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1 Preliminaries

This chapter introduces essential notation and terminology that will be used throughout these notes. We
will often use the symbol ⇐Ñ for “if and only if”, and the symbol ÍÑ , “implies.” The symbol ≈ means
approximately.

1.1 Real Numbers

In these notes we consider the following sets of numbers, assigning to them special notation.

1 Definition The set

N = {0, 1, 2, 3, 4, . . .}

is the set of natural numbers.

Natural numbers allow us to count objects. The sum and product of two natural numbers is also a natural
number, and so we say that natural numbers are closed under addition and subtraction. So, for example,
1 + 1 is a natural number, which we write as 1 + 1 ∈ N, read “one times one belongs to the natural numbers.”
Similarly, 1 · 1 ∈ N. The natural numbers are not closed under subtraction or division, since, for example,
1 − 2 6∈ N, which we read “one minus two is not in the natural numbers.” In order to have a set closed under
subtraction, we must adjoin the opposite of the natural numbers, creating thus the following set.

2 Definition The set

Z = {. . . , −4, −3, −2, −1, 0, 1, 2, 3, 4, . . .}

is the set of integers.

The integers are not closed under division, since for example, 1 ÷ 2 6∈ Z. Starting from the integers, in order
to have a set closed under division, we must adjoin all the quotients of integers, creating thus the following
set.

3 Definition The set

Q =
{a

b : a ∈ Z, b ∈ Z, b 6= 0
}

is the set of rational numbers. This is read as “Q is the set of all fractions a over b such that a is an integer,
b is an integer, and b is different from 0.”

In other words, fractions, that is, rational numbers, are divisions that we are too lazy to perform.

Notice that we do not allow division by 0. What would happen if we were not that lazy, and actually
performed the implicit divisions in the rational numbers? We would get objects like

2

1
= 2.0, 1

2
= 0.5, 1

3
= 0.33333 . . . = 0.3,

where in this last division, the division goes on forever, but we see that we repeatedly obtain 3 in the quotient,
that is, we get a periodic decimal. It can be provedbut we will not do so in these notesthat the set of
rational numbers Q is precisely the set of numbers whose decimal expansion is either finite, or a periodic
decimal.
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In Q we have a very elegant system of numbers that is closed under addition, subtraction, multiplication,
and division (except division by 0). Do we need more numbers? What happens with numbers like the
Champernowne-Mahler constant

0.123456789101112131415161718192021 . . . ,

which is the decimal number obtained by consecutively writing all the natural number? This number is clearly
not a periodic decimal, and hence it is not rational.

To accommodate infinite non-periodic decimals, we must create the following set.

4 Definition The set R is the set of real numbers, that is, the set of all numbers with either

1. a finite decimal expansion, or

2. an infinite periodic decimal expansion, or

3. an infinite non-periodic decimal.

A real number which is not rational is called irrational.

We must remark that “looking into the decimal expansion” of a number is not enough to prove that
a number is irrational. For example, it was known since the times of Pythagoras that the number

√
2 is

irrational. This guarantees that its decimal expansion

√
2 = 1.41421356 . . .

does not repeat. If we started, however, with the number 1.41421356 . . . we would not know whether it is
rational or irrational, for, it may have a very long decimal period, so long that our calculators and computers
could not store it. Again, although Archimedes suspected that

π = 3.14159265 . . .

was irrational, a proof of this was not obtained until the eighteenth century by Lambert.

Homework

1.1.1 Problem Give an example of a rational number between
1

10
= 0.1 and

1

9
= 0.1. Give an example of an

irrational number between
1

10
= 0.1 and

1

9
= 0.1.

1.2 Intervals

5 Definition An interval I is a subset of the real numbers with the following property: if s ∈ I and t ∈ I ,
and if s < x < t , then x ∈ I . In other words, intervals are those subsets of real numbers with the property
that every number between two elements is also contained in the set. Since there are infinitely many decimals
between two different real numbers, intervals with distinct endpoints contain infinitely many members. Table
1.1 shews the various types of intervals.

Observe that we indicate that the endpoints are included by means of shading the dots at the endpoints and
that the endpoints are excluded by not shading the dots at the endpoints. 1

1It may seem like a silly analogy, but think that in [a; b] the brackets are “arms” “hugging” a and b, but in ]a; b[ the “arms” are
repulsed. “Hugging” is thus equivalent to including the endpoint, and “repulsing” is equivalent to excluding the endpoint.
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Interval Notation Set Notation Graphical Representation

[a ; b] {x ∈ R : a ≤ x ≤ b}2

a b

]a ; b[ {x ∈ R : a < x < b}
a b

[a ; b[ {x ∈ R : a ≤ x < b}
a b

]a ; b] {x ∈ R : a < x ≤ b}
a b

]a ; +∞[ {x ∈ R : x > a}
a +∞

[a ; +∞[ {x ∈ R : x ≥ a}
a +∞

]−∞ ; b[ {x ∈ R : x < b}
−∞ b

]−∞ ; b] {x ∈ R : x ≤ b}
−∞ b

]−∞ ; +∞[ R
−∞ +∞

Table 1.1: Intervals.

1.3 Inequalities

!
Vocabulary Alert! We will call a number x positive if x ≥ 0 and strictly positive if
x > 0. Similarly, we will call a number y negative if y ≤ 0 and strictly negative if y < 0.
This usage differs from most Anglo-American books, who prefer such newspeak terms
as non-negative and non-positive.

The set of real numbers R is endowed with a relation > which satisfies the following axioms.

6 Axiom (Trichotomy Law) For all real numbers x, y exactly one of the following holds:

x > y, x = y, or y > x.

7 Axiom (Transitivity of Order) For all real numbers x, y, z,

if x > y and y > z then x > z.

8 Axiom (Preservation of Inequalities by Addition) For all real numbers x, y, z,

if x > y then x + z > y + z.

9 Axiom (Preservation of Inequalities by Positive Factors) For all real numbers x, y, z,

if x > y and z > 0 then xz > yz.

10 Axiom (Inversion of Inequalities by Negative Factors) For all real numbers x, y, z,

if x > y and z < 0 then xz < yz.
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! x < y means that y > x. x ≤ y means that either y > x or y = x, etc.

The above axioms allow us to solve several inequality problems.

11 Example Solve the inequality

2x − 3 < −13.

Solution: ◮ We have

2x − 3 < −13 ÍÑ 2x < −13 + 3 ÍÑ 2x < −10.

The next step would be to divide both sides by 2. Since 2 > 0, the sense of the inequality is
preserved, whence

2x < −10 ÍÑ x <
−10

2
ÍÑ x < −5.

The solution set is thus the interval ]−∞ ; −5[. ◭

12 Example Solve the inequality

−2x − 3 ≤ −13.

Solution: ◮ We have

−2x − 3 ≤ −13 ÍÑ −2x ≤ −13 + 3 ÍÑ −2x ≤ −10.

The next step would be to divide both sides by −2. Since −2 < 0, the