bi-point [a1,b1] belongs to the equivalence class

[
2

−6

]
, that is, [a1, b1] ∈

[
2

−6

]
.

3 Definition The vector
−→
Oa that corresponds to the point a ∈ R2 is called the position vector of the point

a.

4 Definition Let a ̸= b be points on the plane and let
←→
ab be the line passing through a and b. The

direction of the bi-point [a,b] is the direction of the line L, that is, the angle θ ∈ [0;π[ that the line
←→
ab

makes with the positive x-axis (horizontal axis), when measured counterclockwise. The direction of a
vector −→v ̸= −→0 is the direction of any of its bi-point representatives. See figure 1.4.

5 Definition We say that [a,b] has the same direction as [z,w] if
←→
ab = ←→zw. We say that the bi-points

[a, b] and [z,w] have the same sense if they have the same direction and if when translating one so
as to its tail is over the other’s tail, both their heads lie on the same half-plane made by the line
perpendicular to then at their tails. They have opposite sense if they have the same direction and if
when translating one so as to its tail is over the other’s tail, their heads lie on different half-planes
made by the line perpendicular to them at their tails. . See figures 1.5 and 1.6 . The sense of a vector
is the sense of any of its bi-point representatives. Two bi-points are parallel if the lines containing them
are parallel. Two vectors are parallel, if bi-point representatives of them are parallel.

b θ

A

B

Figure 1.4: Direction of a
bi-point

A

B

C

D

Figure 1.5: Bi-points
with the same sense.

A

B

C

D

Figure 1.6: Bi-points
with opposite sense.
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Chapter 1

+ Bi-point [b, a] has the opposite sense of [a,b] and so we write

[b, a] = −[a, b].

Similarly we write,
−→
ab = −

−→
ba.

6 Definition The Euclidean length or norm of bi-point [a,b] is simply the distance between a and b and
it is denoted by

||[a,b]|| =
»
(a1 − b1)2 + (a2 − b2)2.

A bi-point is said to have unit length if it has norm 1. The norm of a vector is the norm of any of its
bi-point representatives.

+ A vector is completely determined by three things: (i) its norm, (ii) its direction, and (iii) its sense. It
is clear that the norm of a vector satisfies the following properties:

1.
∣∣∣∣−→a ∣∣∣∣ ≥ 0.

2.
∣∣∣∣−→a ∣∣∣∣ = 0 ⇐⇒ −→a =

−→
0 .

7 Example The vector −→v =

[
1
√
2

]
has norm

∣∣∣∣−→v ∣∣∣∣ = »12 + (
√
2)2 =

√
3.

8 Definition If −→u and −→v are two vectors in R2 their vector sum −→u +−→v is defined by the coordinatewise
addition

−→u +−→v =

[
u1

u2

]
+

[
v1

v2

]
=

[
u1 + v1

u2 + v2

]
. (1.1)

A

B

C

−→v−→u
−→u +−→v

Figure 1.7: Addition of Vectors.

−→u

1

2
−→u

−2−→u

Figure 1.8: Scalar multiplication of vectors.

It is easy to see that vector addition is commutative and associative, that the vector
−→
0 acts as an

additive identity, and that the additive inverse of −→a is −−→a . To add two vectors geometrically, proceed
as follows. Draw a bi-point representative of −→u . Find a bi-point representative of −→v having its tail at
the tip of −→u . The sum −→u + −→v is the vector whose tail is that of the bi-point for −→u and whose tip is
that of the bi-point for −→v . In particular, if −→u =

−→
AB and −→v =

−→
BC, then we have Chasles’ Rule:

−→
AB +

−→
BC =

−→
AC. (1.2)

See figures 1.7, 1.9, 1.10, and 1.11.

9 Definition If α ∈ R and −→a ∈ R2 we define scalar multiplication of a vector and a scalar by the
coordinatewise multiplication

α−→a = α

[
a1

a2

]
=

[
αa1

αa2

]
. (1.3)

Free to photocopy and distribute 3



Points and Vectors on the Plane

It is easy to see that vector addition and scalar multiplication satisfies the following properties.

Ê α(−→a +
−→
b ) = α−→a + α

−→
b

Ë (α + β)−→a = α−→a + β−→a

Ì 1−→a = −→a

Í (αβ)−→a = α(β−→a )

−→v

−→ w

−→ w

−→v

−→w
+
−→v

−→v
+
−→w

Figure 1.9: Commutativity

−→u

−→v

−→w

(
−→u +

−→v ) +
−→w

−→u + (
−→v +

−→w)

−→
v + −→w

−→u
+
−→v

Figure 1.10: Associativity

−→w

−→ v −→v
−
−→w

Figure 1.11: Difference

10 Definition Let −→u ̸= −→0 . Put R−→u = {λ−→u : λ ∈ R} and let a ∈ R2, The affine line with direction vector

−→u =

[
u1

u2

]
and passing through a is the set of points on the plane

a + R−→u =

{(
x

y

)
∈ R2 : x = a1 + tu1, y = a2 + tu2, t ∈ R

}
.

See figure 1.12.

If u1 = 0, the affine line defined above is vertical, as x is constant. If u1 ̸= 0, then

x− a1

u1

= t =⇒ y = a2 +
(x− a1)

u1

u2 =
u2

u1

x + a2 − a1

u2

u1

,

that is, the affine line is the Cartesian line with slope
u2

u1

. Conversely, if y = mx + k is the equation of

a Cartesian line, then (
x

y

)
=

[
1

m

]
t +

(
0

k

)
,

that is, every Cartesian line is also an affine line and one may take the vector

[
1

m

]
as its direction

vector. It also follows that two vectors −→u and −→v are parallel if and only if the affine lines R−→u and R−→v
are parallel. Hence, −→u ∥ −→v if there exists a scalar λ ∈ R such that −→u = λ−→v .

+ Because
−→
0 = 0−→v for any vector −→v , the

−→
0 is parallel to every vector.

Free to photocopy and distribute 4



Chapter 1

−→u

b

b

a

r = a + t−→u

Figure 1.12: Parametric equation of a line on the plane.

11 Example Find a vector of length 3, parallel to −→v =

[
1
√
2

]
but in the opposite sense.

Solution: ▶ Since
∣∣∣∣−→v ∣∣∣∣ = √3, the vector

−→v∣∣∣∣−→v ∣∣∣∣ has unit norm and has the same direction

and sense as −→v , and so the vector sought is

−3
−→v∣∣∣∣−→v ∣∣∣∣ = − 3

√
3

[
1
√
2

]
=

[
−
√
3

−
√
6

]
.

◀

12 Example Find the parametric equation of the line passing through

(
1

−1

)
and in the direction of the

vector

[
2

−3

]
.

Solution: ▶ The desired equation is plainly(
x

y

)
=

(
1

−1

)
+ t

[
2

3

]
=⇒ x = 1 + 2t, y = −1 + 3t, t ∈ R.

◀

Some plane geometry results can be easily proved by means of vectors. Here are some examples.

13 Example Given a pentagon ABCDE, determine the vector sum
−→
AB +

−→
BC +

−→
CD +

−→
DE +

−→
EA.

Solution: ▶ Utilising Chasles’ Rule several times:

−→
0 =

−→
AA =

−→
AB +

−→
BC +

−→
CD +

−→
DE +

−→
EA.

. ◀

Free to photocopy and distribute 5



Points and Vectors on the Plane

14 Example Consider a △ABC. Demonstrate that the line segment joining the midpoints of two sides
is parallel to the third side and it is in fact, half its length.

Solution: ▶ Let the midpoints of [A,B] and [C,A], be MC and MB, respectively. We will
demonstrate that

−→
BC = 2

−−−−→
MCMB. We have, 2

−−−→
AMC =

−→
AB and 2

−−−→
AMB =

−→
AC. Therefore,

−→
BC =

−→
BA +

−→
AC

= −
−→
AB +

−→
AC

= −2
−−−→
AMC + 2

−−−→
AMB

= 2
−−−→
MCA + 2

−−−→
AMB

= 2(
−−−→
MCA +

−−−→
AMB)

= 2
−−−−→
MCMB,

as we were to shew. ◀

15 Example In △ABC, let MC be the midpoint of [A,B]. Demonstrate that

−−−→
CMC =

1

2

Ä−→
CA +

−→
CB
ä
.

Solution: ▶ As
−−−→
AMC =

−−−→
MCB, we have,

−→
CA +

−→
CB =

−−−→
CMC +

−−−→
MCA +

−−−→
CMC +

−−−→
MCB

= 2
−−−→
CMC −

−−−→
AMC +

−−−→
MCB

= 2
−−−→
CMC,

from where the result follows. ◀

16 Example If the medians [A,MA] and [B,MB] of the non-degenerate△ABC intersect at the point G,
demonstrate that

−→
AG = 2

−−−→
GMA;

−→
BG = 2

−−−→
GMB.

See figure 1.13.

Solution: ▶ Since the triangle is non-degenerate, the lines
←−−→
AMA and

←−→
BMB are not parallel,

and hence meet at a point G. Therefore,
−→
AG and

−−−→
GMA are parallel and hence there is a scalar

a such that
−→
AG = a

−−−→
GMA. In the same fashion, there is a scalar b such that

−→
BG = b

−−−→
GMB.

From example 14,

2
−−−−→
MAMB =

−→
BA

=
−→
BG +

−→
GA

= b
−−−→
GMB − a

−−−→
GMA

= b
−−−→
GMA + b

−−−−→
MAMB − a

−−−→
GMA,

and thus
(2− b)

−−−−→
MAMB = (b− a)

−−−→
GMA.

Since△ABC is non-degenerate,
−−−−→
MAMB and

−−−→
GMA are not parallel, whence

2− b = 0, b− a = 0, =⇒ a = b = 2.

◀

Free to photocopy and distribute 6



Chapter 1

b

II
b
II

b
II

b

II

bII b II

b

II

Figure 1.13: Example 17.

17 Example The medians of a non-degenerate triangle △ABC are concurrent. The point of concur-
rency G is called the barycentre or centroid of the triangle. See figure 1.13.

Solution: ▶ Let G be as in example 16. We must shew that the line
←−→
CMC also passes through

G. Let the line
←−→
CMC and

←−→
BMB meet in G′. By the aforementioned example,

−→
AG = 2

−−−→
GMA;

−→
BG = 2

−−−→
GMB;

−−→
BG′ = 2

−−−→
G′MB;

−−→
CG′ = 2

−−−→
G′MC.

It follows that
−−→
GG′ =

−→
GB +

−−→
BG′

= −2−−−→GMB + 2
−−−→
G′MB

= 2(
−−−→
MBG +

−−−→
G′MB)

= 2
−−→
G′G.

Therefore
−−→
GG′ = −2

−−→
GG′ =⇒ 3

−−→
GG′ =

−→
0 =⇒

−−→
GG′ =

−→
0 =⇒ G = G′,

demonstrating the result. ◀

Homework
Problem 1.1.1 Is there is any truth to the statement “a
vector is that which has magnitude and direction”?

Problem 1.1.2 ABCD is a parallelogram. E is the
midpoint of [B,C] and F is the midpoint of [D,C]. Prove
that −→

AC +
−→
BD = 2

−→
BC.

Problem 1.1.3 (Varignon’s Theorem) Use vector alge-
bra in order to prove that in any quadrilateral ABCD,
whose sides do not intersect, the quadrilateral formed
by the midpoints of the sides is a parallelogram.

Problem 1.1.4 Let A,B be two points on the plane.
Construct two points I and J such that

−→
IA = −3−→IB,

−→
JA = −1

3

−→
JB,

and then demonstrate that for any arbitrary point M on
the plane

−−→
MA + 3

−−→
MB = 4

−→
MI

and
3
−−→
MA +

−−→
MB = 4

−→
MJ.

Problem 1.1.5 Find the Cartesian equation corre-
sponding to the line with parametric equation

x = −1 + t, y = 2− t.

Problem 1.1.6 Let x, y, z be points on the plane with
x ̸= y and consider △xyz. Let Q be a point on side
[x, z] such that ||[x,Q]|| : ||[Q, z]|| = 3 : 4 and let P be
a point on [y, z] such that ||[y,P]|| : ||[P,Q]|| = 7 : 2.
Let T be an arbitrary point on the plane.

1. Find rational numbers α and β such that
−→
TQ =

α
−→
Tx + β

−→
Tz.

Free to photocopy and distribute 7



Scalar Product on the Plane

2. Find rational numbers l,m, n such that
−→
TP =

l
−→
Tx + m

−→
Ty + n

−→
Tz.

Problem 1.1.7 Let x, y, z be points on the plane with
x ̸= y. Demonstrate that

1. The point a belongs to the line ←→xy if and only if
there exists scalars α, β with α+ β = 1 such that

−→za = α−→zx + β−→zy.

2. The point a belongs to the line segment [x; y] if
and only if there exists scalars α ≥ 0, β ≥ 0 with
α + β = 1 such that

−→za = α−→zx + β−→zy.

3. The point a belongs to the interior of the tri-
angle △xyz if and only if there exists scalars
α > 0, β > 0 with α + β < 1 such that

−→za = α−→zx + β−→zy.

Problem 1.1.8 A circle is divided into three, four equal,
or six equal parts (figures 1.17 through 1.19). Find the
sum of the vectors. Assume that the divisions start or
stop at the centre of the circle, as suggested in the fig-
ures.

−→a

−→
b

−→c

Figure 1.14: [A]. Problem
1.1.8.

−→a

−→
b

−→c

Figure 1.15: [B]. Problem
1.1.8.

−→a

−→
b

−→c −→
d

Figure 1.16: [C]. Problem
1.1.8.

−→a

−→
b

−→c −→
d

Figure 1.17: [D]. Problem
1.1.8.

−→a

−→
b

−→c −→
d

Figure 1.18: [E]. Problem
1.1.8.

−→a −→
d

−→
b −→c

−→
f

−→e

Figure 1.19: [F]. Problem
1.1.8.

1.2 Scalar Product on the Plane
We will now define an operation between two plane vectors that will provide a further tool to examine
the geometry on the plane.

18 Definition Let −→x ∈ R2 and −→y ∈ R2. Their scalar product (dot product, inner product) is defined and
denoted by

−→x •−→y = x1y1 + x2y2.

19 Example If −→a =

[
1

2

]
and
−→
b =

[
3

4

]
, then −→a •

−→
b = 1 · 3 + 2 · 4 = 11.

The following properties of the scalar product are easy to deduce from the definition.

Free to photocopy and distribute 8



Chapter 1

SP1 Bilinearity
(−→x +−→y )•−→z = −→x •−→z +−→y •−→z , −→x •(−→y +−→z ) = −→x •−→y +−→x •−→z (1.4)

SP2 Scalar Homogeneity
(α−→x )•−→y = −→x •(α−→y ) = α(−→x •−→y ), α ∈ R. (1.5)

SP3 Commutativity
−→x •−→y = −→y •−→x (1.6)

SP4
−→x •−→x ≥ 0 (1.7)

SP5
−→x •−→x = 0 ⇐⇒ −→x =

−→
0 (1.8)

SP6 ∣∣∣∣−→x ∣∣∣∣ = √−→x •−→x (1.9)

−→a

−→
b −−→a

−→
b

Figure 1.20: Theorem 21.

20 Definition Given vectors −→a and
−→
b , we define the (convex) angle between them, denoted by

̂
(−→a ,
−→
b ) ∈

[0;π], as the angle between the affine lines R−→a and R
−→
b .

21 Theorem Let −→a and
−→
b be vectors in R2. Then

−→a •
−→
b = ||−→a ||||

−→
b || cos ̂

(−→a ,
−→
b ).

Proof: From figure 1.20, using Al-Kashi’s Law of Cosines on the length of the vectors, and
(1.4) through (1.9) we have

||
−→
b −−→a ||2 = ||−→a ||2 + ||

−→
b ||2 − 2||−→a ||||

−→
b || cos ̂

(−→a ,
−→
b )

⇐⇒ (
−→
b −−→a )•(

−→
b −−→a ) = ||−→a ||2 + ||

−→
b ||2 − 2||−→a ||||

−→
b || cos ̂

(−→a ,
−→
b )

⇐⇒
−→
b •
−→
b − 2−→a •

−→
b +−→a •−→a = ||−→a ||2 + ||

−→
b ||2 − 2||−→a ||||

−→
b || cos ̂

(−→a ,
−→
b )

⇐⇒ ||
−→
b ||2 − 2−→a •

−→
b + ||−→a ||2 = ||−→a ||2 + ||

−→
b ||2 − 2||−→a ||||

−→
b || cos ̂

(−→a ,
−→
b )

⇐⇒ −→a •
−→
b = ||−→a ||||

−→
b || cos ̂

(−→a ,
−→
b ),

as we wanted to shew. q

Putting
̂

(−→a ,
−→
b ) =

π

2
in Theorem 21 we obtain the following corollary.

22 Corollary Two vectors in R2 are perpendicular if and only if their dot product is 0.
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Scalar Product on the Plane

+ It follows that the vector
−→
0 is simultaneously parallel and perpendicular to any vector!

23 Definition Two vectors are said to be orthogonal if they are perpendicular. If −→a is orthogonal to
−→
b ,

we write −→a ⊥
−→
b .

24 Definition If −→a ⊥
−→
b and

∣∣∣∣−→a ∣∣∣∣ = ∣∣∣∣∣∣−→b ∣∣∣∣∣∣ = 1 we say that −→a and
−→
b are orthonormal.

Since | cos θ| ≤ 1 we also have

25 Corollary (Cauchy-Bunyakovsky-Schwarz Inequality)∣∣∣−→a •
−→
b
∣∣∣ ≤ ∣∣∣∣−→a ∣∣∣∣∣∣∣∣∣∣−→b ∣∣∣∣∣∣.

Equality occurs if and only if −→a ∥
−→
b .

If −→a =

[
a1

a2

]
and
−→
b =

[
b1

b2

]
, the CBS Inequality takes the form

|a1b1 + a2b2| ≤ (a2
1 + a2

2)
1/2(b21 + b22)

1/2. (1.10)

26 Example Let a, b be positive real numbers. Minimise a2 + b2 subject to the constraint a + b = 1.

Solution: ▶ By the CBS Inequality,

1 = |a · 1 + b · 1| ≤ (a2 + b2)1/2(12 + 12)1/2 =⇒ a2 + b2 ≥
1

2
.

Equality occurs if and only if

[
a

b

]
= λ

[
1

1

]
. In such case, a = b = λ, and so equality is achieved

for a = b =
1

2
. ◀

27 Corollary (Triangle Inequality) ∣∣∣∣∣∣−→a +
−→
b
∣∣∣∣∣∣ ≤ ∣∣∣∣−→a ∣∣∣∣+ ∣∣∣∣∣∣−→b ∣∣∣∣∣∣.

Proof:
||−→a +

−→
b ||2 = (−→a +

−→
b )•(−→a +

−→
b )

= −→a •−→a + 2−→a •
−→
b +
−→
b •
−→
b

≤ ||−→a ||2 + 2||−→a ||||
−→
b ||+ ||

−→
b ||2

= (||−→a ||+ ||
−→
b ||)2,

from where the desired result follows. q

28 Example Let x, y, z be positive real numbers. Prove that
√
2(x + y + z) ≤

√
x2 + y2 +

√
y2 + z2 +

√
z2 + x2.

Solution: ▶ Put −→a =

[
x

y

]
,
−→
b =

[
y

z

]
, −→c =

[
z

x

]
. Then

∣∣∣∣∣∣−→a +
−→
b +−→c

∣∣∣∣∣∣ = ∣∣∣∣∣
∣∣∣∣∣
[
x + y + z

x + y + z

]∣∣∣∣∣
∣∣∣∣∣ = √2(x + y + z).
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Also, ∣∣∣∣−→a ∣∣∣∣+ ∣∣∣∣∣∣−→b ∣∣∣∣∣∣+ ∣∣∣∣−→c ∣∣∣∣ = √
x2 + y2 +

√
y2 + z2 +

√
z2 + x2,

and the assertion follows by the triangle inequality∣∣∣∣∣∣−→a +
−→
b +−→c

∣∣∣∣∣∣ ≤ ∣∣∣∣−→a ∣∣∣∣+ ∣∣∣∣∣∣−→b ∣∣∣∣∣∣+ ∣∣∣∣−→c ∣∣∣∣.
◀

We now use vectors to prove a classical theorem of Euclidean geometry.

29 Definition Let A and B be points on the plane and let −→u be a unit vector. If
−→
AB = λ−→u , then λ is

the directed distance or algebraic measure of the line segment [AB] with respect to the vector −→u . We
will denote this distance by AB−→u , or more routinely, if the vector −→u is patent, by AB. Observe that
AB = −BA.

30 Theorem (Thales’ Theorem) Let
←→
D y

←→
D′ be two distinct lines on the plane. Let A,B,C be distinct

points of
←→
D , and A′,B′,C′ be distinct points of

←→
D′ , A ̸= A′, B ̸= B′, C ̸= C′, A ̸= B, A′ ̸= B′. Let

←→
AA′ ∥

←→
BB′. Then

←−→
AA′ ∥

←→
CC′ ⇐⇒

AC

AB
=

A′C′

A′B′
.

I I

bII b II

bII b II

bII b II

Figure 1.21: Thales’ Theorem.

II

b II

bII b II

bII b II

Figure 1.22: Corollary to Thales’ Theorem.

Proof: Refer to figure 1.2. On the one hand, because they are unit vectors in the same
direction, −→

AB

AB
=

−→
AC

AC
;

−−→
A′B′

A′B′
=

−−→
A′C′

A′C′
.

On the other hand, by Chasles’ Rule,

−−→
BB′ =

−→
BA +

−−→
AA′ +

−−→
A′B′ = (

−−→
A′B′ −

−→
AB) +

−−→
AA′.

Since
←−→
AA′ ∥

←→
BB′, there is a scalar λ ∈ R such that

−−→
A′B′ =

−→
AB + λ

−−→
AA′.

Assembling these results,

−−→
CC′ =

−→
CA +

−−→
AA′ +

−−→
A′C′

= −
AC

AB
·
−→
AB +

−−→
AA′ +

A′C′

A′B′

(−→
AB + λ

−−→
AA′

)
=

Ç
A′C′

A′B′
−

AC

AB

å
−→
AB +

Ç
1 + λ

A′C′

A′B′

å
−−→
AA′.
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Linear Independence

As the line
←−→
AA′ is not parallel to the line

←→
AB, the equality above reveals that

←−→
AA′ ∥

←→
CC′ ⇐⇒

AC

AB
−

A′C′

A′B′
= 0,

proving the theorem.q

From the preceding theorem, we immediately gather the following corollary. (See figure 1.2.)

31 Corollary Let
←→
D and

←→
D′ are distinct lines, intersecting in the unique point C. Let A,B, be points

on line
←→
D , and A′, B′, points on line

←→
D′ . Then

←−→
AA′ ∥

←→
BB′ ⇐⇒

CB

CA
=

CB′

CA′
.

1.3 Linear Independence
pbkl7tConsider now two arbitrary vectors in R2, −→x and −→y , say. Under which conditions can we write
an arbitrary vector −→v on the plane as a linear combination of −→x and −→y , that is, when can we find
scalars a, b such that

−→v = a−→x + b−→y ?

The answer can be promptly obtained algebraically. Operating formally,

−→v = a−→x + b−→y ⇐⇒ v1 = ax1 + by1, v2 = ax2 + by2

⇐⇒ a =
v1y2 − v2y1

x1y2 − x2y1

, b =
x1v2 − x2v1

x1y2 − x2y1

.

The above expressions for a and b make sense only if x1y2 ̸= x2y1. But, what does it mean x1y2 =

x2y1? If none of these are zero then
x1

y1

=
x2

y2

= λ, say, and to[
x1

x2

]
= λ

[
y1

y2

]
⇐⇒ −→x ∥ −→y .

If x1 = 0, then either x2 = 0 or y1 = 0. In the first case, −→x =
−→
0 , and a fortiori −→x ∥ −→y , since all

vectors are parallel to the zero vector. In the second case we have

−→x = x2
−→
j , −→y = y2

−→
j ,

and so both vectors are parallel to
−→
j and hence −→x ∥ −→y . We have demonstrated the following theorem.

32 Theorem Given two vectors in R2, −→x and −→y , an arbitrary vector −→v can be written as the linear
combination

−→v = a−→x + b−→y , a ∈ R, b ∈ R
if and only if −→x is not parallel to −→y . In this last case we say that −→x is linearly independent from vector
−→y . If two vectors are not linearly independent, then we say that they are linearly dependent.

33 Example The vectors

[
1

0

]
and

[
1

1

]
are clearly linearly independent, since one is not a scalar multiple

of the other. Given an arbitrary vector

[
a

b

]
we can express it as a linear combination of these vectors

as follows: [
a

b

]
= (a− b)

[
1

0

]
+ b

[
1

1

]
.
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Chapter 1

Consider now two linearly independent vectors −→x and −→y . For a ∈ [0; 1], a−→x is parallel to −→x and
traverses the whole length of −→x : from its tip (when a = 1) to its tail (when a = 0). In the same manner,
for b ∈ [0; 1], b−→y is parallel to −→y and traverses the whole length of−→y . The linear combination a−→x +b−→y
is also a vector on the plane.

34 Definition Given two linearly independent vectors−→x and−→y consider bi-point representatives of them
with the tails at the origin. The fundamental parallelogram of the the vectors −→x and −→y is the set

{a−→x + b−→y : a ∈ [0; 1], b ∈ [0; 1]}.

Figure 1.23 shews the fundamental parallelogram of

{[
1

0

]
,

[
1

1

]}
, coloured in brown, and the re-

spective tiling of the plane by various translations of it. Observe that the vertices of this parallelogram

are

{(
0

0

)
,

(
1

0

)
,

(
1

1

)
,

(
2

1

)}
. In essence then, linear independence of two vectors on the plane means

that we may obtain every vector on the plane as a linear combination of these two vectors and hence
cover the whole plane by all these linear combinations.

Figure 1.23: Tiling and the fundamental parallelogram.

Homework

Problem 1.3.1 Prove that

ñ
1

1

ô
and

ñ
−1
1

ô
are linearly in-

dependent, and draw their fundamental parallelogram.

Problem 1.3.2 Write an arbitrary vector

ñ
a

b

ô
on the

plane, as a linear combination of the vectors

ñ
1

1

ô
and

ñ
−1
1

ô
.

Problem 1.3.3 Consider the line with Cartesian equa-
tion L : ax+by = c, where not both of a, b are zero. Let
t be a point not on L. Find a formula for the distance
from t to L.

Problem 1.3.4 Prove that two non-zero perpendicular
vectors in R2 must be linearly independent.
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Geometric Transformations in two dimensions

1.4 Geometric Transformations in two dimensions
pbkl7tWe now are interested in the following fundamental functions of sets (figures) on the plane:
translations, scalings (stretching or shrinking) reflexions about the axes, and rotations about the origin.
It will turn out that a handy tool for investigating all of these (with the exception of translations), will
be certain construct called matrices which we will study in the next section.

First observe what is meant by a function F : R2 → R2. This means that the input of the function is
a point of the plane, and the output is also a point on the plane.

A rather uninteresting example, but nevertheless an important one is the following.

35 Example The function I : R2 → R2, I(x) = x is called the identity transformation. Observe that the
identity transformation leaves a point untouched.

We start with the simplest of these functions.

36 Definition A function T−→v : R2 → R2 is said to be a translation if it is of the form T−→v (x) = x + −→v ,
where −→v is a fixed vector on the plane.

A translation simply shifts an object on the plane rigidly (that is, it does not distort it shape or re-orient
it), to a copy of itself a given amount of units from where it was. See figure 1.24 for an example.

−→v

Figure 1.24: A translation. Figure 1.25: A scaling.

It is clear that the composition of any two translations commutes, that is, if T−→v 1
, T−→v 2

: R2 → R2 are
translations, then T−→v 1

◦ T−→v 2
= T−→v 2

◦ T−→v 1
. For let T1(a) = a +−→v 1 and T−→v 2

(a) = a +−→v 2. Then

(T−→v 1
◦ T−→v 2

)(a) = T−→v 1
(T−→v 2

(a)) = T−→v 2
(a) +−→v 1 = a +−→v 2 +−→v 1,

and
(T−→v 2

◦ T−→v 1
)(a) = T−→v 2

(T−→v 1
(a)) = T−→v 1

(a) +−→v 2 = a +−→v 1 +−→v 2,

from where the commutativity claim is deduced.

37 Definition A function Sa,b : R2 → R2 is said to be a scaling if it is of the form Sa,b(r) =

(
ax

by

)
, where

a > 0, b > 0 are real numbers.

Figure 1.25 shews the scaling S2,0.5

((
x

y

))
=

(
2x

0.5y

)
.

It is clear that the composition of any two scalings commutes, that is, if Sa,b, Sa′,b′ : R2 → R2 are
scalings, then Sa,b ◦ Sa′,b′ = Sa′,b′ ◦ Sa,b. For

(Sa,b ◦ Sa′,b′)(r) = Sa,b(Sa′,b′(r)) = Sa,b

((
a′x

b′y

))
=

(
a(a′x)

b(b′y)

)
,
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and

(Sa′,b′ ◦ Sa,b)(r) = Sa′,b′(Sa,b(r)) = Sa′,b′

((
ax

by

))
=

(
a′(ax)

b′(by)

)
,

from where the commutativity claim is deduced.

Translations and scalings do not necessarily commute, however. For consider the translation

T−→
i
(a) = a +

−→
i and the scaling S2,1(a) =

(
2a1

a2

)
. Then

(T−→
i
◦ S2,1)

((
−1
0

))
= T−→

i

(
S

((
−1
0

)))
= T−→

i

((
−2
0

))
=

(
−1
0

)
,

but

(S2,1 ◦ T−→
i
)

((
−1
0

))
= S2,1

(
T−→

i

((
−1
0

)))
= S2,1

((
0

0

))
=

(
0

0

)
.

x axis

y axis

Figure 1.26: Reflexions. The original object (in the first quadrant) is yellow. Its reflexion
about the y-axis is magenta (on the second quadrant). Its reflexion about
the x-axis is cyan (on the fourth quadrant). Its reflexion about the origin is
blue (on the third quadrant).

38 Definition A function RH : R2 → R2 is said to be a reflexion about the y-axis or horizontal reflexion if

it is of the form RH(r) =

(
−x
y

)
. A function RV : R2 → R2 is said to be a reflexion about the x-axis or

vertical reflexion if it is of the form RV (r) =

(
x

−y

)
. A function RO : R2 → R2 is said to be a reflexion

about origin if it is of the form RH(r) =

(
−x
−y

)
.

Some reflexions appear in figure 1.26.
A few short computations establish various commutativity properties among reflexions, translations,

and scalings. See problem 1.4.4.
We now define rotations. This definition will be somewhat harder than the others, so let us develop

some ancillary results.

Consider a point r with polar coordinates x = ρ cosα, y = ρ sinα as in figure 1.27. Here ρ =√
x2 + y2 and α ∈ [0; 2π[. If we rotate it, in the levogyrate sense, by an angle θ, we land on the new

point x′ with x′ = ρ cos(α + θ) and y′ = ρ sin(α + θ). But

ρ cos(α + θ) = ρ cos θ cosα− ρ sin θ sinα = x cos θ − y sin θ,
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Geometric Transformations in two dimensions

and
ρ sin(α + θ) = ρ sinα cos θ + ρ sin θ cosα = y cos θ + x sin θ.

Hence the point

(
x

y

)
is mapped to the point

(
x cos θ − y sin θ

x sin θ + y cos θ

)
.

x-axis

y-axis

b

b

b

b
α

θ

Ä
ρ cos α

ρ sin α

äÄ
ρ cos(α + θ)

ρ sin(α + θ)

ä

Figure 1.27: Rotation by an angle θ in the levogyrate (counterclockwise) sense from the
x-axis.

We may now formulate the definition of a rotation.

39 Definition A function Rθ : R2 → R2 is said to be a levogyrate rotation about the origin by the angle θ

measured from the positive x-axis if Rθ (r) =

(
x cos θ − y sin θ

x sin θ + y cos θ

)
. Here ρ =

√
x2 + y2.

Various properties of the composition of rotations with other plane transformations are explored in
problems 1.4.5 and 1.4.6.

We now codify some properties shared by scalings, reflexions, and rotations.

40 Definition A function L : R2 → R2 is said to be a linear transformation from R2 to R2 if for all points
a,b on the plane and every scalar λ, it is verified that

L(a + b) = L(a) + L(b), L(λa) = λL(a).

It is easy to prove that scalings, reflexions, and rotations are linear transformations from R2 to R2,
but not so translations.

41 Definition A function A : R2 → R2 is said to be an affine transformation from R2 to R2 if there exists
a linear transformation L : R2 → R2 and a fixed vector −→v ∈ R2 such that for all points x ∈ R2 it is
verified that

A(x) = L(x) +−→v .

It is easy to see that translations are then affine transformations, where for the linear transformation
L in the definition we may take I : R2 → R2, the identity transformation I(x) = x.

We have seen that scalings, reflexions and rotations are linear transformations. If L : R2 → R2 is a
linear transformation, then

L(r) = L(x
−→
i + y

−→
j ) = xL(

−→
i ) + yL(

−→
j ),

and thus a linear transformation from R2 to R2 is solely determined by the values L(
−→
i ) and L(

−→
j ). We

will now introduce a way to codify these values.
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42 Definition Let L : R2 → R2 be a linear transformation. The matrix AL associated to L is the 2× 2, (2

rows, 2 columns) array whose columns are (in this order) L

((
1

0

))
and L

((
0

1

))
.

43 Example (Scaling Matrices) Let a > 0, b > 0 be a real numbers. The matrix of the scaling transfor-

mation Sa,b is

[
a 0

0 b

]
. For

Sa,b

((
1

0

))
=

(
a · 1
b · 0

)
=

(
a

0

)
and

Sa,b

((
0

1

))
=

(
0 · 1
b · 1

)
=

(
0

b

)
.

44 Example (Reflexion Matrices) It is easy to verify that the matrix for the transformation RH is

[
−1 0

0 1

]
,

that the matrix for the transformation RV is

[
1 0

0 −1

]
, and the matrix for the transformation RO is[

−1 0

0 −1

]
.

45 Example (Rotating Matrices) It is easy to verify that the matrix for a rotation Rθ is

[
cos θ − sin θ

sin θ cos θ

]
.

46 Example (Identity Matrix) The matrix for the identity linear transformation Id : R2 → R2, Id(x) = x

is I2 =

[
1 0

0 1

]
.

47 Example (Zero Matrix) The matrix for the null linear transformation N : R2 → R2, N(x) = O is

02 =

[
0 0

0 0

]
.

From problem 1.4.7 we know that the composition of two linear transformations is also linear. We
are now interested in how to codify the matrix of a composition of linear transformations L1 ◦ L1 in
terms of their individual matrices.

48 Theorem Let L : R2 → R2 have the matrix representation AL =

[
a b

c d

]
and let L′ : R2 → R2 have

the matrix representation AL′ =

[
r s

t u

]
. Then the composition L ◦ L′ has matrix representation

[
ar + bt as + bu

cr + dt cs + du

]
.

Proof: We need to find (L ◦ L′)

((
1

0

))
and (L ◦ L′)

((
0

1

))
.
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We have

(L◦L′)

((
1

0

))
= L

(
L′

((
1

0

)))
= L

((
r

t

))
= rL(

−→
i )+tL(

−→
j ) = r

(
a

c

)
+t

(
b

d

)
=

(
ar + bt

cr + dt

)
,

and

(L◦L′)

((
0

1

))
= L

(
L′

((
0

1

)))
= L

((
s

u

))
= sL(

−→
i )+uL(

−→
j ) = s

(
a

c

)
+u

(
b

d

)
=

(
as + bu

cs + du

)
,

whence we conclude that the matrix of L ◦ L′ is

[
ar + bt as + bu

cr + dt cs + du

]
, as we wanted to shew.q

The above motivates the following definition.

49 Definition Let A =

[
a b

c d

]
and B =

[
r s

t u

]
be two 2× 2 matrices, and λ ∈ R be a scalar. We define

matrix addition as

A + B =

[
a b

c d

]
+

[
r s

t u

]
=

[
a + r b + s

c + t d + u

]
.

We define matrix multiplication as

AB =

[
a b

c d

] [
r s

t u

]
=

[
ar + bt as + bu

cr + dt cs + du

]
.

We define scalar multiplication of a matrix as

λA = λ

[
a b

c d

]
=

[
λa λb

λc λd

]
.

+ Since the composition of functions is not necessarily commutative, neither is matrix multiplication.
Since the composition of functions is associative, so is matrix multiplication.

50 Example Let

M =

[
1 −1
0 1

]
, N =

[
1 2

−2 1

]
.

Then

M + N =

[
2 1

−2 2

]
, 2M =

[
2 −2
0 2

]
, MN =

[
3 1

−2 1

]
.

51 Example Find a 2× 2 matrix that will transform the square in figure 1.28 into the parallelogram in
figure 1.29. Assume in each case that the vertices of the figures are lattice points, that is, coordinate
points with integer coordinates.

Solution: ▶ Let

[
a b

c d

]
be the desired matrix. Then since

[
a b

c d

] [
0

0

]
=

[
0

0

]
,
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the point

(
0

0

)
is a fortiori, transformed to itself. We now assume, without loss of generality,

that each vertex of the square is transformed in the same order, counterclockwise, to each
vertex of the rectangle. Then[

a b

c d

] [
1

0

]
=

[
2

2

]
=⇒

[
a

c

]
=

[
2

2

]
=⇒ a = c = 2.

Using these values,[
a b

c d

] [
1

1

]
=

[
1

3

]
=⇒

[
a + b

c + d

]
=

[
1

3

]
=⇒ b = −1, d = 1.

And so the desired matrix is [
2 −1
2 1

]
.

◀
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Figure 1.28: Example 51.
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Figure 1.29: Example 51.

Homework

Problem 1.4.1 If A =

ñ
1 −1
2 3

ô
, B =

ñ
a b

1 −2

ô
and

(A + B)2 = A2 + 2AB + B2,

find a and b.

Problem 1.4.2 Consider△ABC with A =

Ç
−1

2

å
, B =Ç

0

−2

å
, C =

Ç
2

1

å
, as in figure 1.30. Determine the the

effects of the following scaling transformations on the
triangle: S2,1, S1,2, and S2,2.

Problem 1.4.3 Find the effects of the reflexions Rπ
2

,

Rπ
4

, R−π
2

, and R−π
4

on the triangle in figure 1.30.

Problem 1.4.4 Prove that the composition of two reflex-
ions is commutative. Prove that the composition of a

reflexion and a scaling is commutative. Prove that the
composition of a reflexion and a translation is not nec-
essarily commutative.

Problem 1.4.5 Prove that the composition of two rota-
tions on the plane Rθ and Rθ′ satisfies

Rθ ◦Rθ′ = Rθ+θ′ = Rθ′ ◦Rθ,

and so the composition of two rotations on the plane is
commutative.

Problem 1.4.6 Prove that the composition of a scaling
and a rotation is not necessarily commutative. Prove
that the composition of a rotation and a translation is
not necessarily commutative. Prove that the composi-
tion of a reflexion and a rotation is not necessarily com-
mutative.
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Problem 1.4.7 Let L : R2 → R2 and L′ : R2 → R2

be linear transformations. Prove that their composition
L ◦ L′ is also a linear transformation.

-4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

5

Figure 1.30: Problems 1.4.2, 1.4.8, and 1.4.3.

Problem 1.4.8 Find the effects of the reflexions RH ,

RV , and RO on the triangle in figure 1.30.

Problem 1.4.9 Find all matrices A ∈ M2×2(R) such
that A2 = 02

Problem 1.4.10 Find the image of the figure below
(consisting of two circles and a triangle) under the

matrix

ñ
1 1

−1 3

ô
.

0 1 2
0

1

2

Figure 1.31: Problem 1.4.10.

1.5 Determinants in two dimensions
pbkl7tWe now desire to define a way of determining areas of plane figures on the plane. It seems
reasonable to require that this area determination agrees with common formulæ of areas of plane
figures, in particular, the area of a parallelogram should be as we learn in elementary geometry and
the area of a unit square should be 1.

Ä
a

b

äÄ
c

d

ä

Figure 1.32: Area of a paral-
lelogram.

b

b

b

b

b b

bb

b

d

a c

b

Figure 1.33: (a + c)(b + d) − 2 · ab
2

− 2 · c(2b+d)
2

= ad − bc.

From figures (1.32) and (1.33), the area of a parallelogram spanned by

[
a

b

]
, and

[
c

d

]
is

D

([
a

b

]
,

[
c

d

])
= ad− bc.

This motivates the following definition.
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52 Definition The determinant of the 2× 2 matrix

[
a c

b d

]
is

det

[
a c

b d

]
= ad− bc.

Consider now a simple quadrilateral with vertices r1 = (x1, y1), r2 = (x2, y2), r3 = (x3, y3), r4 =
(x4, y4), listed in counterclockwise order, as in figure 1.34. This quadrilateral is spanned by the vectors

−−→r1r2 =

[
x2 − x1

y2 − y1

]
, −−→r1r4 =

[
x4 − x1

y4 − y1

]
,

and hence, its area is given by

A = det

[
x2 − x1 x4 − x1

y2 − y1 y4 − y1

]
= D(−→r2 −−→r1 ,−→r4 −−→r1 ).

Similarly, noticing that the quadrilateral is also spanned by

−−→r3r4 =

[
x4 − x3

y4 − y3

]
, −−→r3r2 =

[
x2 − x3

y2 − y3

]
,

its area is also given by

A = det

[
x4 − x3 x2 − x3

y4 − y3 y2 − y3

]
= D(−→r4 −−→r3 ,−→r2 −−→r3 ).

Using the properties derived in Theorem ??, we see that

A = 1
2

(
D(−→r2 −−→r1 ,−→r4 −−→r1 ) + D(−→r4 −−→r3 ,−→r2 −−→r3 )

)
= 1

2

(
D(−→r2 ,−→r4 )−D(−→r2 ,−→r1 )−D(−→r1 ,−→r4 ) + D(−→r1 ,−→r1 )

)
+1

2

(
D(−→r4 ,−→r2 )−D(−→r3 ,−→r2 )−D(−→r4 ,−→r3 ) + D(−→r3 ,−→r3 )

)
= 1

2

(
D(−→r2 ,−→r4 )−D(−→r2 ,−→r1 )−D(−→r1 ,−→r4 ))

)
+ 1

2

(
D(−→r4 ,−→r2 )−D(−→r3 ,−→r2 )−D(−→r4 ,−→r3 )

)
= 1

2

(
D(−→r1 ,−→r2 ) + D(−→r2 ,−→r3 ) + D(−→r3 ,−→r4 ) + D(−→r4 ,−→r1 )

)
.

We conclude that the area of a quadrilateral with vertices (x1, y1), (x2, y2), (x3, y3), (x4, y4), listed
in counterclockwise order is

1

2

(
det

[
x1 x2

y1 y2

]
+ det

[
x2 x3

y2 y3

]
+ det

[
x3 x4

y3 y4

]
+ det

[
x4 x1

y4 y1

])
. (1.11)

Similarly, to find the area of a triangle of vertices −→r1 = (x1, y1), −→r2 = (x2, y2), −→r3 = (x3, y3), listed
in counterclockwise order, as in figure 1.35, reflect it about one of its sides, as in figure 1.36, creating
a parallelogram. The area of the triangle is now half the area of the parallelogram, which, by virtue of
1.11, is

1

4

(
D(−→r1 ,−→r2 ) + D(−→r2 ,−→r ) + D(−→r ,−→r3 ) + D(−→r3 ,−→r1 )

)
.

This is equivalent to

1

2

(
D(−→r1 ,−→r2 ) + D(−→r2 ,−→r3 ) + D(−→r3 ,−→r1 )

)
−

1

4

(
D(−→r1 ,−→r2 )−D(−→r2 ,−→r )−D(−→r ,−→r3 ) + D(−→r3 ,−→r1 ) + 2D(−→r2 ,−→r3 )

)
.

We will prove that

D(−→r1 ,−→r2 )−D(−→r2 ,−→r )−D(−→r ,−→r3 ) + D(−→r3 ,−→r1 ) + 2D(−→r2 ,−→r3 ) = 0.
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To do this, we appeal once again to the bi-linearity properties derived in Theorem ??, and observe, that
since we have a parallelogram, −→r −−→r3 = −→r2 −−→r1 , which means −→r = −→r3 +−→r2 −−→r1 . Thus

D(−→r1 ,−→r2 )−D(−→r2 ,−→r )−D(−→r ,−→r3 ) + D(−→r3 ,−→r1 ) + 2D(−→r2 ,−→r3 ) = D(−→r1 ,−→r2 )−D(−→r2 ,−→r3 +−→r2 −−→r1 ) + 2D(−→r2 ,−→r3 )
−D(−→r3 +−→r2 −−→r1 ,−→r3 ) + D(−→r3 ,−→r1 )

= D(−→r1 ,−→r2 −−→r3 ) + D(−→r3 +−→r2 −−→r1 ,−→r2 −−→r3 )
+2D(−→r2 ,−→r3 )

= D(−→r3 +−→r2 ,−→r2 −−→r3 ) + 2D(−→r2 ,−→r3 )
= D(−→r3 ,−→r2 )−D(−→r2 ,−→r3 ) + 2D(−→r2 ,−→r3 )
= D(−→r3 ,−→r2 )−D(−→r2 ,−→r3 )
= 0,

as claimed. We have proved then that the area of a triangle, whose vertices (x1, y1), (x2, y2), (x3, y3)
are listed in counterclockwise order, is

1

2

(
det

[
x1 x2

y1 y2

]
+ det

[
x2 x3

y2 y3

]
+ det

[
x3 x1

y3 y1

])
. (1.12)

bII

b

II

b
II

b II

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

Figure 1.34: Area of a quadrilateral.

bII

b
II

bII

(x1, y1)

(x2, y2)

(x3, y3)

Figure 1.35: Area of a triangle.

bII

b
II

bII

b
II

(x1, y1)

(x2, y2)

(x3, y3)

(x, y)

Figure 1.36: Area of a triangle.

In general, we have the following theorem.

53 Theorem (Surveyor’s Theorem) Let (x1, y1), (x2, y2), . . . , (xn, yn) be the vertices of a simple (non-
crossing) polygon, listed in counterclockwise order. Then its area is given by

1

2

(
det

[
x1 x2

y1 y2

]
+ det

[
x2 x3

y2 y3

]
+ · · ·+ det

[
xn−1 xn

yn−1 yn

]
+ det

[
xn x1

yn y1

])
.

Proof: The proof is by induction on n. We have already proved the cases n = 3 and n = 4 in
(1.12) and (1.11), respectively. Consider now a simple polygon P with n vertices. If P is convex
then we may take any vertex and draw a line to the other vertices, triangulating the polygon,
creating n− 2 triangles. If P is not convex, then there must be a vertex that has a reflex angle.
A ray produced from this vertex must hit another vertex, creating a diagonal, otherwise the
polygon would have infinite area. This diagonal divides the polygon into two sub-polygons.
These two sub-polygons are either both convex or at least one is not convex. In the latter case,
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we repeat the argument, finding another diagonal and creating a new sub-polygon. Eventually,
since the number of vertices is infinite, we end up triangulating the polygon. Moreover, the
polygon can be triangulated in such a way that all triangles inherit the positive orientation of the
original polygon but each neighbouring pair of triangles have opposite orientations. Applying
(1.12) we obtain that the area is ∑

det

[
xi xj

yi yj

]
,

where the sum is over each oriented edge. Since each diagonal occurs twice, but having oppo-
site orientations, the terms

det

[
xi xj

yi yj

]
+ det

[
xj xi

yj yi

]
= 0,

disappear from the sum and we are simply left with

1

2

(
det

[
x1 x2

y1 y2

]
+ det

[
x2 x3

y2 y3

]
+ · · ·+ det

[
xn−1 xn

yn−1 yn

]
+ det

[
xn x1

yn y1

])
.

q

We may use the software Maple in order to speed up computations with vectors. Most of the

commands we will need are in the linalg package. For example, let us define two vectors, −→a =

[
1

2

]

and
−→
b =

[
2

1

]
and a matrix A :=

[
1 2

3 4

]
. Let us compute their dot product, find a unit vector in the

direction of −→a , and the angle between the vectors. (There must be either a colon or a semicolon at the
end of each statement. The result will not display if a colon is chosen.)

> with(linalg):
> a:=vector([2,1]);

a := [2, 1]
> b:=vector([1,2]);

b := [1, 2]
> normalize(a);

[
2
√
5

5
,

√
5

5
]

> dotprod(a,b);
4

> angle(a,b);

arccos

Å
4

5

ã
> A:=matrix([[1,2],[3,4]]);

A :=

[
1 2

3 4

]
> det(A);

−2

Homework
Problem 1.5.1 Find all vectors −→a ∈ R2 such that −→a ⊥ñ
−3
2

ô
and ||a|| =

√
13.

Problem 1.5.2 (Pythagorean Theorem) If −→a ⊥
−→
b ,

prove that

||−→a +
−→
b ||2 =

∣∣∣∣−→a ∣∣∣∣2 +
∣∣∣∣∣∣−→b ∣∣∣∣∣∣2.
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Problem 1.5.3 Let a, b be arbitrary real numbers.
Prove that

(a2 + b2)2 ≤ 2(a4 + b4).

Problem 1.5.4 Let −→a ,
−→
b be fixed vectors in R2. Prove

that if
∀−→v ∈ R2,−→v • −→a = −→v •

−→
b ,

then−→a =
−→
b .

Problem 1.5.5 (Polarisation Identity) Let −→u ,−→v be
vectors in R2. Prove that

−→u • −→v =
1

4

(
||−→u +−→v ||2 − ||−→u −−→v ||2

)
.

Problem 1.5.6 Consider two lines on the plane L1 and
L2 with Cartesian equations L1 : y = m1x + b1 and
L2 : y = m2x + b1, where m1 ̸= 0, m2 ̸= 0. Using
Corollary 22, prove that L1 ⊥ L2 ⇐⇒ m1m2 = −1. .

Problem 1.5.7 Find the Cartesian equation of all lines

L′ passing through

Ç
−1
2

å
and making an angle of

π

6

radians with the Cartesian line L : x + y = 1.

Problem 1.5.8 Let −→v , −→w , be vectors on the plane, with
−→w ̸= −→0 . Prove that the vector −→a = −→v −

−→v •−→w∣∣∣∣−→w ∣∣∣∣2−→w is

perpendicular to −→w .

1.6 Parametric Curves on the Plane
54 Definition Let [a; b] ⊆ R. A parametric curve representation r of a curve Γ is a function r : [a; b]→ R2,
with

r(t) =

(
x(t)

y(t)

)
,

and such that r([a; b]) = Γ. r(a) is the initial point of the curve and r(b) its terminal point. A curve is
closed if its initial point and its final point coincide. The trace of the curve r is the set of all images of r,
that is, Γ. If there exist t1 ̸= t2 such that r(t1) = r(t2) = p, then p is a multiple point of the curve. The
curve is simple if its has no multiple points. A closed curve whose only multiple points are its endpoints
is called a Jordan curve.

Figure 1.37: x = sin 2t, y =
cos 6t.

Figure 1.38: x = 2t/10 cos t,
y = 2t/10 sin t.

Figure 1.39: x =
1 − t2

1 + t2
,

y =
t − t3

1 + t2
.

Figure 1.40: x = (1 +
cos t)/2, y = (sin t)(1 +
cos t)/2.

Graphing parametric equations is a difficult art, and a theory akin to the one studied for Cartesian
equations in a first Calculus course has been developed. Our interest is not in graphing curves, but in
obtaining suitable parametrisations of simple Cartesian curves. We mention in passing however that
Maple has excellent capabilities for graphing parametric equations. For example, the commands to
graph the various curves in figures 1.37 through 1.40 follow.

> with(plots):
> plot([sin(2*t),cos(6*t),t=0..2*Pi],x=-5..5,y=-5..5);
> plot([2ˆ(t/10)*cos(t),2ˆ(t/10)*sin(t),t=-20..10],x=-5..5,y=-5..5);
> plot([(1-tˆ2)/(1+tˆ2),(t-tˆ3)/(1+tˆ2),t=-2..2],x=-5..5,y=-5..5);
> plot([(1+cos(t))/2,sin(t)*(1+cos(t))/2,t=0..2*Pi],x=-5..5,y=-5..5);
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Our main focus of attention will be the following. Given a Cartesian curve with equation f(x, y) = 0,
we wish to find suitable parametrisations for them. That is, we want to find functions x : t 7→ a(t),
y : t 7→ b(t) and an interval I such that the graphs of f(x, y) = 0 and f(a(t), b(t)) = 0, t ∈ I coincide.
These parametrisations may differ in features, according to the choice of functions and the choice of
intervals.

55 Example Consider the parabola with Cartesian equation y = x2. We will give various parametrisa-
tions for portions of this curve.

1. If x = t and y = t2, then clearly y = t2 = x2. This works for every t ∈ R, and hence the
parametrisation

x = t, y = t2, t ∈ R

works for the whole curve. Notice that as t increases, the curve is traversed from left to right.

2. If x =
√
t and y = t, then again y = t = (

√
t)2 = x2. This works only for t ≥ 0, and hence the

parametrisation
x =
√
t, y = t, t ∈ [0;+∞[

gives the half of the curve for which x ≥ 0. As t increases, the curve is traversed from left to right.

3. Similarly, if x = −
√
t and y = t, then again y = t = (−

√
t)2 = x2. This works only for t ≥ 0, and

hence the parametrisation
x = −

√
t, y = t, t ∈ [0;+∞[

gives the half of the curve for which x ≤ 0. As t increases, x decreases, and so the curve is
traversed from right to left.

4. If x = cos t and y = cos2 t, then again y = cos2 t = (cos t)2 = x2. Both x and y are periodic with
period 2π, and so this parametrisation only agrees with the curve y = x2 when −1 ≤ x ≤ 1. For
t ∈ [0;π], the cosine decreases from 1 to −1 and so the curve is traversed from right to left in this
interval.

Figure 1.41: x = t, y = t2,
t ∈ R.

Figure 1.42: x =
√

t, y = t,
t ∈ [0;+∞[.

Figure 1.43: x = −
√

t, y =
t, t ∈ [0;+∞[.

Figure 1.44: x = cos t, y =
cos2 t, t ∈ [0;π].

The identities

cos2 θ + sin2 θ = 1, tan2 θ − sec2 θ = 1, cosh2 θ − sinh2 θ = 1,

are often useful when parametrising quadratic curves.

56 Example Give two distinct parametrisations of the ellipse
(x− 1)2

4
+

(y + 2)2

9
= 1.

1. The first parametrisation must satisfy that as t traverses the values in the interval [0; 2π], one
starts at the point (3,−2), traverses the ellipse once counterclockwise, finishing at (3,−2).

2. The second parametrisation must satisfy that as t traverses the interval [0; 1], one starts at the
point (3,−2), traverses the ellipse twice clockwise, and returns to (3,−2).
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Solution: ▶ What formula do we know where a sum of two squares equals 1? We use a
trigonometric substitution, a sort of “polar coordinates.” Observe that for t ∈ [0; 2π], the point
(cos t, sin t) traverses the unit circle once, starting at (1, 0) and ending there. Put

x− 1

2
= cos t =⇒ x = 1 + 2 cos t,

and
y + 2

3
= sin t =⇒ y = −2 + 3 sin t.

Then
x = 1 + 2 cos t, y = −2 + 3 sin t, t ∈ [0; 2π]

is the desired first parametrisation.

For the second parametrisation, notice that as t traverses the interval [0; 1], (sin 4πt, cos 4πt)
traverses the unit interval twice, clockwise, but begins and ends at the point (0, 1). To begin at

the point (1, 0) we must make a shift:
(
sin

(
4πt +

π

2

)
, cos

(
4πt +

π

2

))
will start at (1, 0) and

travel clockwise twice, as t traverses [0; 1]. Hence we may take

x = 1 + 2 sin
(
4πt +

π

2

)
, y = −2 + 3 cos

(
4πt +

π

2

)
, t ∈ [0; 1]

as our parametrisation. ◀

Some classic curves can be described by mechanical means, as the curves drawn by a spirograph.
We will consider one such curve.

b

II

b
II

b

II
b

II

ϕ

b

II

θ

Figure 1.45: Construction of
the hypocycloid.

Figure 1.46: Hypocycloid
with R = 5, ρ = 1.

Figure 1.47: Hypocycloid
with R = 3, ρ = 2.

57 Example A hypocycloid is a curve traced out by a fixed point P on a circle C of radius ρ as C rolls

on the inside of a circle with centre at O and radius R. If the initial position of P is

(
R

0

)
, and θ is the

angle, measured counterclockwise, that a ray starting at O and passing through the centre of C makes
with the x-axis, shew that a parametrisation of the hypocycloid is

x = (R− ρ) cos θ + ρ cos

Å
(R− ρ)θ

ρ

ã
,
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y = (R− ρ) sin θ − ρ sin

Å
(R− ρ)θ

ρ

ã
.

Solution: ▶ Suppose that starting from θ = 0, the centre O′ of the small circle moves coun-
terclockwise inside the larger circle by an angle θ, and the point P = (x, y) moves clockwise
an angle ϕ. The arc length travelled by the centre of the small circle is (R−ρ)θ radians. At the
same time the point P has rotated ρϕ radians, and so (R− ρ)θ = ρϕ. See figure 1.45, where
O′B is parallel to the x-axis.

Let A be the projection of P on the x-axis. Then ∠OAP = ∠OPO′ =
π

2
, ∠OO′P = π − ϕ− θ,

∠POA =
π

2
− ϕ, and OP = (R− ρ) sin(π − ϕ− θ). Hence

x = (OP ) cos∠POA = (R− ρ) sin(π − ϕ− θ) cos(
π

2
− ϕ),

y = (R− ρ) sin(π − ϕ− θ) sin(
π

2
− ϕ).

Now
x = (R− ρ) sin(π − ϕ− θ) cos(

π

2
− ϕ)

= (R− ρ) sin(ϕ + θ) sinϕ

=
(R− ρ)

2
(cos θ − cos(2ϕ + θ))

= (R− ρ) cos θ −
(R− ρ)

2
(cos θ + cos(2ϕ + θ))

= (R− ρ) cos θ − (R− ρ)(cos(θ + ϕ) cosϕ).

Also, cos(θ+ϕ) = − cos(π−θ−ϕ) = −
ρ

OO′ = −
ρ

R− ρ
and cosϕ = cos

Å
(R− ρ)θ

ρ

ã
and so

x = (R− ρ) cos θ − (R− ρ)(cos(θ + ϕ) cosϕ = (R− ρ) cos θ + ρ cos

Å
(R− ρ)θ

ρ

ã
,

as required. The identity for y is proved similarly. A particular example appears in figure 1.47.
◀

b

b

b

b

b

b

d−→x

Figure 1.48: Length of a curve.

b

b

b

b

b

b

−→x + d−→x

−→x

Figure 1.49: Area enclosed by a simple closed curve

Given a curve Γ how can we find its length? The idea, as seen in figure 1.48 is to consider the
projections dx, dy at each point. The length of the vector

dr =

[
dx

dy

]
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is
||dr|| =

»
(dx)2 + (dy)2.

Hence the length of Γ is given by ∫
Γ

||dr|| =
∫
Γ

»
(dx)2 + (dy)2. (1.13)

Similarly, suppose that Γ is a simple closed curve in R2. How do we find the (oriented) area of
the region it encloses? The idea, borrowed from finding areas of polygons, is to split the region into
triangles, each of area

1

2
det

[
x x + dx

y y + dy

]
=

1

2
det

[
x dx

y dy

]
=

1

2
(xdy − ydx),

and to sum over the closed curve, obtaining a total oriented area of

1

2

∮
Γ

det

[
x dx

y dy

]
=

1

2

∮
Γ

(xdy − ydx). (1.14)

Here
∮
Γ

denotes integration around the closed curve.

Figure 1.50: Example 58. Figure 1.51: Example 59.

58 Example Let (A,B) ∈ R2, A > 0, B > 0. Find a parametrisation of the ellipse

Γ :

®
(x, y) ∈ R2 :

x2

A2
+

y2

B2
= 1

´
.

Furthermore, find an integral expression for the perimeter of this ellipse and find the area it encloses.

Solution: ▶ Consider the parametrisation Γ : [0; 2π]→ R2, with[
x

y

]
=

[
A cos t

B sin t

]
.

This is a parametrisation of the ellipse, for

x2

A2
+

y2

B2
=

A2 cos2 t

A2
+

B2 sin2 t

B2
= cos2 t + sin2 t = 1.

Notice that this parametrisation goes around once the ellipse counterclockwise. The perimeter
of the ellipse is given by ∫

Γ

∣∣∣∣d−→r ∣∣∣∣ = ∫ 2π

0

»
A2 sin2 t + B2 cos2 t dt.
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The above integral is an elliptic integral, and we do not have a closed form for it (in terms of
the elementary functions studied in Calculus I). We will have better luck with the area of the
ellipse, which is given by

1

2

∮
Γ

(xdy − ydx) =
1

2

∮
(A cos t d(B sin t)−B sin t d(A cos t))

=
1

2

∫ 2π

0

(AB cos2 t + AB sin2 t)) dt

=
1

2

∫ 2π

0

AB dt

= πAB.

.

◀

59 Example Find a parametric representation for the astroid

Γ :
¶
(x, y) ∈ R2 : x2/3 + y2/3 = 1

©
,

in figure 1.51. Find the perimeter of the astroid and the area it encloses.

Solution: ▶ Take [
x

y

]
=

[
cos3 t

sin3 t

]
with t ∈ [0; 2π]. Then

x2/3 + y2/3 = cos2 t + sin2 t = 1.

The perimeter of the astroid is∫
Γ

||dr|| =

∫ 2π

0

»
9 cos4 t sin2 t + 9 sin4 t cos2 t dt

=

∫ 2π

0

3| sin t cos t| dt

=
3

2

∫ 2π

0

| sin 2t| dt

= 6

∫ π/2

0

sin 2t dt

= 6.

The area of the astroid is given by

1

2

∮
Γ

(xdy − ydx) =
1

2

∮
(cos3 t d(sin3 t)− sin3 t d(cos3 t))

=
1

2

∫ 2π

0

(3 cos4 t sin2 t + 3 sin4 t cos2 t)) dt

=
3

2

∫ 2π

0

(sin t cos t)2 dt

=
3

8

∫ 2π

0

(sin 2t)2 dt

=
3

16

∫ 2π

0

(1− cos 4t) dt

=
3π

8
.

We can use Maple (at least version 10) to calculate the above integrals. For example, if
(x, y) = (cos3 t, sin3 t), to compute the arc length we use the path integral command and to

compute the area, we use the line integral command with the vector field

[
−y/2
x/2

]
.
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> with(Student[VectorCalculus]):
> PathInt( 1, [x,y]=Path( <(cos(t))ˆ3,(sin(t))ˆ3>,0..2*Pi));
> LineInt( VectorField(<-y/2,x/2>), Path( <(cos(t))ˆ3,(sin(t))ˆ3>,0..2*Pi));

◀

We include here for convenience, some Maple commands to compute various arc lengths and areas.

60 Example To obtain the arc length of the path in figure 1.52, we type
> with(Student[VectorCalculus]):
> PathInt(1, [x,y] = LineSegments( <0,0>, <1,1>, <1,2> ,<2,1>,<3,3>,<4,1>);
To obtain the arc length of the path in figure 1.53, we type
> with(Student[VectorCalculus]):
> PathInt(1, [x,y] = Arc( Circle( <0,0>, 3), Pi/6, Pi/5 ) ;
To obtain the area inside the curve in 1.54
> with(Student[VectorCalculus]):
> LineInt( VectorField(<-y/2,x/2>),
> Path( <(1+cos(t))*(cos(t))+1,(1+cos(t))*(sin(t))+2>,0..2*Pi));

1
2
3
4
5

1 2 3 4 5

b
b
b

b

b

b

Figure 1.52: Line Path.

1
2
3
4
5

1 2 3 4 5

b

b

b

Figure 1.53: Arc of circle of

radius 3, angle
π

6
≤ θ ≤

π

5
.

1
2
3
4
5

1 2 3 4 5

Figure 1.54: x = 1 + (1 +
cos t)(cos t), y = 2 + (1 +
cos t)(sin t).

Homework
Problem 1.6.1 A curve is represented parametrically by
x(t) = t3 − 2t, y(t) = t3 + 2t. Find its Cartesian equa-
tion.

Problem 1.6.2 Give an implicit Cartesian equation for

the parametric representation x =
t2

1 + t5
, y =

t3

1 + t5
.

Problem 1.6.3 Let a, b, c, d be strictly positive real con-
stants. In each case give an implicit Cartesian equation
for the parametric representation and describe the trace
of the parametric curve.

1. x = at + b, y = ct + d

2. x = cos t, y = 0

3. x = a cosh t, y = b sinh t

4. x = a sec t, y = b tan t, t ∈]− π

2
;
π

2
[

Problem 1.6.4 Parametrise the curve y = log cosx for
0 ≤ x ≤ π

3
. Then find its arc length.

Problem 1.6.5 Describe the trace of the parametric
curve ñ

x

y

ô
=

ñ
sin t

2 sin t + 1

ô
, t ∈ [0; 4π].

Problem 1.6.6 Consider the plane curve defined implic-
itly by

√
x +
√
y = 1. Give a suitable parametrisation

of this curve, and find its length. The graph of the curve
appears in figure 1.55.

1

−1
1−1

Figure 1.55: Problem 1.6.6.

Problem 1.6.7 Consider the graph given parametrically
by x(t) = t3 +1, y(t) = 1− t2. Find the area under the
graph, over the x axis, and between the lines x = 1 and
x = 2.
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Problem 1.6.8 Find the arc length of the curve given
parametrically by x(t) = 3t2, y(t) = 2t3 for 0 ≤ t ≤ 1.

Problem 1.6.9 Let C be the curve in R2 defined by

x(t) =
t2

2
, y(t) =

(2t + 1)3/2

3
, t ∈ [−1

2
;+

1

2
].

Find the length of this curve.

Problem 1.6.10 Find the area enclosed by the curve
x(t) = sin3 t, y(t) = (cos t)(1 + sin2 t). The curve ap-
pears in figure 1.56.

Figure 1.56: Problem 1.6.10.

Problem 1.6.11 Let C be the curve in R2 defined by

x(t) =
3t

1 + t3
, y(t) =

3t2

1 + t3
, t ∈ R \ {−1},

which you may see in figure 1.57. Find the area en-
closed by the loop of this curve.

1

−1
1−1

Figure 1.57: Problem 1.6.11.

Problem 1.6.12 Let P be a point at a distance d from
the centre of a circle of radius ρ. The curve traced out by
P as the circle rolls along a straight line, without slip-
ping, is called a cycloid. Find a parametrisation of the
cycloid.

b

b IIbII

b

II

ρ

d

θ

Figure 1.58: Cycloid

Problem 1.6.13 Find the arc length of the arc of the
cycloid x = ρ(t− cos t), y = ρ(1− cos t), t ∈ [0; 2π].

Problem 1.6.14 Find the length of the parametric curve
given by

x = et cos t, y = et sin t, t ∈ [0;π].

Problem 1.6.15 A shell strikes an airplane flying at
height h above the ground. It is known that the shell
was fired from a gun on the ground with a muzzle veloc-
ity of magnitude V , but the position of the gun and its
angle of elevation are both unknown. Deduce that the
gun is situated within a circle whose centre lies directly
below the airplane and whose radius is

V
√

V 2 − 2gh

g
.

Problem 1.6.16 The parabola y2 = −4px rolls without
slipping around the parabola y2 = 4px. Find the equa-
tion of the locus of the vertex of the rolling parabola.

1.7 Vectors in Space

61 Definition The 3-dimensional Cartesian Space is defined and denoted by

R3 = {r = (x, y, z) : x ∈ R, y ∈ R, z ∈ R} .
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Vectors in Space

In figure 1.59 we have pictured the point (2, 1, 3).

x y

z

b

Figure 1.59: A point in space.

Having oriented the z axis upwards, we have a choice for the orientation of the the x and y-axis. We
adopt a convention known as a right-handed coordinate system, as in figure 1.60. Let us explain. In
analogy to R2 we put

−→
i =

10
0

 ,
−→
j =

01
0

 ,
−→
k =

00
1

 ,

and observe that
r = (x, y, z) = x

−→
i + y

−→
j + z

−→
k .

Most of what we did in R2 transfers to R3 without major complications.

−→
j

−→
k

−→
i

−→
j

Figure 1.60: Right-handed
system.

Figure 1.61: Right Hand.

−→
j

−→
k

−→
i

−→
j

Figure 1.62: Left-handed
system.

ℓ1

ℓ2
ℓ3

Figure 1.63: ℓ1 ∥ ℓ2. ℓ1 and
ℓ3 are skew.
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62 Definition The dot product of two vectors −→a and
−→
b in R3 is

−→a •
−→
b = a1b1 + a2b2 + a3b3.

The norm of a vector −→a in R3 is∣∣∣∣−→a ∣∣∣∣ = √−→a •−→a =
»
(a1)2 + (a2)2 + (a3)2.

Just as in R2, the dot product satisfies −→a •
−→
b =

∣∣∣∣−→a ∣∣∣∣∣∣∣∣∣∣−→b ∣∣∣∣∣∣ cos θ, where θ ∈ [0;π] is the convex angle
between the two vectors.

The Cauchy-Schwarz-Bunyakovsky Inequality takes the form

|−→a •
−→
b | ≤

∣∣∣∣−→a ∣∣∣∣∣∣∣∣∣∣−→b ∣∣∣∣∣∣ =⇒ |a1b1 + a2b2 + a3b3| ≤ (a2
1 + a2

2 + a2
3)

1/2(b21 + b22 + b23)
1/2,

equality holding if an only if the vectors are parallel.

63 Example Let x, y, z be positive real numbers such that x2 + 4y2 + 9z2 = 27. Maximise x + y + z.

Solution: ▶ Since x, y, z are positive, |x + y + z| = x + y + z. By Cauchy’s Inequality,

|x+y+z| =
∣∣∣∣x + 2y

Å
1

2

ã
+ 3z

Å
1

3

ã∣∣∣∣ ≤ (x2+4y2+9z2)1/2
Å
1 +

1

4
+

1

9

ã1/2
=
√
27

Å
7

6

ã
=

7
√
3

2
.

Equality occurs if and only if x

2y

3z

 = λ

 1

1/2

1/3

 =⇒ x = λ, y =
λ

4
, z =

λ

9
=⇒ λ2 +

λ2

4
+

λ2

9
= 27 =⇒ λ = ±

18
√
3

7
.

Therefore for a maximum we take

x =
18
√
3

7
, y =

9
√
3

14
, z =

2
√
3

7
.

◀

64 Definition Let a be a point in R3 and let −→v ̸= −→0 be a vector in R3. The parametric line passing
through a in the direction of −→v is the set{

r ∈ R3 : r = a + t−→v
}
.

65 Example Find the parametric equation of the line passing through

Ü
1

2

3

ê
and

Ü
−2
−1
0

ê
.

Solution: ▶ The line follows the direction1− (−2)
2− (−1)
3− 0

 =

33
3

 .

The desired equation is Ü
x

y

z

ê
=

Ü
1

2

3

ê
+ t

33
3

 .

◀
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+ Given two lines in space, one of the following three situations might arise: (i) the lines intersect at a
point, (ii) the lines are parallel, (iii) the lines are skew (non-parallel, one over the other, without intersecting,
lying on different planes). See figure 1.63.

Consider now two non-zero vectors −→a and
−→
b in R3. If −→a ∥

−→
b , then the set

{s−→a + t
−→
b : s ∈ R, t ∈ R} = {λ−→a : λ ∈ R},

which is a line through the origin. Suppose now that−→a and
−→
b are not parallel. We saw in the preceding

chapter that if the vectors were on the plane, they would span the whole plane R2. In the case at hand
the vectors are in space, they still span a plane, passing through the origin. Thus

{s−→a + t
−→
b : s ∈ R, t ∈ R,−→a ̸∥

−→
b }

is a plane passing through the origin. We will say, abusing language, that two vectors are coplanar if
there exists bi-point representatives of the vector that lie on the same plane. We will say, again abusing
language, that a vector is parallel to a specific plane or that it lies on a specific plane if there exists a
bi-point representative of the vector that lies on the particular plane. All the above gives the following
result.

66 Theorem Let −→v ,−→w in R3 be non-parallel vectors. Then every vector −→u of the form

−→u = a−→v + b−→w ,

a, b arbitrary scalars, is coplanar with both −→v and −→w . Conversely, any vector
−→
t coplanar with both −→v

and −→w can be uniquely expressed in the form

−→
t = p−→v + q−→w .

See figure 1.64.

From the above theorem, if a vector −→a is not a linear combination of two other vectors
−→
b ,−→c , then

linear combinations of these three vectors may lie outside the plane containing
−→
b ,−→c . This prompts

the following theorem.

67 Theorem Three vectors −→a ,
−→
b ,−→c in R3 are said to be linearly independent if

α−→a + β
−→
b + γ−→c =

−→
0 =⇒ α = β = γ = 0.

Any vector in R3 can be written as a linear combination of three linearly independent vectors in R3.

A plane is determined by three non-collinear points. Suppose that a, b, and c are non-collinear

points on the same plane and that r =

Ü
x

y

z

ê
is another arbitrary point on this plane. Since a, b, and

c are non-collinear,
−→
ab and −→ac, which are coplanar, are non-parallel. Since −→ax also lies on the plane, we

have by Lemma 66, that there exist real numbers p, q with

−→ar = p
−→
ab + q−→ac.

By Chasles’ Rule,
−→r = −→a + p(

−→
b −−→a ) + q(−→c −−→a ),
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is the equation of a plane containing the three non-collinear points a, b, and c, where −→a ,
−→
b , and −→c

are the position vectors of these points. Thus we have the following theorem.

−→v
p−→v + q−→w

−→w

Figure 1.64: Theorem 66.

ax + by + cz = d

−→x

−→n =

ab
c



Figure 1.65: Theorem 69.

68 Theorem Let −→u and −→v be linearly independent vectors. The parametric equation of a plane contain-
ing the point a, and parallel to the vectors −→u and −→v is given by

−→r −−→a = p−→u + q−→v .

Componentwise this takes the form
x− a1 = pu1 + qv1,

y − a2 = pu2 + qv2,

z − a3 = pu3 + qv3.

Multiplying the first equation by u2v3−u3v2, the second by u3v1−u1v3, and the third by u1v2−u2v1,
we obtain,

(u2v3 − u3v2)(x− a1) = (u2v3 − u3v2)(pu1 + qv1),

(u3v1 − u1v3)(y − a2) = (u3v1 − u1v3)(pu2 + qv2),

(u1v2 − u2v1)(z − a3) = (u1v2 − u2v1)(pu3 + qv3).

Adding gives,

(u2v3 − u3v2)(x− a1) + (u3v1 − u1v3)(y − a2) + (u1v2 − u2v1)(z − a3) = 0.

Put
a = u2v3 − u3v2, b = u3v1 − u1v3, c = u1v2 − u2v1,

and
d = a1(u2v3 − u3v2) + a2(u3v1 − u1v3) + a3(u1v2 − u2v1).

Since −→v is linearly independent from −→u , not all of a, b, c are zero. This gives the following theorem.

69 Theorem The equation of the plane in space can be written in the form

ax + by + cz = d,

which is the Cartesian equation of the plane. Here a2 + b2 + c2 ̸= 0, that is, at least one of the

coefficients is non-zero. Moreover, the vector −→n =

ab
c

 is normal to the plane with Cartesian equation

ax + by + cz = d.
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Proof: We have already proved the first statement. For the second statement, observe that
if −→u and −→v are non-parallel vectors and −→r − −→a = p−→u + q−→v is the equation of the plane
containing the point a and parallel to the vectors −→u and −→v , then if −→n is simultaneously per-
pendicular to −→u and −→v then (−→r −−→a )•−→n = 0 for −→u •−→n = 0 = −→v •−→n . Now, since at least one
of a, b, c is non-zero, we may assume a ̸= 0. The argument is similar if one of the other letters
is non-zero and a = 0. In this case we can see that

x =
d

a
−

b

a
y −

c

a
z.

Put y = s and z = t. Then á
x−

d

a
y

z

ë
= s


−

b

a
1

0

+ t


−

c

a
0

1


is a parametric equation for the plane. We have

a

Å
−

b

a

ã
+ b (1) + c (0) = 0, a

(
−

c

a

)
+ b (0) + c (1) = 0,

and so

ab
c

 is simultaneously perpendicular to


−

b

a
1

0

 and


−

c

a
0

1

, proving the second state-

ment.q

70 Example The equation of the plane passing through the point

Ü
1

−1
2

ê
and normal to the vector

−32
4

 is

−3(x− 1) + 2(y + 1) + 4(z − 2) = 0 =⇒ −3x + 2y + 4z = 3.

71 Example Find both the parametric equation and the Cartesian equation of the plane parallel to the

vectors

11
1

 and

11
0

 and passing through the point

Ü
0

−1
2

ê
.

Solution: ▶ The desired parametric equation isÜ
x

y + 1

z − 2

ê
= s

11
1

+ t

11
0

 .

This gives
s = z − 2, t = y + 1− s = y + 1− z + 2 = y − z + 3

and
x = s + t = z − 2 + y − z + 3 = y + 1.

Hence the Cartesian equation is x− y = 1. ◀
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72 Definition If −→n is perpendicular to plane Π1 and −→n ′ is perpendicular to plane Π2, the angle between
the two planes is the angle between the two vectors −→n and −→n ′.

x y

z

Figure 1.66: The plane z =
1 − x.

x y

z

Figure 1.67: The plane z =
1 − y.

x y

z

Figure 1.68: Solid bounded
by the planes z = 1 − x and
z = 1 − y in the first octant.

73 Example

1. Draw the intersection of the plane z = 1− x with the first octant.

2. Draw the intersection of the plane z = 1− y with the first octant.

3. Find the angle between the planes z = 1− x and z = 1− y.

4. Draw the solid S which results from the intersection of the planes z = 1− x and z = 1− y with
the first octant.

5. Find the volume of the solid S .

Solution: ▶

1. This appears in figure 1.66.

2. This appears in figure 1.67.

3. The vector

10
1

 is normal to the plane x+ z = 1, and the vector

01
1

 is normal to the plane

y + z = 1. If θ is the angle between these two vectors, then

cos θ =
1 · 0 + 0 · 1 + 1 · 1
√
12 + 12 ·

√
12 + 12

=⇒ cos θ =
1

2
=⇒ θ =

π

3
.

4. This appears in figure 1.68.

5. The resulting solid is a pyramid with square base of area A = 1 · 1 = 1. Recall that the

volume of a pyramid is given by the formula V =
Ah

3
, where A is area of the base of the

pyramid and h is its height. Now, the height of this pyramid is clearly 1, and hence the

volume required is
1

3
.

◀

Homework
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Problem 1.7.1 Vectors −→a ,
−→
b satisfy

∣∣∣∣−→a ∣∣∣∣ = 13,∣∣∣∣∣∣−→b ∣∣∣∣∣∣ = 19,
∣∣∣∣∣∣−→a +

−→
b
∣∣∣∣∣∣ = 24. Find

∣∣∣∣∣∣−→a −−→b ∣∣∣∣∣∣.
Problem 1.7.2 Find the equation of the line passing

through

Ö
1

2

3

è
in the direction of

−2−1
0

.

Problem 1.7.3 Find the equation of plane containing

the point

Ö
1

1

1

è
and perpendicular to the line x =

1 + t, y = −2t, z = 1− t.

Problem 1.7.4 Find the equation of plane containing

the point

Ö
1

−1

−1

è
and containing the line x = 2y = 3z.

Problem 1.7.5 (Putnam Exam 1984) Let A be a solid
a × b × c rectangular brick in three dimensions, where
a > 0, b > 0, c > 0. Let B be the set of all points
which are at distance at most 1 from some point of A
(in particular, A ⊆ B). Express the volume of B as a
polynomial in a, b, c.

Problem 1.7.6 It is known that
∣∣∣∣−→a ∣∣∣∣ = 3,

∣∣∣∣∣∣−→b ∣∣∣∣∣∣ = 4,∣∣∣∣−→c ∣∣∣∣ = 5 and that −→a +
−→
b +−→c =

−→
0 . Find

−→a •
−→
b +

−→
b •−→c +−→c •−→a .

Problem 1.7.7 Find the equation of the line perpendic-
ular to the plane ax + a2y + a3z = 0, a ̸= 0 and

passing through the point

Ö
0

0

1

è
.

Problem 1.7.8 Find the equation of the plane perpen-
dicular to the line ax = by = cz, abc ̸= 0 and passing

through the point

Ö
1

1

1

è
in R3.

Problem 1.7.9 Find the (shortest) distance from the
point (1, 2, 3) to the plane x− y + z = 1.

Problem 1.7.10 Determine whether the lines

L1 :

Ö
x

y

z

è
=

Ö
1

1

1

è
+ t

21
1

 ,

L2 :

Ö
x

y

z

è
=

Ö
0

0

1

è
+ t

 2

−1
1

 ,

intersect. Find the angle between them.

Problem 1.7.11 Let a, b, c be arbitrary real numbers.
Prove that

(a2 + b2 + c2)2 ≤ 3(a4 + b4 + c4).

Problem 1.7.12 Let a > 0, b > 0, c > 0 be the
lengths of the sides of △ABC. (Vertex A is oppo-
site to the side measuring a, etc.) Recall that by
Heron’s Formula, the area of this triangle is S(a, b, c) =√

s(s− a)(s− b)(s− c), where s =
a + b + c

2
is the

semiperimeter of the triangle. Prove that f(a, b, c) =
S(a, b, c)

a2 + b2 + c2
is maximised when △ABC is equilateral,

and find this maximum.

Problem 1.7.13 Let x, y, z be strictly positive numbers.
Prove that

√
x + y +

√
y + z +

√
z + x√

x + y + z
≤
√
6.

Problem 1.7.14 Let x, y, z be strictly positive numbers.
Prove that

x + y + z ≤ 2

Å
x2

y + z
+

y2

z + x
+

z2

x + y

ã
.

Problem 1.7.15 Find the Cartesian equation of the

plane passing through

Ö
1

0

0

è
,

Ö
0

1

0

è
and

Ö
0

0

1

è
. Draw

this plane and its intersection with the first octant. Find

the volume of the tetrahedron with vertices at

Ö
0

0

0

è
,Ö

1

0

0

è
,

Ö
0

1

0

è
and

Ö
0

0

1

è
.

Problem 1.7.16 Prove that there do not exist three unit
vectors in R3 such that the angle between any two of

them be >
2π

3
.

Problem 1.7.17 Let (−→r −−→a )•−→n = 0 be a plane pass-
ing through the point a and perpendicular to vector −→n .
If b is not a point on the plane, then the distance from
b to the plane is ∣∣∣(−→a −−→b )•−→n

∣∣∣∣∣∣∣−→n ∣∣∣∣ .
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Problem 1.7.18 (Putnam Exam 1980) Let S be the
solid in three-dimensional space consisting of all pointsÖ

x

y

z

è
satisfying the following system of six conditions:

x ≥ 0, y ≥ 0, z ≥ 0,

x + y + z ≤ 11,

2x + 4y + 3z ≤ 36,

2x + 3z ≤ 24.

Determine the number of vertices and the number of
edges of S.

Problem 1.7.19 Given a polyhedron with n faces, con-
sider n vectors, each normal to a face of the polyhedron,
and length equal to the area of the face. Prove that the
sum of these vectors is

−→
0 .

1.8 Cross Product
We now define the standard cross product in R3 as a product satisfying the following properties.

74 Definition Let −→x ,−→y ,−→z be vectors in R3, and let α ∈ R be a scalar. The cross product × is a closed
binary operation satisfying

Ê Anti-commutativity: −→x ×−→y = −(−→y ×−→x )

Ë Bilinearity:

(−→x +−→z )×−→y = −→x ×−→y +−→z ×−→y and −→x × (−→z +−→y ) = −→x ×−→z +−→x ×−→y

Ì Scalar homogeneity: (α−→x )×−→y = −→x × (α−→y ) = α(−→x ×−→y )

Í −→x ×−→x =
−→
0

Î Right-hand Rule:
−→
i ×
−→
j =
−→
k ,
−→
j ×
−→
k =

−→
i ,
−→
k ×
−→
i =
−→
j .

It follows that the cross product is an operation that, given two non-parallel vectors on a plane,
allows us to “get out” of that plane.

75 Example Find  1

0

−3

×
01
2

 .

Solution: ▶ We have

(
−→
i − 3

−→
k )× (

−→
j + 2

−→
k ) =

−→
i ×
−→
j + 2

−→
i ×
−→
k − 3

−→
k ×
−→
j − 6

−→
k ×
−→
k

=
−→
k − 2

−→
j + 3

−→
i + 6

−→
0

= 3
−→
i − 2

−→
j +
−→
k .

Hence  1

0

−3

×
01
2

 =

 3

−2
1

 .

◀

+ The cross product of vectors in R3 is not associative, since
−→
i × (

−→
i ×
−→
j ) =

−→
i ×
−→
k = −

−→
j

but
(
−→
i ×
−→
i )×

−→
j =
−→
0 ×
−→
j =
−→
0 .
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−→x ×−→y

−→y−→x

Figure 1.69: Theorem 79.

∣∣∣∣−→x ∣∣∣∣

∣ ∣∣ ∣−→ y
∣ ∣∣ ∣

θ ∣ ∣∣ ∣−→ x∣ ∣
∣ ∣∣ ∣∣ ∣−→ y

∣ ∣∣ ∣ sin
θ

Figure 1.70: Area of a parallelogram

Operating as in example 75 we obtain

76 Theorem Let −→x =

x1

x2

x3

 and −→y =

y1

y2

y3

 be vectors in R3. Then

−→x ×−→y = (x2y3 − x3y2)
−→
i + (x3y1 − x1y3)

−→
j + (x1y2 − x2y1)

−→
k .

Proof: Since
−→
i ×
−→
i =

−→
j ×
−→
j =

−→
k ×

−→
k =

−→
0 , we only worry about the mixed products,

obtaining,

−→x ×−→y = (x1
−→
i + x2

−→
j + x3

−→
k )× (y1

−→
i + y2

−→
j + y3

−→
k )

= x1y2
−→
i ×
−→
j + x1y3

−→
i ×
−→
k + x2y1

−→
j ×
−→
i + x2y3

−→
j ×
−→
k

+x3y1
−→
k ×
−→
i + x3y2

−→
k ×
−→
j

= (x1y2 − y1x2)
−→
i ×
−→
j + (x2y3 − x3y2)

−→
j ×
−→
k + (x3y1 − x1y3)

−→
k ×
−→
i

= (x1y2 − y1x2)
−→
k + (x2y3 − x3y2)

−→
i + (x3y1 − x1y3)

−→
j ,

proving the theorem. q

Using the cross product, we may obtain a third vector simultaneously perpendicular to two other
vectors in space.

77 Theorem −→x ⊥ (−→x ×−→y ) and −→y ⊥ (−→x ×−→y ), that is, the cross product of two vectors is simultane-
ously perpendicular to both original vectors.

Proof: We will only check the first assertion, the second verification is analogous.

−→x •(−→x ×−→y ) = (x1
−→
i + x2

−→
j + x3

−→
k )•((x2y3 − x3y2)

−→
i

+(x3y1 − x1y3)
−→
j + (x1y2 − x2y1)

−→
k )

= x1x2y3 − x1x3y2 + x2x3y1 − x2x1y3 + x3x1y2 − x3x2y1

= 0,

completing the proof. q

Although the cross product is not associative, we have, however, the following theorem.

78 Theorem
−→a × (

−→
b ×−→c ) = (−→a •−→c )

−→
b − (−→a •

−→
b )−→c .

Free to photocopy and distribute 40



Chapter 1

Proof:

−→a × (
−→
b ×−→c ) = (a1

−→
i + a2

−→
j + a3

−→
k )× ((b2c3 − b3c2)

−→
i +

+(b3c1 − b1c3)
−→
j + (b1c2 − b2c1)

−→
k )

= a1(b3c1 − b1c3)
−→
k − a1(b1c2 − b2c1)

−→
j − a2(b2c3 − b3c2)

−→
k

+a2(b1c2 − b2c1)
−→
i + a3(b2c3 − b3c2)

−→
j − a3(b3c1 − b1c3)

−→
i

= (a1c1 + a2c2 + a3c3)(b1
−→
i + b2

−→
j + b3

−→
i )+

(−a1b1 − a2b2 − a3b3)(c1
−→
i + c2

−→
j + c3

−→
i )

= (−→a •−→c )
−→
b − (−→a •

−→
b )−→c ,

completing the proof. q

−→a

−→ c

−→ a
×
−→ b

−→b

b

b

b b

θ

Figure 1.71: Theorem 82.

x

y

z

b

II

b

A

b

B

b

C

b

D

b
A′

b
B′

b N
b

C′

bD′

b P

Figure 1.72: Example 83.

79 Theorem Let ̂(−→x ,−→y ) ∈ [0;π] be the convex angle between two vectors −→x and −→y . Then

||−→x ×−→y || = ||−→x ||||−→y || sin ̂(−→x ,−→y ).

Proof: We have

||−→x ×−→y ||2 = (x2y3 − x3y2)
2 + (x3y1 − x1y3)

2 + (x1y2 − x2y1)
2

= y2y2
3 − 2x2y3x3y2 + z2y2

2 + z2y2
1 − 2x3y1x1y3+

+x2y2
3 + x2y2

2 − 2x1y2x2y1 + y2y2
1

= (x2 + y2 + z2)(y2
1 + y2

2 + y2
3)− (x1y1 + x2y2 + x3y3)

2

= ||−→x ||2||−→y ||2 − (−→x •−→y )2

= ||−→x ||2||−→y ||2 − ||−→x ||2||−→y ||2 cos2 ̂(−→x ,−→y )

= ||−→x ||2||−→y ||2 sin2 ̂(−→x ,−→y ),

whence the theorem follows. q
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Theorem 79 has the following geometric significance:
∣∣∣∣−→x ×−→y ∣∣∣∣ is the area of the parallelogram

formed when the tails of the vectors are joined. See figure 1.70.
The following corollaries easily follow from Theorem 79.

80 Corollary Two non-zero vectors −→x ,−→y satisfy −→x ×−→y =
−→
0 if and only if they are parallel.

81 Corollary (Lagrange’s Identity)

||−→x ×−→y ||2 = ||x||2||y||2 − (−→x •−→y )2.

The following result mixes the dot and the cross product.

82 Theorem Let −→a ,
−→
b , −→c , be linearly independent vectors in R3. The signed volume of the paral-

lelepiped spanned by them is (−→a ×
−→
b ) • −→c .

Proof: See figure 1.71. The area of the base of the parallelepiped is the area of the paral-
lelogram determined by the vectors −→a and

−→
b , which has area

∣∣∣∣∣∣−→a ×−→b ∣∣∣∣∣∣. The altitude of the

parallelepiped is
∣∣∣∣−→c ∣∣∣∣ cos θ where θ is the angle between −→c and −→a ×

−→
b . The volume of the

parallelepiped is thus ∣∣∣∣∣∣−→a ×−→b ∣∣∣∣∣∣∣∣∣∣−→c ∣∣∣∣ cos θ = (−→a ×
−→
b ) • −→c ,

proving the theorem. q

+ Since we may have used any of the faces of the parallelepiped, it follows that

(−→a ×
−→
b ) • −→c = (

−→
b ×−→c ) • −→a = (−→c ×−→a ) •

−→
b .

In particular, it is possible to “exchange” the cross and dot products:

−→a • (
−→
b ×−→c ) = (−→a ×

−→
b ) • −→c

83 Example Consider the rectangular parallelepiped ABCDD′C′B′A′ (figure 1.72) with vertices A(2, 0, 0),
B(2, 3, 0), C(0, 3, 0), D(0, 0, 0), D′(0, 0, 1), C′(0, 3, 1), B′(2, 3, 1), A′(2, 0, 1). Let M be the midpoint of
the line segment joining the vertices B and C.

1. Find the Cartesian equation of the plane containing the points A, D′, and M .

2. Find the area of △AD′M .

3. Find the parametric equation of the line
←→
AC′.

4. Suppose that a line through M is drawn cutting the line segment [AC′] in N and the line
←−→
DD′ in

P . Find the parametric equation of
←→
MP.

Solution: ▶

1. Form the following vectors and find their cross product:

−−→
AD′ =

−20
1

 ,
−−→
AM =

−13
0

 =⇒
−−→
AD′ ×

−−→
AM =

−3−1
−6

 .

The equation of the plane is thusx− 2

y − 0

z − 0

 •
−3−1
−6

 = 0 =⇒ 3(x− 2) + 1(y) + 6z = 0 =⇒ 3x + y + 6z = 6.
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2. The area of the triangle is∣∣∣∣∣∣−−→AD′ ×
−−→
AM

∣∣∣∣∣∣
2

=
1

2

√
32 + 12 + 62 =

√
46

2
.

3. We have
−−→
AC′ =

−23
1

, and hence the line
←→
AC′ has parametric equationÜ

x

y

z

ê
=

Ü
2

0

0

ê
+ t

−23
1

 =⇒ x = 2− 2t, y = 3t, z = t.

4. Since P is on the z-axis, P =

Ü
0

0

z′

ê
for some real number z′ > 0. The parametric

equation of the line
←→
MP is thusÜ

x

y

z

ê
=

Ü
1

3

0

ê
+ s

−1−3
z′

 =⇒ x = 1− s y = 3− 3s, z = sz′.

Since N is on both
←→
MP and

←→
AC′ we must have

2− 2t = 1− s, 3t = 3− 3s, t = sz′.

Solving the first two equations gives s =
1

3
, t =

2

3
. Putting this into the third equation we

deduce z′ = 2. Thus P =

Ü
0

0

2

ê
and the desired equation isÜ

x

y

z

ê
=

Ü
1

3

0

ê
+ s

−1−3
2

 =⇒ x = 1− s, y = 3− 3s, z = 2s.

◀

Homework
Problem 1.8.1 Prove that

(−→a −
−→
b )× (−→a +

−→
b ) = 2−→a ×

−→
b .

Problem 1.8.2 Prove that−→x ×−→x =
−→
0 follows from the

anti-commutativity of the cross product.

Problem 1.8.3 If
−→
b −−→a and −→c −−→a are parallel and it

is known that −→c ×−→a =
−→
i −
−→
j and −→a ×

−→
b =

−→
j +
−→
k ,

find
−→
b ×−→c .

Problem 1.8.4 Redo example 71, that is, find the Carte-

sian equation of the plane parallel to the vectors

11
1


and

11
0

 and passing through the point (0,−1, 2), by

finding a normal to the plane.
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Problem 1.8.5 Find the equation of the plane passing
through the points (a, 0, a), (−a, 1, 0), and (0, 1, 2a) in
R3.

Problem 1.8.6 Let a ∈ R. Find a vector of unit length

simultaneously perpendicular to −→v =

 0

−a
a

 and −→w =

1a
0

.

Problem 1.8.7 (Jacobi’s Identity) Let −→a ,
−→
b , −→c be

vectors in R3. Prove that
−→a × (

−→
b ×−→c )+

−→
b × (−→c ×−→a )+−→c × (−→a ×

−→
b ) =

−→
0 .

Problem 1.8.8 Let −→x ∈ R3, ||x|| = 1. Find

||−→x ×
−→
i ||2 + ||−→x ×

−→
j ||2 + ||−→x ×

−→
k ||2.

Problem 1.8.9 The vectors −→a ,
−→
b are constant vectors.

Solve the equation
−→a × (−→x ×

−→
b ) =

−→
b × (−→x ×−→a ).

Problem 1.8.10 If −→a +
−→
b +−→c =

−→
0 , prove that

−→a ×
−→
b =

−→
b ×−→c = −→c ×−→a .

Problem 1.8.11 Assume −→a • (
−→
b ×−→c ) ̸= 0 and that

−→x = α−→a + β
−→
b + γ−→c .

Find α, β, and γ in terms of −→a • (
−→
b ×−→c ).

Problem 1.8.12 The vectors −→a ,
−→
b ,−→c are constant

vectors. Solve the system of equations

2−→x +−→y ×−→a =
−→
b , 3−→y +−→x ×−→a = −→c ,

Problem 1.8.13 Let −→a ,
−→
b ,−→c ,

−→
d be vectors in R3.

Prove the following vector identity,

(−→a ×
−→
b )•(−→c ×

−→
d ) = (−→a •−→c )(

−→
b •
−→
d )−(−→a •

−→
d )(
−→
b •−→c ).

Problem 1.8.14 Let −→a ,
−→
b , −→c ,

−→
d , be vectors in R3.

Prove that

(
−→
b ×−→c ) • (−→a ×

−→
d )

+(−→c ×−→a ) • (
−→
b ×

−→
d )

+(−→a ×
−→
b ) • (−→c ×

−→
d )

= 0.

Problem 1.8.15 Consider the plane Π passing through
the points A(6, 0, 0), B(0, 4, 0) and C(0, 0, 3), as shewn
in figure 1.73 below. The plane Π intersects a 3× 3× 3
cube, one of whose vertices is at the origin and that has
three of its edges on the coordinate axes, as in the fig-
ure. This intersection forms a pentagon CPQRS.

1. Find
−→
CA×−→CB.

2. Find
∣∣∣∣∣∣−→CA×−→CB

∣∣∣∣∣∣.
3. Find the parametric equation of the line LCA join-

ing C and A, with a parameter t ∈ R.

4. Find the parametric equation of the line LDE join-
ing D and E, with a parameter s ∈ R.

5. Find the intersection point between the lines LCA

and LDE.

6. Find the equation of the plane Π.

7. Find the area of △ABC.

8. Find the coordinates of the points P , Q, R, and S.

9. Find the area of the pentagon CPQRS.

x
y

z

P

Q R

S

A
B

C

Figure 1.73: Problem 1.8.15..

1.9 Matrices in three dimensions
We will briefly introduce 3× 3 matrices. Most of the material will flow like that for 2× 2 matrices.

84 Definition A linear transformation T : R3 → R3 is a function such that

T (a + b) = T (a) + T (b), T (λa) = λT (a),

for all points a,b in R3 and all scalars λ. Such a linear transformation has a 3×3 matrix representation
whose columns are the vectors T (i), T (j), and T (k).
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85 Example Consider L : R3 → R3, with

L

ÜÜ
x1

x2

x3

êê
=

Ü
x1 − x2 − x3

x1 + x2 + x3

x3

ê
.

Ê Prove that L is a linear transformation.

Ë Find the matrix corresponding to L under the standard basis.

Solution: ▶

Ê Let α ∈ R and let u, v be points in R3. Then

L(u + v) = L

ÜÜ
u1 + v1

u2 + v2

u3 + v3

êê
=

Ü
(u1 + v1)− (u2 + v2)− (u3 + v3)

(u1 + v1) + (u2 + v2) + (u3 + v3)

u3 + v3

ê
=

Ü
u1 − u2 − u3

u1 + u2 + u3

u3

ê
+

Ü
v1 − v2 − v3

v1 + v2 + v3

v3

ê
= L

ÜÜ
u1

u2

u3

êê
+ L

ÜÜ
v1

v2

v3

êê
= L(u) + L(v),

and also

L(αu) = L

ÜÜ
αu1

αu2

αu3

êê
=

Ü
α(u1)− α(u2)− α(u3)

α(u1) + α(u2) + α(u3)

αu3

ê
= α

Ü
u1 − u2 − u3

u1 + u2 + u3

u3

ê
= αL

ÜÜ
u1

u2

u3

êê
= αL(u),

proving that L is a linear transformation.

Ë We have L

Ü
1

0

0

ê
=

Ü
1

1

0

ê
, L

Ü
0

1

0

ê
=

Ü
−1
1

0

ê
, and L

Ü
0

0

1

ê
=

Ü
−1
1

1

ê
, whence the
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desired matrix is 1 −1 −1
1 1 1

0 0 1

 .

◀
Addition, scalar multiplication, and matrix multiplication are defined for 3 × 3 matrices in a manner
analogous to those operations for 2× 2 matrices.

86 Definition Let A,B be 3× 3 matrices. Then we define

A + B = [aij + bij], αA = [αaij], AB =

[
3∑

k=1

aikbkj

]
.

87 Example If A =

1 2 3

4 5 0

6 0 0

, and B =

a b c

a b 0

a 0 0

, then

A + B =

1 + a 2 + b 3 + c

4 + a 5 + b 0

6 + a 0 0

 , 3A =

 3 6 9

12 15 0

18 0 0

 ,

BA =

a + 4b + 6c 2a + 5b 3a

a + 4b 2a + 5b 3a

a 2a 3a

 , AB =

6a 3b c

9a 9b 4c

6a 6b 6c

 .

88 Definition A scaling matrix is one of the form

Sa,b,c =

a 0 0

0 b 0

0 0 c

 ,

where a > 0, b > 0, c > 0.

It is an easy exercise to prove that the product of two scaling matrices commutes.

89 Definition A rotation matrix about the z-axis by an angle θ in the counterclockwise sense is

Rz(θ) =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 .

A rotation matrix about the y-axis by an angle θ in the counterclockwise sense is

Ry(θ) =

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 .

A rotation matrix about the x-axis by an angle θ in the counterclockwise sense is

Rx(θ) =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 .
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Easy to find counterexamples should convince the reader that the product of two rotations in space
does not necessarily commute.

90 Definition A reflexion matrix about the x-axis is

Rx =

−1 0 0

0 1 0

0 0 1

 .

A reflexion matrix about the y-axis is

Ry =

1 0 0

0 −1 0

0 0 1

 .

A reflexion matrix about the z-axis is

Rz =

1 0 0

0 1 0

0 0 −1

 .

Homework

Problem 1.9.1 Let A =

1 0 0

1 1 0

1 1 1

. Find A2, A3 and

A4. Conjecture and, prove by induction, a general for-
mula for An.

Problem 1.9.2 Let A ∈M3×3(R) be given by

A =

1 1 1

1 1 1

1 1 1

 .

Demonstrate, using induction, that An = 3n−1A for
n ∈ N, n ≥ 1.

Problem 1.9.3 Consider the n× n matrix

A =



1 1 1 1 . . . 1 1

0 1 1 1 . . . 1 1

0 0 1 1 . . . 1 1

. . . . . .
...

...
... . . . . . .

0 0 0 0 . . . 0 1

 .

Describe A2 and A3 in terms of n.

Problem 1.9.4 Let x be a real number, and put

m(x) =


1 0 x

−x 1 −x2

2
0 0 1

 .

If a, b are real numbers, prove that

1. m(a)m(b) = m(a + b).

2. m(a)m(−a) = I3, the 3× 3 identity matrix.

1.10 Determinants in three dimensions

We now define the notion of determinant of a 3 × 3 matrix. Consider now the vectors −→a =

a1

a2

a3

,

−→
b =

b1b2
b3

, −→c =

c1c2
c3

, in R3, and the 3 × 3 matrix A =

a1 b1 c1

a2 b2 c2

a3 b3 c3

. Since thanks to Theorem 82,
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the volume of the parallelepiped spanned by these vectors is −→a • (
−→
b ×−→c ), we define the determinant

of A, detA, to be

D(−→a ,
−→
b ,−→c ) = det

a1 b1 c1

a2 b2 c2

a3 b3 c3

 = −→a • (
−→
b ×−→c ). (1.15)

We now establish that the properties of the determinant of a 3 × 3 as defined above are analogous
to those of the determinant of 2× 2 matrix defined in the preceding chapter.

91 Theorem The determinant of a 3× 3 matrix A as defined by (1.15) satisfies the following properties:

1. D is linear in each of its arguments.

2. If the parallelepiped is flat then the volume is 0, that is, if −→a ,
−→
b , −→c , are linearly dependent, then

D(−→a ,
−→
b ,−→c ) = 0.

3. D(
−→
i ,
−→
j ,
−→
k ) = 1, and accords with the right-hand rule.

Proof:

1. If D(−→a ,
−→
b ,−→c ) = −→a • (

−→
b ×−→c ), linearity of the first component follows by the distributive

law for the dot product:

D(−→a +−→a ′,
−→
b ,−→c ) = (−→a +−→a ′) • (

−→
b ×−→c )

= −→a • (
−→
b ×−→c ) +−→a ′ • (

−→
b ×−→c )

= D(−→a ,
−→
b ,−→c ) + D(−→a ′,

−→
b ,−→c ),

and if λ ∈ R,

D(λ−→a ,
−→
b ,−→c ) = (λ−→a ) • (

−→
b ×−→c ) = λ((−→a ) • (

−→
b ×−→c )) = λD(−→a ,

−→
b ,−→c ).

The linearity on the second and third component can be established by using the distribu-
tive law of the cross product. For example, for the second component we have,

D(−→a ,
−→
b +

−→
b ′,−→c ) = −→a • ((

−→
b +
−→
b ′)×−→c )

= −→a • (
−→
b ×−→c +

−→
b′ ×−→c )

= −→a • (
−→
b ×−→c ) +−→a • (

−→
b′ ×−→c )

= D(−→a ,
−→
b ,−→c ) + D(−→a ,

−→
b′ ,−→c ),

and if λ ∈ R,

D(−→a , λ
−→
b ,−→c ) = −→a • ((λ

−→
b )×−→c ) = λ(−→a • (

−→
b ×−→c )) = λD(−→a ,

−→
b ,−→c ).

2. If−→a ,
−→
b ,−→c , are linearly dependent, then they lie on the same plane and the parallelepiped

spanned by them is flat, hence,D(−→a ,
−→
b ,−→c ) = 0.

3. Since
−→
j ×
−→
k =

−→
i , and

−→
i •
−→
i = 1,

D(
−→
i ,
−→
j ,
−→
k ) =

−→
i • (
−→
j ×
−→
k ) =

−→
i •
−→
i = 1.

q
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Observe that

det

a1 b1 c1

a2 b2 c2

a3 b3 c3

 = −→a • (
−→
b ×−→c ) (1.16)

= −→a •
Ä
(b2c3 − b3c2)

−→
i + (b3c1 − b1c3)

−→
j + (b1c2 − b2c1)

−→
k
ä

(1.17)

= a1(b2c3 − b3c2) + a2(b3c1 − b1c3) + a3(b1c2 − b2c1) (1.18)

= a1 det

[
b2 c2

b3 c3

]
− a2 det

[
b1 c1

b3 c3

]
+ a3 det

[
b1 c1

b2 c2

]
, (1.19)

which reduces the computation of 3× 3 determinants to 2× 2 determinants.

92 Example Find det

1 2 3

4 5 6

7 8 9

 .

Solution: ▶ Using (1.19), we have

detA = 1det

[
5 6

8 9

]
− 4 det

[
2 3

8 9

]
+ 7det

[
2 3

5 6

]
= 1(45− 48)− 4(18− 24) + 7(12− 15)

= −3 + 24− 21

= 0.

◀

Again, we may use the Maple packages linalg, LinearAlgebra, or Student[VectorCalculus]
to perform many of the vector operations. An example follows with linalg.

> with(linalg):
> a:=vector([-2,0,1]);

a := [−2, 0, 1]
> b:=vector([-1,3,0]);

b := [−1, 3, 0]
> crossprod(a,b);

[−3,−1,−6]
> dotprod(a,b);

2
> angle(a,b);

arccos

Ç√
50

25

å
Homework

Problem 1.10.1 Prove that

det

 1 1 1

a b c

a2 b2 c2

 = (b− c)(c− a)(a− b).

Problem 1.10.2 Prove that

det

a b c

b c a

c a b

 = 3abc− a3 − b3 − c3.
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Some Solid Geometry

1.11 Some Solid Geometry
In this section we examine some examples and prove some theorems of three-dimensional geometry.

b II

b
II

b

A
b

B

b

C

b D

b
A′

b
B′

b
C′

b
D′

Figure 1.74: Example 93.

bII b II

b
II

b
II

b

II

b

II

Figure 1.75: Example 93.

93 Example Cube ABCDD′C′B′A in figure 1.74 has side of length a. M is the midpoint of edge [BB′]

and N is the midpoint of edge [B′C′]. Prove that
−−→
AD′ ∥ −−→MN and find the area of the quadrilateral

MND′A.

Solution: ▶ By the Pythagorean Theorem,
∣∣∣∣∣∣−−→AD′

∣∣∣∣∣∣ = a
√
2. Because they are diagonals that

belong to parallel faces of the cube,
−−→
AD′ ∥

−−→
BC′. Now, M and N are the midpoints of the sides

[B′B] and [B′C′] of △B′C′B, and hence
−−→
MN ∥

−−→
BC′ by example 14. The aforementioned

example also gives
∣∣∣∣∣∣−−→MN

∣∣∣∣∣∣ = 1

2

∣∣∣∣∣∣−−→AD′
∣∣∣∣∣∣ = a

√
2

2
. In consequence,

−−→
AD′ ∥

−−→
MN. This means that

the four points A,D′,M,N are all on the same plane. Hence MND′A is a trapezoid with bases

of length a
√
2 and

a
√
2

2
(figure 1.75). From the figure

∣∣∣∣∣∣−−→D′Q
∣∣∣∣∣∣ = ∣∣∣∣∣∣−→AP

∣∣∣∣∣∣ = 1

2

(∣∣∣∣∣∣−−→AD′
∣∣∣∣∣∣− ∣∣∣∣∣∣−−→MN

∣∣∣∣∣∣) =
a
√
2

4
.

Also, by the Pythagorean Theorem,

∣∣∣∣∣∣−−→D′N
∣∣∣∣∣∣ = …∣∣∣∣∣∣−−→D′C′

∣∣∣∣∣∣2 +
∣∣∣∣∣∣−−→C′N

∣∣∣∣∣∣2 =

 
a2 +

a2

4
=

a
√
5

2
.

The height of this trapezoid is thus

∣∣∣∣∣∣−→NQ
∣∣∣∣∣∣ =  5a2

4
−

a2

8
=

3a

2
√
2
.

The area of the trapezoid is finally,

3a

2
√
2
·

Ü
a
√
2 +

a
√
2

2
2

ê
=

9a2

8
.

◀

Let us prove a three-dimensional version of Thales’ Theorem.

94 Theorem (Thales’ Theorem) Of two lines are cut by three parallel planes, their corresponding seg-
ments are proportional.
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Proof: See figure 1.76. Given the lines
←→
AB and

←→
CD, we must prove that

AE

EB
=

CF

FD
.

Draw line
←→
AD cutting plane P2 in G. The plane containing points A, B, and D intersects plane

P2 in the line
←→
EG. Similarly the plane containing points A, C, and D intersects plane P2 in the

line
←→
GF. Since P2 and P3 are parallel planes,

←→
EG ∥ ←→BD, and so by Thales’ Theorem on the

plane (theorem 30),
AE

EB
=

AG

GD
.

Similarly, since P1 and P2 are parallel,
←→
AC ∥ ←→GF and

CF

FD
=

AG

GD
.

It follows that
AE

EB
=

CF

FD
,

as needed to be shewn. q

b
II

bII b
II

b II

bII b II

b
II

I

I

I

Figure 1.76: Thales’ Theorem in 3D.
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Figure 1.77: Example 95.
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Figure 1.78: Example 95.

95 Example In cube ABCDD′C′B′A′ of edge of length a, the points M and N are located on diagonals

[AB′] and [BC′] such that
−−→
MN is parallel to the face ABCD of the cube. If

∣∣∣∣∣∣−−→MN
∣∣∣∣∣∣ = √5

3

∣∣∣∣∣∣−→AB
∣∣∣∣∣∣, find

the ratios

∣∣∣∣∣∣−−→AM
∣∣∣∣∣∣∣∣∣∣∣∣−−→AB′
∣∣∣∣∣∣ and

∣∣∣∣∣∣−→BN
∣∣∣∣∣∣∣∣∣∣∣∣−−→BC′
∣∣∣∣∣∣ .

Solution: ▶ There is a unique plane parallel P to face ABCD and containing M. Since
−−→
MN

is parallel to face ABCD , P also contains N. The intersection of P with the cube produces a
lamina A′′B′′C′′D′′, as in figure 1.78.
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First notice that
∣∣∣∣∣∣−−→AB′

∣∣∣∣∣∣ = ∣∣∣∣∣∣−−→BC′
∣∣∣∣∣∣ = a

√
2. Put∣∣∣∣∣∣−−→AM

∣∣∣∣∣∣∣∣∣∣∣∣−−→AB′
∣∣∣∣∣∣ = x =⇒

∣∣∣∣∣∣−−→MB′
∣∣∣∣∣∣∣∣∣∣∣∣−−→AB′
∣∣∣∣∣∣ =

∣∣∣∣∣∣−−→AB′
∣∣∣∣∣∣− ∣∣∣∣∣∣−−→AM

∣∣∣∣∣∣∣∣∣∣∣∣−−→AB′
∣∣∣∣∣∣ = 1− x.

Now, as△B′AB ∼ △B′MB′′ and△BC′B′ ∼ △BNB′′,∣∣∣∣∣∣−−→MB′
∣∣∣∣∣∣∣∣∣∣∣∣−−→AB′
∣∣∣∣∣∣ =

∣∣∣∣∣∣−−−→B′′B′
∣∣∣∣∣∣∣∣∣∣∣∣−−→BB′
∣∣∣∣∣∣ ,

∣∣∣∣∣∣−−→MB′
∣∣∣∣∣∣∣∣∣∣∣∣−−→AB′
∣∣∣∣∣∣ =

∣∣∣∣∣∣−−−→MB′′
∣∣∣∣∣∣∣∣∣∣∣∣−→AB
∣∣∣∣∣∣ =⇒

∣∣∣∣∣∣−−−→MB′′
∣∣∣∣∣∣ = (1− x)a,

∣∣∣∣∣∣−−→BB′′
∣∣∣∣∣∣∣∣∣∣∣∣−−→BB′
∣∣∣∣∣∣ =

∣∣∣∣∣∣−−→AM
∣∣∣∣∣∣∣∣∣∣∣∣−−→AB′
∣∣∣∣∣∣ ,

∣∣∣∣∣∣−−→B′′N
∣∣∣∣∣∣∣∣∣∣∣∣−−→B′C′
∣∣∣∣∣∣ =

∣∣∣∣∣∣−−→BB′′
∣∣∣∣∣∣∣∣∣∣∣∣−−→BB′
∣∣∣∣∣∣ =⇒

∣∣∣∣∣∣−−→B′′N
∣∣∣∣∣∣ = xa.

Since
∣∣∣∣∣∣−−→MN

∣∣∣∣∣∣ = √5

3
a, by the Pythagorean Theorem,

∣∣∣∣∣∣−−→MN
∣∣∣∣∣∣2 =

∣∣∣∣∣∣−−−→MB′′
∣∣∣∣∣∣2 +

∣∣∣∣∣∣−−→B′′N
∣∣∣∣∣∣2 =⇒

5

9
a2 = (1− x)2a2 + x2a2 =⇒ x ∈

ß
1

3
,
2

3

™
.

There are two possible positions for the segment, giving the solutions∣∣∣∣∣∣−−→AM
∣∣∣∣∣∣∣∣∣∣∣∣−−→AB′
∣∣∣∣∣∣ =

∣∣∣∣∣∣−→BN
∣∣∣∣∣∣∣∣∣∣∣∣−−→BC′
∣∣∣∣∣∣ = 1

3
,

∣∣∣∣∣∣−−→AM
∣∣∣∣∣∣∣∣∣∣∣∣−−→AB′
∣∣∣∣∣∣ =

∣∣∣∣∣∣−→BN
∣∣∣∣∣∣∣∣∣∣∣∣−−→BC′
∣∣∣∣∣∣ = 2

3
.

◀

Homework
Problem 1.11.1 In a regular tetrahedron with vertices

A,B,C,D and with
∣∣∣∣∣∣−→AB

∣∣∣∣∣∣ = a, points M and N are

the midpoints of the edges [AB] and [CD], respectively.

1. Find the length of the segment [MN ].

2. Find the angle between the lines [MN ] and [BC].

3. Prove that
−−→
MN ⊥ −→AB and

−−→
MN ⊥ −→CD.

Problem 1.11.2 In a tetrahedron ABCD,
∣∣∣∣∣∣−→AB

∣∣∣∣∣∣ =∣∣∣∣∣∣−→BC
∣∣∣∣∣∣, ∣∣∣∣∣∣−→AD

∣∣∣∣∣∣ = ∣∣∣∣∣∣−→DC
∣∣∣∣∣∣. Prove that

−→
AC ⊥ −→BD.

Problem 1.11.3 In cube ABCDD′C′B′A′ of edge of
length a, find the distance between the lines that con-
tain the diagonals [A′B] and [AC].

1.12 Cavalieri, and the Pappus-Guldin Rules
96 Theorem (Cavalieri’s Principle) All planar regions with cross sections of proportional length at the
same height have area in the same proportion. All solids with cross sections of proportional areas at
the same height have their volume in the same proportion.

Proof: We only provide the proof for the second statement, as the proof for the first is similar.
Cut any two such solids by horizontal planes that produce cross sections of area A(x) and
cA(x), where c > 0 is the constant of proportionality, at an arbitrary height x above a fixed

base. From elementary calculus, we know that
∫ x2

x1

A(x)dx and
∫ x2

x1

cA(x)dx give the volume

of the portion of each solid cut by all horizontal planes as x runs over some interval [x1;x2].

As
∫ x2

x1

A(x)dx = c

∫ x2

x1

A(x)dx the corresponding volumes must also be proportional. q
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97 Example Use Cavalieri’s Principle in order to deduce that the area enclosed by the ellipse with

equation
x2

a2
+

y2

b
= 1, a > 0, b > 0, is πab.

Solution: ▶ Consider the circle with equation x2 + y2 = a2, as in figure 1.79. Then, for
y > 0,

y =
√
a2 − x2, y =

b

a

√
a2 − x2.

The corresponding ordinate for the ellipse and the circle are proportional, and hence, the corre-
sponding chords for the ellipse and the circle will be proportional. By Cavalieri’s first principle,

Area of the ellipse =
b

a
Area of the circle

=
b

a
πa2

= πab.

◀

b b

b

b

Figure 1.79: Ellipse and circle.

b

b b

b b

b b

a

x

x

a

Figure 1.80: Punctured cylinder.

bb b

b b

x

a

r

a

Figure 1.81: Hemisphere.

98 Example Use Cavalieri’s Principle in order to deduce that the volume of a sphere with radius a is
4

3
πa3.

Solution: ▶ The following method is due to Archimedes, who was so proud of it that he
wanted a sphere inscribed in a cylinder on his tombstone. We need to recall that the volume of

a right circular cone with base radius a and height h is
πa2h

3
.

Consider a hemisphere of radius a, as in figure 1.81. Cut a horizontal slice at height x, produc-
ing a circle of radius r. By the Pythagorean Theorem, x2 + r2 = a2, and so this circular slab
has area πr2 = π(a2 − x2). Now, consider a punctured cylinder of base radius a and height
a, as in figure 1.80, with a cone of height a and base radius a cut from it. A horizontal slab at
height x is an annular region of area πa2 − πx2, which agrees with a horizontal slab for the
sphere at the same height. By Cavalieri’s Principle,

Volume of the hemisphere = Volume of the punctured cylinder

= πa3 −
πa3

3

=
2πa3

3
.
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It follows that the volume of the sphere is 2

Ç
2πa3

3

å
=

4πa3

3
. ◀

Essentially the same method of proof as Cavalieri’s Principle gives the next result.

99 Theorem (Pappus-Guldin Rule) The area of the lateral surface of a solid of revolution is equal to the
product of the length of the generating curve on the side of the axis of revolution and the length of
the path described by the centre of gravity of the generating curve under a full revolution. The volume
of a solid of revolution is equal to the product of the area of the generating plane on one side of the
revolution axis and the length of the path described by the centre of gravity of the area under a full
revolution about the axis.

b

b

b

R
r

Figure 1.82: A torus.

100 Example Since the centre of gravity of a circle is at its centre, by the Pappus-Guldin Rule, the
surface area of the torus with the generating circle having radius r, and radius of gyration R (as in
figure 1.82) is (2πr)(2πR) = 4π2rR. Also, the volume of the solid torus is (πr2)(2πR) = 2π2r2R.

Homework
Problem 1.12.1 Use the Pappus-Guldin Rule to find
the lateral area and the volume of a right circular cone

with base radius r and height h.

1.13 Dihedral Angles and Platonic Solids
101 Definition When two half planes intersect in space they intersect on a line. The portion of space
bounded by the half planes and the line is called the dihedral angle. The intersecting line is called the
edge of the dihedral angle and each of the two half planes of the dihedral angle is called a face. See
figure 1.83.

Figure 1.83: Dihedral Angles. Figure 1.84: Rectilinear of a Dihedral Angle.
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102 Definition The rectilinear angle of a dihedral angle is the angle whose sides are perpendicular to the
edge of the dihedral angle at the same point, each on each of the faces. See figure 1.84.

All the rectilinear angles of a dihedral angle measure the same. Hence the measure of a dihedral
angle is the measure of any one of its rectilinear angles.

In analogy to dihedral angles we now define polyhedral angles.

103 Definition The opening of three or more planes that meet at a common point is called a polyhedral
angle or solid angle. In the particular case of three planes, we use the term trihedral angle. The common
point is called the vertex of the polyhedral angle. Each of the intersecting lines of two consecutive planes
is called an edge of the polyhedral angle. The portion of the planes lying between consecutive edges are
called the faces of the polyhedral angle. The angles formed by adjacent edges are called face angles. A
polyhedral angle is said to be convex if the section made by a plane cutting all its edges forms a convex
polygon.

In the trihedral angle of figure 1.85, V is the vertex,△V AB,△V BC,△V CA are faces. Also, notice
that in any polyhedral angle, any two adjacent faces form a dihedral angle.

b
II

b
II

b II
b

II

b
II

b

II b

II

b

II

b

II

Figure 1.85: Trihedral Angle.

b
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b
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b II

b
II

b
II

Figure 1.86: Polyhedral Angle.

b
II

b

AkAk

b

Ak−1Ak−1b

Ak+1Ak+1

Figure 1.87: A, Ak, Ak+1 are three
consecutive vertices.

104 Theorem The sum of any two face angles of a trihedral angle is greater than the third face angle.

Proof: Consider figure 1.85. If ∠ZV X is smaller or equal to in size than either ∠XV Y or
Y V Z, then we are done, so assume that, say, ∠ZV X > XV Y . We must demonstrate that

∠XV Y + ∠Y V Z > ∠ZV X.

Since we are assuming that ∠ZV X > XV Y , we may draw, in ∠XV Y the line segment [V W ]
such that ∠XV W = ∠XV Y .

Through any point D of the segment [V W ], draw△ADC on the plane P containing the points
V , X, Z. Take the point B ∈ [V Y ] so that V D = V B. Consider now the plane containing the
line segment [AC] and the point B. Observe that △AV D ∼= AV B. Hence AD = AB. Now,
by the triangle inequality in △ABC, AB + BC > CA. This implies that ∠BV C > ∠DV C.
Hence

∠AV B + ∠BV C = ∠AV D + ∠BV C

> ∠AV D + ∠DV C

= ∠AV C,

which proves that ∠XV Y + ∠Y V Z > ∠ZV X, as wanted. q
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105 Theorem The sum of the face angles of any convex polyhedral angle is less than 2π radians.

Proof: Let the polyhedral angle have n faces and vertex V . Let the faces be cut by a plane,
intersecting the edges at the points A1, A2, . . .An, say. An illustration can be seen in figure
1.86, where for convenience, we have depicted only five edges. Observe that the polygon
A1A2 · · ·An is convex and that the sum of its interior angles is π(n − 2). We would like to
prove that

∠A1V A2 + ∠A2V A3 + ∠A3V A4 + · · ·+ ∠An−1V An + ∠AnV A1 < 2π.

Now, let Ak−1, Ak, Ak+1 be three consecutive vertices of of the polygon A1A2 · · ·An. This nota-
tion means that Ak−1AkAk+1 represents any of the n triplets A1A2A3, A2A3A4, A3A4A5, . . . ,
An−2An−1An, An−1AnA1, AnA1A2, that is, we let A0 = An, An+1 = A1, An+2 = A2, etc.
Consider the trihedral angle with vertex Ak and whose face angles at Ak are ∠Ak−1AkAk+1,
∠V AkAk−1, and ∠V AkAk+1, as in figure 1.87. Observe that as k ranges from 1 through n,
the sum ∑

1≤k≤n

∠Ak−1AkAk+1 = π(n− 2),

being the sum of the interior angles of the polygon A1A2 · · ·An. By Theorem 104,

∠V AkAk−1 + ∠V AkAk+1 > ∠Ak−1AkAk+1.

Thus ∑
1≤k≤n

V AkAk−1 + ∠V AkAk+1 >
∑

1≤k≤n

∠Ak−1AkAk+1 = π(n− 2).

Also, ∑
1≤k≤n

V AkAk+1 + ∠V Ak+1Ak + ∠AkV Ak+1 = πn,

since this is summing the sum of the angles of the n triangles of the faces. But clearly∑
1≤k≤n

V AkAk+1 =
∑

1≤k≤n

∠V Ak+1Ak,

since one sum adds the angles in one direction and the other in the opposite direction. For the
same reason, ∑

1≤k≤n

V AkAk−1 =
∑

1≤k≤n

∠V AkAk+1.

Hence ∑
1≤k≤n

∠AkV Ak+1 = πn−
∑

1≤k≤n

(V AkAk+1 + ∠V Ak+1Ak)

= πn−
∑

1≤k≤n

(V AkAk+1 + ∠V AkAk−1)

< πn− π(n− 2)

= 2π,

as we needed to shew. q

106 Definition A Platonic solid is a polyhedron having congruent regular polygon as faces and having
the same number of edges meeting at each corner.

Suppose a regular polygon with n ≥ 3 sides is a face of a platonic solid with m ≥ 3 faces meeting at a

corner. Since each interior angle of this polygon measures
π(n− 2)

n
, we must have in view of Theorem

105,

m

Å
π(n− 2)

n

ã
< 2π =⇒ m(n− 2) < 2n =⇒ (m− 2)(n− 2) < 4.
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Since n ≥ 3 and m ≥ 3, the above inequality only holds for five pairs (n,m). Appealing to Euler’s
Formula for polyhedrons, which states that V +F = E+2, where V is the number of vertices, F is the
number of faces, and E is the number of edges of a polyhedron, we obtain the values in the following
table.

m n S E F Name of regular Polyhedron.

3 3 4 6 4 Tetrahedron or regular Pyramid.

4 3 8 12 6 Hexahedron or Cube.

3 4 6 12 8 Octahedron.

5 3 20 30 12 Dodecahedron.

3 5 12 30 20 Icosahedron.

Thus there are at most five Platonic solids. That there are exactly five can be seen by explicit
construction. Figures 1.88 through 1.92 depict the Platonic solids.

Figure 1.88: Tetrahe-
dron.

Figure 1.89: Cube or
hexahedron.

Figure 1.90: Octahe-
dron. Figure 1.91: Dodeca-

hedron
Figure 1.92: Icosahe-
dron.

1.14 Spherical Trigonometry
Consider a point B(x, y, z) in Cartesian coordinates. From O(0, 0, 0) we draw a straight line to
B(x, y, z), and let its distance be ρ. We measure its inclination from the positive z-axis, let us say
it is an angle of ϕ, ϕ ∈ [0;π] radians, as in figure 1.93. Observe that z = ρ cosϕ. We now project
the line segment [OB] onto the xy-plane in order to find the polar coordinates of x and y. Let θ be
angle that this projection makes with the positive x-axis. Since OP = ρ sinϕ we find x = ρ cos θ sinϕ,
y = ρ sin θ sinϕ.

107 Definition Given a point (x, y, z) in Cartesian coordinates, its spherical coordinates are given by

x = ρ cos θ sinϕ, y = ρ sin θ sinϕ, z = ρ cosϕ.

Here ϕ is the polar angle, measured from the positive z-axis, and θ is the azimuthal angle, measured
from the positive x-axis. By convention, 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π.

Spherical coordinates are extremely useful when considering regions which are symmetric about a
point.

108 Definition If a plane intersects with a sphere, the intersection will be a circle. If this circle contains
the centre of the sphere, we call it a great circle. Otherwise we talk of a small circle. The axis of any
circle on a sphere is the diameter of the sphere which is normal to the plane containing the circle. The
endpoints of such a diameter are called the poles of the circle.
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+ The radius of a great circle is the radius of the sphere. The poles of a great circle are equally distant
from the plane of the circle, but this is not the case in a small circle. By the pole of a small circle, we mean
the closest pole to the plane containing the circle. A pole of a circle is equidistant from every point of the
circumference of the circle.

109 Definition Given the centre of the sphere, and any two points of the surface of the sphere, a plane
can be drawn. This plane will be unique if and only if the points are not diametrically opposite. In the
case where the two points are not diametrically opposite, the great circle formed is split into a larger
and a smaller arc by the two points. We call the smaller arc the geodesic joining the two points. If the
two points are diametrically opposite then every plane containing the line forms with the sphere a great
circle, and the arcs formed are then of equal length. In this case we take any such arc as a geodesic.

110 Definition A spherical triangle is a triangle on the surface of a sphere all whose vertices are con-
nected by geodesics. The three arcs of great circles which form a spherical triangle are called the sides
of the spherical triangle; the angles formed by the arcs at the points where they meet are called the
angles of the spherical triangle.

b II

b

II

ϕ

θ

ρ

ρ
sin

ϕ

ρ
c
o
s
ϕ

Figure 1.93: Spherical Coordinates.

If A, B, C are the vertices of a spherical triangle, it is customary to label the opposite arcs with the
same letter name, but in lowercase.

+ A spherical triangle has then six angles: three vertex angles ∠A, ∠B, ∠C, and three arc angles,
∠a, ∠b, ∠c. Observe that if O is the centre of the sphere then

∠a = ∠
Ä−→
OB,
−→
OC
ä
, ∠b = ∠

Ä−→
OC,
−→
OA
ä
, ∠c = ∠

Ä−→
OA,
−→
OB
ä
,

and

∠A = ∠
Ä−→
OA×−→OB,

−→
OA×−→OC

ä
, ∠B = ∠

Ä−→
OB×−→OC,

−→
OB×−→OA

ä
, ∠C = ∠

Ä−→
OC×−→OA,

−→
OC×−→OB

ä
.

111 Theorem Let △ABC be a spherical triangle. Then

cos a cos b + sin a sin b cosC = cos c.
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Proof: Consider a spherical triangle ABC with A(x1, y1, z1), B(x2, y2, z2), and let O be the
centre and ρ be the radius of the sphere. In spherical coordinates this is, say,

z1 = ρ cos θ1, x1 = ρ sin θ1 cosϕ1, y1 = ρ sin θ1 sinϕ1,

z2 = ρ cos θ2, x2 = ρ sin θ2 cosϕ2, y2 = ρ sin θ2 sinϕ2;

By a rotation we may assume that the z-axis passes through C. Then the following quantities
give the square of the distance of the line segment [AB]:

(x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2, ρ2 + ρ2 − 2ρ2 cos∠ (AOB) .

Since x2
1 + y2

1 + z2
1 = ρ2, x2

2 + y2
2 + z2

2 = ρ2, we gather that

x1x2 + y1y2 + z1z2 = ρ2 cos∠ (AOB) .

Therefore we obtain

cos θ2 cos θ1 + sin θ2 sin θ1 cos(ϕ1 − ϕ2) = cos∠ (AOB) ,

that is,
cos a cos b + sin a sin b cosC = cos c.

q

Figure 1.94: Theorem 112.

112 Theorem Let I be the dihedral angle of two adjacent faces of a regular polyhedron. Then

sin
I

2
=

cos π
n

sin π
m

.

Proof: See figure 1.94. Let AB be the edge common to the two adjacent faces, C and D the
centres of the faces; bisect AB at E, and join CE and DE; CE and DE will be perpendicular
to AB, and the angle CED is the angle of inclination of the two adjacent faces; we shall denote
it by I. In the plane containing CE and DE draw CO and DO at right angles to CE and DE
respectively, and meeting at O; about O as centre describe a sphere meeting OA, OC, OE at
a, c, e respectively, so that cae forms a spherical triangle. Since AB is perpendicular to CE
and DE, it is perpendicular to the plane CED, therefore the plane AOB which contains AB is
perpendicular to the plane CED; hence the angle cea of the spherical triangle is a right angle.
Let m be the number of sides in each face of the polyhedron, n the number of the plane angles

which form each solid angle. Then the angle ace = ACE =
2π

2m
=

π

m
; and the angle cae is

half one of the n equal angles formed on the sphere round a, that is, cae =
2π

2n
=

π

n
. From the

right-angled triangle cae
cos cae = cos cOe sin ace,

that is cos
π

n
= cos

Å
π

2
−

I

2

ã
sin

π

m
;

therefore sin
I

2
=

cos
π

n

sin
π

m

.

q
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113 Theorem Let r and R be, respectively, the radii of the inscribed and circumscribed spheres of a
regular polyhedron. Then

r =
a

2
cot

π

m
tan

I

2
, R =

a

2
tan

I

2
tan

π

n
.

Here a is the length of any edge of the polyhedron, and I is the dihedral angle of any two faces.

Proof: Let the edge AB = a, let OC = r and OA = R, so that r is the radius of the inscribed
sphere, and R is the radius of the circumscribed sphere. Then

CE = AE cotACE =
a

2
cot

π

m
,

r = CE tanCEO = CE tan
I

2
=

a

2
cot

π

m
tan

I

2
;

also r = R cos aOc = R cot eca cot eac = R cot
π

m
cot

π

n
;

therefore R = r tan
π

m
tan

π

n
=

a

2
tan

I

2
tan

π

n
.

q

From the above formulæ we now easily find that the volume of the pyramid which has one face of the

polyhedron for base and O for vertex is
r

3
�
ma2

4
cot

π

m
, and therefore the volume of the polyhedron is

mFra2

12
cot

π

m
.

Furthermore, the area of one face of the polyhedron is
ma2

4
cot

π

m
, and therefore the surface area of

the polyhedron is
mFa2

4
cot

π

m
.

Homework
Problem 1.14.1 The four vertices of a regular tetrahe-
dron are

V1 =

Ö
1

0

0

è
, V2 =

Ö
−1/2
√
3/2

0

è
,

V3 =

Ö
−1/2
−
√
3/2

0

è
, V4 =

Ö
0

0
√
2

è
.

What is the cosine of the dihedral angle between any
pair of faces of the tetrahedron?

Problem 1.14.2 Consider a tetrahedron whose edge

measures a. Shew that its volume is
a3
√
2

12
, its sur-

face area is a2
√
3, and that the radius of the inscribed

sphere is
a
√
6

12
.

Problem 1.14.3 Consider a cube whose edge measures
a. Shew that its volume is a3, its surface area is 6a2,
and that the radius of the inscribed sphere is

a

2
.

Problem 1.14.4 Consider an octahedron whose edge

measures a. Shew that its volume is
a3
√
2

3
, its sur-

face area is 2a2
√
3, and that the radius of the inscribed

sphere is
a
√
6

6
.

Problem 1.14.5 Consider a dodecahedron whose edge

measures a. Shew that its volume is
a3

4

Ä
15 + 7

√
5
ä
,

its surface area is 3a2

»
25 + 10

√
5, and that the radius

of the inscribed sphere is
a

4

 
10 + 22

…
1

5
.

Problem 1.14.6 Consider an icosahedron whose edge

measures a. Shew that its volume is
5a3

12

Ä
3 +
√
5
ä
, its
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surface area is 5a2
√
3, and that the radius of the in- scribed sphere is

a

12

Ä
5
√
3 +
√
15
ä
.

1.15 Canonical Surfaces
In this section we consider various surfaces that we shall periodically encounter in subsequent sec-
tions. Just like in one-variable Calculus it is important to identify the equation and the shape of a
line, a parabola, a circle, etc., it will become important for us to be able to identify certain families of
often-occurring surfaces. We shall explore both their Cartesian and their parametric form. We remark
that in order to parametrise curves (“one-dimensional entities”) we needed one parameter, and that in
order to parametrise surfaces we shall need to parameters.

Let us start with the plane. Recall that if a, b, c are real numbers, not all zero, then the Cartesian

equation of a plane with normal vector

ab
c

 and passing through the point (x0, y0, z0) is

a(x− x0) + b(y − y0) + c(z − z0) = 0.

If we know that the vectors −→u and −→v are on the plane (parallel to the plane) then with the parameters
p, qthe equation of the plane is

x− x0 = pu1 + qv1,

y − y0 = pu2 + qv2,

z − z0 = pu3 + qv3.

114 Definition A surface S consisting of all lines parallel to a given line ∆ and passing through a given
curve Γ is called a cylinder. The line ∆ is called the directrix of the cylinder.

+ To recognise whether a given surface is a cylinder we look at its Cartesian equation. If it is of the
form f(A,B) = 0, where A,B are secant planes, then the curve is a cylinder. Under these conditions,
the lines generating S will be parallel to the line of equation A = 0, B = 0. In practice, if one of the
variables x, y, or z is missing, then the surface is a cylinder, whose directrix will be the axis of the
missing coordinate.

x y

z

Figure 1.95: Circular cylinder x2 + y2 = 1.

x y

z

Figure 1.96: The parabolic cylinder z = y2.

115 Example Figure 1.95 shews the cylinder with Cartesian equation x2 + y2 = 1. One starts with the
circle x2 + y2 = 1 on the xy-plane and moves it up and down the z-axis. A parametrisation for this
cylinder is the following:

x = cos v, y = sin v, z = u, u ∈ R, v ∈ [0; 2π].

The Maple commands to graph this surface are:
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> with(plots):
> implicitplot3d(xˆ2+yˆ2=1,x=-1..1,y=-1..1,z=-10..10);
> plot3d([cos(s),sin(s),t],s=-10..10,t=-10..10,numpoints=5001);

The method of parametrisation utilised above for the cylinder is quite useful when doing parametri-
sations in space. We refer to it as the method of cylindrical coordinates. In general, we first find the
polar coordinates of x, y in the xy-plane, and then lift (x, y, 0) parallel to the z-axis to (x, y, z):

x = r cos θ, y = r sin θ, z = z.

See figure 1.97.

x y

z

b
(r cos θ, r sin θ, z)

θ
r

Figure 1.97: Cylindrical Coordinates.

116 Example Figure 1.96 shews the parabolic cylinder with Cartesian equation z = y2. One starts with
the parabola z = y2 on the yz-plane and moves it up and down the x-axis. A parametrisation for this
parabolic cylinder is the following:

x = u, y = v, z = v2, u ∈ R, v ∈ R.

The Maple commands to graph this surface are:
> with(plots):
> implicitplot3d(z=yˆ2,x=-10..10,y=-10..10,z=-10..10,numpoints=5001);
> plot3d([t,s,sˆ2],s=-10..10,t=-10..10,numpoints=5001,axes=boxed);

117 Example Figure 1.98 shews the hyperbolic cylinder with Cartesian equation x2−y2 = 1. One starts
with the hyperbola x2 − y2 on the xy-plane and moves it up and down the z-axis. A parametrisation
for this parabolic cylinder is the following:

x = ± cosh v, y = sinh v, z = u, u ∈ R, v ∈ R.

We need a choice of sign for each of the portions. We have used the fact that cosh2 v− sinh2 v = 1. The
Maple commands to graph this surface are:

> with(plots):
> implicitplot3d(xˆ2-yˆ2=1,x=-10..10,y=-10..10,z=-10..10,numpoints=5001);
> plot3d({[-cosh(s),sinh(s),t],[cosh(s),sinh(s),t]},
> s=-2..2,t=-10..10,numpoints=5001,axes=boxed);

118 Definition Given a point Ω ∈ R3 (called the apex) and a curve Γ (called the generating curve), the
surface S obtained by drawing rays from Ω and passing through Γ is called a cone.

+ In practice, if the Cartesian equation of a surface can be put into the form f(
A

C
,
B

C
) = 0, where

A,B,C, are planes secant at exactly one point, then the surface is a cone, and its apex is given by
A = 0, B = 0, C = 0.
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119 Example The surface in R3 implicitly given by

z2 = x2 + y2

is a cone, as its equation can be put in the form
(x
z

)2
+
(y
z

)2
− 1 = 0. Considering the planes

x = 0, y = 0, z = 0, the apex is located at (0, 0, 0). The graph is shewn in figure 1.100.

120 Definition A surface S obtained by making a curve Γ turn around a line ∆ is called a surface of
revolution. We then say that ∆ is the axis of revolution. The intersection of S with a half-plane bounded
by ∆ is called a meridian.

+ If the Cartesian equation of S can be put in the form f(A,Σ) = 0, where A is a plane and Σ is
a sphere, then the surface is of revolution. The axis of S is the line passing through the centre of Σ and
perpendicular to the plane A.

Figure 1.98: The hyperbolic cylinder
x2 − y2 = 1.

Figure 1.99: The torus. Figure 1.100: Cone
x2

a2
+

y2

b2
=

z2

c2
.

121 Example Find the equation of the surface of revolution generated by revolving the hyperbola

x2 − 4z2 = 1

about the z-axis.

Solution: ▶ Let (x, y, z) be a point on S. If this point were on the xz plane, it would be on
the hyperbola, and its distance to the axis of rotation would be |x| =

√
1 + 4z2. Anywhere

else, the distance of (x, y, z) to the axis of rotation is the same as the distance of (x, y, z) to
(0, 0, z), that is

√
x2 + y2. We must have√

x2 + y2 =
√
1 + 4z2,

which is to say
x2 + y2 − 4z2 = 1.

This surface is called a hyperboloid of one sheet. See figure 1.104. Observe that when z = 0,
x2 + y2 = 1 is a circle on the xy plane. When x = 0, y2 − 4z2 = 1 is a hyperbola on the yz
plane. When y = 0, x2 − 4z2 = 1 is a hyperbola on the xz plane.

A parametrisation for this hyperboloid is

x =
√

1 + 4u2 cos v, y =
√
1 + 4u2 sin v, z = u, u ∈ R, v ∈ [0; 2π].

◀
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122 Example The circle (y − a)2 + z2 = r2, on the yz plane (a, r are positive real numbers) is revolved
around the z-axis, forming a torus T . Find the equation of this torus.

Solution: ▶ Let (x, y, z) be a point on T . If this point were on the yz plane, it would be on
the circle, and the of the distance to the axis of rotation would be y = a+sgn(y−a)

√
r2 − z2,

where sgn(t) (with sgn(t) = −1 if t < 0, sgn(t) = 1 if t > 0, and sgn(0) = 0) is the sign of t.
Anywhere else, the distance from (x, y, z) to the z-axis is the distance of this point to the point
(x, y, z) :

√
x2 + y2. We must have

x2 + y2 = (a + sgn(y − a)
√

r2 − z2)2 = a2 + 2asgn(y − a)
√
r2 − z2 + r2 − z2.

Rearranging
x2 + y2 + z2 − a2 − r2 = 2asgn(y − a)

√
r2 − z2,

or
(x2 + y2 + z2 − (a2 + r2))2 = 4a2r2 − 4a2z2

since (sgn(y − a))2 = 1, (it could not be 0, why?). Rearranging again,

(x2 + y2 + z2)2 − 2(a2 + r2)(x2 + y2) + 2(a2 − r2)z2 + (a2 − r2)2 = 0.

The equation of the torus thus, is of fourth degree, and its graph appears in figure 1.99.

A parametrisation for the torus generated by revolving the circle (y− a)2 + z2 = r2 around the
z-axis is

x = a cos θ + r cos θ cosα, y = a sin θ + r sin θ cosα, z = r sinα,

with (θ, α) ∈ [−π;π]2.

◀

x y

z

Figure 1.101: Paraboloid z =
x2

a2
+

y2

b2
.

x y

z

Figure 1.102: Hyperbolic

paraboloid z =
x2

a2
−

y2

b2

x y

z

Figure 1.103: Two-sheet hy-

perboloid
z2

c2
=

x2

a2
+

y2

b2
+1.

123 Example The surface z = x2 +y2 is called an elliptic paraboloid. The equation clearly requires that
z ≥ 0. For fixed z = c, c > 0, x2+y2 = c is a circle. When y = 0, z = x2 is a parabola on the xz plane.
When x = 0, z = y2 is a parabola on the yz plane. See figure 1.101. The following is a parametrisation
of this paraboloid:

x =
√
u cos v, y =

√
u sin v, z = u, u ∈ [0; +∞[, v ∈ [0; 2π].
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124 Example The surface z = x2 − y2 is called a hyperbolic paraboloid or saddle. If z = 0, x2 − y2 = 0
is a pair of lines in the xy plane. When y = 0, z = x2 is a parabola on the xz plane. When x = 0,
z = −y2 is a parabola on the yz plane. See figure 1.102. The following is a parametrisation of this
hyperbolic paraboloid:

x = u, y = v, z = u2 − v2, u ∈ R, v ∈ R.

125 Example The surface z2 = x2 + y2 + 1 is called an hyperboloid of two sheets. For z2 − 1 < 0,
x2 + y2 < 0 is impossible, and hence there is no graph when −1 < z < 1. When y = 0, z2 − x2 = 1
is a hyperbola on the xz plane. When x = 0, z2 − y2 = 1 is a hyperbola on the yz plane. When
z = c is a constant c > 1, then the x2 + y2 = c2 − 1 are circles. See figure 1.103. The following is a
parametrisation for the top sheet of this hyperboloid of two sheets

x = u cos v, y = u sin v, z = u2 + 1, u ∈ R, v ∈ [0; 2π]

and the following parametrises the bottom sheet,

x = u cos v, y = u sin v, z = −u2 − 1, u ∈ R, v ∈ [0; 2π],

126 Example The surface z2 = x2 + y2 − 1 is called an hyperboloid of one sheet. For x2 + y2 < 1,
z2 < 0 is impossible, and hence there is no graph when x2 + y2 < 1. When y = 0, z2 − x2 = −1 is a
hyperbola on the xz plane. When x = 0, z2 − y2 = −1 is a hyperbola on the yz plane. When z = c is
a constant, then the x2 + y2 = c2 + 1 are circles See figure 1.104. The following is a parametrisation
for this hyperboloid of one sheet

x =
√
u2 + 1 cos v, y =

√
u2 + 1 sin v, z = u, u ∈ R, v ∈ [0; 2π],

Figure 1.104: One-sheet hyperboloid
z2

c2
=

x2

a2
+

y2

b2
− 1.

Figure 1.105: Ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1.

127 Example Let a, b, c be strictly positive real numbers. The surface
x2

a2
+

y2

b2
+

z2

c2
= 1 is called an

ellipsoid. For z = 0,
x2

a2
+

y2

b2
1 is an ellipse on the xy plane.When y = 0,

x2

a2
+

z2

c2
= 1 is an ellipse

on the xz plane. When x = 0,
z2

c2
+

y2

b2
= 1 is an ellipse on the yz plane. See figure 1.105. We may

parametrise the ellipsoid using spherical coordinates:

x = a cos θ sinϕ, y = b sin θ sinϕ, z = c cosϕ, θ ∈ [0; 2π], ϕ ∈ [0;π].

Homework
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Problem 1.15.1 Find the equation of the surface
of revolution S generated by revolving the ellipse
4x2 + z2 = 1 about the z-axis.

Problem 1.15.2 Find the equation of the surface of
revolution generated by revolving the line 3x + 4y = 1
about the y-axis .

Problem 1.15.3 Describe the surface parametrised by
φ(u, v) 7→ (v cosu, v sinu, au), (u, v) ∈ (0, 2π) ×
(0, 1), a > 0.

Problem 1.15.4 Describe the surface parametrised by
φ(u, v) = (au cos v, bu sin v, u2), (u, v) ∈ (1,+∞) ×
(0, 2π), a, b > 0.

Problem 1.15.5 Consider the spherical cap defined by

S = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1, z ≥ 1/
√
2}.

Parametrise S using Cartesian, Spherical, and Cylindri-
cal coordinates.

Problem 1.15.6 Demonstrate that the surface in R3

S : ex2+y2+z2

− (x + z)e−2xz = 0,

implicitly defined, is a cylinder.

Problem 1.15.7 Shew that the surface in R3 implicitly
defined by

x4 + y4 + z4 − 4xyz(x + y + z) = 1

is a surface of revolution, and find its axis of revolution.

Problem 1.15.8 Shew that the surface S in R3 given
implicitly by the equation

1

x− y
+

1

y − z
+

1

z − x
= 1

is a cylinder and find the direction of its directrix.

Problem 1.15.9 Shew that the surface S in R3 implic-
itly defined as

xy + yz + zx + x + y + z + 1 = 0

is of revolution and find its axis.

Problem 1.15.10 Demonstrate that the surface in R3

given implicitly by

z2 − xy = 2z − 1

is a cone

Problem 1.15.11 (Putnam Exam 1970) Determine,
with proof, the radius of the largest circle which can
lie on the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1, a > b > c > 0.

Problem 1.15.12 The hyperboloid of one sheet in fig-
ure 1.106 has the property that if it is cut by planes
at z = ±2, its projection on the xy plane produces

the ellipse x2 +
y2

4
= 1, and if it is cut by a plane at

z = 0, its projection on the xy plane produces the el-
lipse 4x2 + y2 = 1. Find its equation.

x y

z

z = −2, x2 +
y2

4
= 1

z = 2, x2 +
y2

4
= 1

z = 0, 4x2 + y2 = 1

Figure 1.106: Problem 1.15.12.

1.16 Parametric Curves in Space
In analogy to curves on the plane, we now define curves in space.

128 Definition Let [a; b] ⊆ R. A parametric curve representation r of a curve Γ is a function r : [a; b] →
R3, with

r(t) =

Ü
x(t)

y(t)

z(t)

ê
,

and such that r([a; b]) = Γ. r(a) is the initial point of the curve and r(b) its terminal point. A curve is
closed if its initial point and its final point coincide. The trace of the curve r is the set of all images of
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r, that is, Γ. The length of the curve is ∫
Γ

∣∣∣∣d−→r ∣∣∣∣.

x y

z

Figure 1.107: Helix.

129 Example The trace of
r(t) =

−→
i cos t +

−→
j sin t +

−→
k t

is known as a cylindrical helix. To find the length of the helix as t traverses the interval [0; 2π], first
observe that ∣∣∣∣d−→x ∣∣∣∣ = ∣∣∣∣(sin t)2 + (− cos t)2 + 1

∣∣∣∣dt = √2dt,

and thus the length is ∫ 2π

0

√
2dt = 2π

√
2.

The Maple commands to graph this curve and to find its length are:
> with(plots):
> with(Student[VectorCalculus]):
> spacecurve([cos(t),sin(t),t],t=0..2*Pi,axes=normal);
> PathInt(1,[x,y,z]=Path(<cos(t),sin(t),t>,0..2*Pi));

130 Example Find a parametric representation for the curve resulting by the intersection of the plane
3x + y + z = 1 and the cylinder x2 + 2y2 = 1 in R3.

Solution: ▶ The projection of the intersection of the plane 3x+ y + z = 1 and the cylinder is
the ellipse x2 + 2y2 = 1, on the xy-plane. This ellipse can be parametrised as

x = cos t, y =

√
2

2
sin t, 0 ≤ t ≤ 2π.

From the equation of the plane,

z = 1− 3x− y = 1− 3 cos t−
√
2

2
sin t.

Thus we may take the parametrisation

r(t) =

x(t)y(t)

z(t)

 =


cos t√
2

2
sin t

1− 3 cos t−
√
2

2
sin t

 .
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◀

131 Example Let a, b, c be strictly positive real numbers. Consider the the region

R =
{
(x, y, z) ∈ R3 : |x| ≤ a, |y| ≤ b, z = c

}
.

A point P moves along the ellipse

x2

a2
+

y2

b2
= 1, z = c + 1

once around, and acts as a source light projecting a shadow of R onto the xy-plane. Find the area of
this shadow.

x y

z

Figure 1.108: Problem 1.16.4.

b

b
b

b

b

b
b

b

Figure 1.109: Problem 1.16.4. Figure 1.110: Problem 1.16.4.

Solution: ▶ First consider the same problem as P moves around the circle

x2 + y2 = 1, z = c + 1

and the region is R′ =
{
(x, y, z) ∈ R3 : |x| ≤ 1, |y| ≤ 1, z = c

}
.

For fixed P (u, v, c + 1) on the circle, the image of R′ (a 2 × 2 square) on the xy plane is a
(2c+ 2)× (2c+ 2) square with centre at the point Q(−cu,−cv, 0) (figure 1.109). As P moves
along the circle, Q moves along the circle with equation x2 + y2 = c2 on the xy-plane (figure
1.109), being the centre of a (2c+2)× (2c+2) square. This creates a region as in figure 1.110,
where each quarter circle has radius c, and the central square has side 2c + 2, of area

πc2 + 4(c + 1)2 + 8c(c + 1).

Resizing to a region
R =

{
(x, y, z) ∈ R3 : |x| ≤ a, |y| ≤ b, z = c

}
,

and an ellipse
x2

a2
+

y2

b2
= 1, z = c + 1

we use instead of c+ 1, a(c+ 1) (parallel to the x-axis) and b(c+ 1) (parallel to the y-axis), so
that the area shadowed is

πab(c + 1)2 + 4ab(c + 1)2 + 4abc(c + 1) = c2ab(π + 12) + 16abc + 4ab.

◀
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Homework

Problem 1.16.1 Let C be the curve in R3 defined by

x = t2, y = 4t3/2, z = 9t, t ∈ [0;+∞[.

Calculate the distance along C from (1, 4, 9) to
(16, 32, 36).

Problem 1.16.2 Consider the surfaces in R3 implicitly
defined by

z − x2 − y2 − 1 = 0, z + x2 + y2 − 3 = 0.

Describe, as vividly as possible these surfaces and their
intersection, if they at all intersect. Find a parametric
equation for the curve on which they intersect, if they at
all intersect.

Problem 1.16.3 Consider the space curve

−→r : t 7→


t4

1 + t2

t3

1 + t2

t2

1 + t2

 .

Let tk, 1 ≤ k ≤ 4 be non-zero real numbers. Prove that
−→r (t1), −→r (t2), −→r (t3), and −→r (t4) are coplanar if and
only if

1

t1
+

1

t2
+

1

t3
+

1

t4
= 0.

Problem 1.16.4 Give a parametrisation for the part of
the ellipsoid

x2 +
y2

9
+

z2

4
= 1

which lies on top of the plane x + y + z = 0.

Problem 1.16.5 Let P be the point (2, 0, 1) and con-
sider the curve C : z = y2 on the yz-plane. As a point
Q moves along C , let R be the point of intersection of
←→
PQ and the xy-plane. Graph all points R on the xy-
plane.

Problem 1.16.6 Let a be a real number parameter, and
consider the planes

P1 : ax + y + z = −a,

P2 : x− ay + az = −1.

Let l be their intersection line.

1. Find a direction vector for l.

2. As a varies through R, l describes a surface S in
R3. Let (x, y, z) be the point of intersection of this
surface and the plane z = c. Find an equation
relating x and y.

3. Find the volume bounded by the two planes, x =
0, and x = 1, and the surface S as c varies.

1.17 Multidimensional Vectors
We briefly describe space in n-dimensions. The ideas expounded earlier about the plane and space
carry almost without change.

132 Definition Rn is the n-dimensional space, the collection

Rn =



â
x1

x2

...

xn

ì
: xk ∈ R


.

133 Definition If−→a and
−→
b are two vectors in Rn their vector sum−→a +

−→
b is defined by the coordinatewise

addition

−→a +
−→
b =


a1 + b1

a2 + b2
...

an + bn

 . (1.20)
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134 Definition A real number α ∈ R will be called a scalar. If α ∈ R and −→a ∈ Rn we define scalar
multiplication of a vector and a scalar by the coordinatewise multiplication

α−→a =


αa1

αa2

...

αan

 . (1.21)

135 Definition The standard ordered basis for Rn is the collection of vectors

{−→e 1,
−→e 2, . . . ,

−→e n, }

with

−→e k =



0
...

1
...

0


(a 1 in the k slot and 0’s everywhere else). Observe that

n∑
k=1

αk
−→e k =


α1

α2

...

αn

 .

136 Definition Given vectors −→a ,
−→
b of Rn, their dot product is

−→a •
−→
b =

n∑
k=1

akbk.

We now establish one of the most useful inequalities in analysis.

137 Theorem (Cauchy-Bunyakovsky-Schwarz Inequality) Let −→x and −→y be any two vectors in Rn. Then
we have

|−→x •−→y | ≤
∣∣∣∣−→x ∣∣∣∣∣∣∣∣−→y ∣∣∣∣.

Proof: Since the norm of any vector is non-negative, we have∣∣∣∣−→x + t−→y
∣∣∣∣ ≥ 0 ⇐⇒ (−→x + t−→y )•(−→x + t−→y ) ≥ 0

⇐⇒ −→x •−→x + 2t−→x •−→y + t2−→y •−→y ≥ 0

⇐⇒
∣∣∣∣−→x ∣∣∣∣2 + 2t−→x •−→y + t2

∣∣∣∣−→y ∣∣∣∣2 ≥ 0.

This last expression is a quadratic polynomial in t which is always non-negative. As such its
discriminant must be non-positive, that is,

(2−→x •−→y )2 − 4(
∣∣∣∣−→x ∣∣∣∣2)(∣∣∣∣−→y ∣∣∣∣2) ≤ 0 ⇐⇒ |−→x •−→y | ≤

∣∣∣∣−→x ∣∣∣∣∣∣∣∣−→y ∣∣∣∣,
giving the theorem. q
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+ The above proof works not just for Rn but for any vector space (cf. below) that has an inner product.

The form of the Cauchy-Bunyakovsky-Schwarz most useful to us will be∣∣∣∣∣ n∑
k=1

xkyk

∣∣∣∣∣ ≤
(

n∑
k=1

x2
k

)1/2 ( n∑
k=1

y2
k

)1/2

, (1.22)

for real numbers xk, yk.

138 Corollary (Triangle Inequality) Let −→a and
−→
b be any two vectors in Rn. Then we have∣∣∣∣∣∣−→a +
−→
b
∣∣∣∣∣∣ ≤ ∣∣∣∣−→a ∣∣∣∣+ ∣∣∣∣∣∣−→b ∣∣∣∣∣∣.

Proof:
||−→a +

−→
b ||2 = (−→a +

−→
b )•(−→a +

−→
b )

= −→a •−→a + 2−→a •
−→
b +
−→
b •
−→
b

≤ ||−→a ||2 + 2||−→a ||||
−→
b ||+ ||

−→
b ||2

= (||−→a ||+ ||
−→
b ||)2,

from where the desired result follows. q

Again, the preceding proof is valid in any vector space that has a norm.

139 Definition Let −→x and −→y be two non-zero vectors in a vector space over the real numbers. Then the

angle ̂(−→x ,−→y ) between them is given by the relation

cos ̂(−→x ,−→y ) =
−→x •−→y∣∣∣∣−→x ∣∣∣∣∣∣∣∣−→y ∣∣∣∣ .

This expression agrees with the geometry in the case of the dot product for R2 and R3.

140 Example Assume that ak, bk, ck, k = 1, . . . , n, are positive real numbers. Shew that(
n∑

k=1

akbkck

)4

≤
(

n∑
k=1

a4
k

)(
n∑

k=1

b4k

)(
n∑

k=1

c2k

)2

.

Solution: ▶ Using CBS on
n∑

k=1

(akbk)ck once we obtain

n∑
k=1

akbkck ≤
(

n∑
k=1

a2
kb

2
k

)1/2 ( n∑
k=1

c2k

)1/2

.

Using CBS again on

(
n∑

k=1

a2
kb

2
k

)1/2

we obtain

n∑
k=1

akbkck ≤
(

n∑
k=1

a2
kb

2
k

)1/2 ( n∑
k=1

c2k

)1/2

≤
(

n∑
k=1

a4
k

)1/4 ( n∑
k=1

b4k

)1/4 ( n∑
k=1

c2k

)1/2

,

which gives the required inequality. ◀
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We now use the CBS inequality to establish another important inequality. We need some preparatory
work.

141 Lemma Let ak > 0, qk > 0, with
n∑

k=1

qk = 1. Then

lim
x→0

log

(
n∑

k=1

qka
x
k

)1/x

=
n∑

k=1

qk log ak.

Proof: Recall that log(1 + x) ∼ x as x→ 0. Thus

lim
x→0

log

(
n∑

k=1

qka
x
k

)1/x

= lim
x→0

log
(∑n

k=1 qka
x
k

)
x

= lim
x→0

∑n
k=1 qk(a

x
k − 1)

x

= lim
x→0

n∑
k=1

qk
(ax

k − 1)

x

=
n∑

k=1

qk log ak.

q

142 Theorem (Arithmetic Mean-Geometric Mean Inequality) Let ak ≥ 0. Then

n
√
a1a2 · · · an ≤

a1 + a2 + ·+ an

n
.

Proof: If bk ≥ 0, then by CBS

1

n

n∑
k=1

bk ≥
(
1

n

n∑
k=1

√
bk

)2

. (1.23)

Successive applications of (1.23) yield the monotone decreasing sequence

1

n

n∑
k=1

ak ≥
(
1

n

n∑
k=1

√
ak

)2

≥
(
1

n

n∑
k=1

4
√
ak

)4

≥ . . . ,

which by Lemma 141 has limit

exp

(
1

n

n∑
k=1

log ak

)
= n
√
a1a2 · · · an,

giving
n
√
a1a2 · · · an ≤

a1 + a2 + ·+ an

n
,

as wanted. q

143 Example For any positive integer n > 1 we have

1 · 3 · 5 · · · · (2n− 1) < nn.

For, by AMGM,

1 · 3 · 5 · · · · (2n− 1) <

Å
1 + 3 + 5 + · · ·+ (2n− 1)

n

ãn
=

Ç
n2

n

ån

= nn.

Notice that since the factors are unequal we have strict inequality.

Free to photocopy and distribute 72



Chapter 1

144 Definition Let a1 > 0, a2 > 0, . . . , an > 0. Their harmonic mean is given by

n

1

a1

+
1

a2

+ · · ·+
1

an

.

As a corollary to AMGM we obtain

145 Corollary (Harmonic Mean-Geometric Mean Inequality) Let b1 > 0, b2 > 0, . . . , bn > 0. Then

n

1

b1
+

1

b2
+ · · ·+

1

bn

≤ (b1b2 · · · bn)1/n.

Proof: This follows by putting ak =
1

bk
in Theorem 142 . For thenÅ

1

b1

1

b2
· · ·

1

bn

ã1/n
≤

1

b1
+

1

b2
+ · · ·+

1

bn
n

.

q

Combining Theorem 142 and Corollary 145, we deduce

146 Corollary (Harmonic Mean-Arithmetic Mean Inequality) Let b1 > 0, b2 > 0, . . . , bn > 0. Then

n

1

b1
+

1

b2
+ · · ·+

1

bn

≤
b1 + b2 + · · ·+ bn

n
.

147 Example Let ak > 0, and s = a1 + a2 + · · ·+ an. Prove that

n∑
k=1

s

s− ak

≥
n2

n− 1

and
n∑

k=1

ak

s− ak

≥
n

n− 1
.

Solution: ▶ Put bk =
s

s− ak

. Then

n∑
k=1

1

bk
=

n∑
k=1

s− ak

s
= n− 1

and from Corollary 146,

n

n− 1
≤

∑n
k=1

s

s− ak

n
,

from where the first inequality is proved.
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Since
s

s− ak

− 1 =
ak

s− ak

, we have

n∑
k=1

ak

s− ak

=
n∑

k=1

Å
s

s− ak

− 1

ã
=

n∑
k=1

Å
s

s− ak

ã
− n

≥
n2

n− 1
− n

=
n

n− 1
.

◀

Homework
Problem 1.17.1 The Arithmetic Mean Geometric Mean
Inequality says that if ak ≥ 0 then

(a1a2 · · · an)
1/n ≤ a1 + a2 + · · ·+ an

n
.

Equality occurs if and only if a1 = a2 = . . . = an.
In this exercise you will follow the steps of a proof by
George Pólya.

1. Prove that ∀x ∈ R, x ≤ ex−1.

2. Put
Ak =

nak

a1 + a2 + · · ·+ an
,

and Gn = a1a2 · · · an. Prove that

A1A2 · · ·An =
nnGn

(a1 + a2 + · · ·+ an)n
,

and that

A1 + A2 + · · ·+ An = n.

3. Deduce that

Gn ≤
(
a1 + a2 + · · ·+ an

n

)n

.

4. Prove the AMGM inequality by assembling the re-
sults above.

Problem 1.17.2 Demonstrate that if x1, x2, . . . , xn, are
strictly positive real numbers then

(x1 + x2 + . . . + xn)
(

1

x1
+

1

x2
+ . . . +

1

xn

)
≥ n2.

Problem 1.17.3 (USAMO 1978) Let a, b, c, d, e be real
numbers such that

a+ b+ c+ d+ e = 8, a2 + b2 + c2 + d2 + e2 = 16.

Maximise the value of e.

Problem 1.17.4 Find all positive real numbers

a1 ≤ a2 ≤ . . . ≤ an

such that

n∑
k=1

ak = 96,

n∑
k=1

a2
k = 144,

n∑
k=1

a3
k = 216.

Problem 1.17.5 Demonstrate that for integer n > 1 we
have,

n! <
(
n + 1

2

)n

.

Problem 1.17.6 Let f(x) = (a + x)5(a − x)3, x ∈
[−a; a]. Find the maximum value of de f using the AM-
GM inequality.

Problem 1.17.7 Prove that the sequence xn =
(
1 +

1

n

)n

,

n = 1, 2, . . . is strictly increasing.
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2 Differentiation

2.1 Some Topology
148 Definition Let a ∈ Rn and let ε > 0. An open ball centred at a of radius ε is the set

Bε(a) = {x ∈ Rn : ||x− a|| < ε}.

An open box is a Cartesian product of open intervals

]a1; b1[×]a2; b2[× · · ·×]an−1; bn−1[×]an; bn[,

where the ak, bk are real numbers.

b

b

(a1, a2)

ε

Figure 2.1: Open ball in R2.

b b

bb

b1 − a1

b
2
−

a
2

b

Figure 2.2: Open rectangle in R2.

x y

z

b

b

ε

(a1, a2, a3)

Figure 2.3: Open ball in R3.
x y

z

Figure 2.4: Open box in R3.
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149 Example An open ball in R is an open interval, an open ball in R2 is an open disk (see figure 2.1)
and an open ball in R3 is an open sphere (see figure 2.3). An open box in R is an open interval, an open
box in R2 is a rectangle without its boundary (see figure 2.2) and an open box in R3 is a box without its
boundary (see figure 2.4).

150 Definition A set O ⊆ Rn is said to be open if for every point belonging to it we can surround the point
by a sufficiently small open ball so that this balls lies completely within the set. That is, ∀a ∈ O ∃ε > 0
such that Bε(a) ⊆ O.

151 Example The open interval ] − 1; 1[ is open in R. The interval ] − 1; 1] is not open, however, as no
interval centred at 1 is totally contained in ]− 1; 1].

152 Example The region ]− 1; 1[×]0;+∞[ is open in R2.

153 Example The ellipsoidal region
{
(x, y) ∈ R2 : x2 + 4y2 < 4

}
is open in R2.

The reader will recognise that open boxes, open ellipsoids and their unions and finite intersections are
open sets in Rn.

154 Definition A set F ⊆ Rn is said to be closed in Rn if its complement Rn \F is open.

155 Example The closed interval [−1; 1] is closed in R, as its complement, R\[−1; 1] =]−∞;−1[∪]1;+∞[
is open in R. The interval ]− 1; 1] is neither open nor closed in R, however.

156 Example The region [−1; 1]× [0;+∞[×[0; 2] is closed in R3.

Homework
Problem 2.1.1 Determine whether the following sub-
sets of R2 are open, closed, or neither, in R2.

1. A = {(x, y) ∈ R2 : |x| < 1, |y| < 1}
2. B = {(x, y) ∈ R2 : |x| < 1, |y| ≤ 1}
3. C = {(x, y) ∈ R2 : |x| ≤ 1, |y| ≤ 1}
4. D = {(x, y) ∈ R2 : x2 ≤ y ≤ x}
5. E = {(x, y) ∈ R2 : xy > 1}
6. F = {(x, y) ∈ R2 : xy ≤ 1}
7. G = {(x, y) ∈ R2 : |y| ≤ 9, x < y2}

Problem 2.1.2 (Putnam Exam 1969) Let p(x, y) be a
polynomial with real coefficients in the real variables x
and y, defined over the entire plane R2. What are the
possibilities for the image (range) of p(x, y)?

Problem 2.1.3 (Putnam 1998) Let F be a finite collec-
tion of open disks in R2 whose union contains a set
E ⊆ R2. Shew that there is a pairwise disjoint sub-
collection Dk, k ≥ 1 in F such that

E ⊆
n∪

j=1

3Dj.

2.2 Multivariable Functions
Let A ⊆ Rn. For most of this course, our concern will be functions of the form

f : A→ Rm.

If m = 1, we say that f is a scalar field. If m ≥ 2, we say that f is a vector field.
We would like to develop a calculus analogous to the situation in R. In particular, we would like

to examine limits, continuity, differentiability, and integrability of multivariable functions. Needless to
say, the introduction of more variables greatly complicates the analysis. For example, recall that the
graph of a function f : A→ Rm, A ⊆ Rn. is the set

{(x, f(x)) : x ∈ A)} ⊆ Rn+m.
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If m + n > 3, we have an object of more than three-dimensions! In the case n = 2,m = 1, we have a
tri-dimensional surface. We will now briefly examine this case.

157 Definition Let A ⊆ R2 and let f : A → R be a function. Given c ∈ R, the level curve at z = c is the
curve resulting from the intersection of the surface z = f(x, y) and the plane z = c, if there is such a
curve.

158 Example The level curves of the surface f(x, y) = x2+y2 (an elliptic paraboloid) are the concentric
circles

x2 + y2 = c, c > 0.

Homework
Problem 2.2.1 Sketch the level curves for the following
maps.

1. (x, y) 7→ x + y

2. (x, y) 7→ xy

3. (x, y) 7→ min(|x|, |y|)
4. (x, y) 7→ x3 − x

5. (x, y) 7→ x2 + 4y2

6. (x, y) 7→ sin(x2 + y2)

7. (x, y) 7→ cos(x2 − y2)

Problem 2.2.2 Sketch the level surfaces for the follow-
ing maps.

1. (x, y, z) 7→ x + y + z

2. (x, y, z) 7→ xyz

3. (x, y, z) 7→ min(|x|, |y|, |z|)
4. (x, y, z) 7→ x2 + y2

5. (x, y, z) 7→ x2 + 4y2

6. (x, y, z) 7→ sin(z − x2 − y2)

7. (x, y, z) 7→ x2 + y2 + z2

2.3 Limits
We will start with the notion of limit.

159 Definition A function f : Rn → Rm is said to have a limit L ∈ Rm at a ∈ Rn if ∀ϵ > 0∃δ > 0 such
that

0 < ||x− a|| < δ =⇒ ||f(x)− L|| < ϵ.

In such a case we write,
lim
x→a

f(x) = L.

The notions of infinite limits, limits at infinity, and continuity at a point, are analogously defined.
Limits in more than one dimension are perhaps trickier to find, as one must approach the test point
from infinitely many directions.

160 Example Find lim
(x,y)→(0,0)

x2y

x2 + y2
.

Solution: ▶ We use the sandwich theorem. Observe that 0 ≤ x2 ≤ x2 + y2, and so

0 ≤
x2

x2 + y2
≤ 1. Thus

lim
(x,y)→(0,0)

0 ≤ lim
(x,y)→(0,0)

∣∣∣∣∣ x2y

x2 + y2

∣∣∣∣∣ ≤ lim
(x,y)→(0,0)

|y|,

and hence

lim
(x,y)→(0,0)

x2y

x2 + y2
= 0.
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The Maple commands to graph this surface and find this limits appear below. Notice that
Maple is unable to find the limit and so returns unevaluated.

> with(plots):
> plot3d(xˆ2*y/(xˆ2+yˆ2),x=-10..10,y=-10..10,axes=boxed,color=xˆ2+yˆ2);
> limit(xˆ2*y/(xˆ2+yˆ2),x=0,y=0);

◀

Figure 2.5: (x, y) 7→
x2y

x2 + y2
. Figure 2.6: (x, y) 7→

x5y3

x6 + y4
.

Figure 2.7: Example 162. Figure 2.8: Example 163.

161 Example Find lim
(x,y)→(0,0)

x5y3

x6 + y4
.

Solution: ▶ Either |x| ≤ |y| or |x| ≥ |y|. Observe that if |x| ≤ |y|, then∣∣∣∣∣ x5y3

x6 + y4

∣∣∣∣∣ ≤ y8

y4
= y4.

If |y| ≤ |x|, then ∣∣∣∣∣ x5y3

x6 + y4

∣∣∣∣∣ ≤ x8

x6
= x2.

Thus ∣∣∣∣∣ x5y3

x6 + y4

∣∣∣∣∣ ≤ max(y4, x2) ≤ y4 + x2 −→ 0,

as (x, y)→ (0, 0).
Aliter: Let X = x3, Y = y2. ∣∣∣∣∣ x5y3

x6 + y4

∣∣∣∣∣ = X5/3Y 3/2

X2 + Y 2
.

Passing to polar coordinates X = ρ cos θ, Y = ρ sin θ, we obtain∣∣∣∣∣ x5y3

x6 + y4

∣∣∣∣∣ = X5/3Y 3/2

X2 + Y 2
= ρ5/3+3/2−2| cos θ|5/3| sin θ|3/2 ≤ ρ7/6 → 0,

as (x, y)→ (0, 0). ◀

162 Example Find lim
(x,y)→(0,0)

1 + x + y

x2 − y2
.

Solution: ▶ When y = 0,
1 + x

x2
→ +∞,
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as x→ 0. When x = 0,
1 + y

−y2
→ −∞,

as y → 0. The limit does not exist. ◀

163 Example Find lim
(x,y)→(0,0)

xy6

x6 + y8
.

Solution: ▶ Putting x = t4, y = t3, we find

xy6

x6 + y8
=

1

2t2
→ +∞,

as t→ 0. But when y = 0, the function is 0. Thus the limit does not exist. ◀

Figure 2.9: Example 164. Figure 2.10: Example 165.

Figure 2.11: Example 166. Figure 2.12: Example 163.

164 Example Find lim
(x,y)→(0,0)

((x− 1)2 + y2) loge((x− 1)2 + y2)

|x|+ |y|
.

Solution: ▶ When y = 0 we have

2(x− 1)2 ln(|1− x|)
|x|

∼ −
2x

|x|
,

and so the function does not have a limit at (0, 0). ◀

165 Example Find lim
(x,y)→(0,0)

sin(x4) + sin(y4)√
x4 + y4

.

Solution: ▶ sin(x4) + sin(y4) ≤ x4 + y4 and so∣∣∣∣∣sin(x4) + sin(y4)√
x4 + y4

∣∣∣∣∣ ≤ √x4 + y4 → 0,

as (x, y)→ (0, 0). ◀

166 Example Find lim
(x,y)→(0,0)

sinx− y

x− sin y
.

Solution: ▶ When y = 0 we obtain
sinx

x
→ 1,

as x→ 0. When y = x the function is identically −1. Thus the limit does not exist. ◀
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If f : R2 → R, it may be that the limits

lim
y→y0

Å
lim

x→x0

f(x, y)

ã
, lim

x→x0

Å
lim

y→y0

f(x, y)

ã
,

both exist. These are called the iterated limits of f as (x, y)→ (x0, y0). The following possibilities might
occur.

1. If lim
(x,y)→(x0,y0)

f(x, y) exists, then each of the iterated limits lim
y→y0

Å
lim

x→x0

f(x, y)

ã
and lim

x→x0

Å
lim

y→y0

f(x, y)

ã
exists.

2. If the iterated limits exist and lim
y→y0

Å
lim

x→x0

f(x, y)

ã
̸= lim

x→x0

Å
lim

y→y0

f(x, y)

ã
then lim

(x,y)→(x0,y0)
f(x, y)

does not exist.

3. It may occur that lim
y→y0

Å
lim

x→x0

f(x, y)

ã
= lim

x→x0

Å
lim

y→y0

f(x, y)

ã
, but that lim

(x,y)→(x0,y0)
f(x, y) does

not exist.

4. It may occur that lim
(x,y)→(x0,y0)

f(x, y) exists, but one of the iterated limits does not.

Homework
Problem 2.3.1 Sketch the domain of definition of
(x, y) 7→

√
4− x2 − y2.

Problem 2.3.2 Sketch the domain of definition of
(x, y) 7→ log(x + y).

Problem 2.3.3 Sketch the domain of definition of
(x, y) 7→ 1

x2 + y2
.

Problem 2.3.4 Find lim
(x,y)→(0,0)

(x2 + y2) sin
1

xy
.

Problem 2.3.5 Find lim
(x,y)→(0,2)

sinxy

x
.

Problem 2.3.6 For what c will the function

f(x, y) =

® √
1− x2 − 4y2, if x2 + 4y2 ≤ 1,

c, if x2 + 4y2 > 1

be continuous everywhere on the xy-plane?

Problem 2.3.7 Find

lim
(x,y)→(0,0)

√
x2 + y2 sin

1

x2 + y2
.

Problem 2.3.8 Find

lim
(x,y)→(+∞,+∞)

max(|x|, |y|)√
x4 + y4

.

Problem 2.3.9 Find

lim
(x,y)→(0,0

2x2 sin y2 + y4e−|x|√
x2 + y2

.

Problem 2.3.10 Demonstrate that

lim
(x,y,z)→(0,0,0)

x2y2z2

x2 + y2 + z2
= 0.

Problem 2.3.11 Prove that

lim
x→0

Å
lim
y→0

x− y

x + y

ã
= 1 = − lim

y→0

Å
lim
x→0

x− y

x + y

ã
.

Does lim
(x,y)→(0,0)

x− y

x + y
exist?.

Problem 2.3.12 Let

f(x, y) =

 x sin
1

x
+ y sin

1

y
if x ̸= 0, y ̸= 0

0 otherwise

Prove that lim
(x,y)→(0,0)

f(x, y) exists, but that the iterated

limits lim
x→0

Å
lim
y→0

f(x, y)

ã
and lim

y→0

(
lim
x→0

f(x, y)
)

do not

exist.

Problem 2.3.13 Prove that

lim
x→0

Å
lim
y→0

x2y2

x2y2 + (x− y)2

ã
= 0,

and that

lim
y→0

Å
lim
x→0

x2y2

x2y2 + (x− y)2

ã
= 0,

but still lim
(x,y)→(0,0)

x2y2

x2y2 + (x− y)2
does not exist.
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2.4 Definition of the Derivative
Before we begin, let us introduce some necessary notation. Let f : R → R be a function. We write

f(h) = o (h) if f(h) goes faster to 0 than h, that is, if lim
h→0

f(h)

h
= 0. For example, h3 + 2h2 = o (h),

since

lim
h→0

h3 + 2h2

h
= lim

h→0
h2 + 2h = 0.

We now define the derivative in the multidimensional space Rn. Recall that in one variable, a
function g : R→ R is said to be differentiable at x = a if the limit

lim
x→a

g(x)− g(a)

x− a
= g′(a)

exists. The limit condition above is equivalent to saying that

lim
x→a

g(x)− g(a)− g′(a)(x− a)

x− a
= 0,

or equivalently,

lim
h→0

g(a + h)− g(a)− g′(a)(h)

h
= 0.

We may write this as
g(a + h)− g(a) = g′(a)(h) + o (h) .

The above analysis provides an analogue definition for the higher-dimensional case. Observe that since
we may not divide by vectors, the corresponding definition in higher dimensions involves quotients of
norms.

167 Definition Let A ⊆ Rn. A function f : A → Rm is said to be differentiable at a ∈ A if there is a
linear transformation, called the derivative of f at a, Da(f) : Rn → Rm such that

lim
x→a

||f(x)− f(a)− Da(f)(x− a)||
||x− a||

= 0.

Equivalently, f is differentiable at a if there is a linear transformation Da(f) such that

f(a + h)− f(a) = Da(f)(h) + o (||h||) ,

as h→ 0.

+ The condition for differentiability at a is equivalent to

f(x)− f(a) = Da(f)(x− a) + o (||x− a||) ,

as x→ a.

168 Theorem If A is an open set in definition 167, Da(f) is uniquely determined.

Proof: Let L : Rn → Rm be another linear transformation satisfying definition 167. We must
prove that ∀v ∈ Rn, L(v) = Da(f)(v). Since A is open, a + h ∈ A for sufficiently small ||h||.
By definition, as h→ 0, we have

f(a + h)− f(a) = Da(f)(h) + o (||h||) .

and
f(a + h)− f(a) = L(h) + o (||h||) .
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Now, observe that

Da(f)(v)− L(v) = Da(f)(h)− f(a + h) + f(a) + f(a + h)− f(a)− L(h).

By the triangle inequality,

||Da(f)(v)− L(v)|| ≤ ||Da(f)(h)− f(a + h) + f(a)||
+||f(a + h)− f(a)− L(h)||

= o (||h||) + o (||h||)
= o (||h||) ,

as h→ 0 This means that
||L(v)− Da(f)(v)|| → 0,

i.e., L(v) = Da(f)(v), completing the proof. q

+ If A = {a}, a singleton, then Da(f) is not uniquely determined. For ||x− a|| < δ holds only for x =
a, and so f(x) = f(a). Any linear transformation T will satisfy the definition, as T (x− a) = T (0) = 0,
and

||f(x)− f(a)− T (x− a)|| = ||0|| = 0,

identically.

169 Example If L : Rn → Rm is a linear transformation, then Da(L) = L, for any a ∈ Rn.

Solution: ▶ Since Rn is an open set, we know that Da(L) uniquely determined. Thus if L
satisfies definition 167, then the claim is established. But by linearity

||L(x)− L(a)− L(x− a)|| = ||L(x)− L(a)− L(x) + L(a)|| = ||0|| = 0,

whence the claim follows. ◀

170 Example Let

f :
R3 × R3 → R
(−→x ,−→y ) 7→ −→x •−→y

be the usual dot product in R3. Shew that f is differentiable and that

D(−→x ,−→y )f(
−→
h ,
−→
k ) = −→x •

−→
k +
−→
h •−→y .

Solution: ▶ We have

f(−→x +
−→
h ,−→y +

−→
k )− f(−→x ,−→y ) = (−→x +

−→
h )•(−→y +

−→
k )−−→x •−→y

= −→x •−→y +−→x •
−→
k +
−→
h •−→y +

−→
h •
−→
k −−→x •−→y

= −→x •
−→
k +
−→
h •−→y +

−→
h •
−→
k .

As (
−→
h ,
−→
k ) → (

−→
0 ,
−→
0 ), we have by the Cauchy-Buniakovskii-Schwarz inequality, |

−→
h •
−→
k | ≤∣∣∣∣∣∣−→h ∣∣∣∣∣∣∣∣∣∣∣∣−→k ∣∣∣∣∣∣ = o

(∣∣∣∣∣∣−→h ∣∣∣∣∣∣), which proves the assertion. ◀

Just like in the one variable case, differentiability at a point, implies continuity at that point.

171 Theorem Suppose A ⊆ Rn is open and f : A→ Rn is differentiable on A. Then f is continuous on
A.
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Proof: Given a ∈ A, we must shew that

lim
x→a

f(x) = f(a).

Since f is differentiable at a we have

f(x)− f(a) = Da(f)(x− a) + o (||x− a||) ,

and so
f(x)− f(a)→ 0,

as x→ a, proving the theorem. q

Homework
Problem 2.4.1 Let L : R3 → R3 be a linear transforma-
tion and

F :
R3 → R3

−→x 7→ −→x × L(−→x )
.

Shew that F is differentiable and that

Dx(F )(
−→
h ) = −→x × L(

−→
h ) +

−→
h × L(−→x ).

Problem 2.4.2 Let f : Rn → R, n ≥ 1, f(−→x ) =
∣∣∣∣−→x ∣∣∣∣

be the usual norm in Rn, with
∣∣∣∣−→x ∣∣∣∣2 = −→x •−→x . Prove

that

Dx(f)(
−→v ) =

−→x •−→v∣∣∣∣−→x ∣∣∣∣ ,
for −→x ̸= −→0 , but that f is not differentiable at

−→
0 .

2.5 The Jacobi Matrix
We now establish a way which simplifies the process of finding the derivative of a function at a given
point.

172 Definition Let A ⊆ Rn, f : A→ Rm, and put

f(x) =


f1(x1, x2, . . . , xn)

f2(x1, x2, . . . , xn)
...

fm(x1, x2, . . . , xn)

 .

Here fi : Rn → R. The partial derivative
∂fi

∂xj

(x) is defined as

∂fi

∂xj

(x) = lim
h→0

fi(x1, x2, . . . , xj + h, . . . , xn)− fi(x1, x2, . . . , xj, . . . , xn)

h
,

whenever this limit exists.

To find partial derivatives with respect to the j-th variable, we simply keep the other variables fixed
and differentiate with respect to the j-th variable.

173 Example If f : R3 → R, and f(x, y, z) = x + y2 + z3 + 3xy2z3 then

∂f

∂x
(x, y, z) = 1 + 3y2z3,

∂f

∂y
(x, y, z) = 2y + 6xyz3,
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and
∂f

∂z
(x, y, z) = 3z2 + 9xy2z2.

The Maple commands to find these follow.
> f:=(x,y,z)->x+yˆ2+zˆ3+3*x*yˆ2*zˆ3;
> diff(f(x,y,z),x);
> diff(f(x,y,z),y);
> diff(f(x,y,z),z);

Since the derivative of a function f : Rn → Rm is a linear transformation, it can be represented by
aid of matrices. The following theorem will allow us to determine the matrix representation for Da(f)
under the standard bases of Rn and Rm.

174 Theorem Let

f(x) =


f1(x1, x2, . . . , xn)

f2(x1, x2, . . . , xn)
...

fm(x1, x2, . . . , xn)

 .

Suppose A ⊆ Rn is an open set and f : A→ Rm is differentiable. Then each partial derivative
∂fi

∂xj

(x)

exists, and the matrix representation of Dx(f) with respect to the standard bases of Rn and Rm is the
Jacobi matrix

f ′(x) =



∂f1

∂x1

(x)
∂f1

∂x2

(x) · · ·
∂f1

∂xn

(x)

∂f2

∂x1

(x)
∂f2

∂x2

(x) · · ·
∂f2

∂xn

(x)

...
...

...
...

∂fn

∂x1

(x)
∂fn

∂x2

(x) · · ·
∂fn

∂xn

(x)


.

Proof: Let−→e j, 1 ≤ j ≤ n, be the standard basis for Rn. To obtain the Jacobi matrix, we must
compute Dx(f)(

−→e j), which will give us the j-th column of the Jacobi matrix. Let f ′(x) = (Jij),
and observe that

Dx(f)(
−→e j) =


J1j

J2j

...

Jnj

 .

and put y = x + ε−→e j, ε ∈ R. Notice that

||f(y)− f(x)− Dx(f)(y − x)||
||y − x||

=
||f(x1, x2, . . . , xj + h, . . . , xn)− f(x1, x2, . . . , xj, . . . , xn)− εDx(f)(

−→e j)||
|ε|

.

Since the sinistral side→ 0 as ε→ 0, the so does the i-th component of the numerator, and so,

|fi(x1, x2, . . . , xj + h, . . . , xn)− fi(x1, x2, . . . , xj, . . . , xn)− εJij|
|ε|

→ 0.

This entails that

Jij = lim
ε→0

fi(x1, x2, . . . , xj + ε, . . . , xn)− fi(x1, x2, . . . , xj, . . . , xn)

ε
=

∂fi

∂xj

(x) .

This finishes the proof. q
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+ Strictly speaking, the Jacobi matrix is not the derivative of a function at a point. It is a matrix
representation of the derivative in the standard basis of Rn. We will abuse language, however, and refer
to f ′ when we mean the Jacobi matrix of f .

175 Example Let f : R3 → R2 be given by

f(x, y) = (xy + yz, loge xy).

Compute the Jacobi matrix of f .

Solution: ▶ The Jacobi matrix is the 2× 3 matrix

f ′(x, y) =


∂f1

∂x
(x, y)

∂f1

∂y
(x, y)

∂f1

∂z
(x, y)

∂f2

∂x
(x, y)

∂f2

∂y
(x, y)

∂f2

∂z
(x, y)

 =

y x + z y
1

x

1

y
0

 .

◀

176 Example Let f(ρ, θ, z) = (ρ cos θ, ρ sin θ, z) be the function which changes from cylindrical coordi-
nates to Cartesian coordinates. We have

f ′(ρ, θ, z) =

cos θ −ρ sin θ 0

sin θ ρ cos θ 0

0 0 1

 .

177 Example Let f(ρ, ϕ, θ) = (ρ cos θ sinϕ, ρ sin θ sinϕ, ρ cosϕ) be the function which changes from
spherical coordinates to Cartesian coordinates. We have

f ′(ρ, ϕ, θ) =

cos θ sinϕ ρ cos θ cosϕ −ρ sinϕ sin θ

sin θ sinϕ ρ sin θ cosϕ ρ cos θ sinϕ

cosϕ −ρ sinϕ 0

 .

The Jacobi matrix provides a convenient computational tool to compute the derivative of a function
at a point. Thus differentiability at a point implies that the partial derivatives of the function exist at
the point. The converse, however, is not true.

178 Example Let f : R2 → R be given by

f(x, y) =


y if x = 0,

x if y = 0,

1 if xy ̸= 0.

Observe that f is not continuous at (0, 0) (f(0, 0) = 0 but f(x, y) = 1 for values arbitrarily close to

(0, 0)), and hence, it is not differentiable there. We have however,
∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 1. Thus even

if both partial derivatives exist at (0, 0) is no guarantee that the function will be differentiable at (0, 0).
You should also notice that both partial derivatives are not continuous at (0, 0).

We have, however, the following.
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179 Theorem Let A ⊆ Rn be an open set, and let f : Rn → Rm. Put f =


f1

f2

. . .

fm

. If each of the partial

derivatives Djfi exists and is continuous on A, then f is differentiable on A.

The concept of repeated partial derivatives is akin to the concept of repeated differentiation. Similarly
with the concept of implicit partial differentiation. The following examples should be self-explanatory.

180 Example Let f(u, v, w) = euv cosw. Determine
∂2

∂u∂v
f(u, v, w) at (1,−1,

π

4
).

Solution: ▶ We have

∂2

∂u∂v
(euv cosw) =

∂

∂u
(eu cosw) = eu cosw,

which is
e
√
2

2
at the desired point. ◀

181 Example The equation zxy + (xy)z + xy2z3 = 3 defines z as an implicit function of x and y. Find
∂z

∂x
and

∂z

∂y
at (1, 1, 1).

Solution: ▶ We have
∂

∂x
zxy =

∂

∂x
exy log z

=

Å
y log z +

xy

z

∂z

∂x

ã
zxy,

∂

∂x
(xy)z =

∂

∂x
ez log xy

=

Å
∂z

∂x
log xy +

z

x

ã
(xy)z,

∂

∂x
xy2z3 = y2z3 + 3xy2z2 ∂z

∂x
,

Hence, at (1, 1, 1) we have

∂z

∂x
+ 1 + 1 + 3

∂z

∂x
= 0 =⇒

∂z

∂x
= −

1

2
.

Similarly,
∂

∂y
zxy =

∂

∂y
exy log z

=

Å
x log z +

xy

z

∂z

∂y

ã
zxy,

∂

∂y
(xy)z =

∂

∂y
ez log xy

=

Å
∂z

∂y
log xy +

z

y

ã
(xy)z,

∂

∂y
xy2z3 = 2xyz3 + 3xy2z2∂z

∂y
,

Hence, at (1, 1, 1) we have

∂z

∂y
+ 1 + 2 + 3

∂z

∂y
= 0 =⇒

∂z

∂y
= −

3

4
.

◀
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Just like in the one-variable case, we have the following rules of differentiation. Let A ⊆ Rn, B ⊆ Rm

be open sets f, g : A → Rm, α ∈ R, be differentiable on A, h : B → Rl be differentiable on B, and
f(A) ⊆ B. Then we have

• Addition Rule: Dx((f + αg)) = Dx(f) + αDx(g).

• Chain Rule: Dx((h ◦ f)) =
(
Df (x)(h)

)
◦ (Dx(f)).

Since composition of linear mappings expressed as matrices is matrix multiplication, the Chain Rule
takes the alternative form when applied to the Jacobi matrix.

(h ◦ f)′ = (h′ ◦ f)(f ′). (2.1)

182 Example Let

f(u, v) =

 uev

u + v

uv

 ,

h(x, y) =

[
x2 + y

y + z

]
.

Find (f ◦ h)′(x, y).

Solution: ▶ We have

f ′(u, v) =

e
v uev

1 1

v u

 ,

and

h′(x, y) =

[
2x 1 0

0 1 1

]
.

Observe also that

f ′(h(x, y)) =

 ey+z (x2 + y)ey+z

1 1

y + z x2 + y

 .

Hence

(f ◦ h)′(x, y) = f ′(h(x, y))h′(x, y)

=


ey+z (x2 + y)ey+z

1 1

y + z x2 + y


2x 1 0

0 1 1



=


2xey+z (1 + x2 + y)ey+z (x2 + y)ey+z

2x 2 1

2xy + 2xz x2 + 2y + z x2 + y

 .

◀
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183 Example Let
f : R2 → R, f(u, v) = u2 + ev,

u, v : R3 → R u(x, y) = xz, v(x, y) = y + z.

Put h(x, y) = f

[
u(x, y, z)

v(x, y, z)

]
. Find the partial derivatives of h.

Solution: ▶ Put g : R3 → R2, g(x, y) =

[
u(x, y)

v(x, y

]
=

[
xz

y + z

]
. Observe that h = f ◦ g. Now,

g′(x, y) =

[
z 0 x

0 1 1

]
,

f ′(u, v) =
î
2u ev

ó
,

f ′(h(x, y)) =
î
2xz ey+z

ó
.

Thus ï
∂h

∂x
(x, y)

∂h

∂y
(x, y)

∂h

∂z
(x, y)

ò
= h′(x, y)

= (f ′(g(x, y)))(g′(x, y))

=

ï
2xz ey+z

òz 0 x

0 1 1


=

ï
2xz2 ey+z 2x2z + ey+z

ò .

Equating components, we obtain
∂h

∂x
(x, y) = 2xz2,

∂h

∂y
(x, y) = ey+z,

∂h

∂z
(x, y) = 2x2z + ey+z.

◀

Under certain conditions we may differentiate under the integral sign.

184 Theorem (Differentiation under the integral sign) Let f : [a, b] × Y → R be a function, with [a, b]
being a closed interval, and Y being a closed and bounded subset of R. Suppose that both f(x, y) and
∂

∂x
f(x, y) are continuous in the variables x and y jointly. Then

∫
Y

f(x.y) dy exists as a continuously

differentiable function of x on [a, b], with derivative

d

dx

∫
Y

f(x, y) dy =

∫
Y

∂

∂x
f(x, y) dy.

185 Example Prove that

F (x) =

∫ π/2

0

log(sin2 θ + x2 cos2 θ)dθ = π log
x + 1

2
.
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Solution: ▶ Differentiating under the integral,

F ′(x) =

∫ π/2

0

∂

∂x
log(sin2 θ + x2 cos2 θ)dθ

= 2x

∫ π/2

0

cos2 θ

sin2 θ + x2 cos2 θ
dθ

. The above implies that

(x2 − 1)

2x
· F ′(x) =

∫ π/2

0

(x2 − 1) cos2 θ

sin2 θ + x2 cos2 θ
dθ

=

∫ π/2

0

x2 cos2 θ + sin2 θ − 1

sin2 θ + x2 cos2 θ
dθ

=
π

2
−
∫ π/2

0

dθ

sin2 θ + x2 cos2 θ

=
π

2
−
∫ π/2

0

sec2 θdθ

tan2 θ + x2

=
π

2
−

1

x
arctan

tan θ

x

∣∣∣π/2

0

=
π

2
−

π

2x
,

which in turn implies that for x > 0, x ̸= 1,

F ′(x) =
2x

x2 − 1

(π
2
−

π

2x

)
=

π

x + 1
.

For x = 1 one sees immediately that F ′(1) = 2

∫ π/2

0

cos2 θdθ =
π

2
, agreeing with the formula.

Now,
F ′(x) =

π

x + 1
=⇒ F (x) = π log(x + 1) + C.

Since F (1) =

∫ π/2

0

log 1dθ = 0, we gather that C = −π log 2. Finally thus

F (x) = π log(x + 1)− π log 2 = π log
x + 1

2
.

◀

Under certain conditions, the interval of integration in the above theorem need not be compact.

186 Example Given that
∫ +∞

0

sinx

x
dx =

π

2
, compute

∫ +∞

0

sin2 x

x2
dx.

Solution: ▶ Put I(a) =

∫ +∞

0

sin2 ax

x2
dx, with a ≥ 0. Differentiating both sides with respect

to a, and making the substitution u = 2ax,

I′(a) =

∫ +∞

0

2x sin ax cos ax

x2
dx

=

∫ +∞

0

sin 2ax

x
dx

=

∫ +∞

0

sinu

u
du

=
π

2
.
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Integrating each side gives

I(a) =
π

2
a + C.

Since I(0) = 0, we gather that C = 0. The desired integral is I(1) =
π

2
. ◀

Homework

Problem 2.5.1 Let f : [0; +∞[×]0;+∞[→ R, f(r, t) =

tne−r2/4t, where n is a constant. Determine n such
that

∂f

∂t
=

1

r2

∂

∂r

(
r2∂f

∂r

)
.

Problem 2.5.2 Let

f : R2 → R, f(x, y) = min(x, y2).

Find
∂f(x, y)

∂x
and

∂f(x, y)

∂y
.

Problem 2.5.3 Let f : R2 → R2 and g : R3 → R2 be
given by

f(x, y) =

ñ
xy2

x2y

ô
, g(x, y, z) =

ñ
x− y + 2z

xy

ô
.

Compute (f ◦ g)′(1, 0, 1), if at all defined. If undefined,
explain. Compute (g ◦ f)′(1, 0), if at all defined. If un-
defined, explain.

Problem 2.5.4 Let f(x, y) =

ñ
xy

x + y

ô
and g(x, y) =x− y

x2y2

x + y

 Find (g ◦ f)′(0, 1).

Problem 2.5.5 Suppose g : R → R is continuous and
a ∈ R is a constant. Find the partial derivatives with
respect to x and y of

f : R2 → R, f(x, y) =

∫ x2y

a

g(t) dt.

Problem 2.5.6 Given that

∫ b

0

dx

x2 + a2
=

1

a
arctan

b

a
,

evaluate

∫ b

0

dx

(x2 + a2)2
.

Problem 2.5.7 Prove that∫ +∞

0

arctan ax− arctanx

x
dx =

π

2
log π.

Problem 2.5.8 Assuming that the equation xy2 +3z =
cos z2 defines z implicitly as a function of x and y, find
∂z

∂x
.

Problem 2.5.9 If w = euv and u = r + s, v = rs,

determine
∂w

∂r
.

Problem 2.5.10 Let z be an implicitly-defined function
of x and y through the equation (x+z)2+(y+z)2 = 8.

Find
∂z

∂x
at (1, 1, 1).

2.6 Gradients and Directional Derivatives

A function

f :
Rn → Rm

x 7→ f(x)

is called a vector field. If m = 1, it is called a scalar field.

187 Definition Let

f :
Rn → R
x 7→ f(x)
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be a scalar field. The gradient of f is the vector defined and denoted by

∇f(x) =



∂f

∂x1

(x)

∂f

∂x2

(x)

...
∂f

∂xn

(x)


.

The gradient operator is the operator

∇ =



∂

∂x1
∂

∂x2
...
∂

∂xn


.

188 Theorem Let A ⊆ Rn be open and let f : A→ R be a scalar field, and assume that f is differentiable
in A. Let K ∈ R be a constant. Then∇f(x) is orthogonal to the surface implicitly defined by f(x) = K.

Proof: Let

c :
R → Rn

t 7→ c(t)

be a curve lying on this surface. Choose t0 so that c(t0) = x. Then

(f ◦ c)(t0) = f(c(t)) = K,

and using the chain rule

f ′(c(t0))c
′(t0) = 0,

which translates to

(∇f(x))•(c′(t0)) = 0.

Since c′(t0) is tangent to the surface and its dot product with ∇f(x) is 0, we conclude that
∇f(x) is normal to the surface. q

+ Let θ be the angle between ∇f(x) and c′(t0). Since

|(∇f(x))•(c′(t0))| = ||∇f(x)||||c′(t0)|| cos θ,

∇f(x) is the direction in which f is changing the fastest.

189 Example Find a unit vector normal to the surface x3 + y3 + z = 4 at the point (1, 1, 2).

Solution: ▶ Here f(x, y, z) = x3 + y3 + z − 4 has gradient

∇f(x, y, z) =

3x
2

3y2

1
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which at (1, 1, 2) is

33
1

. Normalising this vector we obtain


3
√
19
3
√
19
1
√
19

 .

◀

190 Example Find the direction of the greatest rate of increase of f(x, y, z) = xyez at the point (2, 1, 2).

Solution: ▶ The direction is that of the gradient vector. Here

∇f(x, y, z) =

 yez

xez

xyez



which at (2, 1, 2) becomes

 e2

2e2

2e2

 . Normalising this vector we obtain

1
√
5

12
2

 .

◀

191 Example Let f : R3 → R be given by

f(x, y, z) = x + y2 − z2.

Find the equation of the tangent plane to f at (1, 2, 3).

Solution: ▶ A vector normal to the plane is ∇f(1, 2, 3). Now

∇f(x, y, z) =

 1

2y

−2z


which is  1

4

−6


at (1, 2, 3). The equation of the tangent plane is thus

1(x− 1) + 4(y − 2)− 6(z − 3) = 0,

or
x + 4y − 6z = −9.

◀
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192 Definition Let

f :
Rn → Rn

x 7→ f(x)

be a vector field with

f(x) =


f1(x)

f2(x)
...

fn(x)

 .

The divergence of f is defined and denoted by

divf(x) = ∇•f(x) =
∂f1

∂x1

(x) +
∂f2

∂x2

(x) + · · ·+
∂fn

∂xn

(x) .

193 Example If f(x, y, z) = (x2, y2, yez
2

) then

divf(x) = 2x + 2y + 2yzez
2

.

194 Definition Let gk : Rn → Rn, 1 ≤ k ≤ n − 2 be vector fields with gi = (gi1, gi2, . . . , gin). Then the
curl of (g1, g2, . . . , gn−2)

curl(g1, g2, . . . , gn−2)(x) = det



e1 e2 · · · en
∂

∂x1

∂

∂x2

· · ·
∂

∂xn

g11(x) g12(x) · · · g1n(x)

g21(x) g22(x) . . . g2n(x)
...

...
...

...

g(n−2)1(x) g(n−2)2(x) . . . g(n−2)n(x)


.

195 Example If f(x, y, z) = (x2, y2, yez
2

) then

curlf((x, y, z)) = ∇× f(x, y, z) = (ez
2

)i.

196 Example If f(x, y, z, w) = (exyz, 0, 0, w2), g(x, y, z, w) = (0, 0, z, 0) then

curl(f, g)(x, y, z, w) = det


e1 e2 e3 e4
∂

∂x1

∂

∂x2

∂

∂x3

∂

∂x4

exyz 0 0 w2

0 0 z 0

 = (xz2exyz)e4.

197 Definition Let A ⊆ Rn be open and let f : A → R be a scalar field, and assume that f is differen-
tiable in A. Let −→v ∈ Rn \ {0} be such that x+ t−→v ∈ A for sufficiently small t ∈ R. Then the directional
derivative of f in the direction of −→v at the point x is defined and denoted by

D−→v f(x) = lim
t→0

f(x + t−→v )− f(x)

t
.

+ Some authors require that the vector −→v in definition 197 be a unit vector.
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198 Theorem Let A ⊆ Rn be open and let f : A→ R be a scalar field, and assume that f is differentiable
in A. Let −→v ∈ Rn \ {−→0 } be such that −→x + t−→v ∈ A for sufficiently small t ∈ R. Then the directional
derivative of f in the direction of −→v at the point −→x is given by

∇f(x)•−→v .

199 Example Find the directional derivative of f(x, y, z) = x3 + y3 − z2 in the direction of

12
3

.

Solution: ▶ We have

∇f(x, y, z) =

3x2

3y2

−2z


and so

∇f(x, y, z)•−→v = 3x2 + 6y2 − 6z.

◀

Homework
Problem 2.6.1 Let f(x, y, z) = xeyz. Find

(∇f)(2, 1, 1).

Problem 2.6.2 Let f(x, y, z) =

xz

exy

z

. Find

(∇× f)(2, 1, 1).

Problem 2.6.3 Find the tangent plane to the surface
x2

2
− y2 − z2 = 0 at the point (2,−1, 1).

Problem 2.6.4 Find the point on the surface

x2 + y2 − 5xy + xz − yz = −3

for which the tangent plane is x− 7y = −6.

Problem 2.6.5 Find a vector pointing in the direction
in which f(x, y, z) = 3xy − 9xz2 + y increases most
rapidly at the point (1, 1, 0).

Problem 2.6.6 Let D−→u f(x, y) denote the directional
derivative of f at (x, y) in the direction of the unit vector
−→u . If ∇f(1, 2) = 2

−→
i −
−→
j , find D( 3

5
, 4
5
)f(1, 2).

Problem 2.6.7 Use a linear approximation of the func-
tion f(x, y) = ex cos 2y at (0, 0) to estimate f(0.1, 0.2).

Problem 2.6.8 Prove that

∇ • (u× v) = v • (∇× u)− u • (∇× v).

Problem 2.6.9 Find the point on the surface

2x2 + xy + y2 + 4x + 8y − z + 14 = 0

for which the tangent plane is 4x + y − z = 0.

Problem 2.6.10 Let ϕ : R3 → R be a scalar field, and
let U,V : R3 → R3 be vector fields. Prove that

1. ∇•ϕV = ϕ∇•V + V•∇ϕ

2. ∇× ϕV = ϕ∇×V + (∇ϕ)×V

3. ∇× (∇ϕ) =
−→
0

4. ∇•(∇×V) = 0

5. ∇(U•V) = (U•∇)V + (V•∇)U+U× (∇×V)+
+V × (∇×U)

Problem 2.6.11 Find the angles made by the gradient
of f(x, y) = x

√
3 + y at the point (1, 1) with the coordi-

nate axes.

2.7 Levi-Civitta and Einstein
+ In this section, unless otherwise noted, we are dealing in the space R3 and so, subscripts are in the
set {1, 2, 3}.
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200 Definition (Einstein’s Summation Convention) In any expression containing subscripted variables ap-
pearing twice (and only twice) in any term, the subscripted variables are assumed to be summed over.

+ In order to emphasise that we are using Einstein’s convention, we will enclose any terms under
consideration with < · =.

201 Example Using Einstein’s Summation convention, the dot product of two vectors −→x ∈ Rn and
−→y ∈ Rn can be written as

−→x •−→y =
n∑

i=1

xiyi = <xtyt = .

202 Example Given that ai, bj, ck, dl are the components of vectors in R3, −→a ,
−→
b ,−→c ,

−→
d respectively,

what is the meaning of <aibickdk=?

Solution: ▶ We have

<aibickdk= =
3∑

i=1

aibi < ckdk= = −→a •
−→
b < ckdk= = −→a •

−→
b

3∑
k=1

ckdk = (−→a •
−→
b )(−→c •

−→
d ).

◀

203 Example Using Einstein’s Summation convention, the ij-th entry (AB)ij of the product of two
matrices A ∈Mm×n(R) and B ∈Mn×r(R) can be written as

(AB)ij =
n∑

k=1

AikBkj = <AitBtj = .

204 Example Using Einstein’s Summation convention, the trace tr (A) of a square matrix A ∈Mn×n(R)

is tr (A) =
n∑

t=1

Att = <Att=.

205 Example Demonstrate, via Einstein’s Summation convention, that if A,B are two n× n matrices,
then

tr (AB) = tr (BA) .

Solution: ▶ We have

tr (AB) = tr ((AB)ij) = tr (<AikBkj=) = < < AtkBkt = =,

and
tr (BA) = tr ((BA)ij) = tr (<BikAkj=) = < < BtkAkt = =,

from where the assertion follows, since the indices are dummy variables and can be ex-
changed. ◀

206 Definition (Kroenecker’s Delta) The symbol δij is defined as follows:

δij =

{
0 if i ̸= j

1 if i = j.

207 Example It is easy to see that <δikδkj= =
3∑

k=1

δikδkj = δij.
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208 Example We see that

<δijaibj= =
3∑

i=1

3∑
j=1

δijaibj =
∑
k=1

akbk = −→a •
−→
b .

Recall that a permutation of distinct objects is a reordering of them. The 3! = 6 permutations of the
index set {1, 2, 3} can be classified into even or odd. We start with the identity permutation 123 and
say it is even. Now, for any other permutation, we will say that it is even if it takes an even number of
transpositions (switching only two elements in one move) to regain the identity permutation, and odd
if it takes an odd number of transpositions to regain the identity permutation. Since

231→ 132→ 123, 312→ 132→ 123,

the permutations 123 (identity), 231, and 312 are even. Since

132→ 123, 321→ 123, 213→ 123,

the permutations 132, 321, and 213 are odd.

209 Definition (Levi-Civitta’s Alternating Tensor) The symbol εjkl is defined as follows:

εjkl =



0 if {j, k, l} ̸= {1, 2, 3}

−1 if

(
1 2 3

j k l

)
is an odd permutation

+1 if

(
1 2 3

j k l

)
is an even permutation

+ In particular, if one subindex is repeated we have εrrs = εrsr = εsrr = 0. Also,

ε123 = ε231 = ε312 = 1, ε132 = ε321 = ε213 = −1.

210 Example Using the Levi-Civitta alternating tensor and Einstein’s summation convention, the cross
product can also be expressed, if

−→
i = −→e1 ,

−→
j = −→e2 ,

−→
k = −→e3 , then

−→x ×−→y = <εjkl(akbl)
−→ej = .

211 Example If A = [aij] is a 3× 3 matrix, then, using the Levi-Civitta alternating tensor,

detA = <εijka1ia2ja3k = .

212 Example Let −→x ,−→y ,−→z be vectors in R3. Then

−→x • (−→y ×−→z ) = <xi(
−→y ×−→z )i= = <xiεikl(ykzl) = .

Homework
Problem 2.7.1 Let −→x ,−→y ,−→z be vectors in R3. Demon- strate that <xiyizj= = (−→x •−→y )−→z .

2.8 Extrema
We now turn to the problem of finding maxima and minima for vector functions. As in the one-variable
case, the derivative will provide us with information about the extrema, and the “second derivative” will
provide us with information about the nature of these extreme points.
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To define an analogue for the second derivative, let us consider the following. Let A ⊂ Rn and
f : A → Rm be differentiable on A. We know that for fixed x0 ∈ A, Dx0(f) is a linear transformation
from Rn to Rm. This means that we have a function

T :
A → L (Rn,Rm)

x 7→ Dx(f)
,

where L (Rn,Rm) denotes the space of linear transformations from Rn to Rm. Hence, if we differen-
tiate T at x0 again, we obtain a linear transformation Dx0(T ) = Dx0(Dx0(f)) = D2

x0
(f) from Rn to

L (Rn,Rm). Hence, given x1 ∈ Rn, we have D2
x0
(f)(x1) ∈ L (Rn,Rm). Again, this means that given

x2 ∈ Rn, D2
x0
(f)(x1))(x2) ∈ Rm. Thus the function

Bx0 :
Rn × Rn → L (Rn,Rm)

(x1, x2) 7→ D2
x0
(f)(x1, x2)

is well defined, and linear in each variable x1 and x2, that is, it is a bilinear function.
Just as the Jacobi matrix was a handy tool for finding a matrix representation of Dx(f) in the natural

bases, when f maps into R, we have the following analogue representation of the second derivative.

213 Theorem Let A ⊆ Rn be an open set, and f : A→ R be twice differentiable on A. Then the matrix
of D2

x(f) : Rn × Rn → R with respect to the standard basis is given by the Hessian matrix:

Hxf =



∂2f

∂x1∂x1

(x)
∂2f

∂x1∂x2

(x) · · ·
∂2f

∂x1∂xn

(x)

∂2f

∂x2∂x1

(x)
∂2f

∂x2∂x2

(x) · · ·
∂2f

∂x2∂xn

(x)

...
...

...
...

∂2f

∂xn∂x1

(x)
∂2f

∂xn∂x2

(x) · · ·
∂2f

∂xn∂xn

(x)


214 Example Let f : R3 → R be given by

f(x, y, z) = xy2z3.

Then

H(x,y,z)f =

 0 2yz3 3y2z2

2yz3 2xz3 6xyz2

3y2z2 6xyz2 6xy2z


From the preceding example, we notice that the Hessian is symmetric, as the mixed partial deriva-

tives
∂2

∂x∂y
f =

∂2

∂y∂x
f , etc., are equal. This is no coincidence, as guaranteed by the following theorem.

215 Theorem Let A ⊆ Rn be an open set, and f : A → R be twice differentiable on A. If D2
x0
(f) is

continuous, then D2
x0
(f) is symmetric, that is, ∀(x1, x2) ∈ Rn × Rn we have

D2
x0
(f)(x1, x2) = D2

x0
(f)(x2, x1).

We are now ready to study extrema in several variables. The basic theorems resemble those of
one-variable calculus. First, we make some analogous definitions.
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216 Definition Let A ⊆ Rn be an open set, and f : A → R. If there is some open ball Bx0(r) on which
∀x ∈ Bx0(r), f(x0) ≥ f(x), we say that f(x0) is a local maximum of f . Similarly, if there is some open
ball Bx1(r) on which ∀x ∈ Bx0(r

′), f(x1) ≤ f(x), we say that f(x1) is a local maximum of f . A point
is called an extreme point if it is either a local minimum or local maximum. A point t is called a critical
point if f is differentiable at t and Dt(f) = 0. A critical point which is neither a maxima nor a minima
is called a saddle point.

217 Theorem Let A ⊆ Rn be an open set, and f : A → R be differentiable on A. If x0 is an extreme
point, then Dx0(f) = 0, that is, x0 is a critical point. Moreover, if f is twice-differentiable with contin-
uous second derivative and x0 is a critical point such that Hx0f is negative definite, then f has a local
maximum at x0. If Hx0f is positive definite, then f has a local minimum at x0. If Hx0f is indefinite,
then f has a saddle point. If Hx0f is semi-definite (positive or negative), the test is inconclusive.

218 Example Find the critical points of

f :
R2 → R
(x, y) 7→ x2 + xy + y2 + 2x + 3y

and investigate their nature.

Solution: ▶ We have

(∇f)(x, y) =

[
2x + y + 2

x + 2y + 3

]
,

and so to find the critical points we solve

2x + y + 2 = 0,

x + 2y + 3 = 0,

which yields x = −
1

3
, y = −

4

3
. Now,

H(x,y)f =

[
2 1

1 2

]
,

which is positive definite, since ∆1 = 2 > 0 and ∆2 = det

[
2 1

1 2

]
= 3 > 0. Thus x0 =Å

−
1

3
,−

4

3

ã
is a relative minimum and we have

−
7

3
= f

Å
−

1

3
,−

4

3

ã
≤ f(x, y) = x2 + xy + y2 + 2x + 3y.

◀

219 Example Find the extrema of

f :
R3 → R
(x, y, z) 7→ x2 + y2 + 3z2 − xy + 2xz + yz

.

Solution: ▶ We have

(∇f)(x, y, z) =

2x− y + 2z

2y − x + z

6z + 2x + y

 ,
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which vanishes when x = y = z = 0. Now,

Hrf =

 2 −1 2

−1 2 1

2 1 6

 ,

which is positive definite, since ∆1 = 2 > 0, ∆2 = det

[
2 −1
−1 2

]
= 3 > 0, and ∆3 =

det

 2 −1 2

−1 2 1

2 1 6

 = 4 > 0. Thus f has a relative minimum at (0, 0, 0) and

0 = f(0, 0, 0) ≤ f(x, y, z) = x2 + y2 + 3z2 − xy + 2xz + yz.

◀

220 Example Let f(x, y) = x3− y3 + axy, with a ∈ R a parameter. Determine the nature of the critical
points of f .

Solution: ▶ We have

(∇f)(x, y) =

[
3x2 + ay

−3y2 + ax

]
=

[
0

0

]
=⇒ 3x2 = −ay, 3y2 = ax.

If a = 0, then x = y = 0 and so (0, 0) is a critical point. If a ̸= 0 then

3

Ç
3
y2

a

å2

= −ay =⇒ 27y4 = −a3y

=⇒ y(27y3 + a3) = 0

=⇒ y(3y + a)(9y2 − 3ay + a2) = 0

=⇒ y = 0 or y = −
a

3
.

If y = 0 then x = 0, so again (0, 0) is a critical point. If y = −
a

3
then x =

3

a
·
(
−

a

3

)2
=

a

3
so(a

3
,−

a

3

)
is a critical point.

Now,

Hf(x,y) =

[
6x a

a −6y

]
=⇒ ∆1 = 6x, ∆2 = −36xy − a2.

At (0, 0), ∆1 = 0, ∆2 = −a2. If a ̸= 0 then there is a saddle point. At
(a
3
,−

a

3

)
, ∆1 = 2a,

∆2 = 3a2, whence
(a
3
,−

a

3

)
will be a local minimum if a > 0 and a local maximum if a < 0. ◀

Homework
Problem 2.8.1 Determine the nature of the critical
points of f(x, y) = y2 − 2x2y + 4x3 + 20x2.

Problem 2.8.2 Determine the nature of the critical
points of f(x, y) = (x− 2)2 + 2y2.

Problem 2.8.3 Determine the nature of the critical
points of f(x, y) = (x− 2)2 − 2y2.

Problem 2.8.4 Determine the nature of the critical
points of f(x, y) = x4 + 4xy − 2y2.
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Problem 2.8.5 Determine the nature of the critical
points of f(x, y) = x4 + y4 − 2x2 + 4xy − 2y2.

Problem 2.8.6 Determine the nature of the critical
points of f(x, y, z) = x2 + y2 + z2 − xy + x− 2z.

Problem 2.8.7 Determine the nature of the critical
points of f(x, y) = x4 + y4 − 2(x− y)2.

Problem 2.8.8 Determine the nature of the critical
points of

f(x, y, z) = 4x2z − 2xy − 4x2 − z2 + y.

Problem 2.8.9 Find the extrema of

f(x, y, z) = x2 + y2 + z2 + xyz.

Problem 2.8.10 Find the extrema of f(x, y, z) = x2y+
y2z + 2x− z.

Problem 2.8.11 Determine the nature of the critical
points of

f(x, y, z) = 4xyz − x4 − y4 − z4.

Problem 2.8.12 Determine the nature of the critical
points of f(x, y, z) = xyz(4− x− y − z).

Problem 2.8.13 Determine the nature of the critical
points of

g(x, y, z) = xyze−x2−y2−z2

.

Problem 2.8.14 Let f(x, y) =

∫ x2+y

y2−x

g(t)dt, where g

is a continuously differentiable function defined over all
real numbers and g(0) = 0, g′(0) ̸= 0. Prove that (0, 0)
is a saddle point for f .

Problem 2.8.15 Find the minimum of

F (x, y) = (x− y)2 +

Å√
144− 16x2

3
−
√

4− y2

ã2

,

for −3 ≤ x ≤ 3, −2 ≤ y ≤ 2.

2.9 Lagrange Multipliers
In some situations we wish to optimise a function given a set of constraints. For such cases, we have
the following.

221 Theorem Let A ⊆ Rn and let f : A → R, g : A → R be functions whose respective derivatives
are continuous. Let g(x0) = c0 and let S = g−1(c0) be the level set for g with value c0, and assume
∇g(x0) ̸= 0. If the restriction of f to S has an extreme point at x0, then ∃λ ∈ R such that

∇f(x0) = λ∇g(x0).

+ The above theorem only locates extrema, it does not say anything concerning the nature of the
critical points found.

222 Example Optimise f : R2 → R, f(x, y) = x2 − y2 given that x2 + y2 = 1.

Solution: ▶ Let g(x, y) = x2 + y2 − 1. We solve

∇f

[
x

y

]
= λ∇g

[
x

y

]
for x, y, λ. This requires [

2x

−2y

]
=

[
2xλ

2yλ

]
.

From 2x = 2xλ we get either x = 0 or λ = 1. If x = 0 then y = ±1 and λ = −1. If λ = 1, then
y = 0, x = ±1. Thus the potential critical points are (±1, 0) and (0,±1). If x2 + y2 = 1 then

f(x, y) = x2 − (1− x2) = 2x2 − 1 ≥ −1,

and
f(x, y) = 1− y2 − y2 = 1− 2y2 ≤ 1.
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Thus (±1, 0) are maximum points and (0,±1) are minimum points. ◀

223 Example Find the maximum and the minimum points of f(x, y) = 4x+3y, subject to the constraint
x2 + 4y2 = 4, using Lagrange multipliers.

Solution: ▶ Putting g(x, y) = x2 + 4y2 − 4 we have

∇f(x, y) = λ∇g(x, y) =⇒
[
4

3

]
= λ

[
2x

8y

]
.

Thus 4 = 2λx, 3 = 8λy. Clearly then λ ̸= 0. Upon division we find
x

y
=

16

3
. Hence

x2 + 4y2 = 4 =⇒
256

9
y2 + 4y2 = 4 =⇒ y = ±

3
√
73

, x = ±
16
√
73.

The maximum is clearly then

4

Å
16
√
73

ã
+ 3

Å
3
√
73

ã
=
√
73,

and the minimum is −
√
73. ◀

224 Example Let a > 0, b > 0, c > 0. Determine the maximum and minimum values of f(x, y, z) =
x

a
+

y

b
+

z

c
on the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1.

Solution: ▶ We use Lagrange multipliers. Put g(x, y, z) =
x2

a2
+

y2

b2
+

z2

c2
− 1. Then

∇f(x, y, z) = λ∇g(x, y, z) ⇐⇒

1/a1/b

1/c

 = λ

2x/a
2

2y/b2

2z/c2

 .

It follows that λ ̸= 0. Hence x =
a

2λ
, y =

b

2λ
, z =

c

2λ
. Since

x2

a2
+

y2

b2
+

z2

c2
= 1, we deduce

3

4λ2
= 1 or λ = ±

√
3

2
. Since a, b, c are positive, f will have a maximum when all x, y, z are

positive and a minimum when all x, y, z are negative. Thus the maximum is when

x =
a
√
3
, y =

b
√
3
, z =

c
√
3
,

and
f(x, y, z) ≤

3
√
3

=
√
3

and the minimum is when

x = −
a
√
3
, y = −

b
√
3
, z = −

c
√
3
,

and
f(x, y, z) ≥ −

3
√
3

= −
√
3.

Aliter: Using the CBS Inequality,∣∣∣∣xa · 1 +
y

b
· 1 +

z

c
· 1
∣∣∣∣ ≤
Ç
x2

a2
+

y2

b2
+

z2

c2

å1/2 (
12 + 12 + 12

)1/2
= (1)

√
3 =⇒ −

√
3 ≤

x

a
+

y

b
+

z

c
≤
√
3.

◀
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225 Example Let a > 0, b > 0, c > 0. Determine the maximum volume of the parallelepiped with sides

parallel to the axes that can be enclosed inside the ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1.

Solution: ▶ Let 2x, 2y, 2z, be the dimensions of the box. We must maximise f(x, y, z) =

8xyz subject to the constraint g(x, y, z) =
x2

a2
+

y2

b2
+

z2

c2
− 1. Using Lagrange multipliers,

∇f(x, y, z) = λ∇g(x, y, z) ⇐⇒

8yz8xz

8xy

 = λ

2x/a
2

2y/b2

2z/c2

 =⇒ 4yz = λ
x

a2
, 4xz = λ

y

b2
, 4xy = λ

z

c2
.

Multiplying the first inequality by x, the second by y, the third by z, and adding,

4xyz = λ
x2

a2
, 4xyz = λ

y2

b2
, 4xyz = λ

z2

c2
, =⇒ 12xyz = λ

Ç
x2

a2
+

y2

b2
+

z2

c2

å
= λ.

Hence
λ

3
= λ

x2

a2
= λ

y2

b2
= λ

z2

c2
.

If λ = 0, then 8xyz = 0, which minimises the volume. If λ ̸= 0, then

x =
a
√
3
, y =

b
√
3
, z =

c
√
3
,

and the maximum value is

8xyz ≤ 8
abc

3
√
3
.

Aliter: Using the AM-GM Inequality,

(x2y2z2)1/3 = (abc)2/3
Ç
x2

a2
·
y2

b2
·
z2

a2

å1/3

≤ (abc)2/3·

x2

a2
+

y2

b2
+

z2

c2

3
=

1

3
=⇒ 8xyz ≤

8

3
√
3
(abc).

◀

Homework
Problem 2.9.1 A closed box (with six outer faces), has
fixed surface area of S square units. Find its maximum
volume using Lagrange multipliers. That is, subject to
the constraint 2ab+2bc+2ca = S, you must maximise
abc.

Problem 2.9.2 Consider the problem of finding the
closest point P ′ on the plane Π : ax + by + cz = d,
a, b, c non-zero constants with a+b+c ̸= d to the point
P (1, 1, 1). In this problem, you will do this in three es-
sentially different ways.

1. Do this by a geometric argument, arguing the the
point P ′ closest to P on Π is on the perpendicular
passing through P and P ′.

2. Do this by means of Lagrange multipliers, by min-
imising a suitable function f(x, y, z) subject to

the constraint g(x, y, z) = ax + by + cz − d.

3. Do this considering the unconstrained extrema of

a suitable function h
(
x, y,

d− ax− by

c

)
.

Problem 2.9.3 Given that x, y are positive real num-
bers such that x4 + 81y4 = 36 find the maximum of
x + 3y.

Problem 2.9.4 If x, y, z are positive real numbers such

that x2y3z =
1

62
, what is the minimum value of

f(x, y, z) = 2x + 3y + z?

Problem 2.9.5 Find the maximum and the minimum
values of f(x, y) = x2 + y2 subject to the constraint
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5x2 + 6xy + 5y2 = 8.

Problem 2.9.6 Let a > 0, b > 0, p > 1. Maximise
f(x, y) = ax+by subject to the constraint xp+yp = 1.

Problem 2.9.7 Find the extrema of

f(x, y, z) = x2 + y2 + z2

subject to the constraint

(x− 1)2 + (y − 2)2 + (z − 3)2 = 4.

Problem 2.9.8 Find the axes of the ellipse

5x2 + 8xy + 5y2 = 9.

Problem 2.9.9 Optimise f(x, y, z) = x+ y + z subject
to x2 + y2 = 2, and x + z = 1.

Problem 2.9.10 Let x, y be strictly positive real num-
bers with x + y = 1. What is the maximum value of
x +
√
xy?

Problem 2.9.11 Let a, b be positive real constants.
Maximise f(x, y) = xae−xybe−y on the triangle in R2

bounded by the lines x ≥ 0, y ≥ 0, x + y ≤ 1.

Problem 2.9.12 Determine the extrema of f(x, y) =

cos2 x + cos2 y subject to the constraint x− y =
π

4
.

Problem 2.9.13 Determine the extrema of f(x, y, z) =
x− 2y + 2z subject to the constraint x2 + y2 + z2 = 1.

Problem 2.9.14 Find the points on the curve deter-
mined by the equations

x2 + xy + y2 − z2 = 1, x2 + y2 = 1

which are closest to the origin.

Problem 2.9.15 Does there exist a polynomial in
two variables with real coefficients p(x, y) such that
p(x, y) > 0 for all x and y and that for all real numbers
c > 0 there exists (x0, y0) ∈ R2 such that p(x0, y0) =
c?

Problem 2.9.16 Maximise

f(x, y, z) = log x + log y + 3 log z

on the portion of sphere x2 + y2 + z2 = 5r2 which lies
on the first octant. Demonstrate using this that for any
positive real numbers a, b and c, there follows the in-
equality

abc3 ≤ 27
(
a + b + c

5

)5

.
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3 Integration

3.1 Differential Forms
We will now consider integration in several variables. In order to smooth our discussion, we need to
consider the concept of differential forms.

226 Definition Consider n variables
x1, x2, . . . , xn

in n-dimensional space (used as the names of the axes), and let

aj =


a1j

a2j

...

anj

 ∈ Rn, 1 ≤ j ≤ k,

be k ≤ n vectors in Rn. Moreover, let {j1, j2, . . . , jk} ⊆ {1, 2, . . . , n} be a collection of k sub-indices.
An elementary k-differential form (k > 1) acting on the vectors aj, 1 ≤ j ≤ k is defined and denoted by

dxj1 ∧ dxj2 ∧ · · · ∧ dxjk(a1, a2, . . . , ak) = det


aj11 aj12 · · · aj1k

aj21 aj22 · · · aj2k

...
... · · ·

...

ajk1 ajk2 · · · ajkk

 .

In other words, dxj1 ∧ dxj2 ∧ · · · ∧ dxjk(a1, a2, . . . , ak) is the xj1xj2 . . . xjk component of the signed
k-volume of a k-parallelotope in Rn spanned by a1, a2, . . . , ak.

+ By virtue of being a determinant, the wedge product ∧ of differential forms has the following
properties

Ê anti-commutativity: da ∧ db = −db ∧ da.

Ë linearity: d(a + b) = da + db.

Ì scalar homogeneity: if λ ∈ R, then dλa = λda.

Í associativity: (da ∧ db) ∧ dc = da ∧ (db ∧ dc).1

+ Anti-commutativity yields
da ∧ da = 0.

227 Example Consider

a =

 1

0

−1

 ∈ R3.

Then
dx(a) = det(1) = 1,

1Notice that associativity does not hold for the wedge product of vectors.
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dy(a) = det(0) = 0,

dz(a) = det(−1) = −1,

are the (signed) 1-volumes (that is, the length) of the projections of a onto the coordinate axes.

228 Example In R3 we have dx ∧ dy ∧ dx = 0, since we have a repeated variable.

229 Example In R3 we have

dx ∧ dz + 5dz ∧ dx + 4dx ∧ dy − dy ∧ dx + 12dx ∧ dx = −4dx ∧ dz + 5dx ∧ dy.

+ In order to avoid redundancy we will make the convention that if a sum of two or more terms have
the same differential form up to permutation of the variables, we will simplify the summands and express
the other differential forms in terms of the one differential form whose indices appear in increasing order.

230 Definition A 0-differential form in Rn is simply a differentiable function in Rn.

231 Definition A k-differential form field in Rn is an expression of the form

ω =
∑

1≤j1≤j2≤···≤jk≤n

aj1j2...jkdxj1 ∧ dxj2 ∧ · · ·dxjk ,

where the aj1j2...jk are differentiable functions in Rn.

232 Example
g(x, y, z, w) = x + y2 + z3 + w4

is a 0-form in R4.

233 Example An example of a 1-form field in R3 is

ω = xdx + y2dy + xyz3dz.

234 Example An example of a 2-form field in R3 is

ω = x2dx ∧ dy + y2dy ∧ dz + dz ∧ dx.

235 Example An example of a 3-form field in R3 is

ω = (x + y + z)dx ∧ dy ∧ dz.

We shew now how to multiply differential forms.

236 Example The product of the 1-form fields in R3

ω1 = ydx + xdy,

ω2 = −2xdx + 2ydy,

is
ω1 ∧ ω2 = (2x2 + 2y2)dx ∧ dy.

237 Definition Let f(x1, x2, . . . , xn) be a 0-form in Rn. The exterior derivative df of f is

df =
n∑

i=1

∂f

∂xi

dxi.
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Furthermore, if
ω = f(x1, x2, . . . , xn)dxj1 ∧ dxj2 ∧ · · · ∧ dxjk

is a k-form in Rn, the exterior derivative dω of ω is the (k + 1)-form

dω = df(x1, x2, . . . , xn) ∧ dxj1 ∧ dxj2 ∧ · · · ∧ dxjk .

238 Example If in R2, ω = x3y4, then

d(x3y4) = 3x2y4dx + 4x3y3dy.

239 Example If in R2, ω = x2ydx + x3y4dy then

dω = d(x2ydx + x3y4dy)

= (2xydx + x2dy) ∧ dx + (3x2y4dx + 4x3y3dy) ∧ dy

= x2dy ∧ dx + 3x2y4dx ∧ dy

= (3x2y4 − x2)dx ∧ dy

240 Example Consider the change of variables x = u + v, y = uv. Then

dx = du + dv,

dy = vdu + udv,

whence
dx ∧ dy = (u− v)du ∧ dv.

241 Example Consider the transformation of coordinates xyz into uvw coordinates given by

u = x + y + z, v =
z

y + z
, w =

y + z

x + y + z
.

Then
du = dx + dy + dz,

dv = −
z

(y + z)2
dy +

y

(y + z)2
dz,

dw = −
y + z

(x + y + z)2
dx +

x

(x + y + z)2
dy +

x

(x + y + z)2
dz.

Multiplication gives

du ∧ dv ∧ dw =

Å
−

zx

(y + z)2(x + y + z)2
−

y(y + z)

(y + z)2(x + y + z)2

+
z(y + z)

(y + z)2(x + y + z)2
−

xy

(y + z)2(x + y + z)2

ã
dx ∧ dy ∧ dz

=
z2 − y2 − zx− xy

(y + z)2(x + y + z)2
dx ∧ dy ∧ dz.

3.2 Zero-Manifolds
242 Definition A 0-dimensional oriented manifold of Rn is simply a point x ∈ Rn, with a choice of the +
or − sign. A general oriented 0-manifold is a union of oriented points.

243 Definition Let M = +{b} ∪ −{a} be an oriented 0-manifold, and let ω be a 0-form. Then∫
M

ω = ω(b)− ω(a).
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+−x has opposite orientation to +x and∫
−x

ω = −
∫
+x

ω.

244 Example Let M = −{(1, 0, 0)} ∪ +{(1, 2, 3)} ∪ −{(0,−2, 0)}2 be an oriented 0-manifold, and let
ω = x + 2y + z2. Then∫

M

ω = −ω((1, 0, 0)) + ω(1, 2, 3)− ω(0, 0, 3) = −(1) + (14)− (−4) = 17.

3.3 One-Manifolds
245 Definition A 1-dimensional oriented manifold of Rn is simply an oriented smooth curve Γ ∈ Rn, with
a choice of a + orientation if the curve traverses in the direction of increasing t, or with a choice of a −
sign if the curve traverses in the direction of decreasing t. A general oriented 1-manifold is a union of
oriented curves.

+The curve −Γ has opposite orientation to Γ and∫
−Γ

ω = −
∫
Γ

ω.

If
−→
f : R2 → R2 and if d−→r =

ñ
dx

dy

ô
, the classical way of writing this is∫

Γ

−→
f • d−→r .

We now turn to the problem of integrating 1-forms.

246 Example Calculate ∫
Γ

xydx + (x + y)dy

where Γ is the parabola y = x2, x ∈ [−1; 2] oriented in the positive direction.

Solution: ▶ We parametrise the curve as x = t, y = t2. Then

xydx + (x + y)dy = t3dt + (t + t2)dt2 = (3t3 + 2t2)dt,

whence ∫
Γ

ω =

∫ 2

−1

(3t3 + 2t2)dt

=

ï
2

3
t3 +

3

4
t4
ò2
−1

=
69

4
.

What would happen if we had given the curve above a different parametrisation? First observe
that the curve travels from (−1, 1) to (2, 4) on the parabola y = x2. These conditions are met
with the parametrisation x =

√
t− 1, y = (

√
t− 1)2, t ∈ [0; 9]. Then

xydx + (x + y)dy = (
√
t− 1)3d(

√
t− 1) + ((

√
t− 1) + (

√
t− 1)2)d(

√
t− 1)2

= (3(
√
t− 1)3 + 2(

√
t− 1)2)d(

√
t− 1)

=
1

2
√
t
(3(
√
t− 1)3 + 2(

√
t− 1)2)dt,

2Do not confuse, say, −{(1, 0, 0)} with −(1, 0, 0) = (−1, 0, 0). The first one means that the point (1, 0, 0) is given negative
orientation, the second means that (−1, 0, 0) is the additive inverse of (1, 0, 0).
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whence ∫
Γ

ω =

∫ 9

0

1

2
√
t
(3(
√
t− 1)3 + 2(

√
t− 1)2)dt

=

ñ
3t2

4
−

7t3/2

3
+

5t

2
−
√
t

ô9
0

=
69

4
,

as before.

To solve this problem using Maple you may use the code below.

> with(Student[VectorCalculus]):
> LineInt( VectorField( <x*y,x+y> ), Path( <t,tˆ2>, t=-1..2));

◀

+ It turns out that if two different parametrisations of the same curve have the same orientation, then
their integrals are equal. Hence, we only need to worry about finding a suitable parametrisation.

247 Example Calculate the line integral

∫
Γ

y sinxdx + x cos ydy,

where Γ is the line segment from (0, 0) to (1, 1) in the positive direction.

Solution: ▶ This line has equation y = x, so we choose the parametrisation x = y = t. The
integral is thus

∫
Γ

y sinxdx + x cos ydy =

∫ 1

0

(t sin t + t cos t)dt

= [t(sinx− cos t)]10 −
∫ 1

0

(sin t− cos t)dt

= 2 sin 1− 1,

upon integrating by parts.

To solve this problem using Maple you may use the code below.

> with(Student[VectorCalculus]):
> LineInt( VectorField( <y*sin(x),x*cos(y)> ), Line(<0,0>,<1,1>));

◀

248 Example Calculate the path integral

∫
Γ

x + y

x2 + y2
dy +

x− y

x2 + y2
dx

around the closed square Γ = ABCD with A = (1, 1), B = (−1, 1), C = (−1,−1), and D = (1,−1)
in the direction ABCDA.
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Solution: ▶ On AB, y = 1,dy = 0, on BC, x = −1,dx = 0, on CD, y = −1, dy = 0, and
on DA, x = 1,dx = 0. The integral is thus∫

Γ

ω =

∫
AB

ω +

∫
BC

ω +

∫
CD

ω +

∫
DA

ω

=

∫ −1

1

x− 1

x2 + 1
dx +

∫ −1

1

y − 1

y2 + 1
dy +

∫ 1

−1

x + 1

x2 + 1
dx +

∫ 1

−1

y + 1

y2 + 1
dy

= 4

∫ 1

−1

1

x2 + 1
dx

= 4arctanx|1−1

= 2π.

To solve this problem using Maple you may use the code below.
> with(Student[VectorCalculus]):
> LineInt( VectorField( <(x+y)/(xˆ2+yˆ2),(x-y)/(xˆ2+yˆ2)> ),

> LineSegments(<1,1>,<-1,1>,<-1,-1>,<1,-1>,<1,1>));

◀

+ When the integral is along a closed path, like in the preceding example, it is customary to use the

symbol
∮
Γ

rather than
∫
Γ

. The positive direction of integration is that sense that when traversing the

path, the area enclosed by the curve is to the left of the curve.

249 Example Calculate the path integral ∮
Γ

x2dy + y2dx,

where Γ is the ellipse 9x2 + 4y2 = 36 traversed once in the positive sense.

Solution: ▶ Parametrise the ellipse as x = 2 cos t, y = 3 sin t, t ∈ [0; 2π]. Observe that when
traversing this closed curve, the area of the ellipse is on the left hand side of the path, so this
parametrisation traverses the curve in the positive sense. We have∮

Γ

ω =

∫ 2π

0

((4 cos2 t)(3 cos t) + (9 sin t)(−2 sin t))dt

=

∫ 2π

0

(12 cos3 t− 18 sin3 t)dt

= 0.

To solve this problem using Maple you may use the code below.
> with(Student[VectorCalculus]):
> LineInt( VectorField( <yˆ2,xˆ2> ),Ellipse(9*xˆ2 + 4*yˆ2 -36));

◀

250 Definition Let Γ be a smooth curve. The integral∫
Γ

f(x)||dx||

is called the path integral of f along Γ.
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251 Example Find
∫
Γ

x||dx|| where Γ is the triangle starting at A : (−1,−1) to B : (2,−2), and ending

in C : (1, 2).

Solution: ▶ The lines passing through the given points have equations LAB : y =
−x− 4

3
,

and LBC : y = −4x + 6. On LAB

x||dx|| = x
»
(dx)2 + (dy)2 = x

 
1 +

Å
−

1

3

ã2
dx =

x
√
10dx

3
,

and on LBC

x||dx|| = x
»
(dx)2 + (dy)2 = x(

»
1 + (−4)2)dx = x

√
17dx.

Hence ∫
Γ

x||dx|| =

∫
LAB

x||dx||+
∫

LBC

x||dx||

=

∫ 2

−1

x
√
10dx

3
+

∫ 1

2

x
√
17dx

=

√
10

2
−

3
√
17

2
.

To solve this problem using Maple you may use the code below.
> with(Student[VectorCalculus]):
> PathInt( x, [x,y]=LineSegments( <-1,-1>, <2,-2>,<1,2> ) );

◀

1

2

3

-1

-2

-3

1 2 3-1-2-3

b

b

b

Figure 3.1: Example 251.

Homework

Problem 3.3.1 Consider

∫
C

xdx+ydy and

∫
C

xy||dx||.

1. Evaluate

∫
C

xdx + ydy where C is the straight

line path that starts at (−1, 0) goes to (0, 1) and
ends at (1, 0), by parametrising this path. Calcu-

late also

∫
C

xy||dx|| using this parametrisation.

2. Evaluate

∫
C

xdx + ydy where C is the semicircle

that starts at (−1, 0) goes to (0, 1) and ends at
(1, 0), by parametrising this path. Calculate also∫
C

xy||dx|| using this parametrisation.
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Problem 3.3.2 Find

∫
Γ

xdx + ydy where Γ is the path

shewn in figure 3.2, starting at O(0, 0) going on a
straight line to A

(
4 cos π

6
, 4 sin π

6

)
and continuing on

an arc of a circle to B
(
4 cos π

5
, 4 sin π

5

)
.

b

II

b II

b
II

Figure 3.2: Problems 3.3.2 and 3.3.3.

Problem 3.3.3 Find

∫
Γ

x||dx|| where Γ is the path

shewn in figure 3.2.

Problem 3.3.4 Find

∮
Γ

zdx+xdy+ydz where Γ is the

intersection of the sphere x2+y2+z2 = 1 and the plane
x + y = 1, traversed in the positive direction.

3.4 Closed and Exact Forms
252 Lemma (Poincaré Lemma) If ω is a p-differential form of continuously differentiable functions in
Rn then

d(dω) = 0.

Proof: We will prove this by induction on p. For p = 0 if

ω = f(x1, x2, . . . , xn)

then

dω =
n∑

k=1

∂f

∂xk

dxk

and

d(dω) =
n∑

k=1

d

Å
∂f

∂xk

ã
∧ dxk

=
n∑

k=1

Ñ
n∑

j=1

∂2f

∂xj∂xk

∧ dxj

é
∧ dxk

=
n∑

1≤j≤k≤n

Ç
∂2f

∂xj∂xk

−
∂2f

∂xk∂xj

å
dxj ∧ dxk

= 0,

since ω is continuously differentiable and so the mixed partial derivatives are equal. Consider
now an arbitrary p-form, p > 0. Since such a form can be written as

ω =
∑

1≤j1≤j2≤···≤jp≤n

aj1j2...jpdxj1 ∧ dxj2 ∧ · · · dxjp ,

where the aj1j2...jp are continuous differentiable functions in Rn, we have

dω =
∑

1≤j1≤j2≤···≤jp≤n

daj1j2...jp ∧ dxj1 ∧ dxj2 ∧ · · · dxjp

=
∑

1≤j1≤j2≤···≤jp≤n

(
n∑

i=1

∂aj1j2...jp

∂xi

dxi

)
∧ dxj1 ∧ dxj2 ∧ · · ·dxjp ,

it is enough to prove that for each summand

d
(
da ∧ dxj1 ∧ dxj2 ∧ · · · dxjp

)
= 0.

But
d
(
da ∧ dxj1 ∧ dxj2 ∧ · · · dxjp

)
= dda ∧

(
dxj1 ∧ dxj2 ∧ · · · dxjp

)
+da ∧ d

(
dxj1 ∧ dxj2 ∧ · · ·dxjp

)
= da ∧ d

(
dxj1 ∧ dxj2 ∧ · · · dxjp

)
,
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since dda = 0 from the case p = 0. But an independent induction argument proves that

d
(
dxj1 ∧ dxj2 ∧ · · · dxjp

)
= 0,

completing the proof. q

253 Definition A differential form ω is said to be exact if there is a continuously differentiable function
F such that

dF = ω.

254 Example The differential form
xdx + ydy

is exact, since

xdx + ydy = d

Å
1

2
(x2 + y2)

ã
.

255 Example The differential form
ydx + xdy

is exact, since
ydx + xdy = d (xy) .

256 Example The differential form
x

x2 + y2
dx +

y

x2 + y2
dy

is exact, since
x

x2 + y2
dx +

y

x2 + y2
dy = d

Å
1

2
loge(x

2 + y2)

ã
.

+ Let ω = dF be an exact form. By the Poincaré Lemma Theorem 252, dω = ddF = 0. A result of
Poincaré says that for certain domains (called star-shaped domains) the converse is also true, that is, if
dω = 0 on a star-shaped domain then ω is exact.

257 Example Determine whether the differential form

ω =
2x(1− ey)

(1 + x2)2
dx +

ey

1 + x2
dy

is exact.

Solution: ▶ Assume there is a function F such that

dF = ω.

By the Chain Rule

dF =
∂F

∂x
dx +

∂F

∂y
dy.

This demands that
∂F

∂x
=

2x(1− ey)

(1 + x2)2
,

∂F

∂y
=

ey

1 + x2
.

We have a choice here of integrating either the first, or the second expression. Since integrating
the second expression (with respect to y) is easier, we find

F (x, y) =
ey

1 + x2
+ ϕ(x),
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where ϕ(x) is a function depending only on x. To find it, we differentiate the obtained expres-
sion for F with respect to x and find

∂F

∂x
= −

2xey

(1 + x2)2
+ ϕ′(x).

Comparing this with our first expression for
∂F

∂x
, we find

ϕ′(x) =
2x

(1 + x2)2
,

that is
ϕ(x) = −

1

1 + x2
+ c,

where c is a constant. We then take

F (x, y) =
ey − 1

1 + x2
+ c.

◀

258 Example Is there a continuously differentiable function such that

dF = ω = y2z3dx + 2xyz3dy + 3xy2z2dz ?

Solution: ▶ We have

dω = (2yz3dy + 3y2z2dz) ∧ dx

+(2yz3dx + 2xz3dy + 6xyz2dz) ∧ dy

+(3y2z2dx + 6xyz2dy + 6xy2zdz) ∧ dz

= 0,

so this form is exact in a star-shaped domain. So put

dF =
∂F

∂x
dx +

∂F

∂y
dy +

∂F

∂z
dz = y2z3dx + 2xyz3dy + 3xy2z2dz.

Then
∂F

∂x
= y2z3 =⇒ F = xy2z3 + a(y, z),

∂F

∂y
= 2xyz3 =⇒ F = xy2z3 + b(x, z),

∂F

∂z
= 3xy2z2 =⇒ F = xy2z3 + c(x, y),

Comparing these three expressions for F , we obtain F (x, y, z) = xy2z3. ◀

We have the following equivalent of the Fundamental Theorem of Calculus.

259 Theorem Let U ⊆ Rn be an open set. Assume ω = dF is an exact form, and Γ a path in U with
starting point A and endpoint B. Then∫

Γ

ω =

∫ B

A

dF = F (B)− F (A).

In particular, if Γ is a simple closed path, then∮
Γ

ω = 0.
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260 Example Evaluate the integral ∮
Γ

2x

x2 + y2
dx +

2y

x2 + y2
dy

where Γ is the closed polygon with vertices at A = (0, 0), B = (5, 0), C = (7, 2), D = (3, 2), E = (1, 1),
traversed in the order ABCDEA.

Solution: ▶ Observe that

d

Å
2x

x2 + y2
dx +

2y

x2 + y2
dy

ã
= −

4xy

(x2 + y2)2
dy ∧ dx−

4xy

(x2 + y2)2
dx ∧ dy = 0,

and so the form is exact in a start-shaped domain. By virtue of Theorem 259, the integral is 0.
◀

261 Example Calculate the path integral∮
Γ

(x2 − y)dx + (y2 − x)dy,

where Γ is a loop of x3 + y3 − 2xy = 0 traversed once in the positive sense.

Solution: ▶ Since
∂

∂y
(x2 − y) = −1 =

∂

∂x
(y2 − x),

the form is exact, and since this is a closed simple path, the integral is 0. ◀

3.5 Two-Manifolds
262 Definition A 2-dimensional oriented manifold of R2 is simply an open set (region) D ∈ R2, where the
+ orientation is counter-clockwise and the − orientation is clockwise. A general oriented 2-manifold is
a union of open sets.

+The region −D has opposite orientation to D and∫
−D

ω = −
∫
D

ω.

We will often write ∫
D

f(x, y)dA

where dA denotes the area element.

+ In this section, unless otherwise noticed, we will choose the positive orientation for the regions
considered. This corresponds to using the area form dxdy.

Let D ⊆ R2. Given a function f : D → R, the integral∫
D

fdA

is the sum of all the values of f restricted to D. In particular,∫
D

dA

is the area of D.

In order to evaluate double integrals, we need the following.
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263 Theorem (Fubini’s Theorem) Let D = [a; b]× [c; d], and let f : A→ R be continuous. Then∫
D

fdA =

∫ b

a

Ç∫ d

c

f(x, y)dy

å
dx =

∫ d

c

Ç∫ b

a

f(x, y)dx

å
dy

Fubini’s Theorem allows us to convert the double integral into iterated (single) integrals.

264 Example ∫
[0;1]×[2;3]

xydA =

∫ 1

0

Ç∫ 3

2

xydy

å
dx

=

∫ 1

0

(ñ
xy2

2

ô3
2

)
dx

=

∫ 1

0

Å
9x

2
− 2x

ã
dx

=

ñ
5x2

4

ô1
0

=
5

4
.

Notice that if we had integrated first with respect to x we would have obtained the same result:∫ 3

2

Ç∫ 1

0

xydx

å
dy =

∫ 3

2

(ñ
x2y

2

ô1
0

)
dy

=

∫ 3

2

(y
2

)
dx

=

ñ
y2

4

ô3
2

=
5

4
.

Also, this integral is “factorable into x and y pieces” meaning that∫
[0;1]×[2;3]

xydA =

Ç∫ 1

0

xdx

åÇ∫ 3

2

ydy

å
=

Å
1

2

ãÅ
5

2

ã
=

5

4

To solve this problem using Maple you may use the code below.
> with(Student[VectorCalculus]):
> int(x*y, [x,y]=Region(0..1,2..3));

265 Example We have∫ 4

3

∫ 1

0

(x + 2y)(2x + y) dxdy =

∫ 4

3

∫ 1

0

(2x2 + 5xy + 2y2) dxdy

=

∫ 4

3

Å
2

3
+

5

2
y + 2y2

ã
dy

=
409

12
.

To solve this problem using Maple you may use the code below.
> with(Student[VectorCalculus]):
> int((x + 2*y)*(2*x + y), [x,y]=Region(3..4,0..1));
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In the cases when the domain of integration is not a rectangle, we decompose so that, one variable
is kept constant.

266 Example Find
∫
D

xy dxdy in the triangle with vertices A : (−1,−1), B : (2,−2), C : (1, 2).

Solution: ▶ The lines passing through the given points have equations LAB : y =
−x− 4

3
,

LBC : y = −4x + 6, LCA : y =
3x + 1

2
. Now, we draw the region carefully. If we integrate

first with respect to y, we must divide the region as in figure 3.3, because there are two upper
lines which the upper value of y might be. The lower point of the dashed line is (1,−5/3). The
integral is thus∫ 1

−1

x

Ç∫ (3x+1)/2

(−x−4)/3

y dy

å
dx +

∫ 2

1

x

Ç∫ −4x+6

(−x−4)/3

y dy

å
dx = −

11

8
.

If we integrate first with respect to x, we must divide the region as in figure 3.4, because there
are two left-most lines which the left value of x might be. The right point of the dashed line is
(7/4,−1). The integral is thus∫ −1

−2

y

Ç∫ (6−y)/4

−4−3y

x dx

å
dy +

∫ 2

−1

y

Ç∫ (6−y)/4

(2y−1)/3

x dx

å
dy = −

11

8
.

To solve this problem using Maple you may use the code below.
> with(Student[VectorCalculus]):
> int(x*y, [x,y]=Triangle(<-1,-1>,<2,-2>,<1,2>);

◀

1

2

3

-1

-2

-3

1 2 3-1-2-3
b

b

b

b

Figure 3.3: Example 266.
Integration order dydx.

1

2

3

-1

-2

-3

1 2 3-1-2-3
b

b

b

b

Figure 3.4: Example 266.
Integration order dxdy.

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

b

b

b

b

b

b

Figure 3.5: Example 267.

267 Example Consider the region inside the parallelogram P with vertices at A : (6, 3), B : (8, 4),
C : (9, 6), D : (7, 5), as in figure 3.5. Find ∫

P

xy dxdy.

Solution: ▶ The lines joining the points have equations

LAB : y =
x

2
,
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LBC : y = 2x− 12,

LCD : y =
x

2
+

3

2
,

LDA : y = 2x− 9.

The integral is thus

∫ 4

3

∫ 2y

(y+9)/2

xy dxdy +

∫ 5

4

∫ (y+12)/2

(y+9)/2

xy dxdy +

∫ 6

5

∫ (y+12)/2

2y−3

xy dxdy =
409

4
.

To solve this problem using Maple you may use the code below. Notice that we have split the
parallelogram into two triangles.

> with(Student[VectorCalculus]):
> int(x*y, [x,y]=Triangle(<6,3>,<8,4>,<7,5>))

> + int(x*y, [x,y]=Triangle(<8,4>,<9,6>,<7,5>));

◀

268 Example Find ∫
D

y

x2 + 1
dxdy

where

D = {(x, y) ∈ R2|x ≥ 0, x2 + y2 ≤ 1}.

Solution: ▶ The integral is 0. Observe that if (x, y) ∈ D then (x,−y) ∈ D. Also, f(x,−y) =
−f(x, y). ◀

0
1
2
3
4
5

0 1 2 3 4 5

Figure 3.6: Example 269.

0

1

0 1

Figure 3.7: Example 270.

0

1

2

0 1 2

Figure 3.8: Example 271.

269 Example Find ∫ 4

0

Ç∫ √
y

y/2

ey/x dx

å
dy.

Solution: ▶ We have

0 ≤ y ≤ 4,
y

2
≤ x ≤ √y =⇒ 0 ≤ x ≤ 2, x2 ≤ y ≤ 2x.
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We then have ∫ 4

0

Ç∫ √
y

y/2

ey/xdx

å
dy =

∫ 2

0

Ç∫ 2x

x2

ey/xdy

å
dx

=

∫ 2

0

Ä
xey/x

∣∣2x
x2

ä
dx

=

∫ 2

0

(xe2 − xex) dx

= 2e2 − (2e2 − e2 + 1)

= e2 − 1

◀

270 Example Find the area of the region

R = {(x, y) ∈ R2 :
√
x +
√
y ≥ 1,

√
1− x +

√
1− y ≥ 1}.

Solution: ▶ The area is given by∫
D

dA =

∫ 1

0

(∫ 1−(1−
√

1−x)2

(1−
√

x)2
dy

)
dx

= 2

∫ 1

0

(
√
1− x +

√
x− 1)dx

=
2

3
.

◀

271 Example Evaluate
∫
R

Tx2 + y2UdA, where R is the rectangle [0;
√
2]× [0;

√
2] .

Solution: ▶ The function (x, y) 7→ Tx2 + y2U jumps every time x2 + y2 is an integer. For
(x, y) ∈ R, we have 0 ≤ x2 + y2 ≤ (

√
2)2 + (

√
2)2 = 4. Thus we decompose R as the union

of the
Rk = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, k ≤ x2 + y2 < k + 1}, k ∈ {1, 2, 3}.∫

R

Tx2 + y2UdA =
∑

1≤k≤3

∫
Rk

Tx2 + y2UdA
=

∫∫
1≤x2+y2<2,x≥0,y≥0

1dA +

∫∫
2≤x2+y2<3,x≥0,y≥0

2dA +

∫∫
3≤x2+y2<4,x≥0,y≥0

3dA.

Now the integrals can be computed by realising that they are areas of quarter annuli, and so,∫∫
k≤x2+y2<k+1,x≥0,y≥0

kdA = k ·
1

4
· π(k + 1− k) =

πk

4
.

Hence ∫
R

Tx2 + y2UdA =
π

4
(1 + 2 + 3) =

3π

2
.

◀

Homework
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Problem 3.5.1 Evaluate the iterated integral∫ 3

1

∫ x

0

1

x
dydx.

Problem 3.5.2 Let S be the interior and boundary of
the triangle with vertices (0, 0), (2, 1), and (2, 0). Find∫
S

ydA.

Problem 3.5.3 Let

S = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, 1 ≤ x2 + y2 ≤ 4}.

Find

∫
S

x2dA.

Problem 3.5.4 Find ∫
D

xydxdy

where
D = {(x, y) ∈ R2|y ≥ x2, x ≥ y2}.

Problem 3.5.5 Find∫
D

(x + y)(sinx)(sin y)dA

where D = [0;π]2.

Problem 3.5.6 Find

∫ 1

0

∫ 1

0

min(x2, y2)dxdy.

Problem 3.5.7 Find

∫
D

xydxdy where

D = {(x, y) ∈ R2 : x > 0, y > 0, 9 < x2+y2 < 16, 1 < x2−y2 < 16}.

Problem 3.5.8 Evaluate

∫
R

xdA whereR is the (unori-

ented) circular segment in figure 3.9, which is created by
the intersection of regions

{(x, y) ∈ R2 : x2 + y2 ≤ 16}

and ß
(x, y) ∈ R2 : y ≥ −

√
3

3
x + 4

™
.

b

II

b
II

Figure 3.9: Problem 3.5.8.

Problem 3.5.9 Find

∫ 1

0

∫ 1

y

2ex2

dxdy

Problem 3.5.10 Evaluate

∫
[0;1]2

min(x, y2)dA.

Problem 3.5.11 Find

∫
R

xydA, where R is the (unori-

ented) △OAB in figure 3.10 with O(0, 0), A(3, 1), and
B(4, 4).

b

II

b II

b
II

Figure 3.10: Problem 3.5.11.

Problem 3.5.12 Find∫
D

loge(1 + x + y)dA

where

D = {(x, y) ∈ R2|x ≥ 0, y ≥ 0, x + y ≤ 1}.

Problem 3.5.13 Evaluate

∫
[0;2]2

Tx + y2UdA.

Problem 3.5.14 Evaluate

∫
R

Tx+yUdA, where R is the

rectangle [0 ; 1]× [0 ; 2].

Problem 3.5.15 Evaluate

∫
R

xdA where R is the quar-

ter annulus in figure 3.11, which formed by the the area
between the circles x2 + y2 = 1 and x2 + y2 = 4 in the
first quadrant.
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Figure 3.11: Problem 3.5.15.

Problem 3.5.16 Evaluate

∫
R

xdA where R is the E-

shaped figure in figure 3.12.

b b

bb

b b

bb

b b

bb

Figure 3.12: Problem 3.5.16.

Problem 3.5.17 Evaluate

∫ π/2

0

∫ π/2

x

cos y

y
dydx.

Problem 3.5.18 Find∫ 2

1

Ç∫ x

√
x

sin
πx

2y
dy

å
dx +

∫ 4

2

Ç∫ 2

√
x

sin
πx

2y
dy

å
dx.

Problem 3.5.19 Find∫
D

2x(x2 + y2)dA

where

D = {(x, y) ∈ R2 : x4 + y4 + x2 − y2 ≤ 1}.

Problem 3.5.20 Find the area bounded by the ellipses

x2 +
y2

4
= 1 and

x2

4
+ y2 = 1, as in figure 3.13.

Figure 3.13: Problem 3.5.20.

Problem 3.5.21 Find ∫
D

xydA

where

D = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, xy + y + x ≤ 1}.

Problem 3.5.22 Find∫
D

loge(1 + x2 + y)dA

where

D = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x2 + y ≤ 1}.

Problem 3.5.23 Evaluate

∫
R

xdA, where R is the re-

gion between the circles x2 + y2 = 4 and x2 + y2 = 2y,
as shewn in figure 3.14.

Figure 3.14: Problem 3.5.23.

Problem 3.5.24 Evaluate

∫ 1

0

∫ 1

√
x

ex/y

y
dydx.

Problem 3.5.25 Find∫
D

|x− y|dA

where

D = {(x, y) ∈ R2 : |x| ≤ 1, |y| ≤ 1}.

Problem 3.5.26 Find

∫
D

(2x + 3y + 1) dA, where D is

the triangle with vertices at A(−1,−1), B(2,−4), and
C(1, 3).
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Problem 3.5.27 Let f : [0; 1] →]0;+∞] be a decreas-
ing function. Prove that∫ 1

0

xf2(x)dx∫ 1

0

xf(x)dx

≤

∫ 1

0

f2(x)dx∫ 1

0

f(x)dx

.

Problem 3.5.28 Find∫
D

(xy(x + y))dA

where

D = {(x, y) ∈ R2|x ≥ 0, y ≥ 0, x + y ≤ 1}.

Problem 3.5.29 Let f, g : [0; 1]→ [0; 1] be continuous,
with f increasing. Prove that∫ 1

0

(f ◦ g)(x)dx ≤
∫ 1

0

f(x)dx +

∫ 1

0

g(x)dx.

Problem 3.5.30 Compute

∫
S

(xy + y2)dA where

S = {(x, y) ∈ R2 : |x|1/2 + |y|1/2 ≤ 1}.

Problem 3.5.31 Evaluate∫ a

0

∫ b

0

emax(b2x2,a2y2) dydx,

where a and b are positive.

Problem 3.5.32 Find

∫
D

√
xy dA, where

D = {(x, y) ∈ R2 : y ≥ 0, (x + y)2 ≤ 2x}.

Problem 3.5.33 A rectangle R on the plane is the dis-
joint union R = ∪N

k=1Rk of rectangles Rk. It is known
that at least one side of each of the rectangles Rk is an
integer. Shew that at least one side of R is an integer.

Problem 3.5.34 Evaluate∫ 1

0

∫ 1

0

· · ·
∫ 1

0

(x1x2 · · ·xn)dx1dx2 . . .dxn.

Problem 3.5.35 Evaluate∫ 1

0

∫ 1

0

· · ·
∫ 1

0

(x1 + x2 + · · ·+ xn) dx1dx2 . . . dxn.

Problem 3.5.36 Let I be the rectangle [1; 2]× [1; 2] and
let f, g be continuous functions f, g : [1; 2] → [1; 2]
such that f(x) ≤ g(x). Demonstrate that∫

I

(g(y)− f(x)) dxdy ≥ 0.

Problem 3.5.37 Find

∫ 1

0

∫ 1

0

xydxdy. Then demon-

strate that

∫ 1

0

x− 1

log x
dx = log 2.

Problem 3.5.38 Evaluate∫ 4

0

∫ √4−y

0

√
12x− x3dxdy.

Problem 3.5.39 Evaluate

∫ 2

0

∫ 2

y

y
√

1 + x3dxdy.

Problem 3.5.40 Evaluate

∫ 1

0

∫ 1

y

xy√
1 + x4

dxdy.

Problem 3.5.41 Find∫
D

1

(x + y)4
dA

where

D = {(x, y) ∈ R2|x ≥ 1, y ≥ 1, x + y ≤ 4}.

Problem 3.5.42 Prove that∫ +∞

0

∫ +∞

2x

xe−y sin y

y2
dydx =

1

16
.

Problem 3.5.43 Prove that∫ 1

0

∫ y

y2

y

x
√

x2 + y2
dxdy = log(1 +

√
2).

Problem 3.5.44 Prove that∫ 1

0

∫ 1

0

x− y

(x + y)3
dydx =

1

2
= −

∫ 1

0

∫ 1

0

x− y

(x + y)3
dxdy.

Is this a contradiction to Fubini’s Theorem?

Problem 3.5.45 Find ∫
D

xdA

where

D = {(x, y) ∈ R2|y ≥ 0, x−y+1 ≥ 0, x+2y−4 ≤ 0}.

Problem 3.5.46 Evaluate

lim
n→+∞

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

cos2
Ä π

2n
(x1 + x2 + · · ·+ xn)

ä
dx1 dx2 . . . dxn.
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Problem 3.5.47 Let f, g be continuous functions in the
interval [a; b]. Prove that

1

2

∫ b

a

(∫ b

a

det

ñ
f(x) g(x)

f(y) g(y)

ô2
dx

)
dy

equalsÇ∫ b

a

(f(x))2dx

åÇ∫ b

a

(g(x))2dx

å
−
Ç∫ b

a

(f(x)g(x))dx

å2

.

This is an integral analogue of Lagrange’s Identity. De-
duce Cauchy’s Inequality for integrals,Ç∫ b

a

(f(x)g(x))dx

å2

≤
Ç∫ b

a

(f(x))2dx

åÇ∫ b

a

(g(x))2dx

å
.

Problem 3.5.48 Let a ∈ R, n ∈ N, a > 0, n > 0. Let
f : [0; a]→ R be continuous. Prove that∫ a

0

∫ x1

0

· · ·
∫ xn−2

0

∫ xn−1

0

(f(x1)f(x2) · · · f(xn))dxndxn−1 . . .dx2dx1

equals
1

n!

Å∫ a

0

f(x)dx

ãn

.

3.6 Change of Variables
We now perform a multidimensional analogue of the change of variables theorem in one variable.

272 Theorem Let (D,∆) ∈ (Rn)2 be open, bounded sets in Rn with volume and let g : ∆ → D be a

continuously differentiable bijective mapping such that det g′(u) ̸= 0, and both |det g′(u)|,
1

|det g′(u)|
are bounded on ∆. For f : D → R bounded and integrable, f ◦ g| det g′(u)| is integrable on ∆ and∫

· · ·
∫
D

f =

∫
· · ·
∫
∆

(f ◦ g)|det g′(u)|,

that is ∫
· · ·
∫
D

f(x1, x2, . . . , xn)dx1 ∧ dx2 ∧ . . . ∧ dxn

=

∫
· · ·
∫
∆

f(g(u1, u2, . . . , un))|det g′(u)|du1 ∧ du2 ∧ . . . ∧ dun.

One normally chooses changes of variables that map into rectangular regions, or that simplify the
integrand. Let us start with a rather trivial example.

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

b

b b

b

Figure 3.15: Example 273. xy-plane.

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

b

b

b

b

Figure 3.16: Example 273. uv-plane.

Free to photocopy and distribute 122



Chapter 3

273 Example Evaluate the integral ∫ 4

3

∫ 1

0

(x + 2y)(2x + y)dxdy.

Solution: ▶ Observe that we have already computed this integral in example 265. Put

u = x + 2y =⇒ du = dx + 2dy,

v = 2x + y =⇒ dv = 2dx + dy,

giving
du ∧ dv = −3dx ∧ dy.

Now,

(u, v) =

[
1 2

2 1

] [
x

y

]
is a linear transformation, and hence it maps quadrilaterals into quadrilaterals. The corners
of the rectangle in the area of integration in the xy-plane are (0, 3), (1, 3), (1, 4), and (0, 4),
(traversed counter-clockwise) and they map into (6, 3), (7, 5), (9, 6), and (8, 4), respectively, in
the uv-plane (see figure 3.16). The form dx∧ dy has opposite orientation to du∧ dv so we use

dv ∧ du = 3dx ∧ dy

instead. The integral sought is
1

3

∫
P

uv dvdu =
409

12
,

from example 267. ◀

274 Example The integral ∫
[0;1]2

(x4 − y4)dA =

∫ 1

0

Å
1

5
− y4

ã
dy = 0.

Evaluate it using the change of variables u = x2 − y2, v = 2xy.

Solution: ▶ First we find
du = 2xdx− 2ydy,

dv = 2ydx + 2xdy,

and so
du ∧ dv = (4x2 + 4y2)dx ∧ dy.

We now determine the region ∆ into which the square D = [0; 1]2 is mapped. We use the fact
that boundaries will be mapped into boundaries. Put

AB = {(x, 0) : 0 ≤ x ≤ 1},

BC = {(1, y) : 0 ≤ y ≤ 1},

CD = {(1− x, 1) : 0 ≤ x ≤ 1},

DA = {(0, 1− y) : 0 ≤ y ≤ 1}.

On AB we have u = x, v = 0. Since 0 ≤ x ≤ 1, AB is thus mapped into the line segment
0 ≤ u ≤ 1, v = 0.
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On BC we have u = 1− y2, v = 2y. Thus u = 1−
v2

4
. Hence BC is mapped to the portion of

the parabola u = 1−
v2

4
, 0 ≤ v ≤ 2.

On CD we have u = (1− x)2 − 1, v = 2(1− x). This means that u =
v2

4
− 1, 0 ≤ v ≤ 2.

Finally, on DA, we have u = −(1 − y)2, v = 0. Since 0 ≤ y ≤ 1, DA is mapped into the line
segment −1 ≤ u ≤ 0, v = 0. The region ∆ is thus the area in the uv plane enclosed by the

parabolas u ≤
v2

4
− 1, u ≤ 1−

v2

4
with −1 ≤ u ≤ 1, 0 ≤ v ≤ 2.

We deduce that ∫
[0;1]2

(x4 − y4)dA =

∫
∆

(x4 − y4)
1

4(x2 + y2)
dudv

=
1

4

∫
∆

(x2 − y2)dudv

=
1

4

∫
∆

ududv

=
1

4

∫ 2

0

(∫ 1−v2/4

v2/4−1

udu

)
dv

= 0,

as before. ◀

275 Example Find ∫
D

e(x
3+y3)/xy dA

where
D = {(x, y) ∈ R2|y2 − 2px ≤ 0, x2 − 2py ≤ 0, p ∈]0;+∞[ fixed},

using the change of variables x = u2v, y = uv2.

Solution: ▶ We have
dx = 2uvdu + u2dv,

dy = v2du + 2uvdv,

dx ∧ dy = 3u2v2du ∧ dv.

The region transforms into

∆ = {(u, v) ∈ R2|0 ≤ u ≤ (2p)1/3, 0 ≤ v ≤ (2p)1/3}.

The integral becomes∫
D

f(x, y)dxdy =

∫
∆

exp

Ç
u6v3 + u3v6

u3v3

å
(3u2v2) dudv

= 3

∫
∆

eu
3

ev
3

u2v2 dudv

=
1

3

(∫ (2p)1/3

0

3u2eu
3

du

)2

=
1

3
(e2p − 1)2.

As an exercise, you may try the (more natural) substitution x3 = u2v, y3 = v2u and verify that
the same result is obtained. ◀
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0

1

0 1

b b

bb

Figure 3.17: Example 276. xy-plane.

b b

b

π

2

π

2

Figure 3.18: Example 276. uv-plane.

276 Example In this problem we will follow an argument of Calabi, Beukers, and Kock to prove that
+∞∑
n=1

1

n2
=

π2

6
.

1. Prove that if S =

+∞∑
n=1

1

n2
, then

3

4
S =

+∞∑
n=1

1

(2n− 1)2
.

2. Prove that
+∞∑
n=1

1

(2n− 1)2
=

∫ 1

0

∫ 1

0

dxdy

1− x2y2
.

3. Use the change of variables x =
sinu

cos v
, y =

sin v

cosu
in order to evaluate

∫ 1

0

∫ 1

0

dxdy

1− x2y2
.

Solution: ▶

1. Observe that the sum of the even terms is

+∞∑
n=1

1

(2n)2
=

1

4

+∞∑
n=1

1

n2
=

1

4
S,

a quarter of the sum, hence the sum of the odd terms must be three quarters of the sum,
3

4
S.

2. Observe that

1

2n− 1
=

∫ 1

0

x2n−2dx =⇒
Å

1

2n− 1

ã2
=

Ç∫ 1

0

x2n−2dx

åÇ∫ 1

0

y2n−2dy

å
=

∫ 1

0

∫ 1

0

(xy)2n−2dxdy.

Thus

+∞∑
n=1

1

(2n− 1)2
=

+∞∑
n=1

∫ 1

0

∫ 1

0

(xy)2n−2dxdy =

∫ 1

0

∫ 1

0

+∞∑
n=1

(xy)2n−2dxdy =

∫ 1

0

∫ 1

0

dxdy

1− x2y2
,

as claimed.3

3. If x =
sinu

cos v
, y =

sin v

cosu
, then

dx = (cosu)(sec v)du+(sinu)(sec v)(tan v)dv, dy = (secu)(tanu)(sin v)du+(secu)(cos v)dv,

3This exchange of integral and sum needs justification. We will accept it for our purposes.
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from where

dx ∧ dy = du ∧ dv − (tan2 u)(tan2 v)du ∧ dv =
(
1− (tan2 u)(tan2 v)

)
du ∧ dv.

Also,

1− x2y2 = 1−
sin2 v

cos2 v
·
sin2 v

cos2 u
= 1− (tan2 u)(tan2 v).

This gives
dxdy

1− x2y2
= dudv.

We now have to determine the region that the transformation x =
sinu

cos v
, y =

sin v

cosu
forms

in the uv-plane. Observe that

u = arctanx

 
1− y2

1− x2
, v = arctan y

√
1− x2

1− y2
.

This means that the square in the xy-plane in figure 3.17 is transformed into the triangle
in the uv-plane in figure 3.18.
We deduce,∫ 1

0

∫ 1

0

dxdy

1− x2y2
=

∫ π/2

0

∫ π/2−v

0

dudv =

∫ π/2

0

(π/2− v) dv =

Ç
π

2
v −

v2

2

å ∣∣∣π/2

0
=

π2

4
−

π2

8
=

π2

8
.

Finally,
3

4
S =

π2

8
=⇒ S =

π2

6
.

◀

Homework
Problem 3.6.1 Let D′ = {(u, v) ∈ R2 : u ≤ 1,−u ≤ v ≤ u}. Consider

Φ :
R2 → R2

(u, v) 7→
(
u + v

2
,
u− v

2

) .

Ê Find the image of Φ on D′, that is, find D = Φ(D′).

Ë Find ∫
D

(x + y)2ex2−y2

dA.

Problem 3.6.2 Using the change of variables x = u2 − v2, y = 2uv, u ≥ 0, v ≥ 0, evaluate

∫
R

√
x2 + y2dA,

where
R = {(x, y) ∈ R2 : −1 ≤ x ≤ 1, 0 ≤ y ≤ 2

√
1− |x|}

Problem 3.6.3 Using the change of variables u = x − y and v = x + y, evaluate

∫
R

x− y

x + y
dA, where R is the

square with vertices at (0, 2), (1, 1), (2, 2), (1, 3).

Problem 3.6.4 Find

∫
D

f(x, y)dA where

D = {(x, y) ∈ R2|a ≤ xy ≤ b, y ≥ x ≥ 0, y2 − x2 ≤ 1, (a, b) ∈ R2, 0 < a < b}

and f(x, y) = y4 − x4 by using the change of variables u = xy, v = y2 − x2.
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Problem 3.6.5 Use the following steps (due to Tom Apostol) in order to prove that

∞∑
n=1

1

n2
=

π2

6
.

Ê Use the series expansion
1

1− t
= 1 + t + t2 + t3 + · · · |t| < 1,

in order to prove (formally) that ∫ 1

0

∫ 1

0

dxdy

1− xy
=

∞∑
n=1

1

n2
.

Ë Use the change of variables u = x + y, v = x− y to shew that∫ 1

0

∫ 1

0

dxdy

1− xy
= 2

∫ 1

0

Ç∫ u

−u

dv

4− u2 + v2

å
du + 2

∫ 2

1

Ç∫ 2−u

u−2

dv

4− u2 + v2

å
du.

Ì Shew that the above integral reduces to

2

∫ 1

0

2√
4− u2

arctan
u√

4− u2
du + 2

∫ 2

1

2√
4− u2

arctan
2− u√
4− u2

du.

Í Finally, prove that the above integral is
π2

6
by using the substitution θ = arcsin

u

2
.

3.7 Change to Polar Coordinates
One of the most common changes of variable is the passage to polar coordinates where

x = ρ cos θ =⇒ dx = cos θdρ− ρ sin θdθ,

y = ρ sin θ =⇒ dy = sin θdρ + ρ cos θdθ,

whence
dx ∧ dy = (ρ cos2 θ + ρ sin2 θ)dρ ∧ dθ = ρdρ ∧ dθ.

277 Example Find ∫
D

xy
√
x2 + y2dA

where
D = {(x, y) ∈ R2|x ≥ 0, y ≥ 0, y ≤ x, x2 + y2 ≤ 1}.

Solution: ▶ We use polar coordinates. The region D transforms into the region

∆ = [0; 1]×
[
0;

π

4

]
.

Therefore the integral becomes∫
∆

ρ4 cos θ sin θ dρdθ =

Ç∫ π/4

0

cos θ sin θ dθ

åÇ∫ 1

0

ρ4 dρ

å
=

1

20
.

◀
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Figure 3.19: Example 277. Figure 3.20: Example 278. Figure 3.21: Example 279.

b b

Figure 3.22: Example 280.

278 Example Evaluate
∫
R

xdA, where R is the region bounded by the circles x2+y2 = 4 and x2+y2 =

2y.

Solution: ▶ Observe that this is problem 3.5.23. Since x2 + y2 = r2, the radius sweeps from
r2 = 2r sin θ to r2 = 4, that is, from 2 sin θ to 2. The angle clearly sweeps from 0 to

π

2
. Thus

the integral becomes ∫
R

xdA =

∫ π/2

0

∫ 2 sin θ

2

r2 cos θdrdθ

=
1

3

∫ π/2

0

(8 cos θ − 8 cos θ sin3 θ)dθ

= 2.

◀

279 Example Find
∫
D

e−x2−xy−y2

dA, where

D = {(x, y) ∈ R2 : x2 + xy + y2 ≤ 1}.

Solution: ▶ Completing squares

x2 + xy + y2 =
(
x +

y

2

)2
+

Ç√
3y

2

å2

.

Put U = x +
y

2
, V =

√
3y

2
. The integral becomes∫

{x2+xy+y2≤1}
e−x2−xy−y2

dxdy =
2
√
3

∫
{U2+V 2≤1}

e−(U2+V 2)dUdV.

Passing to polar coordinates, the above equals

2
√
3

∫ 2π

0

∫ 1

0

ρe−ρ2

dρdθ =
2π
√
3
(1− e−1).

◀

280 Example Evaluate
∫
R

1

(x2 + y2)3/2
dA over the region

{
(x, y) ∈ R2 : x2 + y2 ≤ 4, y ≥ 1

}
(figure 3.22).

Solution: ▶ The radius sweeps from r =
1

sin θ
to r = 2. The desired integral is∫

R

1

(x2 + y2)3/2
dA =

∫ 5π/6

π/6

∫ 2

csc θ

1

r2
drdθ

=

∫ 5π/6

π/6

Å
sin θ −

1

2

ã
dθ

=
√
3−

π

3
.
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◀

281 Example Evaluate
∫
R

(x3 + y3)dA where R is the region bounded by the ellipse
x2

a2
+

y2

b2
= 1 and

the first quadrant, a > 0 and b > 0.

Solution: ▶ Put x = ar cos θ, y = br sin θ. Then

x = ar cos θ =⇒ dx = a cos θdr − ar sin θdθ,

y = br sin θ =⇒ dy = b sin θdr + br cos θdθ,

whence
dx ∧ dy = (abr cos2 θ + abr sin2 θ)dr ∧ dθ = abrdr ∧ dθ.

Observe that on the ellipse

x2

a2
+

y2

b2
= 1 =⇒

a2r2 cos2 θ

a2
+

b2r2 sin2 θ

b2
= 1 =⇒ r = 1.

Thus the required integral is∫
R

(x3 + y3)dA =

∫ π/2

0

∫ 1

0

abr4(cos3 θ + sin3 θ)drdθ

= ab

Ç∫ 1

0

r4dr

åÇ∫ π/2

0

(a3 cos3 θ + b3 sin3 θ)dθ

å
= ab

Å
1

5

ãÇ
2a3 + 2b3

3

å
=

2ab(a3 + b3)

15
.

◀

Homework

Problem 3.7.1 Evaluate

∫
R

xydA where R is the region

R =
{
(x, y) ∈ R2 : x2 + y2 ≤ 16, x ≥ 1, y ≥ 1

}
,

as in the figure 3.23. Set up the integral in both Cartesian and polar coordinates.

Figure 3.23: Problem 3.7.1.
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Change to Polar Coordinates

Problem 3.7.2 Find ∫
D

(x2 − y2)dA

where
D = {(x, y) ∈ R2|(x− 1)2 + y2 ≤ 1}.

Problem 3.7.3 Find ∫
D

√
xydA

where
D = {(x, y) ∈ R2|(x2 + y2)2 ≤ 2xy}.

Problem 3.7.4 Find

∫
D

fdA where

D = {(x, y) ∈ R2 : b2x2 + a2y2 = a2b2, (a, b) ∈]0;+∞[ fixed}

and f(x, y) = x3 + y3.

Problem 3.7.5 Let a > 0 and b > 0. Prove that∫
R

 
a2b2 − a2y2 − b2x2

a2b2 + a2y2 + b2x2
dA =

πab(π − 2)

8
,

where R is the region bounded by the ellipse
x2

a2
+

y2

b2
= 1 and the first quadrant.

Problem 3.7.6 Prove that ∫
R

y√
x2 + y2

dxdy =
√
2− 1,

where
R = {(x, y) ∈ R2 : 0 < x < 1, o < y < x2}.

Problem 3.7.7 Prove that the ellipse

(x− 2y + 3)2 + (3x + 4y − 1)2 = 4

bounds an area of
2π

5
.

Problem 3.7.8 Find ∫
D

√
x2 + y2dA

where
D = {(x, y) ∈ R2|x ≥ 0, y ≥ 0, x2 + y2 ≤ 1, x2 + y2 − 2y ≥ 0}.

Problem 3.7.9 Find

∫
D

fdA where

D = {(x, y) ∈ R2|y ≥ 0, x2 + y2 − 2x ≤ 0}

and f(x, y) = x2y.

Problem 3.7.10 Let D = {(x, y) ∈ R2 : x ≥ 1, x2 + y2 ≤ 4}. Find

∫
D

xdA.
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Problem 3.7.11 Find

∫
D

fdA where

D = {(x, y) ∈ R2|x ≥ 1, x2 + y2 − 2x ≤ 0}

and f(x, y) =
1

(x2 + y2)2
.

Problem 3.7.12 Let
D = {(x, y) ∈ R2 : x2 + y2 − y ≤ 0, x2 + y2 − x ≤ 0}.

Find the integral ∫
D

(x + y)2dA.

Problem 3.7.13 Let D = {(x, y) ∈ R2|y ≤ x2 + y2 ≤ 1}. Compute∫
D

dA

(1 + x2 + y2)2
.

Problem 3.7.14 Evaluate ∫
{(x,y)∈R2:x≥0,y≥0,x4+y4≤1}

x3y3
√

1− x4 − y4 dA

using x2 = ρ cos θ, y2 = ρ sin θ.

Problem 3.7.15 William Thompson (Lord Kelvin) is credited to have said: “A mathematician is someone to whom∫ +∞

0

e−x2

dx =

√
π

2

is as obvious as twice two is four to you. Liouville was a mathematician.” Prove that∫ +∞

0

e−x2

dx =

√
π

2

by following these steps.

Ê Let a > 0 be a real number and put Da = {(x, y) ∈ R2|x2 + y2 ≤ a2}. Find

Ia =

∫
Da

e−(x2+y2) dxdy.

Ë Let a > 0 be a real number and put ∆a = {(x, y) ∈ R2||x| ≤ a, |y| ≤ a}. Let

Ja =

∫
∆a

e−(x2+y2) dxdy.

Prove that
Ia ≤ Ja ≤ Ia

√
2.

Ì Deduce that ∫ +∞

0

e−x2

dx =

√
π

2
.

Problem 3.7.16 Let D = {(x, y) ∈ R2 : 4 ≤ x2 + y2 ≤ 16} and f(x, y) =
1

x2 + xy + y2
. Find

∫
D

f(x, y)dA.

Problem 3.7.17 Prove that every closed convex region in the plane of area ≥ π has two points which are two units
apart.
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Problem 3.7.18 In the xy-plane, if R is the set of points inside and on a convex polygon, let D(x, y) be the
distance from (x, y) to the nearest point R. Show that∫ +∞

−∞

∫ +∞

−∞
e−D(x,y) dxdy = 2π + L + A,

where L is the perimeter of R and A is the area of R.

3.8 Three-Manifolds
282 Definition A 3-dimensional oriented manifold of R3 is simply an open set (body) V ∈ R3, where the
+ orientation is in the direction of the outward pointing normal to the body, and the − orientation is
in the direction of the inward pointing normal to the body. A general oriented 3-manifold is a union of
open sets.

+The region −M has opposite orientation to M and∫
−M

ω = −
∫
M

ω.

We will often write ∫
M

fdV

where dV denotes the volume element.

+ In this section, unless otherwise noticed, we will choose the positive orientation for the regions
considered. This corresponds to using the volume form dx ∧ dy ∧ dz.

Let V ⊆ R3. Given a function f : V → R, the integral∫
V

fdV

is the sum of all the values of f restricted to V . In particular,∫
V

dV

is the oriented volume of V .

283 Example Find ∫
[0;1]3

x2yexyz dV.

Solution: ▶ The integral is∫ 1

0

Ç∫ 1

0

Ç∫ 1

0

x2yexyz dz

å
dy

å
dx =

∫ 1

0

Ç∫ 1

0

x(exy − 1) dy

å
dx

=

∫ 1

0

(ex − x− 1)dx

= e−
5

2
.

◀
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284 Example Find
∫
R

z dV if

R = {(x, y, z) ∈ R3|x ≥ 0, y ≥ 0, z ≥ 0,
√
x +
√
y +
√
z ≤ 1}.

Solution: ▶ The integral is∫
R

zdxdydz =

∫ 1

0

z

(∫ (1−
√

z)2

0

(∫ (1−
√

z−
√

x)2

0

dy

)
dx

)
dz

=

∫ 1

0

z

(∫ (1−
√

z)2

0

(1−
√
z −
√
x)2dx

)
dz

=
1

6

∫ 1

0

z(1−
√
z)4 dz

=
1

840
.

◀

285 Example Prove that ∫
V

xdV =
a2bc

24
,

where V is the tetrahedron

V =
{
(x, y, z) ∈ R3 : x ≥ 0, y ≥ 0, z ≥ 0,

x

a
+

y

b
+

z

c
≤ 1

}
.

Solution: ▶ We have∫
V

xdxdydz =

∫ c

0

∫ b−bz/c

0

∫ a−ay/b−az/c

0

xdxdydz

=
1

2

∫ c

0

∫ b−bz/c

0

(
a−

ay

b
−

az

c

)2
dydz

=
1

6

∫ c

0

a2 (−z + c)
3
b

c3
dx

=
a2bc

24

◀

x
y

z

b O

b

A

b

B

b C

Figure 3.24: Problem 286.

b II
b II

b
II

Figure 3.25: xy-projection.

286 Example Evaluate the integral
∫
S

xdV where S is the (unoriented) tetrahedron with vertices (0, 0, 0),

(3, 2, 0), (0, 3, 0), and (0, 0, 2). See figure 3.24.
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Solution: ▶ A short computation shews that the plane passing through (3, 2, 0), (0, 3, 0), and

(0, 0, 2) has equation 2x + 6y + 9z = 18. Hence, 0 ≤ z ≤
18− 2x− 6y

9
. We must now figure

out the xy limits of integration. In figure 3.25 we draw the projection of the tetrahedron on the
xy plane. The line passing through AB has equation y = −

x

3
+ 3. The line passing through

AC has equation y =
2

3
x.

We find, finally, ∫
S

xdV =

∫ 3

0

∫ 3−x/3

2x/3

∫ (18−2x−6y)/9

0

xdzdydx

=

∫ 3

0

∫ 3−x/3

2x/3

18x− 2x2 − 6yx

9
dydx

=

∫ 3

0

18xy − 2x2y − 3y2x

9

∣∣∣3−x/3

2x/3
dx

=

∫ 3

0

Ç
x3

3
− 2x2 + 3x

å
dx

=
9

4

To solve this problem using Maple you may use the code below.
> with(Student[VectorCalculus]):
> int(x,[x,y,z]=Tetrahedron(<0,0,0>,<3,2,0>,<0,3,0>,<0,0,2>));

◀

287 Example Evaluate
∫
R

xyzdV , where R is the solid formed by the intersection of the parabolic

cylinder z = 4− x2, the planes z = 0, y = x, and y = 0. Use the following orders of integration:

1. dzdxdy

2. dxdydz

Solution: ▶ We must find the projections of the solid on the the coordinate planes.

1. With the order dzdxdy, the limits of integration of z can only depend, if at all, on x and y.
Given an arbitrary point in the solid, its lowest z coordinate is 0 and its highest one is on
the cylinder, so the limits for z are from z = 0 to z = 4− x2. The projection of the solid on
the xy-plane is the area bounded by the lines y = x, x = 2, and the x and y axes.∫ 2

0

∫ y

0

∫ 4−x2

0

xyzdzdxdy =
1

2

∫ 2

0

∫ y

0

xy(4− x2)2dxdy

=
1

2

∫ 2

0

∫ y

0

y(16x− 8x3 + x5)dxdy

=

∫ 2

0

Ç
4y3 − y5 +

y7

12

å
dy

= 8.

2. With the order dxdydz, the limits of integration of x can only depend, if at all, on y and z.
Given an arbitrary point in the solid, x sweeps from the plane to x = 2, so the limits for
x are from x = y to x =

√
4− z. The projection of the solid on the yz-plane is the area

bounded by z = 4− y2, and the z and y axes.∫ 4

0

∫ √
4−z

0

∫ 2

y

xyzdxdydz =
1

2

∫ 4

0

∫ √
4−z

0

(4y − y3)zdydz

=

∫ 4

0

Ç
2z −

z3

8

å
dz

= 8.
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◀

Homework

Problem 3.8.1 Compute

∫
E

zdV where E is the region in the first octant bounded by the planes y + z = 1 and

x + z = 1.

Problem 3.8.2 Consider the solid S in the first octant, bounded by the parabolic cylinder z = 2 − x2

2
and the

planes z = 0, y = x, and y = 0. Prove that

∫
S

xyz =
2

3
first by integrating in the order dzdydx, and then by

integrating in the order dydxdz.

Problem 3.8.3 Evaluate the integrals

∫
R

1dV and

∫
R

xdV , where R is the tetrahedron with vertices at (0, 0, 0),

(1, 1, 1), (1, 0, 0), and (0, 0, 1).

Problem 3.8.4 Compute

∫
E

xdV where E is the region in the first octant bounded by the plane y = 3z and the

cylinder x2 + y2 = 9.

Problem 3.8.5 Find

∫
D

dV

(1 + x2z2)(1 + y2z2)
where

D = {(x, y, z) ∈ R3 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z ≥ 0}.

3.9 Change of Variables
288 Example Find ∫

R

(x + y + z)(x + y − z)(x− y − z)dV,

where R is the tetrahedron bounded by the planes x + y + z = 0, x + y − z = 0, x − y − z = 0, and
2x− z = 1.

Solution: ▶ We make the change of variables

u = x + y + z =⇒ du = dx + dy + dz,

v = x + y − z =⇒ dv = dx + dy − dz,

w = x− y − z =⇒ dw = dx− dy − dz.

This gives
du ∧ dv ∧ dw = −4dx ∧ dy ∧ dz.

These forms have opposite orientations, so we choose, say,

du ∧ dw ∧ dv = 4dx ∧ dy ∧ dz

which have the same orientation. Also,

2x− z = 1 =⇒ u + v + 2w = 2.
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The tetrahedron in the xyz-coordinate frame is mapped into a tetrahedron bounded by u = 0,
v = 0, u + v + 2w = 1 in the uvw-coordinate frame. The integral becomes

1

4

∫ 2

0

∫ 1−v/2

0

∫ 2−v−2w

0

uvw dudwdv =
1

180
.

Consider a transformation to cylindrical coordinates

(x, y, z) = (ρ cos θ, ρ sin θ, z).

From what we know about polar coordinates

dx ∧ dy = ρdρ ∧ dθ.

Since the wedge product of forms is associative,

dx ∧ dy ∧ dz = ρdρ ∧ dθ ∧ dz.

◀

289 Example Find
∫
R

z2dxdydz if

R = {(x, y, z) ∈ R3|x2 + y2 ≤ 1, 0 ≤ z ≤ 1}.

Solution: ▶ The region of integration is mapped into

∆ = [0; 2π]× [0; 1]× [0; 1]

through a cylindrical coordinate change. The integral is therefore∫
R

f(x, y, z)dxdydz =

Ç∫ 2π

0

dθ

åÇ∫ 1

0

ρ dρ

åÇ∫ 1

0

z2 dz

å
=

π

3
.

◀

290 Example Evaluate
∫
D

(x2 + y2)dxdydz over the first octant region bounded by the cylinders x2 +

y2 = 1 and x2 + y2 = 4 and the planes z = 0, z = 1, x = 0, x = y.

Solution: ▶ The integral is ∫ 1

0

∫ π/2

π/4

∫ 2

1

ρ3dρdθdz =
15π

16
.

◀

291 Example Three long cylinders of radius R intersect at right angles. Find the volume of their inter-
section.

Solution: ▶ Let V be the desired volume. By symmetry, V = 24V ′, where

V ′ =

∫
D′

dxdydz,

D′ = {(x, y, z) ∈ R3 : 0 ≤ y ≤ x, 0 ≤ z, x2 + y2 ≤ R2, y2 + z2 ≤ R2, z2 + x2 ≤ R2}.
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In this case it is easier to integrate with respect to z first. Using cylindrical coordinates

∆′ =
{
(θ, ρ, z) ∈

[
0;

π

4

]
× [0;R]× [0;+∞[, 0 ≤ z ≤

√
R2 − ρ2 cos2 θ

}
.

Now,

V ′ =

∫ π/4

0

Ñ∫ R

0

Ñ∫ √R2−ρ2 cos2 θ

0

dz

é
ρdρ

é
dθ

=

∫ π/4

0

Ç∫ R

0

ρ
√

R2 − ρ2 cos2 θdρ

å
dθ

=

∫ π/4

0

−
1

3 cos2 θ

î
(R2 − ρ2 cos2 θ)3/2

óR
0
dθ

=
R3

3

∫ π/4

0

1− sin3 θ

cos2 θ
dθ

=

u = cos θ
R3

3

(
[tan θ]

π/4
0 +

∫ √
2

2

1

1− u2

u2
du

)
=

R3

3

Å
1−

[
u−1 + u

]√
2

2

1

ã
=

√
2− 1
√
2

R3.

Finally
V = 16V ′ = 8(2−

√
2)R3.

◀

Consider now a change to spherical coordinates

x = ρ cos θ sinϕ, y = ρ sin θ sinϕ, z = ρ cosϕ.

We have

dx = cos θ sinϕdρ− ρ sin θ sinϕdθ + ρ cos θ cosϕdϕ,

dy = sin θ sinϕdρ + ρ cos θ sinϕdθ + ρ sin θ cosϕdϕ,

dz = cosϕdρ− ρ sinϕdϕ.

This gives
dx ∧ dy ∧ dz = −ρ2 sinϕdρ ∧ dθ ∧ dϕ.

From this derivation, the form dρ ∧ dθ ∧ dϕ is negatively oriented, and so we choose

dx ∧ dy ∧ dz = ρ2 sinϕdρ ∧ dϕ ∧ dθ

instead.

292 Example Let (a, b, c) ∈]0;+∞[3 be fixed. Find
∫
R

xyz dV if

R =

®
(x, y, z) ∈ R3 :

x2

a2
+

y2

b2
+

z2

c2
≤ 1, x ≥ 0, y ≥ 0, z ≥ 0

´
.

Solution: ▶ We use spherical coordinates, where

(x, y, z) = (aρ cos θ sinϕ, bρ sin θ sinϕ, cρ cosϕ).

We have
dx ∧ dy ∧ dz = abcρ2 sinϕdρ ∧ dϕ ∧ dρ.
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The integration region is mapped into

∆ = [0; 1]× [0;
π

2
]× [0;

π

2
].

The integral becomes

(abc)2
Ç∫ π/2

0

cos θ sin θ dθ

åÇ∫ 1

0

ρ5 dρ

åÇ∫ π/2

0

cos3 ϕ sinϕ dϕ

å
=

(abc)2

48
.

◀

293 Example Let V = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 9, 1 ≤ z ≤ 2}. Then∫
V

dxdydz =

∫ 2π

0

∫ π/2−arcsin 1/3

π/2−arcsin 2/3

∫ 2/ cosϕ

1/ cosϕ

ρ2 sinϕ dρdϕdθ

=
63π

4
.

Homework
Problem 3.9.1 Consider the region R below the cone z =

√
x2 + y2 and above the paraboloid z = x2 + y2 for

0 ≤ z ≤ 1. Set up integrals for the volume of this region in Cartesian, cylindrical and spherical coordinates. Also,
find this volume.

Problem 3.9.2 Consider the integral

∫
R

xdV , where R is the region above the paraboloid z = x2 + y2 and under

the sphere x2 + y2 + z2 = 4. Set up integrals for the volume of this region in Cartesian, cylindrical and spherical
coordinates. Also, find this volume.

Problem 3.9.3 Consider the region R bounded by the sphere x2 + y2 + z2 = 4 and the plane z = 1. Set up
integrals for the volume of this region in Cartesian, cylindrical and spherical coordinates. Also, find this volume.

Problem 3.9.4 Prove that the volume enclosed by the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1

is
4πabc

3
. Here a > 0, b > 0, c > 0.

Problem 3.9.5 Compute

∫
E

ydV where E is the region between the cylinders x2+y2 = 1 and x2 + y2 = 4, below

the plane x− z = −2 and above the xy-plane.

Problem 3.9.6 Prove that ∫
x≥0,y≥0

x2+y2+z2≤R2

e−
√

x2+y2+z2
dV = π

(
2− 2e−R − 2Re−R −R2e−R

)
.

Problem 3.9.7 Compute

∫
E

y2z2dV where E is bounded by the paraboloid x = 1− y2 − z2 and the plane x = 0.

Problem 3.9.8 Compute

∫
E

z
√

x2 + y2 + z2dV where E is is the upper solid hemisphere bounded by the xy-

plane and the sphere of radius 1 about the origin.
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Problem 3.9.9 Compute the 4-dimensional integral∫∫∫∫
x2+y2+u2+v2≤1

ex2+y2+u2+v2

dxdydudv.

Problem 3.9.10 (Putnam Exam 1984) Find∫
R

x1y9z8(1− x− y − z)4 dxdydz,

where
R = {(x, y, z) ∈ R3 : x ≥ 0, y ≥ 0, z ≥ 0, x + y + z ≤ 1}.

3.10 Surface Integrals
294 Definition A 2-dimensional oriented manifold of R3 is simply a smooth surface D ∈ R3, where the +
orientation is in the direction of the outward normal pointing away from the origin and the− orientation
is in the direction of the inward normal pointing towards the origin. A general oriented 2-manifold in
R3 is a union of surfaces.

+The surface −Σ has opposite orientation to Σ and∫
−Σ

ω = −
∫
Σ

ω.

+ In this section, unless otherwise noticed, we will choose the positive orientation for the regions
considered. This corresponds to using the ordered basis

{dy ∧ dz, dz ∧ dx, dx ∧ dy}.

295 Definition Let f : R3 → R. The integral of f over the smooth surface Σ (oriented in the positive
sense) is given by the expression ∫

Σ

f
∣∣∣∣d2x

∣∣∣∣.
Here ∣∣∣∣d2x

∣∣∣∣ = »(dx ∧ dy)2 + (dz ∧ dx)2 + (dy ∧ dz)2

is the surface area element.

296 Example Evaluate
∫
Σ

z
∣∣∣∣d2x

∣∣∣∣ where Σ is the outer surface of the section of the paraboloid z =

x2 + y2, 0 ≤ z ≤ 1.

Solution: ▶ We parametrise the paraboloid as follows. Let x = u, y = v, z = u2 + v2.
Observe that the domain D of Σ is the unit disk u2 + v2 ≤ 1. We see that

dx ∧ dy = du ∧ dv,

dy ∧ dz = −2udu ∧ dv,

dz ∧ dx = −2vdu ∧ dv,

and so ∣∣∣∣d2x
∣∣∣∣ = √

1 + 4u2 + 4v2du ∧ dv.
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Now, ∫
Σ

z
∣∣∣∣d2x

∣∣∣∣ = ∫
D

(u2 + v2)
√
1 + 4u2 + 4v2dudv.

To evaluate this last integral we use polar coordinates, and so∫
D

(u2 + v2)
√
1 + 4u2 + 4v2dudv =

∫ 2π

0

∫ 1

0

ρ3
√
1 + 4ρ2dρdθ

=
π

12
(5
√
5 +

1

5
).

◀

297 Example Find the area of that part of the cylinder x2+y2 = 2y lying inside the sphere x2+y2+z2 =
4.

Solution: ▶ We have
x2 + y2 = 2y ⇐⇒ x2 + (y − 1)2 = 1.

We parametrise the cylinder by putting x = cosu, y − 1 = sinu, and z = v. Hence

dx = − sinudu, dy = cosudu, dz = dv,

whence
dx ∧ dy = 0,dy ∧ dz = cosudu ∧ dv, dz ∧ dx = sinudu ∧ dv,

and so ∣∣∣∣d2x
∣∣∣∣ =

»
(dx ∧ dy)2 + (dz ∧ dx)2 + (dy ∧ dz)2

=
»
cos2 u + sin2 u du ∧ dv

= du ∧ dv.

The cylinder and the sphere intersect when x2 + y2 = 2y and x2 + y2 + z2 = 4, that is, when
z2 = 4− 2y, i.e. v2 = 4− 2(1 + sinu) = 2− 2 sinu. Also 0 ≤ u ≤ π. The integral is thus∫

Σ

∣∣∣∣d2x
∣∣∣∣ =

∫ π

0

∫ √
2−2 sinu

−
√

2−2 sinu

dvdu =

∫ π

0

2
√
2− 2 sinudu

= 2
√
2

∫ π

0

√
1− sinu du

= 2
√
2
Ä
4
√
2− 4

ä
.

◀

298 Example Evaluate ∫
Σ

xdydz + (z2 − zx)dzdx− xydxdy,

where Σ is the top side of the triangle with vertices at (2, 0, 0), (0, 2, 0), (0, 0, 4).

Solution: ▶ Observe that the plane passing through the three given points has equation
2x + 2y + z = 4. We project this plane onto the coordinate axes obtaining∫

Σ

xdydz =

∫ 4

0

∫ 2−z/2

0

(2− y − z/2)dydz =
8

3
,

∫
Σ

(z2 − zx)dzdx =

∫ 2

0

∫ 4−2x

0

(z2 − zx)dzdx = 8,
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−
∫
Σ

xydxdy = −
∫ 2

0

∫ 2−y

0

xydxdy = −
2

3
,

and hence ∫
Σ

xdydz + (z2 − zx)dzdx− xydxdy = 10.

◀

Homework

Problem 3.10.1 Evaluate

∫
Σ

y
∣∣∣∣d2x

∣∣∣∣ where Σ is the surface z = x + y2, 0 ≤ x ≤ 1, 0 ≤ y ≤ 2.

Problem 3.10.2 Consider the cone z =
√

x2 + y2. Find the surface area of the part of the cone which lies between
the planes z = 1 and z = 2.

Problem 3.10.3 Evaluate

∫
Σ

x2
∣∣∣∣d2x

∣∣∣∣ where Σ is the surface of the unit sphere x2 + y2 + z2 = 1.

Problem 3.10.4 Evaluate

∫
S

z
∣∣∣∣d2x

∣∣∣∣ over the conical surface z =
√

x2 + y2 between z = 0 and z = 1.

Problem 3.10.5 You put a perfectly spherical egg through an egg slicer, resulting in n slices of identical height,
but you forgot to peel it first! Shew that the amount of egg shell in any of the slices is the same. Your argument
must use surface integrals.

Problem 3.10.6 Evaluate ∫
Σ

xydydz − x2dzdx + (x + z)dxdy,

where Σ is the top of the triangular region of the plane 2x + 2y + z = 6 bounded by the first octant.

3.11 Green’s, Stokes’, and Gauss’ Theorems
We are now in position to state the general Stoke’s Theorem.

299 Theorem (General Stoke’s Theorem) Let M be a smooth oriented manifold, having boundary ∂M .
If ω is a differential form, then ∫

∂M

ω =

∫
M

dω.

In R2, if ω is a 1-form, this takes the name of Green’s Theorem.

300 Example Evaluate
∮
C

(x− y3)dx + x3dy where C is the circle x2 + y2 = 1.

Solution: ▶ We will first use Green’s Theorem and then evaluate the integral directly. We
have

dω = d(x− y3) ∧ dx + d(x3) ∧ dy

= (dx− 3y2dy) ∧ dx + (3x2dx) ∧ dy

= (3y2 + 3x2)dx ∧ dy.
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The region M is the area enclosed by the circle x2 + y2 = 1. Thus by Green’s Theorem, and
using polar coordinates,∮

C

(x− y3)dx + x3dy =

∫
M

(3y2 + 3x2)dxdy

=

∫ 2π

0

∫ 1

0

3ρ2ρdρdθ

=
3π

2
.

Aliter: We can evaluate this integral directly, again resorting to polar coordinates.∮
C

(x− y3)dx + x3dy =

∫ 2π

0

(cos θ − sin3 θ)(− sin θ)dθ + (cos3 θ)(cos θ)dθ

=

∫ 2π

0

(sin4 θ + cos4 θ − sin θ cos θ)dθ.

To evaluate the last integral, observe that 1 = (sin2 θ + cos2 θ)2 = sin4 θ + 2 sin2 θ cos2 θ +
cos4 θ, whence the integral equals∫ 2π

0

(sin4 θ + cos4 θ − sin θ cos θ)dθ =

∫ 2π

0

(1− 2 sin2 θ cos2 θ − sin θ cos θ)dθ

=
3π

2
.

◀

In general, let
ω = f(x, y)dx + g(x, y)dy

be a 1-form in R2. Then

dω = df(x, y) ∧ dx + dg(x, y) ∧ dy

=

Å
∂

∂x
f(x, y)dx +

∂

∂y
f(x, y)dy

ã
∧ dx +

Å
∂

∂x
g(x, y)dx +

∂

∂y
g(x, y)dy

ã
∧ dy

=

Å
∂

∂x
g(x, y)−

∂

∂y
f(x, y)

ã
dx ∧ dy

which gives the classical Green’s Theorem∫
∂M

f(x, y)dx + g(x, y)dy =

∫
M

Å
∂

∂x
g(x, y)−

∂

∂y
f(x, y)

ã
dxdy.

In R3, if ω is a 2-form, the above theorem takes the name of Gauß’ or the Divergence Theorem.

301 Example Evaluate
∫
S

(x− y)dydz + zdzdx− ydxdy where S is the surface of the sphere

x2 + y2 + z2 = 9

and the positive direction is the outward normal.

Solution: ▶ The region M is the interior of the sphere x2 + y2 + z2 = 9. Now,

dω = (dx− dy) ∧ dy ∧ dz + dz ∧ dz ∧ dx− dy ∧ dx ∧ dy

= dx ∧ dy ∧ dz.
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The integral becomes ∫
M

dxdydz =
4π

3
(27)

= 36π.

Aliter: We could evaluate this integral directly. We have∫
Σ

(x− y)dydz =

∫
Σ

xdydz,

since (x, y, z) 7→ −y is an odd function of y and the domain of integration is symmetric with
respect to y. Now, ∫

Σ

xdydz =

∫ 3

−3

∫ 2π

0

|ρ|
√
9− ρ2dρdθ

= 36π.

Also ∫
Σ

zdzdx = 0,

since (x, y, z) 7→ z is an odd function of z and the domain of integration is symmetric with
respect to z. Similarly ∫

Σ

−ydxdy = 0,

since (x, y, z) 7→ −y is an odd function of y and the domain of integration is symmetric with
respect to y. ◀

In general, let

ω = f(x, y, z)dy ∧ dz + g(x, y, z)dz ∧ dx + h(x, y, z)dx ∧ dy

be a 2-form in R3. Then

dω = df(x, y, z)dy ∧ dz + dg(x, y, z)dz ∧ dx + dh(x, y, z)dx ∧ dy

=

Å
∂

∂x
f(x, y, z)dx +

∂

∂y
f(x, y, z)dy +

∂

∂z
f(x, y, z)dz

ã
∧ dy ∧ dz

+

Å
∂

∂x
g(x, y, z)dx +

∂

∂y
g(x, y, z)dy +

∂

∂z
g(x, y, z)dz

ã
∧ dz ∧ dx

+

Å
∂

∂x
h(x, y, z)dx +

∂

∂y
h(x, y, z)dy +

∂

∂z
h(x, y, z)dz

ã
∧ dx ∧ dy

=

Å
∂

∂x
f(x, y, z) +

∂

∂y
g(x, y, z) +

∂

∂z
h(x, y, z)

ã
dx ∧ dy ∧ dz,

which gives the classical Gauss’s Theorem∫
∂M

f(x, y, z)dydz+g(x, y, z)dzdx+h(x, y, z)dxdy =

∫
M

Å
∂

∂x
f(x, y, z) +

∂

∂y
g(x, y, z) +

∂

∂z
h(x, y, z)

ã
dxdydz.

Using classical notation, if

−→a =

f(x, y, z)g(x, y, z)

h(x, y, z)

 ,d
−→
S =

dydzdzdx

dxdy

 ,

then ∫
M

(∇ • −→a )dV =

∫
∂M

−→a • d
−→
S .

The classical Stokes’ Theorem occurs when ω is a 1-form in R3.
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302 Example Evaluate
∮
C

ydx + (2x − z)dy + (z − x)dz where C is the intersection of the sphere

x2 + y2 + z2 = 4 and the plane z = 1.

Solution: ▶ We have

dω = (dy) ∧ dx + (2dx− dz) ∧ dy + (dz − dx) ∧ dz

= −dx ∧ dy + 2dx ∧ dy + dy ∧ dz + dz ∧ dx

= dx ∧ dy + dy ∧ dz + dz ∧ dx.

Since on C, z = 1, the surface Σ on which we are integrating is the inside of the circle x2 +
y2 + 1 = 4, i.e., x2 + y2 = 3. Also, z = 1 implies dz = 0 and so∫

Σ

dω =

∫
Σ

dxdy.

Since this is just the area of the circular region x2 + y2 ≤ 3, the integral evaluates to∫
Σ

dxdy = 3π.

◀

In general, let
ω = f(x, y, z)dx + g(x, y, z)dy + +h(x, y, z)dz

be a 1-form in R3. Then

dω = df(x, y, z) ∧ dx + dg(x, y, z) ∧ dy + dh(x, y, z) ∧ dz

=

Å
∂

∂x
f(x, y, z)dx +

∂

∂y
f(x, y, z)dy +

∂

∂z
f(x, y, z)dz

ã
∧ dx

+

Å
∂

∂x
g(x, y, z)dx +

∂

∂y
g(x, y, z)dy +

∂

∂z
g(x, y, z)dz

ã
∧ dy

+

Å
∂

∂x
h(x, y, z)dx +

∂

∂y
h(x, y, z)dy +

∂

∂z
h(x, y, z)dz

ã
∧ dz

=

Å
∂

∂y
h(x, y, z)−

∂

∂z
g(x, y, z)

ã
dy ∧ dz

+

Å
∂

∂z
f(x, y, z)−

∂

∂x
h(x, y, z)

ã
dz ∧ dxÅ

∂

∂x
g(x, y, z)−

∂

∂y
f(x, y, z)

ã
dx ∧ dy

which gives the classical Stokes’ Theorem∫
∂M

f(x, y, z)dx + g(x, y, z)dy + h(x, y, z)dz

=

∫
M

Å
∂

∂y
h(x, y, z)−

∂

∂z
g(x, y, z)

ã
dydz

+

Å
∂

∂z
g(x, y, z)−

∂

∂x
f(x, y, z)

ã
dxdy

+

Å
∂

∂x
h(x, y, z)−

∂

∂y
f(x, y, z)

ã
dxdy.

Using classical notation, if

−→a =

f(x, y, z)g(x, y, z)

h(x, y, z)

 , d−→r =

dxdy
dz

 , d
−→
S =

dydzdzdx

dxdy

 ,
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then ∫
M

(∇×−→a ) • d
−→
S =

∫
∂M

−→a • d−→r .

Homework

Problem 3.11.1 Evaluate

∮
C

x3ydx+ xydy where C is the square with vertices at (0, 0), (2, 0), (2, 2) and (0, 2).

Problem 3.11.2 Consider the triangle △ with vertices A : (0, 0), B : (1, 1), C : (−2, 2).
Ê If LPQ denotes the equation of the line joining P and Q find LAB, LAC , and LBC .

Ë Evaluate ∮
△

y2dx + xdy.

Ì Find ∫
D

(1− 2y)dx ∧ dy

where D is the interior of △.

Problem 3.11.3 Problems 1 through 4 refer to the differential form

ω = xdy ∧ dz + ydz ∧ dx + 2zdx ∧ dy,

and the solid M whose boundaries are the paraboloid z = 1 − x2 − y2, 0 ≤ z ≤ 1 and the disc x2 + y2 ≤ 1,
z = 0. The surface ∂M of the solid is positively oriented upon considering outward normals.

1. Prove that dω = 4dx ∧ dy ∧ dz.

2. Prove that in Cartesian coordinates,

∫
∂M

ω =

∫ 1

−1

∫ √1−x2

−
√

1−x2

∫ 1−x2−y2

0

4dzdydx.

3. Prove that in cylindrical coordinates,

∫
M

dω =

∫ 2π

0

∫ 1

0

∫ 1−r2

0

4rdzdrdθ.

4. Prove that

∫
∂M

xdydz + ydzdx + 2zdxdy = 2π.

Problem 3.11.4 Problems 1 through 4 refer to the box

M = {(x, y, z) ∈ R3 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 2},

the upper face of the box
U = {(x, y, z) ∈ R3 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 2},

the boundary of the box without the upper top S = ∂M \ U , and the differential form

ω = (arctan y − x2)dy ∧ dz + (cosx sin z − y3)dz ∧ dx + (2zx + 6zy2)dx ∧ dy.

1. Prove that dω = 3y2dx ∧ dy ∧ dz.

2. Prove that

∫
∂M

(arctan y−x2)dydz+(cosx sin z−y3)dzdx+(2zx+6zy2)dxdy =

∫ 2

0

∫ 1

0

∫ 1

0

3y2dxdydz =

2. Here the boundary of the box is positively oriented considering outward normals.

3. Prove that the integral on the upper face of the box is

∫
U

(arctan y − x2)dydz + (cosx sin z − y3)dzdx +

(2zx + 6zy2)dxdy =

∫ 1

0

∫ 1

0

4x + 12y2dxdy = 6.

4. Prove that the integral on the open box is

∫
∂M\U

(arctan y − x2)dydz + (cosx sin z − y3)dzdx + (2zx +

6zy2)dxdy = −4.
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Problem 3.11.5 Problems 1 through 3 refer to a triangular surface T in R3 and a differential form ω. The vertices
of T are at A(6, 0, 0), B(0, 12, 0), and C(0, 0, 3). The boundary of of the triangle ∂T is oriented positively by
starting at A, continuing to B, following to C, and ending again at A. The surface T is oriented positively by
considering the top of the triangle, as viewed from a point far above the triangle. The differential form is

ω = (2xz + arctan ex) dx + (xz + (y + 1)y) dy +

Å
xy +

y2

2
+ log(1 + z2)

ã
dz.

1. Prove that the equation of the plane that contains the triangle T is 2x + y + 4z = 12.

2. Prove that dω = ydy ∧ dz + (2x− y) dz ∧ dx + zdx ∧ dy.

3. Prove that

∫
∂T

(2xz + arctan ex) dx+(xz + (y + 1)y) dy+

Å
xy +

y2

2
+ log(1 + z2)

ã
dz =

∫ 3

0

∫ 12−4z

0

ydydz+∫ 6

0

∫ 3−x/2

0

2xdzdx=108.

Problem 3.11.6 Use Green’s Theorem to prove that∫
Γ

(x2 + 2y3)dy = 16π,

where Γ is the circle (x− 2)2 + y2 = 4. Also, prove this directly by using a path integral.

Problem 3.11.7 Let Γ denote the curve of intersection of the plane x+y = 2 and the sphere x2−2x+y2−2y+z2 =
0, oriented clockwise when viewed from the origin. Use Stoke’s Theorem to prove that∫

Γ

ydx + zdy + xdz = −2π
√
2.

Prove this directly by parametrising the boundary of the surface and evaluating the path integral.

Problem 3.11.8 Use Green’s Theorem to evaluate∮
C

(x3 − y3)dx + (x3 + y3)dy,

where C is the positively oriented boundary of the region between the circles x2 + y2 = 2 and x2 + y2 = 4.
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A Answers and Hints

1.1.1 No. The zero vector
−→
0 , has magnitude but no direction.

1.1.2 We have 2
−→
BC =

−→
BE +

−→
EC. By Chasles’ Rule

−→
AC =

−→
AE +

−→
EC, and

−→
BD =

−→
BE +

−→
ED. We deduce that

−→
AC +

−→
BD =

−→
AE +

−→
EC +

−→
BE +

−→
ED =

−→
AD +

−→
BC.

But since ABCD is a parallelogram,
−→
AD =

−→
BC. Hence

−→
AC +

−→
BD =

−→
AD +

−→
BC = 2

−→
BC.

1.1.4 We have
−→
IA = −3−→IB ⇐⇒ −→

IA = −3(−→IA +
−→
AB) = −3−→IA− 3

−→
AB. Thus we deduce

−→
IA + 3

−→
IA = −3−→AB ⇐⇒ 4

−→
IA = −3−→AB

⇐⇒ 4
−→
AI = 3

−→
AB

⇐⇒ −→
AI =

3

4

−→
AB.

Similarly
−→
JA = −1

3

−→
JB ⇐⇒ 3

−→
JA = −

−→
JB

⇐⇒ 3
−→
JA = −−→JA−−→AB

⇐⇒ 4
−→
JA = −−→AB

⇐⇒ −→
AJ =

1

4

−→
AB

.

Thus we take I such that
−→
AI =

3

4

−→
AB and J such that

−→
AJ =

1

4

−→
AB.

Now −−→
MA + 3

−−→
MB =

−→
MI +

−→
IA + 3

−→
IB

= 4
−→
MI +

−→
IA + 3

−→
IB

= 4
−→
MI,

and
3
−−→
MA +

−−→
MB = 3

−→
MJ + 3

−→
JA +

−→
MJ +

−→
JB

= 4
−→
MJ + 3

−→
JA +

−→
JB

= 4
−→
MJ.

1.1.5
x + 1 = t = 2− y =⇒ y = −x + 1.

1.1.6 α =
4

7
, β =

3

7
, l =

4

9
,m =

2

9
, n =

1

3
.

1.1.8 [A].
−→
0 , [B].

−→
0 , [C].

−→
0 , [D].

−→
0 , [E]. 2−→c (= 2

−→
d )

1.3.2 Plainly, ñ
a

b

ô
=

b− a

2

ñ
−1
1

ô
+

a + b

2

ñ
1

1

ô
.

1.4.1 a = −3, b = −1

2
.
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1.4.2 The desired transformations are in figures A.1 through A.3.
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Figure A.1: Horizontal
Stretch.

-4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

5

Figure A.2: Vertical Stretch.
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Figure A.3: Horizontal and
Vertical Stretch.

1.4.3 The desired transformations are shewn in figures through A.4 A.7.
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Figure A.4: Levogyrate rota-

tion
π

2
radians.
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Figure A.5: Levogyrate rota-

tion
π

4
radians.
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Figure A.6: Dextrogyrate ro-

tation
π

2
radians.
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Figure A.7: Dextrogyrate ro-

tation
π

4
radians.

1.4.8 The transformations are shewn in figures A.8 through A.10.
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Figure A.8: Reflexion about
the x-axis.
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Figure A.9: Reflexion about
the y-axis .
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Figure A.10: Reflexion about
the origin.

1.4.9

ñ
a b

c −a

ô
, bc = −a2
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Appendix A

1.5.1 Upon solving the equations
−3a1 + 2a2 = 0, a2

1 + a2
2 = 13

we find (a1, a2) = (2, 3) or (a1, a2) = (−2,−3).

1.5.2 Since −→a •
−→
b = 0, we have

||−→a +
−→
b ||2 = (−→a +

−→
b )•(−→a +

−→
b )

= −→a •−→a + 2−→a •
−→
b +

−→
b •
−→
b

= −→a •−→a + 0 +
−→
b •
−→
b

= ||−→a ||2 + ||
−→
b ||2,

from where the desired result follows.

1.5.3 By the CBS Inequality,
(a2 · 1 + b2 · 1) ≤ (a4 + b4)1/2(12 + 12)1/2,

whence the assertion follows.

1.5.4 We have ∀−→v ∈ R2,−→v • (−→a −
−→
b ) = 0. In particular, choosing −→v = −→a −

−→
b , we gather

(−→a −
−→
b )•(−→a −

−→
b ) = ||−→a −

−→
b ||2 = 0.

But the norm of a vector is 0 if and only if the vector is the
−→
0 vector. Therefore −→a −

−→
b =

−→
0 , i.e., −→a =

−→
b .

1.5.5 We have

||−→u +−→v ||2 − ||−→u −−→v ||2 = (−→u +−→v )•(−→u +−→v )− (−→u −−→v )•(−→u −−→v )

= −→u •−→u + 2−→u •−→v +−→v •−→v − (−→u •−→u − 2−→u •−→v +−→v •−→v )

= 4−→u •−→v ,

giving the result.

1.5.6 A parametric equation for L1 is Ç
x

y

å
=

Ç
0

b1

å
+ t

ñ
1

m1

ô
.

A parametric equation for L2 is Ç
x

y

å
=

Ç
0

b2

å
+ t

ñ
1

m2

ô
.

The lines are perpendicular if and only if, according to Corollary 22,ñ
1

m1

ô
•

ñ
1

m2

ô
= 0 ⇐⇒ 1 + m1m2 = 0 ⇐⇒ m1m2 = −1.

1.5.7 The line L has a parametric equation Ç
x

y

å
=

Ç
0

1

å
+ t

ñ
1

−1

ô
.

Let L′ have parametric equation Ç
x

y

å
=

Ç
0

b

å
+ t

ñ
1

m

ô
.

We need the angle between

ñ
1

m

ô
and

ñ
1

−1

ô
to be

π

6
and so by Theorem 21,

1−m =
√

1 + m2
√
2 cos

π

6
=⇒ m = −2±

√
3.

This gives two possible values for the slope of L′. Now, since L′ must pass through

Ç
−1
2

å
y = (−2±

√
3)x + b =⇒ 2 = (−2±

√
3)(−1) + b =⇒ b = ±

√
3

and the lines are y = (−2 +
√
3)x +

√
3 and y = (−2−

√
3)x−

√
3, respectively.
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1.5.8 We must prove that −→a •−→w = 0. Using the distributive law for the dot product,Ç
−→v −

−→v •−→w∣∣∣∣−→w ∣∣∣∣2−→w
å
• −→w = −→v •−→w −

−→v •−→w∣∣∣∣−→w ∣∣∣∣2−→w •−→w

= −→v •−→w −
−→v •−→w∣∣∣∣−→w ∣∣∣∣2 ∣∣∣∣−→w ∣∣∣∣2

= −→v •−→w −−→v •−→w
= 0.

1.6.1 We have y − x = 4t =⇒ t =
y − x

4
and so

x =
(
y − x

4

)3

− 2
(
y − x

4

)
is the Cartesian equation sought.

1.6.2 Observe that for t ̸= {0,−1},

y

x
= t =⇒ x =

Äy
x

ä2
1 +
Äy
x

ä5 =⇒ x =
y2x3

x5 + y5
=⇒ x5 + y5 = x2y2.

If t = 0, then x = 0, y = 0 and our Cartesian equation agrees. What happens as t→ −1?

1.6.3

1. ay − cx = ad− bc, this is a straight line with positive slope.

2. −1 ≤ x ≤ 1, y = 0, this is the line segment on the plane joining (−1, 0) to (1, 0).

3.
x2

a2
− y2

b2
= 1, x > 0. This is one branch of a hyperbola.

4.
x2

a2
− y2

b2
= 1. This is a hyperbola.

1.6.4 We may simply give the trivial parametrisation: x = t, y = log cos t, 0 ≤ t ≤ π

3
. Then

(dx)2 + (dy)2 = (1 + tan2 t)(dt)2 = sec2 t(dt)2.

Hence the arc length is ∫ π/3

0

sec tdt = log(2 +
√
3).

1.6.5 Observe that y = 2x + 1, so the trace is part of this line. Since in the interval [0; 4π], −1 ≤ sin t ≤ 1, we
want the portion of the line y = 2x + 1 with −1 ≤ x ≤ 1 (and, thus −1 ≤ y ≤ 3). The curve starts at the middle

point (0, 1) (at t = 0), reaches the high point (1, 3) at t =
π

2
, reaches its low point (−1, 1) at t =

3π

2
, reaches its

high point (1, 3) again at t =
5π

2
, it goes to its low point (−1, 1) at t =

7π

2
, and finishes in the middle point (0, 1)

when t = 4π.

1.6.6 First observe that
√
x +
√
y = 1 demands x ∈ [0; 1] and [0; 1]. Again, one can give many parametrisations.

One is x = t2, y = (1− t)2, t ∈ [0; 1]. This gives

√
(dx)2 + (dy)2 =

√
4t2 + (2− 2t)2 dt = 2

√
2t2 − 2t + 1 dt =

2√
2

…
4
(
t− 1

2

)2

+ 1 dt.

To integrate
2√
2

∫ 1

0

…
4
(
t− 1

2

)2

+ 1 dt,

we now use the trigonometric substitution

2
(
t− 1

2

)
= tan θ =⇒ dt =

1

2
sec2 θdθ.
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The integral thus becomes
√
2

∫ π/4

0

sec3 θdθ,

the famous secant cube integral, which is a standard example of integration by parts where you “solve” for the

integral. (You write

∫
sec θd tan θ = tan θ sec θ −

∫
tan θd sec θ, etc.) I will simply quote it, as I assume most of

you have seen it, and it appears in most Calculus texts:

√
2

∫ π/4

0

sec3 θdθ =
√
2
(
1

2
sec θ tan θ − 1

2
log | sec θ + tan θ|

)π/4

0

=
√
2
(
1

2
·
√
2 +

1

2
log(
√
2 + 1)

)
=

1√
2
log(
√
2 + 1) + 1.

1.6.7 First notice that x = 1 =⇒ t3 + 1 = 1 =⇒ t = 0 and x = 2 =⇒ t3 + 1 = 2 =⇒ t = 1. The area
under the graph is ∫ t=1

t=0

ydx =

∫ t=1

t=0

(1− t2)d(t3 + 1) =

∫ t=1

t=0

3t2(1− t2)dt =
2

5
.

1.6.8 Observe that
dx = 6tdt; dy = 6t2dt =⇒

√
(dx)2 + (dy)2 = 6t

√
1 + t2 dt,

and so the arc length is ∫ t=1

t=0

√
(dx)2 + (dy)2 =

∫ t=1

t=0

6t
√

1 + t2 dt = 4
√
2− 2.

1.6.9 Observe that

dx = tdt, dy =
√
2t + 1dt =⇒

√
(dx)2 + (dy)2 =

»
t2 + (

√
2t + 1)2dt =

√
t2 + 2t + 1dt = (t + 1)dt.

Hence, the arc length is ∫ 1/2

−1/2

(1 + t)dt =

Å
t +

t2

2

ã1/2

−1/2

= 1.

1.6.10 Observe that the parametrisation traverses the curve once clockwise if t ∈ [0; 2π]. The area is given by

1

2

∮
Γ

det

ñ
x dx

y dy

ô
=

1

2

∮
xdy − ydx

=
4

2

∫ 0

π/2

(sin3 t(− sin t(1 + sin2 t) + 2 sin t cos2 t)

− cos t(1 + sin2 t)(3 sin2 t cos t))dt

= 2

∫ 0

π/2

(−3 sin2 t + sin4 t)dt

= 2

∫ 0

π/2

(
−9

8
+ cos 2t +

1

8
cos 4t

)
dt

=
9π

8
.

1.6.11 Using the quotient rule,

dx =
3(1 + t3)− 3t2(3t)

(1 + t3)2
· dt =

3− 6t3

(1 + t3)2
· dt =⇒ ydx =

9t2 − 18t5

(1 + t3)3
· dt

and

dy =
6t(1 + t3)− 3t2(3t2)

(1 + t3)2
· dt =

6t− 3t4

(1 + t3)2
· dt =⇒ xdy =

18t2 − 9t5

(1 + t3)3
· dt

Hence

xdy − ydx =
18t2 − 9t5

(1 + t3)3
· dt− 9t2 − 18t5

(1 + t3)3
· dt =

9t2 + 9t5

(1 + t3)3
· dt =

9t2(1 + t3)

(1 + t3)3
· dt =

9t2

(1 + t3)2
· dt.
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Observe that when t = 0 then x = y = 0. As t → +∞, then x → 0 and y → 0. Hence to obtain the loop Using
integration by substitution (u = 1 + t3 and du = 3t2dt) , the area is given by

1

2

∫ +∞

0

9t2

(1 + t3)2
· dt =

3

2

∫ +∞

0

3t2

(1 + t3)2
dt =

3

2

∫ +∞

1

du

u2
=

3

2
.

+ A shorter way of obtaining xdy − ydx would have been to argue that xdy − ydx = x2d
Äy
x

ä
=

9t2

(1 + t3)2
dt.

1.6.12 See figure 1.58. Let θ be the angle (in radians) of rotation of the circle, and let C be the centre of the
circle. At θ = 0 the centre of the circle is at (0, ρ), and P = (0, ρ − d). Suppose the circle is displaced towards
the right, making the point P to rotate an angle of θ radians. Then the centre of the circle has displaced rθ
units horizontally, and so is now located at (ρθ, ρ). The polar coordinates of the point P are (d sin θ; d cos θ), in
relation to the centre of the circle (notice that the circle moves clockwise). The point P has moved x = ρθ− d sin θ
horizontal units and y = ρ− d cos θ units. This is the desired parametrisation.

1.6.14 We have

dx = et(cos t−sin t)dt, dy = et(sin t+cos t)dt =⇒
√

(dx)2 + (dy)2 = et
√

(cos t− sin t)2 + (sin t + cos t)2dt =
√
2etdt.

The arc length is thus ∫ π

0

√
(dx)2 + (dy)2 =

√
2

∫ π

0

etdt =
√
2(eπ − 1).

1.6.15 Choose coordinates so that the origin is at the position of the gun, the y-axis is vertical, and the airplane
is on a point with coordinates (u, h) with u ≥ 0.

If the gun were fired at t = 0, then

x = V t cos a; y = V t sin a− gt2

2
,

where a is the angle of elevation, t is the time and g is the acceleration due to gravity. Since we know that the
shell strikes the plane, we must have

u = V t cos a; h = V t sin a− gt2

2
,

whence

u2 +
(
h +

1

2
gt2
)2

= V 2t2,

and thus
g2t4

4
+ (gh− V 2)2t2 + h2 + u2 = 0.

The quadratic equation in t2 has a real root if

(gh− V 2)2 ≥ g2(h2 + u2) =⇒ g2u2 ≤ V 2(V 2 − 2gh),

from where the assertion follows.

1.6.16 Suppose the parabolas have a point of contact P = (4px2
0, 4px0). By symmetry, the vertex V of the rolling

parabola is the reflexion of the origin about the line tangent to their point of contact. The slope of the tangent at P

is
1

2x0
, from where the equation of the tangent is

y =
x

2x0
+ 2px0.

The line normal to this line and passing through the origin is hence

y = −2xx0,

and so the lines intersect at Å
− 4px2

0

1 + 4x2
0

,
8px3

0

1 + 4x2
0

ã
,
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from where

V =

Å
− 8px2

0

1 + 4x2
0

,
16px3

0

1 + 4x2
0

ã
:= (x(t), y(t)).

As −2x0x(t) = y(t), eliminating t yields

x = −
2p
(
y
x

)2
1 +

(
y
x

)2
or

(x2 + y2)x + 2py2 = 0,

giving the equation of the locus.

1.7.1 Observe that, in general,∣∣∣∣∣∣−→a −−→b ∣∣∣∣∣∣2 +
∣∣∣∣∣∣−→a +

−→
b
∣∣∣∣∣∣2 =

∣∣∣∣−→a ∣∣∣∣2 − 2−→a •
−→
b +

∣∣∣∣∣∣−→b ∣∣∣∣∣∣2 +
∣∣∣∣−→a ∣∣∣∣2 + 2−→a •

−→
b +

∣∣∣∣∣∣−→b ∣∣∣∣∣∣2
= 2

∣∣∣∣−→a ∣∣∣∣2 + 2
∣∣∣∣∣∣−→b ∣∣∣∣∣∣2,

whence ∣∣∣∣∣∣−→a −−→b ∣∣∣∣∣∣ =…2
∣∣∣∣−→a ∣∣∣∣2 + 2

∣∣∣∣∣∣−→b ∣∣∣∣∣∣2 − ∣∣∣∣∣∣−→a +
−→
b
∣∣∣∣∣∣ =√

2(13)2 + 2(19)2 − (24)2 = 22.

1.7.2

Ö
x

y

z

è
=

Ö
1

2

3

è
+ t

−2−1
0

 .

1.7.3 The vectorial form of the equation of the line is

−→r =

10
1

+ t

 1

−2

−1

 .

Since the line follows the direction of

 1

−2
−1

, this means that

 1

−2

−1

 is normal to the plane, and thus the equation

of the desired plane is
(x− 1)− 2(y − 1)− (z − 1) = 0.

1.7.4 Observe that

Ö
0

0

0

è
(as 0 = 2(0) = 3(0)) is on the line, and hence on the plane. Thus the vector

 1− 0

−1− 0

−1− 0

 =

 1

−1
−1


lies on the plane. Now, if x = 2y = 3z = t, then x = t, y = t/2, z = t/3. Hence, the vectorial form of the equation
of the line is

−→r =

00
0

+ t

 1

1/2

1/3

 = t

 1

1/2

1/3

 .

This means that

 1

1/2

1/3

 also lies on the plane, and thus

 1

−1
−1

×
 1

1/2

1/3

 =

 1/6

−4/3

3/2
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is normal to the plane. The desired equation is thus

1

6
x− 4

3
y +

3

2
z = 0.

1.7.5 The set B can be decomposed into the following subsets:

Ê The set A itself, of volume abc.

Ë Two a× b× 1 bricks, two b× c× 1 bricks, and two c× a× 1 bricks,

Ì Four quarter-cylinders of length a and radius 1, four quarter-cylinders of length b and radius 1, and four
quarter-cylinders of length c and radius 1,

Í Eight eighth-of-spheres of radius 1.

Thus the required formula for the volume is

abc + 2(ab + bc + ca) + π(a + b + c) +
4π

3
.

1.7.6 We have,∣∣∣∣∣∣−→a +
−→
b +−→c

∣∣∣∣∣∣2 = (−→a +
−→
b +−→c ) • (−→a +

−→
b +−→c ) =

∣∣∣∣−→a ∣∣∣∣2 +
∣∣∣∣∣∣−→b ∣∣∣∣∣∣2 +

∣∣∣∣−→c ∣∣∣∣2 + 2(−→a •
−→
b +

−→
b •−→c +−→c •−→a ),

from where we deduce that
−→a •
−→
b +

−→
b •−→c +−→c •−→a =

−32 − 42 − 52

2
= −25.

1.7.7 A vector normal to the plane is

 a

a2

a2

. The line sought has the same direction as this vector, thus the

equation of the line is xy
z

 =

00
1

+ t

 a

a2

a2

 , t ∈ R.

1.7.8 Put ax = by = cz = t, so x = t/a; y = t/b; z = t/c. The parametric equation of the line isxy
z

 = t

1/a1/b

1/c

 , t ∈ R.

Thus the vector

1/a1/b

1/c

 is perpendicular to the plane. Therefore, the equation of the plane is

1/a1/b

1/c

 •

x− 1

y − 1

z − 1

 =

00
0

 ,

or
x

a
+

y

b
+

z

c
=

1

a
+

1

b
+

1

c
.

We may also write this as
bcx + cay + abz = ab + bc + ca.

1.7.9 The vector

 1

−1
1

 is perpendicular to the plane. Hence, the shortest distance from (1, 2, 3) is obtained by

the perpendicular line to the plane that pierces the plane, this perpendicular line to the plane has equationÖ
x

y

z

è
=

Ö
1

2

3

è
+ t

 1

−1

1

 =⇒ x = 1 + t, y = 2− t, z = 3 + t.
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The intersection of the line and the plane occurs when

1 + t− (2− t) + (3 + t) = 1 =⇒ t = −1

3
.

The closest point on the plane to (1, 2, 3) is therefore
(
2

3
,
7

3
,
8

3

)
, and the distance sought is…

(1− 2

3
)2 + (2− 7

3
)2 + (3− 8

3
)2 =

√
3

3
.

1.7.10 If the lines intersected, there would be a value t′ for whichÖ
1

1

1

è
+ t′

21
1

 =

Ö
0

0

1

è
+ t′

 2

−1
1

 =⇒

1− 0

1− 0

1− 1

 = t′

 2− 2

−1− 1

1− 1

 =⇒

11
0

 = t′

 0

−2
0

 ,

which is clearly impossible, and so the lines are skew. Let θ be the angle between them. Then

cos θ =
2 · 2 + 1 · (−1) + 1 · 1√

(2)2 + (1)2 + (1)2
√

(2)2 + (−1)2 + (1)2
=

4√
6
√
6

=⇒ θ = arccos
(
2

3

)
.

1.7.11 Observe the CBS Inequality in R3 given the vectors −→x = (x1, x2, x3), −→y = (y1, y2, y3) let θ be the angle
between them. Then

−→x •−→y =
∣∣∣∣−→x ∣∣∣∣∣∣∣∣−→y ∣∣∣∣ cos θ =⇒ |x1y1 + x2y2 + x3y3| ≤

√
x2

1 + x2
2 + x2

3

√
y2
1 + y2

2 + y2
3.

Now take x1 = a2, x2 = b2, x3 = c2 and y1 = y2 = y3 = 1. This gives (since squares are positive, we don’t need
the absolute values)

|x1y1 + x2y2 + x3y3| ≤
√

x2
1 + x2

2 + x2
3

√
y2
1 + y2

2 + y2
3 =⇒ (a2 + b2 + c2)2 ≤ (a4 + b4 + c4)(3),

which proves the claim at once.

1.7.12 First observe that

S(a, b, c) =
√

s(s− a)(s− b)(s− c)

=
1

4

√
(a + b + c)(b + c− a)(c + a− b)(a + b− c)

=
1

4

√
(a2 + b2 + c2)2 − 2(a4 + b4 + c4)

Hence
S(a, b, c)

a2 + b2 + c2
=

1

4

 
1− 2

a4 + b4 + c4

(a2 + b2 + c2)2
,

and thus maximising f is equivalent to minimising 2
a4 + b4 + c4

(a2 + b2 + c2)2
. From problem 1.7.11,

a4 + b4 + c4

(a2 + b2 + c2)2
≥ 1

3
,

which in turn gives
S(a, b, c)

a2 + b2 + c2
≤ 1

4

…
1− 2

3
=

1

4
√
3

=

√
3

12
,

the desired maximum.

1.7.15 x + y + z = 1.
1

6
.

1.7.16 Assume contrariwise that −→a ,
−→
b , −→c are three unit vectors in R3 such that the angle between any two of

them is >
2π

3
. Then −→a •

−→
b < −1

2
,
−→
b •−→c < −1

2
, and −→c •−→a < −1

2
. Thus∣∣∣∣∣∣−→a +

−→
b +−→c

∣∣∣∣∣∣2 =
∣∣∣∣−→a ∣∣∣∣2 +

∣∣∣∣∣∣−→b ∣∣∣∣∣∣2 +
∣∣∣∣−→c ∣∣∣∣2

+2−→a •
−→
b + 2

−→
b •−→c + 2−→c •−→a

< 1 + 1 + 1− 1− 1− 1

= 0,

which is impossible, since a norm of vectors is always ≥ 0.

Free to photocopy and distribute 155



Answers and Hints

1.7.17 Let projts =

−→
t •−→s

(||s||)2
−→s be the projection of

−→
t over −→s ̸= −→0 . Let x0 be the point on the plane that is nearest

to b. Then
−→
bx0 = −→x0 −

−→
b is orthogonal to the plane, and the distance we seek is

||proj
−→r0−

−→
b

n || =

∣∣∣∣∣
∣∣∣∣∣(−→r0 −−→b )•−→n∣∣∣∣−→n ∣∣∣∣2 −→n

∣∣∣∣∣
∣∣∣∣∣ = |(−→r0 −−→b )•−→n |∣∣∣∣−→n ∣∣∣∣ .

Since R0 is on the plane, −→r0 •−→n = −→a •−→n , and so

||proj
−→r0−

−→
b

n || = |
−→r0 •−→n −

−→
b •−→n |∣∣∣∣−→n ∣∣∣∣| =

|−→a •−→n −
−→
b •−→n |∣∣∣∣−→n ∣∣∣∣ =

|(−→a −
−→
b )•−→n |∣∣∣∣−→n ∣∣∣∣ ,

as we wanted to shew.

1.7.18 There are 7 vertices (V0 = (0, 0, 0), V1 = (11, 0, 0), V2 = (0, 9, 0), V3 = (0, 0, 8), V4 = (0, 3, 8), V5 =
(9, 0, 2), V6 = (4, 7, 0)) and 11 edges (V0V1, V0V2, V0V3, V1V5, V1V6, V2V4, V2V6, V3V4, V3V5, V4V5, and V4V6).

x y

z

Figure A.11: Problem 1.7.18.

1.8.2 We have −→x ×−→x = −−→x ×−→x by letting −→y = −→x in ??. Thus 2−→x ×−→x =
−→
0 and hence −→x ×−→x =

−→
0 .

1.8.3 One has
(
−→
b −−→a )× (−→c −−→a ) =

−→
0 =⇒ −→a ×

−→
b +

−→
b ×−→c +−→c ×−→a =

−→
0

This gives
−→
b ×−→c = −(−→a ×

−→
b +−→c ×−→a ) = −(

−→
j +
−→
k +
−→
i −
−→
j ) = −

−→
i −
−→
k .

1.8.4 The vector

11
1

×
11
0

 =

−11
0

 is normal to the plane. The plane has thus equation

 x

y + 1

z − 2

 •

−11
0

 = 0 =⇒ −x + y + 1 = 0 =⇒ x− y = 1,

as obtained before.

1.8.5 The vectors a− (−a)

0− 1

a− 0

 =

2a

−1
a


and 0− (−a)

1− 1

2a− 0

 =

 a

0

2a
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lie on the plane. A vector normal to the plane is2a

−1
a

×
 a

0

2a

 =

−2a−3a2

a

 .

The equation of the plane is thus given by −2a−3a2

a

 •

x− a

y − 0

z − a

 = 0,

that is,
2ax + 3a2y − az = a2.

1.8.6 Either of
−→v ×−→w
||−→v ×−→w ||

or −
−→v ×−→w
||−→v ×−→w ||

will do. Now

−→v ×−→w = (−a
−→
j + a

−→
k )× (

−→
i + a

−→
j )

= −a(
−→
j ×
−→
i )− a2(

−→
j ×
−→
j ) + a(

−→
k ×
−→
i ) + a2(

−→
k ×
−→
j )

= a
−→
k + a

−→
j − a2−→i

=

Ö
−a2

a

a

è
,

and ||−→v ×−→w || =
√

a4 + a2 + a2 =
√

2a2 + a4. Hence we may take either

1√
2a2 + a4

Ö
−a2

a

a

è
or

− 1√
2a2 + a4

Ö
−a2

a

a

è
.

1.8.7 From Theorem ?? we have

−→a × (
−→
b ×−→c ) = (−→a •−→c )

−→
b − (−→a •

−→
b )−→c ,

−→
b × (−→c ×−→a ) = (

−→
b •−→a )−→c − (

−→
b •−→c )−→a ,

−→c × (−→a ×
−→
b ) = (−→c •

−→
b )−→a − (−→c •−→a )

−→
b ,

and adding yields the result.

1.8.8 By Lagrange’s Identity,

||−→x ×
−→
i ||2 =

∣∣∣∣−→x ∣∣∣∣2∣∣∣∣∣∣−→i ∣∣∣∣∣∣2 − (−→x •
−→
i )2 = 1− (−→x •

−→
i )2,

||−→x ×
−→
k ||2 =

∣∣∣∣−→x ∣∣∣∣2∣∣∣∣∣∣−→j ∣∣∣∣∣∣2 − (−→x •
−→
j )2 = 1− (−→x •

−→
j )2,

||−→x ×
−→
j ||2 =

∣∣∣∣−→x ∣∣∣∣2∣∣∣∣∣∣−→k ∣∣∣∣∣∣2 − (−→x •
−→
k )2 = 1− (−→x •

−→
k )2,

and since (−→x •
−→
i )2 + (−→x •

−→
j )2 + (−→x •

−→
k )2 =

∣∣∣∣−→x ∣∣∣∣2 = 1, the desired sum equals 3− 1 = 2.

1.8.9

−→a × (−→x ×
−→
b ) =

−→
b × (−→x ×−→a ) ⇐⇒ (−→a •

−→
b )−→x − (−→a •−→x )

−→
b = (

−→
b •−→a )−→x − (

−→
b •−→x )−→a ⇐⇒ −→a •−→x =

−→
b •−→x = 0.

The answer is thus {−→x : −→x ∈ R−→a ×
−→
b }.
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1.8.12
−→x =

(−→a •
−→
b )−→a + 6

−→
b + 2−→a ×−→c

12 + 2
∣∣∣∣−→a ∣∣∣∣2

−→y =
(−→a •−→c )−→a + 6−→c + 3−→a ×

−→
b

18 + 3
∣∣∣∣−→a ∣∣∣∣2

1.8.13 First observe that
−→x • (−→y ×−→z ) = (−→x ×−→y ) • −→z .

This is so because both sides give the volume of the parallelogram spanned by −→x , −→y , −→z . Now, putting −→x =
−→a ×

−→
b , −→y = −→c and −→z =

−→
d we gather that

(−→a ×
−→
b ) • (−→c ×

−→
d ) = ((−→a ×

−→
b )×−→c ) •

−→
d .

Now, again,

(−→a ×
−→
b )×−→c = −−→c × (−→a ×

−→
b ) = −((−→c •

−→
b )−→a − (−→c •−→a )

−→
b ) = (−→c •−→a )

−→
b − (−→c •

−→
b )−→a .

This gives

((−→a ×
−→
b )×−→c ) •

−→
d = ((−→c •−→a )

−→
b − (−→c •

−→
b )−→a ) •

−→
d = (−→c •−→a )(

−→
b •
−→
d )− (−→c •

−→
b )(−→a •

−→
d ),

proving the identity.

1.8.14 By problem 1.8.13,

(−→x ×−→y ) • (−→u ×−→v ) = (−→x •−→u ) • (−→y •−→v )− (−→x •−→v ) • (−→y •−→u ).

Using this three times:

(
−→
b ×−→c ) • (−→a ×

−→
d ) = (

−→
b •−→a ) • (−→c •

−→
d )− (

−→
b •
−→
d ) • (−→c •

−→
d )

(−→c ×−→a ) • (
−→
b ×

−→
d ) = (−→c •

−→
b ) • (−→a •

−→
d )− (−→c •

−→
d ) • (−→a •

−→
b )

(−→a ×
−→
b ) • (−→c ×

−→
d ) = (−→a •−→c ) • (

−→
b •
−→
d )− (−→a •

−→
d ) • (

−→
b •−→c )

Adding these three equalities, and using the fact that the dot product is commutative, we see that all the terms on
the dextral side cancel out and we obtain 0, as required.

1.8.15

1. We have

−→
CA =

 6

0

−3

 ,
−→
CB =

 0

4

−3

 =⇒ −→
CA×−→CB = (6

−→
i − 3

−→
k )× (4

−→
j − 3

−→
k ) = 24

−→
k +18

−→
j + 12

−→
i =

1218
24

 .

2. We have ∣∣∣∣∣∣−→CA×−→CB
∣∣∣∣∣∣ =√

122 + 182 + 242 =
√
1044 = 6

√
29.

3. The desired line has equationÖ
x

y

z

è
=

Ö
0

0

3

è
+ t

 6

0

−3

 =⇒ x = 6t, y = 0, z = 3− 3t.

4. The desired line has equationÖ
x

y

z

è
=

Ö
3

0

0

è
+ s

 0

0

−3

 =⇒ x = 3, y = 0, z = −3s.
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5. From the preceding items, the line LCA is x = 6t, y = 0, z = 3 − 3t and the line LDE is x = 3, y =

0, z = −3s. If the line intersect then 6t = 3, 0 = 0, 3 − 3t = −3s gives t =
1

2
and s = −1

2
. The point of

intersection is thus
(
3, 0,

3

2

)
. item The area is

1

2

∣∣∣∣∣∣−→CA×−→CB
∣∣∣∣∣∣ = 1

2
· 6
√
29 = 3

√
29.

6. Observe that

P =

Ö
3

0

z

è
, Q =

Ö
3

y

0

è
, R =

Ö
x

3

0

è
, S =

Ö
0

3

z

è
.

Since all this points lie on the plane 2x + 3y + 4z = 12, we find

2(3) + 3(0) + 4z = 12 =⇒ P =

Ö
3

0
3

2

è
,

2(3) + 3y + 4(0) = 12 =⇒ Q =

Ö
3

2

0

è
,

2x + 3(3) + 4(0) = 12 =⇒ R =

Ö3

2
3

0

è
,

2(0) + 3(3) + 4z = 12 =⇒ S =

Ö
0

3
3

4

è
.

7. A possible way is to decompose the pentagon into three triangles, say △CPQ, △CQR and △CRS and find
their areas. Another way would be to subtract from the area of △ABC the areas of △APQ and △RSB. I
will follow the second approach. Let [△APQ], [△RSB] denote the areas of△APQ and△RSB respectively.
Then

[△APQ] =
1

2

∣∣∣∣∣∣−→PA×−→PQ
∣∣∣∣∣∣ = 1

2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
3

0
3

2

×
 0

2

−3

2


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

1

2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
−3

9

2
6


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

1

2

…
9 +

81

4
+ 36 =

3

4

√
29,

[△RSB] =
1

2

∣∣∣∣∣∣−→SR×−→SB∣∣∣∣∣∣ = 1

2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣


3

2
0

−3

4

×
 0

1

−3

4


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

1

2

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

3

4
9

8
3

2


∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ =

1

2

…
9

16
+

81

64
+

9

4
=

3

16

√
29.

Hence the area of the pentagon is

3
√
29− 3

4

√
29− 3

16

√
29 =

33

16

√
29.

1.9.2 The assertion is trivial for n = 1. Assume its truth for n− 1, that is, assume An−1 = 3n−2A. Observe that

A2 =

1 1 1

1 1 1

1 1 1


1 1 1

1 1 1

1 1 1

 =

3 3 3

3 3 3

3 3 3

 = 3A.

Now
An = AAn−1 = A(3n−2A) = 3n−2A2 = 3n−23A = 3n−1A,

and so the assertion is proved by induction.
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1.9.3 First, we will prove that

A2 =



1 2 3 4 . . . n− 1 n

0 1 2 3 . . . n− 2 n− 1

0 0 1 2 . . . n− 3 n− 2

. . . . . .
...

...
... . . . . . .

0 0 0 0 . . . 0 1

 .

Observe that A = [aij], where aij = 1 for i ≤ j and aij = 0 for i > j.

Put A2 = [bij]. Assume first that i ≤ j. Then

bij =

n∑
k=1

aikakj =

j∑
k=i

1 = j − i + 1.

Assume now that i > j. Then

bij =

n∑
k=1

aikakj =

n∑
k=1

0 = 0,

proving the first statement. Now, we will prove that

A3 =



1 3 6 10 . . .
(n− 1)n

2

n(n + 1)

2

0 1 3 6 . . .
(n− 2)(n− 1)

2

(n− 1)n

2

0 0 1 3 . . .
(n− 3)(n− 2)

2

(n− 2)(n− 1)

2

. . . . . .
...

...
... . . . . . .

0 0 0 0 . . . 0 1


.

For the second part, you need to know how to sum arithmetic progressions. In our case, we need to know how to
sum (assume i ≤ j),

S1 =

j∑
k=i

a, S2 =

j∑
k=i

k.

The first sum is trivial: there are j − i + 1 integers in the interval [i; j], and hence

S1 =

j∑
k=i

a = S1 = a

j∑
k=i

1 = a(j − i + 1).

For the second sum, we use Gauß trick: summing the sum forwards is the same as summing the sum backwards,
and so, adding the first two rows below,

S2 = i + i + 1 + i + 2 + · · · + j − 1 + j

S2 = j + j − 1 + j − 2 + · · · + i− 1 + i

2S2 = (i + j) + (i + j) + (i + j) + · · · + (i + j) + (i + j)

2S2 = (i + j)(j − i + 1) · · ·

,

which gives S2 =
(i + j)(j − i + 1)

2
.

Put now A3 = [cij]. Assume first that i ≤ j. Since A3 = A2A,

cij =

n∑
k=1

bikakj

=

j∑
k=i

(k − i + 1)

=

j∑
k=i

k −
j∑

k=i

i +

j∑
k=i

1

=
(j + i)(j − i + 1)

2
− i(j − i + 1) + (j − i + 1)

=
(j − i + 1)(j − i + 2)

2
.
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Assume now that i > j. Then

cij =

n∑
k=1

bikakj =

n∑
k=1

0 = 0.

This finishes the proof.

1.9.4 For the first part, observe that

m(a)m(b) =


1 0 a

−a 1 −a2

2
0 0 1




1 0 b

−b 1 −b2

2
0 0 1


=


1 0 a + b

−a− b 1 −a2

2
− b2

2
+ ab

0 0 1



=


1 0 a + b

−(a + b) 1 −(a + b)2

2
0 0 1


= m(a + b)

For the second part, observe that using the preceding part of the problem,

m(a)m(−a) = m(a− a) = m(0) =


1 0 0

−0 1 −02

2
0 0 1

 = I3,

giving the result.

1.11.1
a√
2

,
π

4
.

1.11.3
a√
3

1.12.1 Consider a right triangle△ABC rectangle at A with legs of length CA = h and AB = r, as in figure A.12.
The cone is generated when the triangle rotates about CA. The gyrating curve is the hypotenuse, whose centroid
is its centre. The length of the generating curve is thus

√
r2 + h2 and the length of curve described by the centre

of gravity is 2π
Är
2

ä
= πr. The lateral area is thus πr

√
r2 + h2.

b

II
b
II

b II

b b

b IIb

IIh/3

r/2

Figure A.12: Generating a cone.
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To find the volume, we gyrate the whole right triangle, whose area is
rh

2
. We need to find the centroid of the

triangle. But from example 17, we know that the centroid G of the triangle is is two thirds of the way from A to
the midpoint of BC. If G′ is the perpendicular projection of G onto [CA], then this means that G′ is at a vertical

height of
h

2
· 2
3

=
h

3
. By similar triangles

GG′

r
=

h/3

h
=⇒ GG′ =

r

3
. Hence, the length of the curve described

by the centre of gravity of the triangle is
2

3
πr. The volume of the cone is thus

2

3
πr · rh

2
=

π

3
r2h.

1.14.1 Find a vector −→a mutually perpendicular to
−−−→
V1V2 and

−−−→
V1V3 and another vector and a vector

−→
b mutually

perpendicular to
−−−→
V1V3 and

−−−→
V1V4. Then shew that cos θ =

1

3
, where θ is the angle between −→a and

−→
b .

1.15.1 Let

Ö
x

y

z

è
be a point on S. If this point were on the xz plane, it would be on the ellipse, and its distance

to the axis of rotation would be |x| = 1

2

√
1− z2. Anywhere else, the distance from

Ö
x

y

z

è
to the z-axis is the

distance of this point to the point

Ö
0

0

z

è
:
√

x2 + y2. This distance is the same as the length of the segment on

the xz-plane going from the z-axis. We thus have√
x2 + y2 =

1

2

√
1− z2,

or
4x2 + 4y2 + z2 = 1.

1.15.2 Let

Ö
x

y

z

è
be a point on S. If this point were on the xy plane, it would be on the line, and its distance to

the axis of rotation would be |x| = 1

3
|1 − 4y|. Anywhere else, the distance of

Ö
x

y

z

è
to the axis of rotation is the

same as the distance of

Ö
x

y

z

è
to

Ö
0

y

0

è
, that is

√
x2 + z2. We must have

√
x2 + z2 =

1

3
|1− 4y|,

which is to say
9x2 + 9z2 − 16y2 + 8y − 1 = 0.

1.15.3 A spiral staircase.

1.15.4 A spiral staircase.

1.15.6 The planes A : x + z = 0 and B : y = 0 are secant. The surface has equation of the form f(A,B) =

eA2+B2

−A = 0, and it is thus a cylinder. The directrix has direction
−→
i −
−→
k .

1.15.7 Rearranging,

(x2 + y2 + z2)2 − 1

2
((x + y + z)2 − (x2 + y2 + z2))− 1 = 0,

and so we may take A : x + y + z = 0,Σ : x2 + y2 + z2 = 0, shewing that the surface is of revolution. Its axis is
the line in the direction

−→
i +
−→
j +
−→
k .
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1.15.8 Considering the planes A : x− y = 0, B : y − z = 0, the equation takes the form

f(A,B) =
1

A
+

1

B
− 1

A + B
− 1 = 0,

thus the equation represents a cylinder. To find its directrix, we find the intersection of the planes x = y and

y = z. This gives

xy
z

 = t

11
1

. The direction vector is thus
−→
i +
−→
j +
−→
k .

1.15.9 Rearranging,
(x + y + z)2 − (x2 + y2 + z2) + 2(x + y + z) + 2 = 0,

so we may take A : x+ y + z = 0,Σ : x2 + y2 + z2 = 0 as our plane and sphere. The axis of revolution is then in
the direction of

−→
i +
−→
j +
−→
k .

1.15.10 After rearranging, we obtain
(z − 1)2 − xy = 0,

or
− x

z − 1

y

z − 1
+ 1 = 0.

Considering the planes
A : x = 0, B : y = 0, C : z = 1,

we see that our surface is a cone, with apex at (0, 0, 1).

1.15.11 The largest circle has radius b. Parallel cross sections of the ellipsoid are similar ellipses, hence we may
increase the size of these by moving towards the centre of the ellipse. Every plane through the origin which makes a
circular cross section must intersect the yz-plane, and the diameter of any such cross section must be a diameter

of the ellipse x = 0,
y2

b2
+

z2

c2
= 1. Therefore, the radius of the circle is at most b. Arguing similarly on the xy-plane

shews that the radius of the circle is at least b. To shew that circular cross section of radius b actually exist, one
may verify that the two planes given by a2(b2 − c2)z2 = c2(a2 − b2)x2 give circular cross sections of radius b.

1.15.12 Any hyperboloid oriented like the one on the figure has an equation of the form

z2

c2
=

x2

a2
+

y2

b2
− 1.

When z = 0 we must have

4x2 + y2 = 1 =⇒ a =
1

2
, b = 1.

Thus
z2

c2
= 4x2 + y2 − 1.

Hence, letting z = ±2,
4

c2
= 4x2 + y2 − 1 =⇒ 1

c2
= x2 +

y2

4
− 1

4
= 1− 1

4
=

3

4
,

since at z = ±2, x2 +
y2

4
= 1. The equation is thus

3z2

4
= 4x2 + y2 − 1.

1.16.1 The arc length element is√
(dx)2 + (dy)2 + (dz)2 =

√
4t2 + 36t + 81 dt = (2t + 9) dt.

We need t = 1 to t = 4. The desired length is∫ 4

1

(2t + 9) dt = (t2 + 9t)
∣∣∣4
1
= (16 + 36)− (1 + 9) = 42.
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1.16.2 Observe that z = 1+x2+y2 is a paraboloid opening up, with vertex (lowest point) at (0, 0, 1). On the other
hand, z = 3 − x2 − y2 is another paraboloid opening down, with highest point at (0, 0, 3). Adding the equations
we obtain

2z = z + z = (1 + x2 + y2) + (3− x2 − y2) = 4 =⇒ 2z = 4 =⇒ z = 2,

so they intersect at the plane z = 2. Subtracting the equations,

(1 + x2 + y2)− (3− x2 − y2) = z − z = 0 =⇒ 2x2 + 2y2 − 2 = 0 =⇒ x2 + y2 = 1,

so they intersect at the circle x2 + y2 = 1, z = 2. Since they meet at the circle x2 + y2 = 1, we may parametrise
this circle as x = cos t, y = sin t, t ∈ [0; 2π], z = 2.

1.16.3 Let −→r (t) lie on the plane ax + by + cz = d. Then we must have

a
t4

1 + t2
+ b

t3

1 + t2
+ c

t2

1 + t2
= d =⇒ (at4 + bt3 + ct2) = d(1 + t2) =⇒ at4 + bt3 + (c− d)t2 − d = 0,

which means that if −→r (t) is on the plane ax + by + cz = d, then t must satisfy the quartic polynomial p(t) =
at4 + bt3 + (c− d)t2 − d = 0. Hence, the tk are coplanar if and only if they are roots of p(t). Since the coefficient
of t in this polynomial is 0, then the sum of the roots of p(t) taken three at a time is 0, that is,

t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4 = 0 =⇒ t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4
t1t2t3t4

= 0 =⇒ 1

t1
+

1

t2
+

1

t3
+

1

t4
= 0,

as required.

1.16.4 Observe that in this problem you are only parametrising the ellipsoid! The tricky part is to figure out
the bounds in your parameters so that only the part above the plane x + y + z = 0 is described. A common
parametrisation found was:

x = cos θ sinϕ, y = 3 sin θ sinϕ, z = cosϕ.

The projection of the plane x + y + z = 0 onto the xy-plane is the line y = −x. To be “above” this line, the angle

θ, measured from the positive x-axis needs to be in the interval −π

4
≤ θ ≤ 3π

4
. Since

11
1

 is normal to the plane

x + y + z = 0, the plane makes an angle of
π

4
with the z-axis. Recall that ϕ is measured from ϕ = 0 (positive

z-axis) to ϕ = π (negative z-axis). Hence to be above the plane we need 0 ≤ ϕ ≤ 3π

4
.

1.16.6

1.

 −2aa2 − 1

a2 + 1


2. x2 + y2 = c2 + 1

3. π

∫ 1

0

(c2 + 1)dc =
4π

3

1.17.1

1. Put f : R→ R, f(x) = ex−1 − x. Clearly f(1) = e0 − 1 = 0. Now,

f ′(x) = ex−1 − 1,

f ′′(x) = ex−1.

If f ′(x) = 0 then ex−1 = 1 implying that x = 1. Thus f has a single minimum point at x = 1. Thus for all
real numbers x

0 = f(1) ≤ f(x) = ex−1 − x,

which gives the desired result.

2. Easy Algebra!

3. Easy Algebra!
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4. By the preceding results, we have
A1 ≤ exp(A1 − 1),

A2 ≤ exp(A2 − 1),

...
An ≤ exp(An − 1).

Since all the quantities involved are non-negative, we may multiply all these inequalities together, to obtain,

A1A2 · · ·An ≤ exp(A1 + A2 + · · ·+ An − n).

In view of the observations above, the preceding inequality is equivalent to

nnGn

(a1 + a2 + · · ·+ an)n
≤ exp(n− n) = e0 = 1.

We deduce that
Gn ≤

(
a1 + a2 + · · ·+ an

n

)n

,

which is equivalent to

(a1a2 · · · an)
1/n ≤ a1 + a2 + · · ·+ an

n
.

Now, for equality to occur, we need each of the inequalities Ak ≤ exp(Ak−1) to hold. This occurs, in view of
the preceding lemma, if and only if Ak = 1, ∀k, which translates into a1 = a2 = . . . = an. This completes
the proof.

1.17.2 By CBS,

(x1 + x2 + . . . + xn)
(

1

x1
+

1

x2
+ . . . +

1

xn

)
≥
Ç

n∑
i=1

√
xi

1√
xi

å2

= n2.

1.17.3 By CBS,

(a + b + c + d)2 ≤ (1 + 1 + 1 + 1)
(
a2 + b2 + c2 + d2

)
= 4

(
a2 + b2 + c2 + d2

)
.

Hence,

(8− e)2 ≤ 4
(
16− e2

)
⇐⇒ e (5e− 16) ≤ 0 ⇐⇒ 0 ≤ e ≤ 16

5
.

The maximum value e =
16

5
is reached when a = b = c = d =

6

5
.

1.17.4 Observe that 96 · 216 = 1442 and by CBS,
n∑

k=1

a2
k ≤
Ç

n∑
k=1

a3
k

åÇ
n∑

k=1

ak

å
.

As there is equality,
(a1, a2, . . . , an) = t(a3

1, a
3
2, . . . , a

3
n)

for some real number t. Hence a1 = a2 = . . . = an = a, from where na = 96, na2 = 144 gives a =
3

2
y n = 32.

1.17.5 Applying the AM-GM inequality, for 1, 2, . . . , n:

n!1/n = (1 · 2 · · ·n)1/n <
1 + 2 + · · ·+ n

n
=

n + 1

2
,

with strict inequality for n > 1.

1.17.6 If x ∈ [−a; a], then a + x ≥ 0 and a− x ≥ 0, and thus we may use AM-GM with n = 8, a1 = a2 = · · · =
a5 =

a + x

5
and a6 = a7 = a8 =

a− x

3
. We deduce that

(
a + x

5

)5 (a− x

3

)3

≤

Ñ
5
(
a + x

5

)
+ 3

(
a− x

3

)
8

é8

=
Äa
4

ä8
,

from where

f(x) ≤ 5533a8

48
,

with equality if and only if
a + x

5
=

a− x

3
.
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1.17.7 Applying AM-GM to the set of n + 1 numbers

1, 1 +
1

n
, 1 +

1

n
, . . . , 1 +

1

n
,

has arithmetic mean
1 +

1

n + 1

and geometric mean (
1 +

1

n

)n/(n+1)

.

Therefore,

1 +
1

n + 1
>
(
1 +

1

n

)n/(n+1)

,

that is (
1 +

1

n + 1

)n+1

>
(
1 +

1

n

)n

,

which means
xn+1 > xn,

giving the assertion.

2.1.2 Since polynomials are continuous functions and the image of a connected set is connected for a continuous
function, the image must be an interval of some sort. If the image were a finite interval, then f(x, kx) would be
bounded for every constant k, and so the image would just be the point f(0, 0). The possibilities are thus

1. a single point (take for example, p(x, y) = 0),

2. a semi-infinite interval with an endpoint (take for example p(x, y) = x2 whose image is [0;+∞[),

3. a semi-infinite interval with no endpoint (take for example p(x, y) = (xy−1)2 +x2 whose image is ]0;+∞[),

4. all real numbers (take for example p(x, y) = x).

2.3.4 0

2.3.5 2

2.3.6 c = 0.

2.3.7 0

2.3.10 By AM-GM,
x2y2z2

x2 + y2 + z2
≤ (x2 + y2 + z2)3

27(x2 + y2 + z2)
=

(x2 + y2 + z2)2

27
→ 0

as (x, y, z)→ (0, 0, 0).

2.4.1 We have

F (−→x +
−→
h )− F (−→x ) = (−→x +

−→
h )× L(−→x +

−→
h )−−→x × L(−→x )

= (−→x +
−→
h )× (L(−→x ) + L(

−→
h ))−−→x × L(−→x )

= −→x × L(
−→
h ) +

−→
h × L(−→x ) +

−→
h × L(

−→
h )

Now, we will prove that ||
−→
h × L(

−→
h )|| = o

(∣∣∣∣∣∣−→h ∣∣∣∣∣∣) as
−→
h → −→0 . For let

−→
h =

n∑
k=1

hk
−→e k,

where the −→e k are the standard basis for Rn. Then

L(
−→
h ) =

n∑
k=1

hkL(−→e k),
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and hence by the triangle inequality, and by the Cauchy-Bunyakovsky-Schwarz inequality,

||L(
−→
h )|| ≤

n∑
k=1

|hk|||L(−→e k)||

≤
Ç

n∑
k=1

|hk|2
å1/2Ç n∑

k=1

||L(−→e k)||2
å1/2

=
∣∣∣∣∣∣−→h ∣∣∣∣∣∣( n∑

k=1

||L(−→e k)||2)1/2,

whence, again by the Cauchy-Bunyakovsky-Schwarz Inequality,

||
−→
h × L(

−→
h )|| ≤ ||

−→
h ||||L(

−→
h )| ≤ ||

−→
h ||2|||L(−→e k)||2)1/2 = o

Ä
||
−→
h ||
ä
,

as it was to be shewn.

2.4.2 Assume that −→x ̸= −→0 . We use the fact that (1 + t)1/2 = 1 +
t

2
+ o (t) as t→ 0. We have

f(−→x +
−→
h )− f(−→x ) = ||−→x +

−→
h || −

∣∣∣∣−→x ∣∣∣∣
=

»
(−→x +

−→
h )•(−→x +

−→
h )−

∣∣∣∣−→x ∣∣∣∣
=

…∣∣∣∣−→x ∣∣∣∣2 + 2−→x •
−→
h +

∣∣∣∣∣∣−→h ∣∣∣∣∣∣2 − ∣∣∣∣−→x ∣∣∣∣
=

2−→x •
−→
h +

∣∣∣∣∣∣−→h ∣∣∣∣∣∣2…∣∣∣∣−→x ∣∣∣∣2 + 2−→x •
−→
h +

∣∣∣∣∣∣−→h ∣∣∣∣∣∣2 +
∣∣∣∣−→x ∣∣∣∣ .

As
−→
h → −→0 , …∣∣∣∣−→x ∣∣∣∣2 + 2−→x •

−→
h +

∣∣∣∣∣∣−→h ∣∣∣∣∣∣2 +
∣∣∣∣−→x ∣∣∣∣→ 2

∣∣∣∣−→x ∣∣∣∣.
Since

∣∣∣∣∣∣−→h ∣∣∣∣∣∣2 = o
(∣∣∣∣∣∣−→h ∣∣∣∣∣∣) as

−→
h → −→0 , we have

2−→x •
−→
h +

∣∣∣∣∣∣−→h ∣∣∣∣∣∣2…∣∣∣∣−→x ∣∣∣∣2 + 2−→x •
−→
h +

∣∣∣∣∣∣−→h ∣∣∣∣∣∣2 +
∣∣∣∣−→x ∣∣∣∣ →

−→x •
−→
h∣∣∣∣∣∣−→h ∣∣∣∣∣∣ + o

(∣∣∣∣∣∣−→h ∣∣∣∣∣∣) ,

proving the first assertion.
To prove the second assertion, assume that there is a linear transformation D0(f) = L, L : Rn → R such that

||f(−→0 +
−→
h )− f(

−→
0 )− L(

−→
h )|| = o

(∣∣∣∣∣∣−→h ∣∣∣∣∣∣) ,

as
∣∣∣∣∣∣−→h ∣∣∣∣∣∣ → 0. Recall that by theorem ??, L(

−→
0 ) =

−→
0 , and so by example 169, D0(L)(

−→
0 ) = L(

−→
0 ) =

−→
0 . This

implies that
L(
−→
h )∣∣∣∣∣∣−→h ∣∣∣∣∣∣ → D0(L)(

−→
0 ) =

−→
0 , as

∣∣∣∣∣∣−→h ∣∣∣∣∣∣ → 0. Since f(
−→
0 ) = ||0|| = 0, f(

−→
h ) =

∣∣∣∣∣∣−→h ∣∣∣∣∣∣ this would imply

that ∣∣∣∣∣∣∣∣∣∣∣∣−→h ∣∣∣∣∣∣− L(
−→
h )
∣∣∣∣∣∣ = o

(∣∣∣∣∣∣−→h ∣∣∣∣∣∣) ,

or ∣∣∣∣∣∣
∣∣∣∣∣∣1− L(

−→
h )∣∣∣∣∣∣−→h ∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ = o (1) .

But the sinistral side→ 1 as
−→
h → −→0 , and the dextral side→ 0 as

−→
h → −→0 . This is a contradiction, and so, such

linear transformation L does not exist at the point
−→
0 .
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2.5.2 Observe that

f(x, y) =

®
x if x ≤ y2

y2 if x > y2

Hence
∂

∂x
f(x, y) =

®
1 if x > y2

0 if x > y2

and
∂

∂y
f(x, y) =

®
0 if x > y2

2y if x > y2

2.5.3 Observe that

g(1, 0, 1) =

ñ
3

0

ô
, f ′(x, y) =

ñ
y2 2xy

2xy x2

ô
, g′(x, y) =

ñ
1 −1 2

y x 0

ô
,

and hence

g′(1, 0, 1) =

ñ
1 −1 2

0 1 0

ô
, f ′(g(1, 0, 1)) = f ′(3, 0) =

ñ
0 0

0 9

ô
.

This gives, via the Chain-Rule,

(f ◦ g)′(1, 0, 1) = f ′(g(1, 0, 1))g′(1, 0, 1) =

ñ
0 0

0 9

ô ñ
1 −1 2

0 1 0

ô
=

ñ
0 0 0

0 9 0

ô
.

The composition g ◦ f is undefined. For, the output of f is R2, but the input of g is in R3.

2.5.4 Since f(0, 1) =

ñ
0

1

ô
, the Chain Rule gives

(g ◦ f)′(0, 1) = (g′(f(0, 1)))(f ′(0, 1)) = (g′(0, 1))(f ′(0, 1)) =

1 −1
0 0

1 1

 ñ1 0

1 1

ô
=

0 −1
0 0

2 1


2.5.5 We have

∂f

∂x
(x, y, z) = 2xyg(x2y),

and
∂f

∂y
(x, y, z) = x2g(x2y).

2.5.6 Differentiating both sides with respect to the parameter a, the integral is
1

2a3
arctan

b

a
+

b

2a2(a2 + b2)

2.5.10 We have

∂

∂x
(x + z)2 +

∂

∂x
(y + z)2 =

∂

∂x
8 =⇒ 2(1 +

∂z

∂x
)(x + z) + 2

∂z

∂x
(y + z) = 0.

At (1, 1, 1) the last equation becomes

4(1 +
∂z

∂x
) + 4

∂z

∂x
= 0 =⇒ ∂z

∂x
= −1

2
.

2.6.1 ∇f(x, y, z) =

 eyz

xzeyz

xyeyz

 =⇒ (∇f)(2, 1, 1) =

 e

2e

2e

.

2.6.2 (∇× f)(x, y, z) =

 0

x

yexy

 =⇒ (∇× f)(2, 1, 1) =

 0

2

e2

.
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2.6.4 The vector

 1

−7
0

 is perpendicular to the plane. Put f(x, y, z) = x2 + y2 − 5xy + xz − yz + 3. Then

(∇f)(x, y, z) =

2x− 5y + z

2y − 5x− z

x− y

. Observe that ∇f(x, y, z) is parallel to the vector

 1

−7
0

, and hence there exists a

constant a such that 2x− 5y + z

2y − 5x− z

x− y

 = a

 1

−7
0

 =⇒ x = a, y = a, z = 4a.

Since the point is on the plane

x− 7y = −6 =⇒ a− 7a = −6 =⇒ a = 1.

Thus x = y = 1 and z = 4.

2.6.7 Observe that
f(0, 0) = 1, fx(x, y) = (cos 2y)ex cos 2y =⇒ fx(0, 0) = 1,

fy(x, y) = −2x sin 2yex cos 2y =⇒ fy(0, 0) = 0.

Hence
f(x, y) ≈ f(0, 0) + fx(0, 0)(x− 0) + fy(0, 0)(y − 0) =⇒ f(x, y) ≈ 1 + x.

This gives f(0.1,−0.2) ≈ 1 + 0.1 = 1.1.

2.6.8 This is essentially the product rule: duv = udv + vdu, where ∇ acts the differential operator and × is the
product. Recall that when we defined the volume of a parallelepiped spanned by the vectors −→a ,

−→
b , −→c , we saw

that
−→a • (

−→
b ×−→c ) = (−→a ×

−→
b ) • −→c .

Treating ∇ = ∇−→u +∇−→v as a vector, first keeping −→v constant and then keeping −→u constant we then see that

∇−→u • (−→u ×−→v ) = (
−→∇ ×−→u ) • −→v , ∇−→v • (−→u ×−→v ) = −∇ • (−→v ×−→u ) = −(−→∇ ×−→v ) • −→u .

Thus

∇ • (u× v) = (∇−→u +∇−→v ) • (u× v) = ∇−→u • (−→u ×−→v ) +∇−→v • (−→u ×−→v ) = (
−→∇ ×−→u ) • −→v − (

−→∇ ×−→v ) • −→u .

2.6.11 An angle of
π

6
with the x-axis and

π

3
with the y-axis.

2.8.7 We have

(∇f)(x, y) =

ñ
4x3 − 4(x− y)

4y3 + 4(x− y)

ô
=

ñ
0

0

ô
=⇒ 4x3 = 4(x− y) = −4y3 =⇒ x = −y.

Hence
4x3 − 4(x− y) = 0 =⇒ 4x3 − 8x = 0 =⇒ 4x(x2 − 2) = 0 =⇒ x ∈ {−

√
2, 0,
√
2}.

Since x = −y, the critical points are thus (−
√
2,
√
2), (0, 0), (

√
2,−
√
2). The Hessian is now,

Hf(x, y) =

ñ
12x2 − 4 4

4 12y2 − 4

ô
,

and its principal minors are ∆1 = 12x2 − 4 and ∆2 = (12x2 − 4)(12y2 − 4)− 16.

If (x, y) = (−
√
2,
√
2) or (x, y) = (

√
2,−
√
2), then ∆1 = 20 > 0 and ∆2 = 384 > 0, so the matrix is positive

definite and we have a local minimum at each of these points.

If (x, y) = (0, 0) then ∆1 = −4 < 0 and ∆2 = 0, so the matrix is negative semidefinite and further testing is
needed. What happens in a neighbourhood of (0, 0)? We have

f(x, x) = 2x4 > 0, f(x,−x) = 2x4 − 4x2 = 2x2(x2 − 1).

If x is close enough to 0, = 2x2(x2 − 1) < 0, which means that the function both increases and decreases to 0 in
a neighbourhood of (0, 0), meaning that there is a saddle point there.
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2.8.8 We have

∇f(x, y, z) =

8xz − 2y − 8x

−2x + 1

4x2 − 2z

 =

00
0

 =⇒ x = 1/2; y = −1; z = 1/2.

The hessian is

H =

8z − 8 −2 8x

−2 0 0

8x 0 −2

 .

The principal minors are 8z − 8; −4, and 8. At z = 1/2, the matrix is negative definite and the critical point is
thus a saddle point.

2.8.9 We have

(∇f)(x, y, z) =

2x + yz

2y + xz

2z + xy

 ,

and

Hrf =

2 z y

z 2 x

y x 2

 .

We see that ∆1(x, y, z) = 2,∆2(x, y, z) = det

ñ
2 z

z 2

ô
= 4 − z2 and ∆3(x, y, z) = detHrf = 8 − 2x2 − 2y2 −

2z2 + 2xyz.

If (∇f)(x, y, z) =

00
0

 then we must have

2x = −yz,

2y = −xz,

2z = −xy,
and upon multiplication of the three equations,

8xyz = −x2y2z2,

that is,
xyz(xyz + 8) = 0.

Clearly, if xyz = 0, then we must have at least one of the variables equalling 0, in which case, by virtue of the
original three equations, all equal 0. Thus (0, 0, 0) is a critical point. If xyz = −8, then none of the variables is

0, and solving for x, say, we must have x = − 8

yz
, and substituting this into 2x + yz = 0 we gather (yz)2 = 16,

meaning that either yz = 4, in which case x = −2, or zy = −4, in which case x = 2. It is easy to see then
that either exactly one of the variables is negative, or all three are negative. The other critical points are therefore
(−2, 2, 2), (2,−2, 2), (2, 2,−2), and (−2,−2,−2).

At (0, 0, 0), ∆1(0, 0, 0) = 2 > 0,∆2(0, 0, 0) = 4 > 0,∆1(0, 0, 0) = 8 > 0, and thus (0, 0, 0) is a minimum
point. If x2 = y2 = z2 = 4, xyz = −8, then ∆2(x, y, z) = 0,∆3 = −32, so these points are saddle points.

2.8.10 We have

(∇f)(x, y, z) =

 2xy + 2

x2 + 2yz

y2 − 1

 ,

and

Hrf =

2y 2x 0

2x 2z 2y

0 2y 0

 .
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We see that ∆1(x, y, z) = 2y,∆2(x, y, z) = det

ñ
2y 2x

2x 2z

ô
= 4yz − 4x2 and ∆3(x, y, z) = detHrf = −8y3.

If (∇f)(x, y, z) =

00
0

 then we must have

xy = −1,
x2 = −2yz,

y = ±1,

and hence (1,−1, 1
2
), and (−1, 1,−1

2
) are the critical points. Now, ∆1(1,−1,

1

2
) = −2, ∆2(1,−1,

1

2
) = −6, and

∆3(1,−1,
1

2
) = 8. Thus (1,−1, 1

2
) is a saddle point. Similarly, ∆1(−1, 1,−

1

2
) = 2, ∆2(−1, 1,−

1

2
) = −6, and

∆3(−1, 1,−1

2
) = −8, shewing that (1,−1, 1

2
) is also a saddle point.

2.8.11 We find

∇f(x, y, z) =

4yz − 4x3

4xz − 4y3

4xy − 4z3

 .

Assume ∇f(x, y, z) = 0. Then

4yz = 4x3, 4xz = 4y3, 4xy = 4z3 =⇒ xyz = x4 = y4 = z4.

Thus xyz ≥ 0, and if one of the variables is 0 so are the other two. Thus (0, 0, 0) is the only critical point with at
least one of the variables 0. Assume now that xyz ̸= 0. Then

(xyz)3 = x4y4z4 = (xyz)4 =⇒ xyz = 1 =⇒ yz =
1

x
=⇒ x4 = 1 =⇒ x = ±1.

Similarly, y = ±1, z = ±1. Since xyz = 1, exactly two of the variables can be negative. Thus we find the following
critical points:

(0, 0, 0), (1, 1, 1), (−1,−1, 1), (−1, 1,−1), (1,−1,−1).
The Hessian is

Hxf =

−12x2 4z 4y

4z −12y2 4x

4y 4x −12z2

 .

If 1 = xyz = x2 = y2 = z2, we have ∆1 = −12x2 = −12 < 0, ∆2 = 144x2y2− 16z2 = 144− 16 = 128 > 0, and

∆3 = −1728x2y2z2 + 192x4 + 192z4 + 128zyx + 192y4

= −1728 + 192 + 192 + 128 + 192

= −1024

< 0.

This means that for xyz ̸= 0 the Hessian is negative definite and the function has a local maximum at each of
the four points (1, 1, 1), (−1,−1, 1), (−1, 1,−1), (1,−1,−1). Observe that at these critical points f = 1. Now
f(0, 0, 0) = 0 and f(−1, 1, 1) = −7.

2.8.12 Rewrite: f(x, y, z) = xyz(4− x− y − z) = 4xyz − x2yz − xy2z − xyz2. Then,

(∇f)(x, y, z) =

4yz − 2xyz − y2z − yz2

4xz − x2z − 2xyz − xz2

4xy − x2y − xy2 − 2xyz

 ,

Hf(x, y, z) =

 −2yz z(4− 2x− 2y − z) y(4− 2x− y − 2z)

z(4− 2x− 2y − z) −2xz x(4− x− 2y − 2z)

y(4− 2x− y − 2z) x(4− x− 2y − 2z) −2xy


Equating the gradient to zero, we obtain,

yz(4− 2x− y − z) = 0, xz(4− x− 2y − z) = 0, xy(4− x− y − 2z) = 0.
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If xyz ̸= 0 then we must have

4− 2x− y − z = 0, 4− x− 2y − z = 0, 4− x− y − 2z = 0 =⇒ x = y = z = 1.

In this case

Hf(1, 1, 1) =

−2 −1 −1

−1 −2 −1

−1 −1 −2


and the principal minors are ∆1 = −2 < 0, ∆2 = 3 > 0, and ∆3 = −4 < 0, so the matrix is negative definite and
we have a local maximum at (1, 1, 1).

If either of x, y, or z is 0, we will get ∆3 = 0, so further testing is needed. Now,

f(x, x, x) = x3(4− 3x), f(x,−x, x) = x3(−4 + x).

Thus as x → 0+ then f(x, x, x) > 0 and f(x,−x, x) < 0, which means that in some neighbourhood of (0, 0, 0)
the function is both decreasing towards 0 and increasing towards 0, which means that (0, 0, 0) is a saddle point.

2.8.13 To facilitate differentiation observe that g(x, y, z) = (xe−x2

)(ye−y2

)(ze−z2

). Now

∇g(x, y, z) =

(1− 2x2)(yz)(e−x2

)(e−y2

)(e−z2

)

(1− 2y2)(xz)(e−x2

)(e−y2

)(e−z2

)

(1− 2z2)(xy)(e−x2

)(e−y2

)(e−z2

)

 .

The function is 0 if any of the variables is 0. Since the function clearly assumes positive and negative values, we

can discard any point with a 0. If ∇(x, y, z) = 0, then x = ± 1√
2
; y = ± 1√

2
z = ± 1√

2
. We find

Hxg = t(x, y, z)

 (4x3 − 6x)(yz) (1− 2x2)(1− 2y2)z (1− 2x2)(1− 2z2)y

(1− 2y2)(1− 2x2)z (4y3 − 6y)(xz) (1− 2y2)(1− 2z2)x

(1− 2z2)(1− 2x2)y (1− 2z2)(1− 2y2)x (4z3 − 6z)(xy)

 ,

with t(x, y, z) = (e−x2

)(e−y2

)(e−z2

). Since at the critical points we have 1− 2x2 = 1− 2y2 = 1− 2z2 = 0, the
Hessian reduces to

Hxg = (e−3/2)

(4x
3 − 6x)(yz) 0 0

0 (4y3 − 6y)(xz) 0

0 0 (4z3 − 6z)(xy)

 .

We have
∆1 = (4x3 − 6x)(yz)

∆2 = (4x3 − 6x)(4y3 − 6y)(xyz2)

∆3 = (4x3 − 6x)(4y3 − 6y)(4z3 − 6z)(x2y2z2).

Also,

4

Å
1√
2

ã3

− 6

Å
1√
2

ã
= −2

√
2 < 0, 4

Å
− 1√

2

ã3

− 6

Å
− 1√

2

ã
= 2
√
2 > 0.

This means that if an even number of the variables is negative (0 or 2), then we the Hessian is negative definite,
and if an odd numbers of the variables is positive (1 or 3), the Hessian is positive definite. We conclude that we
have local maxima at

(
1√
2
,

1√
2
,

1√
2
), (− 1√

2
,− 1√

2
,

1√
2
), (− 1√

2
,

1√
2
,− 1√

2
), (

1√
2
,− 1√

2
,− 1√

2
)

and local minima at

(− 1√
2
,− 1√

2
,− 1√

2
), (− 1√

2
,

1√
2
,

1√
2
), (

1√
2
,− 1√

2
,

1√
2
), (

1√
2
,

1√
2
,− 1√

2
).
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2.8.14 By the Fundamental Theorem of Calculus, there exists a continuously differentiable function G such that

f(x, y) =

∫ x2+y

y2−x

g(t)dt = G(x2 + y)−G(y2 − x).

Hence
∂f

∂x
(x, y) = 2xG′(x2 + y) + G′(y2 − x) = 2xg(x2 + y) + g(y2 − x);

∂f

∂y
(x, y) = G′(x2 + y)− 2yG′(y2 − x) = g(x2 + y)− 2yg(y2 − x).

This gives
∂f

∂x
(0, 0) = g(0) =

∂f

∂y
(0, 0) = 0,

so (0, 0) is a critical point. Now, the Hessian of f is

Hf(x, y) =

ñ
2g(x2 + y) + 4x2g′(x2 + y)− g′(y2 − x) 2xg′(x2 + y) + 2yg′(y2 − x)

2xg′(x2 − y) + 2yg′(y2 − x) g′(x2 + y)− 2g(y2 − x)− 4y2g′(y2 − x)

ô
,

and so

Hf(0, 0) =

ñ
−g′(0) 0

0 g′(0)

ô
.

Regardless of the sign of g′(0), the determinant of of this last matrix is −(g′(0))2 < 0, and so (0, 0) is a saddle
point.

2.8.15 Since the coordinates (x,

√
144− 16x2

3
), −3 ≤ x ≤ 3 describe an ellipse centred at the origin and semi-

axes 3 and 4, and the coordinates (y,
√

4− y2), −2 ≤ y ≤ 2 describe a circle centred at the origin with radius 2,
the problem reduces to finding the minimum between the boundaries of the circle and the ellipse. Geometrically
this is easily seen to be 1.

2.9.1 We have

∇(abc) = λ∇(2ab + 2bc + 2ca− S) =⇒

bcca
ab

 = λ

2b + 2c

2a + 2c

2b + 2a


=⇒

bc = 2λ(b + c)

ca = 2λ(a + c)

ab = 2λ(b + a)

By physical considerations, abc ̸= 0 and so λ ̸= 0. Hence, by successively dividing the equations,

b

a
=

b + c

c + a
=⇒ a = b,

c

b
=

a + c

b + a
=⇒ b = c,

a

c
=

b + a

b + c
=⇒ a = c.

Therefore

2a2 + 2a2 + 2a2 = S =⇒ a =

√
S√
6
,

and the maximum volume is

abc =
(
√
S)3

(
√
6)3

.

The above result can be simply obtained by using the AM-GM inequality:

S

3
=

2ab + 2bc + 2ca

3
≥ ((2ab)(2bc)(2ca))1/3 = 2(abc)2/3 =⇒ abc ≤ S3/2

63/2
.

Equality happens if

2ab = 2bc = 2ca =⇒ a = b = c =

√
S√
6
.

2.9.2
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1. The vector

ab
c

 is perpendicular to Π. Hence, the equation of the perpendicular passing through P isÖ
x

y

z

è
=

Ö
1

1

1

è
+ t

ab
c

 =⇒ x = 1 + ta, y = 1 + tb, z = 1 + tc.

The intersection of the line and the plane happens when

a(1 + at) + b(1 + tb) + c(1 + tc) = d =⇒ t =
d− a− b− c

a2 + b2 + c2
.

Hence

P ′ =

á
1 + a · d− a− b− c

a2 + b2 + c2

1 + b · d− a− b− c

a2 + b2 + c2

1 + c · d− a− b− c

a2 + b2 + c2

ë
The distance is then…(

a · d− a− b− c

a2 + b2 + c2

)2

+
(
b · d− a− b− c

a2 + b2 + c2

)2

+
(
c · d− a− b− c

a2 + b2 + c2

)2

2. Let f(x, y, z) = (x− 1)2 + (y − 1)2 + (z − 1)2 be the square of the distance from P to a point on the plane
and let g(x, y, z) = ax + by + cz − d. Using Lagrange multipliers,

∇f(x, y, z) = λ∇g(x, y, z) =⇒

2(x− 1)

2(y − 1)

2(z − 1)

 = λ

ab
c

 =⇒ 2(x−1) = λa, 2(y−1) = λb, 2(z−1) = λc.

Since (1, 1, 1) is not on the plane and abc ̸= 0, we gather that λ ̸= 0. Now,

x = 1 +
λa

2
, y = 1 +

λb

2
, z = 1 +

λc

2
.

Putting these into the equation of the plane,

a
(
1 +

λa

2

)
+ b

(
1 +

λb

2

)
+ c

(
1 +

λc

2

)
= d =⇒ λ = 2 · d− a− b− c

a2 + b2 + c2
.

Then the coordinates of P ′ are

x = 1+
λa

2
= 1+a·d− a− b− c

a2 + b2 + c2
, y = 1+

λb

2
= 1+b·d− a− b− c

a2 + b2 + c2
, z = 1+

λc

2
= 1+c·d− a− b− c

a2 + b2 + c2
,

as before.

3. Consider the function

t(x, y) = (x− 1)2 + (y − 1)2 +
(
d− ax− by

c
− 1

)2

,

which is the square of the distance from a point (x, y, z) on the plane to the point (1, 1, 1).
Now,

∇t(x, y) =

2(x− 1)− 2
a

c

(
d− ax− by

c
− 1

)
2(y − 1)− 2

b

c

(
d− ax− by

c
− 1

) =

ñ
0

0

ô
which implies

x =
−b2 − c2 + ab− ad + ac

a2 + b2 + c2
= 1+a·d− a− b− c

a2 + b2 + c2
, y =

c2 + a2 − ab + bd− bc

a2 + b2 + c2
= 1+b·d− a− b− c

a2 + b2 + c2
,

as before. Substituting this in the equation of the plane gives the same coordinate of z, as before.
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2.9.3 Using CBS,

x + 3y

2
≤ (

x4 + 81y4

2
)1/4 =

361/4

21/4
=⇒ x + 3y ≤ 23/4

√
6 = 25/4

√
3.

2.9.4 Using AM-GM,
1

61/3
= 6
√

x2y3z ≤ 2x + 3y + z

6
=⇒ 2x + 3y + z ≥ 62/3.

2.9.5 We put g(x, y) = 5x2 + 6xy + 5y2 − 8 and argue using Lagrange multipliers. We have

∇f(x, y) = λ∇g(x, y) =⇒
ñ
2x

2y

ô
= λ

ñ
10x + 6y

6x + 10y

ô
.

This gives the three equations

0 = 5(λ− 1)x + 3y; 0 = 3x + 5(λ− 1)y; 5x2 + 6xy + 5y2 = 8.

The linear system (the first two equations) will have the unique solution (0, 0) as long as 25(λ− 1)2 − 9 ̸= 0, but
this solution does not lie on the third equation. If 25(λ− 1)2 − 9 = 0, then we deduce that x = ±y. Substituting

this into the third equation we gather that 10x2 ± 6x2 = 8, resulting in x = ±
√
2 or x = ± 1√

2
. Taking into

account the third equation, the feasible values are (
√
2,−
√
2), (−

√
2,
√
2), (1/

√
2, 1/
√
2), (−1/

√
2,−1/

√
2) The

desired maximum is thus
f(−
√
2,
√
2) = f(

√
2,−
√
2) = 4

and the minimum is
f(1/
√
2, 1/
√
2) = f(−1/

√
2,−1/

√
2) = 1.

Aliter: Observe that, using AM-GM,

5x2 + 6xy + 5y2 = 8 =⇒ x2 + y2 =
8

5
− 6

5
xy ≥ 8

5
− 6

5
· x

2 + y2

2
=⇒ x2 + y2 ≥ 5

8
· 8
5

= 1.

2.9.6 Put g(x, y) = xp + yp − 1. We need a = pλxp−1 and b = pλyp−1. Clearly then , λ ̸= 0. We then have

x =

Å
a

λp

ã1/(p−1)

, y =

Å
b

λp

ã1/(p−1)

.

Thus

1 = xp + yp =

Å
a

λp

ãp/(p−1)

+

Å
b

λp

ãp/(p−1)

,

which gives

λ =

ÇÅ
a

p

ãp/(p−1)

+

Å
b

p

ãp/(p−1)
å(p−1)/p

.

This gives

x =
a1/(p−1)

(a1/(p−1) + b1/(p−1))1/p
, y =

b1/(p−1)

(a1/(p−1) + b1/(p−1))1/p
.

Since f is non-negative, these points define a maximum for f and so

ax + by ≤ ap/(p−1)

(a1/(p−1) + b1/(p−1))1/p
+

bp/(p−1)

(a1/(p−1) + b1/(p−1))1/p
.

2.9.7 Let g(x, y, z) = (x− 1)2 + (y − 2)2 + (z − 3)2 − 4. We solve

∇f

xy
z

 = λ∇g

xy
z


for x, y, λ. This requires 2x2y

2z

 =

2(x− 1)λ

2(y − 2)λ

2(z − 3)λ

 .
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Clearly, λ ̸= 1. This gives x =
−λ

1− λ
, y =

−2λ
1− λ

, and z =
−3λ
1− λ

. Substituting into (x−1)2+(y−2)2+(z−3)2 =

4, we gather that ( −λ

1− λ
− 1

)2

+
( −2λ
1− λ

− 2
)2

+
( −3λ
1− λ

− 3
)2

= 4,

from where

λ = 1±
√
14

2
.

This gives the two points

(x, y, z) =

Å
1 +

2√
14

, 2 +
4√
14

, 3 +
6√
14

ã
and

(x, y, z) =

Å
1− 2√

14
, 2− 4√

14
, 3− 6√

14

ã
.

The first point gives an absolute maximum of 18 +
12
√
14

7
and the second an absolute minimum of 18− 12

√
14

7
.

2.9.8 Observe that the ellipse is symmetric about the origin. Now maximise and minimise the distance between a
point on the ellipse and the origin. If a and b are the semi-axes, you will find that 2a = 2 and 2b = 6

2.9.9 Put g(x, y, z) = x2 + y2 − 2, h(x, y, z) = x + z − 1. We must find λ, δ such that

∇f(x, y, z) = λ∇g(x, y, z) + δ∇h(x, y, z),

which translates into
1 = 2λx + δ,

1 = 2λy,

1 = δ,

and
x2 + y2 = 1,

x + z = 1.

We deduce that x = 0, y = ±
√
2, z = 1. We may shew that (0,

√
2, 1) yields a maximum and that (0,−

√
2, 1)

yields a minimum.

2.9.10 One can use Lagrange multipliers here. But perhaps the easiest approach is to put y = 1−x and maximise

f(x) = x +
√

x(1− x).

For this we have

f ′(x) = 0 =⇒ 1 +
1− 2x

2
√

x(1− x)
= 0 =⇒ x =

1

2
+

√
2

4
.

Since

f ′′(x) = − (1− 2x)2

4(x(1− x))3/2
− 1√

x(1− x)
< 0,

the value sought is a maximum. This maximum is thus

f

Å
1

2
+

√
2

4

ã
=

1

2
+

√
2

2
.

2.9.11 Claim: the function achieves its maximum on the boundary of the triangle. To prove this claim we have to
prove that there are no critical points strictly inside the triangle. For this we compute the gradient and set it equal
to the zero vector:

(∇f)(x, y) =

ñ
−axa−1ybe−(x+y)

−bxayb−1e−(x+y)

ô
=

ñ
0

0

ô
=⇒ x = 0 or y = 0,

which means that the critical points occur on the boundary. Since the function is identically 0 for x = 0 or y = 0,
we only need to look on the line x + y = 1 for the maxima. Hence we maximise f subject to the constraint
x + y = 1. Since x + y = 1, we can see that f(x, y) = xaybe−(x+y) = xaybe−1 on the line, so the problem
reduces to maximising h(x, y) = xayb subject to the constraint x + y = 1. Using Lagrange multipliers,

(∇h)(x, y) = λ(∇g)(x, y) =⇒
ñ
axa−1yb

bxayb−1

ô
= λ

ñ
1

1

ô
,
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which in turn

=⇒ axa−1yb = λ = bxayb−1 =⇒ ay = bx =⇒ ay = b(1− y) =⇒ y =
b

a + b
, x =

a

a + b
.

Finally,

f(x, y) = xaybe−(x+y) ≤ xaybe−1 ≤
(

a

a + b

)a ( b

a + b

)b

e−1.

2.9.15 Try p(x, y) = (y2 + 1)x2 + 2xy + 1.

3.3.1

1. Let L1 : y = x + 1, L2 : −x + 1. Then∫
C

xdx + ydy =

∫
L1

xdx + ydy +

∫
L2

xdx + ydy

=

∫ 1

−1

xdx(x + 1)dx +

∫ 1

0

xdx− (−x + 1)dx

= 0.

Also, both on L1 and on L2 we have ||dx|| =
√
2dx, thus∫

C

xy||dx|| =

∫
L1

xy||dx||+
∫
L2

xy||dx||

=
√
2

∫ 1

−1

x(x + 1)dx−
√
2

∫ 1

0

x(−x + 1)dx

= 0.

2. We put x = sin t, y = cos t, t ∈
î
−π

2
;
π

2

ó
. Then∫

C

xdx + ydy =

∫ π/2

−π/2

(sin t)(cos t)dt− (cos t)(sin t)dt

= 0.

Also, ||dx|| =
√

(cos t)2 + (− sin t)2dt = dt, and thus∫
C

xy||dx|| =

∫ π/2

−π/2

(sin t)(cos t)dt

=
(sin t)2

2

∣∣∣π/2

−π/2

= 0.

3.3.2 Let Γ1 denote the straight line segment path from O to A = (2
√
3, 2) and Γ2 denote the arc of the circle

centred at (0, 0) and radius 4 going counterclockwise from θ =
π

6
to θ =

π

5
.

Observe that the Cartesian equation of the line
←→
OA is y =

x√
3

. Then on Γ1

xdx + ydy = xdx +
x√
3
d

x√
3

=
4

3
xdx.

Hence ∫
Γ1

xdx + ydy =

∫ 2
√

3

0

4

3
xdx = 8.

On the arc of the circle we may put x = 4 cos θ, y = 4 sin θ and integrate from θ =
π

6
to θ =

π

5
. Observe that

there
xdx + ydy = (cos θ)d cos θ + (sin θ)d sin θ = − sin θ cos θdθ + sin θ cos θdθ = 0,

and since the integrand is 0, the integral will be zero.
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Assembling these two pieces,∫
Γ

xdx + ydy =

∫
Γ1

xdx + ydy +

∫
Γ2

xdx + ydy = 8 + 0 = 8.

To solve this problem using Maple you may use the code below.
> with(Student[VectorCalculus]):
> LineInt( VectorField( <x,y> ), Line( <0,0>, <2*sqrt(3),2> ))
> +LineInt( VectorField( <x,y> ), Arc(Circle( <0,0>, 4), Pi/6, Pi/5) );

3.3.3 Using the parametrisations from the solution of problem 3.3.3, we find on Γ1 that

x||dx|| = x
√

(dx)2 + (dy)2 = x

…
1 +

1

3
dx =

2√
3
xdx,

whence ∫
Γ1

x||dx|| =
∫ 2

√
3

0

2√
3
xdx = 4

√
3.

On Γ2 that

x||dx|| = x
√

(dx)2 + (dy)2 = 16 cos θ
√

sin2 θ + cos2 θdθ = 16 cos θdθ,

whence ∫
Γ2

x||dx|| =
∫ π/5

π/6

16 cos θdθ = 16 sin
π

5
− 16 sin

π

6
= 4 sin

π

5
− 8.

Assembling these we gather that∫
Γ

x||dx|| =
∫
Γ1

x||dx||+
∫
Γ2

x||dx|| = 4
√
3− 8 + 16 sin

π

5
.

To solve this problem using Maple you may use the code below.
> with(Student[VectorCalculus]):
> PathInt(x, [x,y]= Line( <0,0>, <2*sqrt(3),2> ))
> +PathInt(x, [x,y]=Arc(Circle( <0,0>, 4), Pi/6, Pi/5) );

Maple gives 16 cos
3π

10
rather than our 16 sin

π

5
. To check that these two are indeed the same, use the code

> is(16*cos(3*Pi/10)=16*sin(Pi/5));

which returns true.

3.3.4 The curve lies on the sphere, and to parametrise this curve, we dispose of one of the variables, y say, from
where y = 1− x and x2 + y2 + z2 = 1 give

x2 + (1− x)2 + z2 = 1 =⇒ 2x2 − 2x + z2 = 0

=⇒ 2
(
x− 1

2

)2

+ z2 =
1

2

=⇒ 4
(
x− 1

2

)2

+ 2z2 = 1.

So we now put

x =
1

2
+

cos t

2
, z =

sin t√
2
, y = 1− x =

1

2
− cos t

2
.

We must integrate on the side of the plane that can be viewed from the point (1, 1, 0) (observe that the vector

11
0


is normal to the plane). On the zx-plane, 4

(
x− 1

2

)2

+2z2 = 1 is an ellipse. To obtain a positive parametrisation
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we must integrate from t = 2π to t = 0 (this is because when you look at the ellipse from the point (1, 1, 0) the
positive x-axis is to your left, and not your right). Thus∮

Γ

zdx + xdy + ydz =

∫ 0

2π

sin t√
2
d
(
1

2
+

cos t

2

)
+

∫ 0

2π

(
1

2
+

cos t

2

)
d
(
1

2
− cos t

2

)
+

∫ 0

2π

(
1

2
− cos t

2

)
d

Å
sin t√

2

ã
=

∫ 0

2π

Å
sin t

4
+

cos t

2
√
2

+
cos t sin t

4
− 1

2
√
2

ã
dt

=
π√
2
.

3.5.1 2

3.5.2
1

3

3.5.3
15π

16

3.5.4 The integral equals ∫
D

xydxdy =

∫ 1

0

x

Ç∫ √
x

x2

y dy

å
dx

=

∫ 1

0

1

2
x(x− x4) dx

=
1

12
.

3.5.5 The integral equals∫
D

x sinx sin ydxdy +

∫
D

y sinx sin ydxdy = 2

Å∫ π

0

y sin y dy

ãÅ∫ π

0

sinx dx

ã
= 4π.

3.5.6 The integral is ∫
x≤y

x2dxdy +

∫
y≤x

y2dxdy =

∫ 1

0

∫ y

0

x2dxdy +

∫ 1

0

∫ 1

y

y2dxdy

=

∫ 1

0

y3

3
dy +

∫ 1

0

(
y2 − y3

)
dy

=
y4

12

∣∣∣1
0
+

Å
y3

3
− y4

4

ã ∣∣∣1
0

=
1

12
+

1

3
− 1

4

=
1

6
.

3.5.7
21

8

3.5.8 Observe that

x2 + y2 = 16, y = −
√
3

3
x + 4 =⇒ 16− x2 =

Å
−
√
3

3
x + 4

ã2

=⇒ x = 0, 2
√
3.

The integral is ∫ 2
√

3

0

∫ √16−x2

−
√

3
3

x+4

xdydx =

∫ 2
√

3

0

x

Å√
16− x2 +

√
3

3
x− 4

ã
dx

= −1

3
(16− x2)3/2 +

√
3

9
x3 − 2x2

∣∣∣2√3

0

=
8

3
.
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3.5.9 e− 1

3.5.10 We have ∫
[0;1]2

min(x, y2)dA =

∫
[0;1]2

x≤y2

xdA +

∫
[0;1]2

y2<x

y2dA

=

∫ 1

0

∫ y2

0

xdxdy +

∫ 1

0

∫ 1

y2

y2dxdy

=
1

2

∫ 1

0

x2
∣∣∣y2

0
dy +

∫ 1

0

y2x
∣∣∣1
y2

dy

=
1

2

∫ 1

0

y4dy +

∫ 1

0

(y2 − y4)dy

=
1

10
+

2

15

=
7

30
.

3.5.11 Begin by finding the Cartesian equations of the various lines: for
←→
OA is y =

x

3
(0 ≤ x ≤ 1), for

←→
AB is

y = 3x− 8 (3 ≤ x ≤ 4), and for
←→
BO is y = x (0 ≤ x ≤ 4).

We have a choice of whether integrating with respect to x or y first. Upon examining the region, one notices
that it does not make much of a difference. I will integrate with respect to y first. In such a case notice that for
0 ≤ x ≤ 3, y goes from the line

←→
OA to the line

←→
OB, and for 3 ≤ x ≤ 4, y goes from the line

←→
AB to the line

←→
OB∫

R
xydA =

∫ 3

0

∫ x

x/3

xydydx +

∫ 4

3

∫ x

3x−8

xydydx

=
1

2

∫ 3

0

xy2
∣∣∣x
x/3

dx +
1

2

∫ 4

3

xy2
∣∣∣x
3x−8

dx

=
1

2

∫ 3

0

x

Å
x2 − x2

9

ã
dx +

1

2

∫ 4

3

x
(
x2 − (3x− 8)2

)
dx

=
4

9

∫ 3

0

x3dx +
1

2

∫ 4

3

(
−8x3 + 48x2 − 64x

)
dx

= 9 + 9

= 18.

To solve this problem using Maple you may use the code below.

> with(Student[VectorCalculus]):
> int(x*y, [x,y]=Triangle(<0,0>,<3,1>,<4,4>));

Maple can also provide the limits of integration, but this command is limited, since Maple is quite whimsical
about which order of integration to choose. It also evaluates expressions that it deems below its dignity to return
unevaluated.

> int(x*y, [x,y]=Triangle(<0,0>,<3,1>,<4,4>), ’inert’);

3.5.12 Integrating by parts,

∫
D

loge(1 + x + y)dxdy =

∫ 1

0

Ç∫ 1−x

0

loge(1 + x + y) dy

å
dx

=

∫ 1

0

[(1 + x + y) loge(1 + x + y)− (1 + x + y)]1−x
0 dx

=

∫ 1

0

(2 loge(2)− 1− loge(1 + x)− x loge(1 + x) + x) dx

=
1

4
.
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3.5.13 First observe that on [0; 2]2, 0 ≤ Tx + y2U ≤ 6, so we decompose the region of integration according to
where Tx + y2U jumps across integer values. We have∫

[0;2]2

Tx + y2UdA =

∫
[0;2]2Tx+y2U=1

1dA +

∫
[0;2]2Tx+y2U=2

2dA +

∫
[0;2]2Tx+y2U=3

3dA +

∫
[0;2]2Tx+y2U=4

4dA +

∫
[0;2]2Tx+y2U=5

5dA

=

∫
[0;2]2

1≤x+y2<2

dA + 2

∫
[0;2]2

2≤x+y2<3

dA + 3

∫
[0;2]2

3≤x+y2<4

dA + 4

∫
[0;2]2

4≤x+y2<5

dA + 5

∫
[0;2]2

5≤x+y2<6

dA

By looking at the regions (as in figures A.13 through A.17 below) (I am omitting the details of the integrations,
relying on Maple for the evaluations), we obtain∫

[0;2]2

1≤x+y2<2

dA =

∫ 1

0

∫ √2−x

√
1−x

dydx +

∫ 2

1

∫ √2−x

0

dydx = −4

3
+

4

3

√
2 +

2

3
= −2

3
+

4

3

√
2.

2

∫
[0;2]2

2≤x+y2<3

dA = 2

∫ 2

0

∫ √3−x

√
2−x

dy dx = 4
√
3− 8

3

√
2− 4

3
.

3

∫
[0;2]2

3≤x+y2<4

dA = 3

∫ 2

0

∫ √4−x

√
3−x

dy dx = 18− 6
√
3− 4

√
2.

4

∫
[0;2]2

4≤x+y2<5

dA = 4

∫ 1

0

∫ 2

√
4−x

dy dx + 4

∫ 2

1

∫ √5−x

√
4−x

dy dx = −40

3
+ 8
√
3 +

64

3
− 16

√
3 +

16

3

√
2.

5

∫
[0;2]2

4≤x+y2<5

dA = 5

∫ 2

1

∫ 5

√
5−x

dy dx = −50

3
+ 10

√
3.

Adding all the above, we obtain∫
[0;2]2

Tx + y2UdA =
22

3
+

4

3

√
3− 4

3

√
2 ≈ 7.7571.

0

1

2

0 1 2

Figure A.13: 1 ≤ x +
y2 < 2.

0

1

2

0 1 2

Figure A.14: 2 ≤ x +
y2 < 3.

0

1

2

0 1 2

Figure A.15: 3 ≤ x +
y2 < 4.

0

1

2

0 1 2

Figure A.16: 4 ≤ x +
y2 < 5.

0

1

2

0 1 2

Figure A.17: 5 ≤ x +
y2 < 6.

3.5.14 Observe that in the rectangle [0 ; 1]× [0 ; 2] we have 0 ≤ x + y ≤ 3. Hence∫
R

Tx + yUdA =

∫
R

1≤x+y<2

1dA +

∫
R

2≤x+y<3

2dA

=

∫ 2

1

∫ 2−x

1−x

1dydx +

∫ 2

1

∫ 2

2−x

2dydx

= 4.
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3.5.15
∫ 1

0

∫ √4−x2

√
1−x2

xdydx +

∫ 2

1

∫ √4−x2

0

xdydx =
7

3
.

3.5.16
∫ 1

0

∫ 3

−2

xdxdy +

∫ 2

1

∫ −1

−2

xdxdy +

∫ 2

1

∫ 1

0

xdxdy +

∫ 2

1

∫ 3

2

xdxdy = 7.

3.5.17 Exchanging the order of integration,∫ π/2

0

∫ y

0

cos y

y
dxdy =

∫ π/2

0

cos ydy = 1.

3.5.18 Upon splitting the domain of integration, we find that the integral equals∫ 2

1

Ç∫ y2

y

sin
πx

2y
dx

å
dy =

∫ 2

1

ï
−2y

π
cos

πx

2y

òy2

y

dy

= −
∫ 2

1

−2y

π
cos

πy

2
dy

=
4(π + 2)

π3
,

upon integrating by parts.

3.5.19 The integral is 0. Observe that if (x, y) ∈ D then (−x, y) ∈ D. Also, f(−x, y) = −f(x, y).

3.5.20
∫ 2/

√
5

−2/
√

5

∫ 1
2

√
4−y2

− 1
2

√
4−y2

dxdy =
8

5
+ 4 arcsin

Å√
5

5

ã
.

3.5.21 The integral equals ∫
D

xydA =

∫ 1

0

Ö∫ 1− x

1 + x

0

xy dy

è
dx

=

∫ 1

0

Å
1

2
x
(
1− x

1 + x

)2
ã

dx

=

∫ 2

1

(t− 1)(t− 2)2

t2
dt

= 4 loge 2−
11

4
.

3.5.22 Using integration by parts,∫
D

loge(1 + x2 + y)dA =

∫ 1

0

Ç∫ 1−x2

0

loge(1 + x2 + y) dy

å
dx

=

∫ 1

0

(2 loge(2)− 1− loge(1 + x2))dx

+

∫ 1

0

(−x2 loge(1 + x2) + x2) dx

=
2

3
loge 2 +

8

9
− π

3
.

3.5.23
∫ 2

0

∫ √4−y2

√
2y−y2

xdxdy = 2.

3.5.25 Let
D1 = {(x, y) ∈ R2| − 1 ≤ x ≤ 1, x ≤ y},
D2 = {(x, y) ∈ R2| − 1 ≤ x ≤ 1, x > y}.

Then D = D1 ∪D2, D1 ∩D2 = ∅ and so∫
D

f(x, y)dxdy =

∫
D1

f(x, y)dxdy +

∫
D2

f(x, y)dxdy.
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By symmetry, ∫
D1

f(x, y)dxdy =

∫
D2

f(x, y)dxdy,

and so ∫
D

f(x, y)dxdy = 2

∫
D1

f(x, y)dxdy

= 2

∫ 1

−1

Å∫ 1

x

(y − x) dy

ã
dx

=

∫ 1

−1

(1− 2x + x2) dx

=
8

3
.

3.5.26 The line joining A, and B has equation y = −x−2, line joining B, and C has equation y = −7x+10, and
line joining A, and C has equation y = 2x + 1. We split the triangle along the vertical line x = 1, and integrate
first with respect to y. The desired integral is then∫

D

(2x + 3y + 1) dxdy =

∫ 1

−1

Ç∫ 2x+1

−x−2

(2x + 3y + 1)dy

å
dx

+

∫ 2

1

Ç∫ −7x+10

−x−2

(2x + 3y + 1)dy

å
dx

=

∫ 1

−1

(
21

2
x2 + 9x− 3

2

)
dx

+

∫ 2

1

(
60x2 − 198x + 156

)
dx

= 4− 1

= 3.

3.5.27 Since f is positive and decreasing,∫ 1

0

∫ 1

0

f(x)f(y)(y − x)(f(x)− f(y))dxdy ≥ 0,

from where the desired inequality follows.

3.5.28 The domain of integration is a triangle. The integral equals∫
D

xy(x + y)dxdy =

∫ 1

0

Ç∫ 1−x

0

xy(x + y) dy

å
dx

=

∫ 1

0

x

ï
x
y2

2
+

y3

3

ò1−x

0

dx

=

∫ 1

0

x

Å
x(1− x)2

2
+

(1− x)3

3

ã
dx

=
1

30
.

3.5.29 For t ∈ [0; 1], first argue that

∫ 1

0

f(x)dx ≥ (1− t)f(t) ≥ f(t)− t. Hence

∫ 1

0

∫ 1

0

(f(x)dx) dy ≥
∫ 1

0

(f ◦ g)(y)dy −
∫ 1

0

g(y)dy.

Since

∫ 1

0

∫ 1

0

f(x)dxdy =

∫ 1

0

f(x)dx, the desired inequality is established.

3.5.30 Put f(x, y) = xy + y2. If I, II, III, IV stand for the intersection of the region with each quadrant, then∫
II

f(x, y)dxdy =

∫
II

f(−x, y)d(−x)dy = −
∫
I

f(x, y)dxdy,
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∫
IV

f(x, y)dxdy =

∫
IV

f(x,−y)dxd(−y) = −
∫
I

f(x, y)dxdy,

and ∫
III

f(x, y)dxdy =

∫
III

f(−x,−y)d(−x)d(−y) = +

∫
I

f(x, y)dxdy.

Thus ∫
S

(xy + y2)dxdy =

∫
I

f(x, y)dxdy +

∫
II

f(x, y)dxdy +

∫
III

f(x, y)dxdy +

∫
IV

f(x, y)dxdy

=

∫
I

f(x, y)dxdy −
∫
I

f(x, y)dxdy +

∫
I

f(x, y)dxdy −
∫
I

f(x, y)dxdy

= 0.

3.5.31 We split the rectangle [0; a]× [0; b] into two triangles, depending on whether bx < ay or bx ≥ ay. Hence∫ a

0

∫ b

0

emax(b2x2,a2y2) dydx =

∫
bx<ay

emax(b2x2,a2y2) dydx +

∫
bx≥ay

emax(b2x2,a2y2) dydx

=

∫
bx<ay

ea2y2

dydx +

∫
bx≥ay

eb2x2

dydx

=

∫ b

0

∫ ay/b

0

ea2y2

dxdy +

∫ a

0

∫ bx/a

0

ea2y2

dydx

=

∫ b

0

ayea2y2

b
dy +

∫ a

0

bxea2y2

a
dx

=
ea2b2 − 1

2ab
+

ea2b2 − 1

2ab

=
ea2b2 − 1

ab
.

3.5.32 Observe that x ≥ 1

2
(x + y)2 ≥ 0. Hence we may take the positive square root giving y ≤

√
2x− x. Since

y ≥ 0, we must have
√
2x− x ≥ 0 which means that x ≤ 2. The integral equals∫ 2

0

Ç∫ √
2x−x

0

√
xydy

å
dx =

2

3

∫ 2

0

√
x(
√
2x− x)3/2dx

=
4

3

∫ √
2

0

u2(u
√
2− u2)3/2du

=
1

6

∫ 1

−1

(1− v2)3/2(1 + v)2dv

=
1

6

∫ π/2

−π/2

cos4 θ(1 + sin2 θ)dθ

=
7π

96
.

3.5.33 Observe that ∫ a

0

sin 2πx dx =

{
0 if a is an integer
1

2π
(1− cos 2πa) if a is not an integer

Thus ∫ a

0

sin 2πx dx = 0 ⇐⇒ a is an integer.

Now
N∑

k=1

∫
Rk

sin 2πx sin 2πy dxdy = 0

since at least one of the sides of each Rk is an integer. Since
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∫
R

sin 2πx sin 2πy dxdy =

N∑
k=1

∫
Rk

sin 2πx sin 2πy dxdy,

we deduce that at least one of the sides of R is an integer, finishing the proof.

3.5.34 We have ∫ 1

0

∫ 1

0

· · ·
∫ 1

0

(x1x2 · · ·xn)dx1dx2 . . . dxn =

n∏
k=1

Å∫ 1

0

xkdxk

ã
=

n∏
k=1

1

2
=

1

2n
.

3.5.35 This is ∫ 1

0

∫ 1

0

· · ·
∫ 1

0

Ç
n∑

k=1

xk

å
dx1dx2 . . . dxn =

n∑
k=1

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

xkdx1dx2 . . . dxn

=

n∑
k=1

1

2

=
n

2
.

3.5.41 The integral equals ∫
D

1

(x + y)4
dxdy =

∫ 3

1

Ç∫ 4−x

1

dy

(x + y)4
dy

å
dx

=

∫ 3

1

[
−1

3
(x + y)−3

]4−x

1
dx

=
1

3

∫ 3

1

Å
1

(1 + x)3
− 1

64

ã
dx

=
1

48
.

3.5.45 The integral equals∫
D

xdxdy =

∫ 2/3

−1

Ç∫ x+1

0

dy

å
x dx +

∫ 4

2/3

Ç∫ 2−x
2

0

dy

å
x dx

=

∫ 2/3

−1

x(x + 1) dx +

∫ 4

2/3

x
Ä
2− x

2

ä
dx

=
275

54
.

3.5.46 Make the change of variables xk = 1− yk. Then

I =

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

cos2
Ä π

2n
(x1 + x2 + · · ·+ xn)

ä
dx1 dx2 . . . dxn

equals ∫ 1

0

∫ 1

0

· · ·
∫ 1

0

sin2
Ä π

2n
(y1 + y2 + · · ·+ yn)

ä
dy1 dy2 . . . dyn.

Since sin2 t + cos2 t = 1, we have 2I = 1, and so I =
1

2
.

3.6.1 Ê Put x =
u + v

2
and y =

u− v

2
. Then x + y = u and x− y. Observe that D′ is the triangle in the uv

plane bounded by the lines u = 0, u = 1, v = u, v = −u. Its image under Φ is the triangle bounded by the
equations x = 0, y = 0, x + y = 1. Clearly also

dx ∧ dy =
1

2
du ∧ dv.

Free to photocopy and distribute 185



Answers and Hints

Ë From the above ∫
D

(x + y)2ex2−y2

dA =
1

2

∫
D′

u2euvdudv

=
1

2

∫ 1

0

∫ u

−u

u2euvdudv

=
1

2

∫ 1

0

u(eu2

− e−u2

)du

=
1

4
(e + e−1 − 2).

3.6.4 Here we argue that
du = ydx + xdy,

dv = −2xdx + 2ydy.

Taking the wedge product of differential forms,

du ∧ dv = 2(y2 + x2)dx ∧ dy.

Hence
f(x, y)dx ∧ dy = (y4 − x4)

1

2(y2 + x2)
du ∧ dv

=
1

2
(y2 − x2)du ∧ dv

=
v

2
du ∧ dv

The region transforms into
∆ = [a; b]× [0; 1].

The integral becomes ∫
D

f(x, y)dx ∧ dy =

∫
∆

v du ∧ dv

=
1

2

Ç∫ b

a

du

åÅ∫ 1

0

v dv

ã
=

b− a

4
.

3.6.5 Ê Formally, ∫ 1

0

∫ 1

0

dxdy

1− xy
=

∫ 1

0

∫ 1

0

(1 + xy + x2y2 + x3y3 + · · · )dxdy

=

∫ 1

0

Å
y +

xy2

2
+

x2y3

3
+

x3y4

4
+ · · ·

ã1

0

dx

=

∫ 1

0

(1 +
x

2
+

x2

3
+

x3

4
+ · · · )dx

= 1 +
1

22
+

1

32
+

1

42
+ · · ·

Ë This change of variables transforms the square [0; 1] × [0; 1] in the xy plane into the square with vertices
at (0, 0), (1, 1), (2, 0), and (1,−1) in the uv plane. We will split this region of integration into two disjoint
triangles: T1 with vertices at (0, 0), (1, 1), (1,−1), and T2 with vertices at (1,−1), (1, 1), (2, 0). Observe
that

dx ∧ dy =
1

2
du ∧ dv,

and that u + v = 2x, u− v = 2y and so 4xy = u2 − v2. The integral becomes∫ 1

0

∫ 1

0

dxdy

1− xy
=

1

2

∫
T1∪T2

du ∧ dv

1− u2−v2

4

= 2

∫ 1

0

Ç∫ u

−u

dv

4− u2 + v2

å
du + 2

∫ 2

1

Ç∫ 2−u

u−2

dv

4− u2 + v2

å
du,

as desired.

Ì This follows by using the identity ∫ t

0

dω

1 + Ω2
= arctan t.
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Í This is straightforward but tedious!

3.7.1 The integral in Cartesian coordinates is∫ √
15

1

∫ √16−y2

1

xydxdy =
1

2

∫ ∫ √
15

1

15y − y3dy

=
49

2
.

The integral in polar coordinates is∫ π
4

arcsin 1
4

∫ 4

1/ sin θ

r3 sin θ cos θdrdθ +

∫ arccos 1
4

π
4

∫ 4

1/ cos θ

r3 sin θ cos θdrdθ =
1

4

∫ π
4

arcsin 1
4

(
44 − 1

sin4 θ

)
sin θ cos θdθ

+
1

4

∫ arccos 1
4

π
4

(
44 − 1

cos4 θ

)
sin θ cos θdθ

=
44

4

∫ arccos 1
4

arcsin π
4

sin θ cos θdθ

−1

4

∫ π
4

arcsin 1
4

(cot θ)(csc2 θ)dθ

−1

4

∫ arccos 1
4

π
4

(tan θ)(sec2 θ)dθ

= 28− 7

4
− 7

4

=
49

2

3.7.2 Using polar coordinates,∫
D

x2 − y2dxdy =

∫ π/2

−π/2

Ç∫ 2 cos θ

0

ρ3 dρ

å
(cos2 θ − sin2 θ)dθ

= 8

∫ π/2

0

cos4 θ(cos2 θ − sin2 θ) dθ

= π.

3.7.3 Using polar coordinates,∫
D

√
xydxdy = 4

∫ π/4

0

Ç∫ √
sin 2θ

0

ρ
√

ρ2 cos θ sin θ dρ

å
dθ

=
4

3

∫ π/4

0

(
√
sin 2θ)3

√
cos θ sin θ dθ

=
4

3
√
2

∫ π/4

0

sin2 2θ dθ

=
π
√
2

12
.

3.7.4 Using x = aρ cos θ, y = bρ sin θ, the integral becomes

(ab)

Å∫ 2π

0

a3 cos3 θ + b3 sin3 θdθ

ãÅ∫ 1

0

ρ4dρ

ã
=

2

15
(ab)(a3 + b3).

3.7.8 Using polar coordinates, ∫
D

f(x, y)dA =

∫ π/6

0

Å∫ 1

2 sin θ

ρ2 dρ

ã
dθ

=
1

3

∫ π/6

0

(1− 8 sin3 θ) dθ

=
π

18
− 16

9
+
√
3.
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3.7.9 Using polar coordinates the integral becomes∫ π/2

0

Ç∫ 2 cos θ

0

ρ4dρ

å
cos2 θ sin θdθ =

4

5
.

3.7.11 Using polar coordinates the integral becomes∫ π/4

−π/4

Ç∫ 2 cos θ

1/ cos θ

1

ρ3
dρ

å
dθ =

∫ π/4

0

Å
cos2 θ − sec2 θ

4

ã
dθ =

π

8
.

3.7.12 Put
D′ = {(x, y) ∈ R2 : y ≥ x, x2 + y2 − y ≤ 0, x2 + y2 − x ≤ 0}.

Then the integral equals

2

∫
D′

(x + y)2dxdy.

Using polar coordinates the integral equals

2

∫ π/2

π/4

(cos θ + sin θ)2
Ç∫ cos θ

0

ρ3dρ

å
dθ =

1

2

∫ π/2

π/4

cos4 θ(1 + 2 sin θ cos θ)dθ

=
3π

64
− 5

48
.

3.7.13 Observe that D = D2 \D1 where D2 is the disk limited by the equation x2 + y2 = 1 and D1 is the disk
limited by the equation x2 + y2 = y. Hence∫

D

dxdy

(1 + x2 + y2)2
=

∫
D2

dxdy

(1 + x2 + y2)2
−
∫
D1

dxdy

(1 + x2 + y2)2
.

Using polar coordinates we have∫
D2

dxdy

(1 + x2 + y2)2
=

∫ 2π

0

∫ 1

0

ρ

(1 + ρ2)2
dρdθ =

π

2

and ∫
D1

dxdy

(1 + x2 + y2)2
= 2

∫ π/2

0

∫ sin θ

0

ρ

(1 + ρ2)2
dρdθ =

∫ π/2

0

sin2 θdθ

1 + sin2 θ

=

∫ +∞

0

dt

t2 + 1
− dt

2t2 + 1
=

π

2
− π
√
2

4
.

(We evaluated this last integral using t = tan θ) Finally, the integral equals

π

2
−
Å
π

2
− π
√
2

4

ã
=

π
√
2

4
.

3.7.14 We have
2xdx = cos θdρ− ρ sin θdθ, 2ydy = sin θdρ + ρ cos θdθ,

whence
4xydx ∧ dy = ρdρ ∧ dθ.

It follows that
x3y3

√
1− x4 − y4 dx ∧ dy =

1

4
(x2y2)(

√
1− x4 − y4)(4xy dx ∧ dy)

=
1

4
(ρ3 cos θ sin θ

√
1− ρ2)dρ ∧ dθ

Observe that
x4 + y4 ≤ 1 =⇒ ρ2 cos2 θ + ρ2 sin2 θ ≤ 1 =⇒ ρ ≤ 1.

Since the integration takes place on the first quadrant, we have 0 ≤ θ ≤ π/2. Hence the integral becomes∫ π/2

0

∫ 1

0

1

4
(ρ3 cos θ sin θ

√
1− ρ2)dρdθ =

1

4

Ç∫ π/2

0

cos θ sin θdθ

åÅ∫ 1

0

ρ3
√

1− ρ2dρ

ã
=

1

4
· 1
2
· 2

15

=
1

60
.
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3.7.15 Ê Using polar coordinates

Ia =

∫ 2π

0

Å∫ a

0

ρe−ρ2

dρ

ã
dθ = π(1− e−a2

).

Ë The domain of integration of Ja is a square of side 2a centred at the origin. The respective domains of
integration of Ia and Ia

√
2 are the inscribed and the exscribed circles to the square.

Ì First observe that

Ja =

Ç∫ a

−a

e−x2

dx

å2

.

Since both Ia and Ia
√

2 tend to π as a→ +∞, we deduce that Ja → π. This gives the result.

3.7.16 ∫
4≤x2+y2≤16

1

x2 + xy + y2
dA =

∫ 2π

0

∫ 4

2

r

r2 + r2 sin θ cos θ
drdθ

=

∫ 2π

0

∫ 4

2

1

r(1 + sin θ cos θ)
drdθ

=

Å∫ 2π

0

dθ

1 + sin θ cos θ

ãÅ∫ 4

2

dr

r

ã
=

Å∫ 2π

0

dθ

1 + sin θ cos θ

ã
log 2

= 2

Å∫ 2π

0

dθ

2 + sin 2θ

ã
log 2

= 4

Å∫ π

0

dθ

2 + sin 2θ

ã
log 2

= 4I log 2,

so the problem reduces to evaluate I =

∫ π

0

dθ

2 + sin 2θ
. To find this integral, we now use what has been dubbed

as “the world’s sneakiest substitution”1: we put tan θ = t. In so doing we have to pay attention to the fact that
θ 7→ tan θ is not continuous on [0;π], so we split the interval of integration into two pieces, [0;π] = [0;

π

2
]∪]π

2
;π].

Then sin 2θ =
2t

1 + t2
, cos 2θ =

1− t2

1 + t2
, dθ =

dt

1 + t2
. Hence∫ π

0

dθ

2 + sin 2θ
=

∫ π/2

0

dθ

2 + sin 2θ
+

∫ π

π/2

dθ

2 + sin 2θ

=

∫ +∞

0

dt
1+t2

2 + 2t
1+t2

+

∫ 0

−∞

dt
1+t2

2 + 2t
1+t2

=

∫ +∞

0

dt

2(t2 + t + 1)
+

∫ 0

−∞

dt

2(t2 + t + 1)

=
2

3

∫ +∞

0

dt

( 2t√
3
+ 1√

3
)2 + 1

+
2

3

∫ 0

−∞

dt

( 2t√
3
+ 1√

3
)2 + 1

=

√
3

3

∣∣∣+∞

0
arctan

Å
2t
√
3

3
+

√
3

3

ã
+

√
3

3

∣∣∣0
−∞

arctan

Å
2t
√
3

3
+

√
3

3

ã
=

√
3

3

Äπ
2
− π

6

ä
+

√
3

3

Äπ
6
−
Ä
−π

2

ää
=

π
√
3

3
.

We conclude that ∫
4≤x2+y2≤16

1

x2 + xy + y2
dA =

4π
√
3 log 2

3
.

3.7.17 Recall from formula 1.14 that the area enclosed by a simple closed curve Γ is given by

1

2

∫
Γ

xdy − ydx.

1by Michael Spivak, whose Calculus book I recommend greatly.
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Using polar coordinates

xdy − ydx = (ρ cos θ)(sin θdρ + ρ cos θdθ)− (ρ sin θ)(cos θdρ− ρ sin θdθ)

= ρ2dθ.

Parametrise the curve enclosing the region by polar coordinates so that the region is tangent to the polar axis at
the origin. Let the equation of the curve be ρ = f(θ). The area of the region is then given by

1

2

∫ π

0

ρ2dθ =
1

2

∫ π

0

(f(θ))2dθ =
1

2

∫ π/2

0

((f(θ))2 + (f(θ + π/2))2)dθ.

By the Pythagorean Theorem, the integral above is the integral of the square of the chord in question. If no two
points are farther than 2 units, their squares are no farther than 4 units, and so the area

<
1

2

∫ π/2

0

4dθ = π,

a contradiction.

3.7.18 Let I(S) denote the integral sought over a region S. Since D(x, y) = 0 inside R, I(R) = A. Let L be a
side of R with length l and let S(L ) be the half strip consisting of the points of the plane having a point on L as
nearest point of R. Set up coordinates uv so that u is measured parallel to L and v is measured perpendicular to
L. Then

I(S(L )) =

∫ l

0

∫ +∞

0

e−v dudv = l.

The sum of these integrals over all the sides of R is L.
If V is a vertex of R, the points that have V as nearest from R lie inside an angle S(V ) bounded by the rays

from V perpendicular to the edges meeting at V . If α is the measure of that angle, then using polar coordinates

I(S(V )) =

∫ α

0

∫ +∞

0

ρe−ρ dρdθ = α.

The sum of these integrals over all the vertices of R is 2π. Assembling all these integrals we deduce the result.

3.8.1 We have ∫
E

zdV =

∫ 1

0

∫ 1−y

0

∫ 1−z

0

zdxdzdy

=

∫ 1

0

∫ 1−y

0

z − z2dzdy

=

∫ 1

0

(1− y)2

2
− (1− y)3

3
dy

=
(1− y)4

12
− (1− y)3

6

∣∣∣1
0

= =
1

6
.

3.8.3 Let A = (1, 1, 1), B = (1, 0, 0), C = (0, 0, 1), and O = (0, 0, 0). We have four planes passing through each
triplet of points:

P1 : A,B,C, x− y + z = 1

P2 : A,B,O z = y

P3 : A,C,O x = y

P4 : B,C,O y = 0.

Using the order of integration dzdxdy, z sweeps from P2 to P1, so the limits are z = y to z = 1 − x + y. The
projection of the solid on the xy plane produces the region bounded by the lines x = 0, x = 1 and x = y on the
first quadrant of the xy-plane. Thus∫ 1

0

∫ x

0

∫ 1−x+y

y

dzdydx =

∫ 1

0

∫ x

0

(1− x)dydx

=

∫ 1

0

(
x− x2

)
dx

=

Å
x2

2
− x3

3

ã ∣∣∣1
0

=
1

6
.
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We use the same limits of integration as in the previous integral. We have∫ 1

0

∫ x

0

∫ 1−x+y

y

xdzdydx =

∫ 1

0

∫ x

0

(x− x2)dydx

=

∫ 1

0

(
x2 − x3

)
dx

=

Å
x3

3
− x4

4

ã ∣∣∣1
0

=
1

12
.

3.8.4 We have ∫
E

xdV =

∫ 3

0

∫ √9−x2

0

∫ y/3

0

xdzdydx =
27

8
.

3.8.5 The desired integral is∫ 1

0

∫ 1

0

∫ ∞

0

dxdydz

(1 + x2z2)(1 + y2z2)
=

∫ 1

0

∫ 1

0

∫ ∞

0

1

x2 − y2

Å
x2

1 + x2z2
− y2

1 + y2z2

ã
dxdydz

=

∫ 1

0

∫ 1

0

1

x2 − y2
(x arctan(xz)− y arctan(yz))

∣∣∣∣∣
z=∞

z=0

dxdy

=

∫ 1

0

∫ 1

0

π(x− y)

2(x2 − y2)
dxdy

=

∫ 1

0

∫ 1

0

π

2(x + y)
dxdy

=
π

2

∫ 1

0

log(y + 1)− log ydy

=
π

2
· ((y + 1) log(y + 1)− (y + 1)− y log y + y)

∣∣∣∣∣
1

0

= π log 2.

3.9.1 Cartesian: ∫ 1

−1

∫ √1−y2

−
√

1−y2

∫ √x2+y2

x2+y2

dzdxdy.

Cylindrical: ∫ 1

0

∫ 2π

0

∫ r

r2

rdzdθdr.

Spherical: ∫ π/2

π/4

∫ 2π

0

∫ (cosϕ)/(sinϕ)2

0

r2 sinϕdrdθdϕ.

The volume is
π

3
.

3.9.2
1. Since x2 + y2 ≤ z ≤

√
4− x2 − y2, we start our integration with the z-variable. Observe that if (x, y, z) is

on the intersection of the surfaces then

z2 + z = 4 =⇒ z =
−1±

√
17

2
.

Since x2 + y2 + z2 = 4 =⇒ −2 ≤ z ≤ 2, we must have z =

√
17− 1

2
only. The projection of the circle of

intersection of the paraboloid and the sphere onto the xy-plane satisfies the equation

z2 + z = 4 =⇒ x2 + y2 + (x2 + y2)2 = 4 =⇒ x2 + y2 =

√
17− 1

2
,

a circle of radius

…√
17− 1

2
. The desired integral is thus

∫ √√
17−1
2

−
√√

17−1
2

∫ √√
17−1
2

−x2

−
√√

17−1
2

−x2

∫ √4−x2−y2

x2+y2

xdzdydx.
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2. The z-limits remain the same as in the Cartesian coordinates, but translated into cylindrical coordinates,
and so r2 ≤ z ≤

√
4− r2. The projection of the intersection circle onto the xy-plane is again a circle with

centre at the origin and radius

…√
17− 1

2
. The desired integral

∫ 2π

0

∫ √√
17−1
2

0

∫ √4−r2

r2

r2 cos θdzdrdθ.

3. Observe that

z = x2 + y2 =⇒ r cosϕ = r2(cos θ)2(sinϕ)2 + r2(sin θ)2(sinϕ)2 =⇒ r ∈ {0, (cscϕ)(cotϕ)}.

It is clear that the limits of the angle θ are from θ = 0 to θ = 2π. The angle ϕ starts at ϕ = 0. Now,

z = r cosϕ =⇒ cosϕ =

√
17− 1

2
2

=⇒ ϕ = arccos

Å√
17− 1

4

ã
The desired integral

∫ 2π

0

∫ arccos

Ç√
17− 1

4

å
0

∫ 2

(cscϕ)(cotϕ)

r3 cos θ sin2 ϕdrdϕdθ.

Perhaps it is easiest to evaluate the integral using cylindrical coordinates. We obtain

∫ 2π

0

∫ …√17− 1

2

0

∫ √4−r2

r2

r2 cos θdzdrdθ = 0,

a conclusion that is easily reached, since the integrand is an odd function of x and the domain of integration is
symmetric about the origin in x.

3.9.3 Cartesian: ∫ √
3

−
√

3

∫ √3−y2

−
√

3−y2

∫ √4−x2−y2

1

dzdxdy.

Cylindrical: ∫ √
3

0

∫ 2π

0

∫ √4−r2

1

rdzdθdr.

Spherical: ∫ π/3

0

∫ 2π

0

∫ 2

1/ cosϕ

r2 sinϕdrdθdϕ.

The volume is
5π

3
.

3.9.5 We have ∫
E

ydV =

∫ 2π

0

∫ 2

1

∫ 2+r cos θ

0

r2 sin θdzdrdθ = 0.

3.9.7
π

96

3.9.8
π

14

3.9.9 We put
x = ρ cos θ sinϕ sin t; y = ρ sin θ sinϕ sin t;u = ρ cosϕ sin t; v = ρ cos t.

Upon using sin2 a + cos2 a = 1 three times,

x2 + y2 + u2 + v2 = r2 cos2 θ sin2 ϕ sin2 t + r2 sin2 θ sin2 ϕ sin2 t + r2 cos2 ϕ sin2 t + r2 cos2 t

= r2 cos2 θ sin2 ϕ + r2 sin2 θ sin2 ϕ + r2 cos2 ϕ

= r2 cos2 θ + r2 sin2 θ

= r2.
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Now,

dx = cos θ sinϕ sin tdr − ρ sin θ sinϕ sin tdθ + ρ cos θ cosϕ sin tdϕ + ρ cos θ sinϕ cos tdt

dy = sin θ sinϕ sin tdr + ρ cos θ sinϕ sin tdθ + ρ sin θ cosϕ sin tdϕ + ρ sin θ sinϕ cos tdt

du = cosϕ sin tdr − ρ sinϕ sin tdϕ + ρ cosϕ cos tdt

dv = cos tdr − ρ sin tdt

.

After some calculation,
dx ∧ dy ∧ du ∧ dv = r3 sinϕ sin2 tdr ∧ dϕ ∧ dθ ∧ dt.

Therefore ∫∫∫∫
x2+y2+u2+v2≤1

ex2+y2+u2+v2

dxdydudv =

∫ π

0

∫ 2π

0

∫ π

0

∫ 1

0

r3er2

sinϕ sin2 tdrdϕdθdt

=

Å∫ 1

0

r3er2

dr

ãÅ∫ 2π

0

dθ

ãÅ∫ π

0

sinϕdϕ

ãÅ∫ π

0

sin2 tdt

ã
=

(
1

2

)
(2π)(2)

Äπ
2

ä
= π2.

3.9.10 We make the change of variables

u = x + y + z =⇒ du = dx + dy + dz,

uv = y + z =⇒ udv + vdu = dy + dz,

uvw = z =⇒ uvdw + uwdv + vwdu = dz.

This gives
x = u(1− v),

y = uv(1− w),

z = uvw,

u2v du ∧ dv ∧ dw = dx ∧ dy ∧ dz.

To find the limits of integration we observe that the limits of integration using dx ∧ dy ∧ dz are

0 ≤ z ≤ 1, 0 ≤ y ≤ 1− z, 0 ≤ x ≤ 1− y − z.

This translates into

0 ≤ uvw ≤ 1, 0 ≤ uv − uvw ≤ 1− uvw, 0 ≤ u− uv ≤ 1− uv + uvw − uvw.

Thus
0 ≤ uvw ≤ 1, 0 ≤ uv ≤ 1, 0 ≤ u ≤ 1,

which finally give
0 ≤ u ≤ 1, 0 ≤ v ≤ 1, 0 ≤ w ≤ 1.

The integral sought is then, using the fact that for positive integers m,n one has∫ 1

0

xm(1− x)n dx =
m!n!

(m + n + 1)!
,

we deduce, ∫ 1

0

∫ 1

0

∫ 1

0

u20v18w8(1− u)4(1− v)(1− w)9 dudvdw,

which in turn isÅ∫ 1

0

u20(1− u)4du

ãÅ∫ 1

0

v18(1− v)dv

ãÅ∫ 1

0

w8(1− w)9dw

ã
=

1

265650
· 1

380
· 1

437580

which is
=

1

44172388260000
.
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3.10.1 We parametrise the surface by letting x = u, y = v, z = u + v2. Observe that the domain D of Σ is the
square [0; 1]× [0; 2]. Observe that

dx ∧ dy = du ∧ dv,

dy ∧ dz = −du ∧ dv,

dz ∧ dx = −2vdu ∧ dv,

and so ∣∣∣∣d2x
∣∣∣∣ =√

2 + 4v2du ∧ dv.

The integral becomes ∫
Σ

y
∣∣∣∣d2x

∣∣∣∣ =

∫ 2

0

∫ 1

0

v
√

2 + 4v2dudv

=

Å∫ 1

0

du

ãÅ∫ 2

0

y
√

2 + 4v2dv

ã
=

13
√
2

3
.

3.10.2 Using x = r cos θ, y = r sin θ, 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, the surface area is

√
2

∫ 2π

0

∫ 2

1

rdrdθ = 3π
√
2.

3.10.3 We use spherical coordinates, (x, y, z) = (cos θ sinϕ, sin θ sinϕ, cosϕ). Here θ ∈ [0; 2π] is the latitude
and ϕ ∈ [0;π] is the longitude. Observe that

dx ∧ dy = sinϕ cosϕdϕ ∧ dθ,

dy ∧ dz = cos θ sin2 ϕdϕ ∧ dθ,

dz ∧ dx = − sin θ sin2 ϕdϕ ∧ dθ,

and so ∣∣∣∣d2x
∣∣∣∣ = sinϕdϕ ∧ dθ.

The integral becomes ∫
Σ

x2
∣∣∣∣d2x

∣∣∣∣ =

∫ 2π

0

∫ π

0

cos2 θ sin3 ϕdϕdθ

=
4π

3
.

3.10.4 Put x = u, y = v, z2 = u2 + v2. Then

dx = du, dy = dv, zdz = udu + vdv,

whence
dx ∧ dy = du ∧ dv, dy ∧ dz = −u

z
du ∧ dv, dz ∧ dx = −v

z
du ∧ dv,

and so ∣∣∣∣d2x
∣∣∣∣ =

√
(dx ∧ dy)2 + (dz ∧ dx)2 + (dy ∧ dz)2

=

…
1 +

u2 + v2

z2
du ∧ dv

=
√
2 du ∧ dv.

Hence ∫
Σ

z
∣∣∣∣d2x

∣∣∣∣ = ∫
u2+v2≤1

√
u2 + v2

√
2 dudv =

√
2

∫ 2π

0

∫ 1

0

ρ2 dρdθ =
2π
√
2

3
.

3.10.5 If the egg has radius R, each slice will have height 2R/n. A slice can be parametrised by 0 ≤ θ ≤ 2π,
ϕ1 ≤ ϕ ≤ ϕ2, with

R cosϕ1 −R cosϕ2 = 2R/n.

The area of the part of the surface of the sphere in slice is∫ 2π

0

∫ ϕ2

ϕ1

R2 sinϕdϕdθ = 2πR2(cosϕ1 − cosϕ2) = 4πR2/n.

This means that each of the n slices has identical area 4πR2/n.
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3.10.6 We project this plane onto the coordinate axes obtaining∫
Σ

xydydz =

∫ 6

0

∫ 3−z/2

0

(3− y − z/2)ydydz =
27

4
,

−
∫
Σ

x2dzdx = −
∫ 3

0

∫ 6−2x

0

x2dzdx = −27

2
,

∫
Σ

(x + z)dxdy =

∫ 3

0

∫ 3−y

0

(6− x− 2y)dxdy =
27

2
,

and hence ∫
Σ

xydydz − x2dzdx + (x + z)dxdy =
27

4
.

3.11.1 Evaluating this directly would result in evaluating four path integrals, one for each side of the square. We
will use Green’s Theorem. We have

dω = d(x3y) ∧ dx + d(xy) ∧ dy

= (3x2ydx + x3dy) ∧ dx + (ydx + xdy) ∧ dy

= (y − x3)dx ∧ dy.

The region M is the area enclosed by the square. The integral equals∮
C

x3ydx + xydy =

∫ 2

0

∫ 2

0

(y − x3)dxdy

= −4.

3.11.2 We have

Ê LAB is y = x; LAC is y = −x, and LBC is clearly y = −1

3
x +

4

3
.

Ë We have ∫
AB

y2dx + xdy =

∫ 1

0

(x2 + x)dx =
5

6∫
BC

y2dx + xdy =

∫ −2

1

Å(
−1

3
x +

4

3

)2

− 1

3
x

ã
dx = −15

2∫
CA

y2dx + xdy =

∫ 0

−2

(x2 − x)dx =
14

3

Adding these integrals we find ∮
△

y2dx + xdy = −2.

Ì We have ∫
D

(1− 2y)dx ∧ dy =

∫ 0

−2

Ç∫ −x/3+4/3

−x

(1− 2y)dy

å
dx

+

∫ 1

0

Ç∫ −x/3+4/3

x

(1− 2y)dy

å
dx

= −44

27
− 10

27

= −2.

3.11.6 Observe that
d(x2 + 2y3) ∧ dy = 2xdx ∧ dy.

Hence by the generalised Stokes’ Theorem the integral equals∫
{(x−2)2+y2≤4}

2xdx ∧ dy =

∫ π/2

−π/2

∫ 4 cos θ

0

2ρ2 cos θdρ ∧ dθ = 16π.
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To do it directly, put x− 2 = 2 cos t, y = 2 sin t, 0 ≤ t ≤ 2π. Then the integral becomes∫ 2π

0

((2 + 2 cos t)2 + 16 sin3 t)d2 sin t =

∫ 2π

0

(8 cos t + 16 cos2 t

+8 cos3 t + 32 cos t sin3 t)dt

= 16π.

3.11.7 At the intersection path

0 = x2 + y2 + z2 − 2(x + y) = (2− y)2 + y2 + z2 − 4 = 2y2 − 4y + z2 = 2(y − 1)2 + z2 − 2,

which describes an ellipse on the yz-plane. Similarly we get 2(x− 1)2 + z2 = 2 on the xz-plane. We have

d (ydx + zdy + xdz) = dy ∧ dx + dz ∧ dy + dx ∧ dz = −dx ∧ dy − dy ∧ dz − dz ∧ dx.

Since dx ∧ dy = 0, by Stokes’ Theorem the integral sought is

−
∫

2(y−1)2+z2≤2

dydz −
∫

2(x−1)2+z2≤2

dzdx = −2π(
√
2).

(To evaluate the integrals you may resort to the fact that the area of the elliptical region
(x− x0)

2

a2
+

(y − y0)
2

b2
≤ 1

is πab).

If we were to evaluate this integral directly, we would set

y = 1 + cos θ, z =
√
2 sin θ, x = 2− y = 1− cos θ.

The integral becomes∫ 2π

0

(1 + cos θ)d(1− cos θ) +
√
2 sin θd(1 + cos θ) + (1− cos θ)d(

√
2 sin θ)

which in turn

=

∫ 2π

0

sin θ + sin θ cos θ −
√
2 +
√
2 cos θdθ = −2π

√
2.
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GNU Free Documentation License

Version 1.2, November 2002
Copyright c⃝ 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble
The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute

it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice

grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member of the public
is a licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document’s

overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by
some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the
Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License

applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or
further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you must

enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly
identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or

with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of
the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the

Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified
Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
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D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there
is no section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties–for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the
old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all

of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same

name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledge-
ments”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy

that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this

License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the

copyright resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License
does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special

permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of
this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices
and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is

void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as
such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may

differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the

option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify

a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.
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Appendix A

Que a quien robe este libro, o lo tome prestado y no lo devuelva, se le convierta en
una serpiente en las manos y lo venza. Que sea golpeado por la parálisis y todos sus
miembros arruinados. Que languidezca de dolor gritando por piedad, y que no haya
coto a su agonı́a hasta la última disolución. Que las polillas roan sus entrañas y,
cuando llegue al final de su castigo, que arda en las llamas del Infierno para siempre.

-Maldición anónima contra los ladrones de libros en el monasterio de San Pedro, Barcelona.
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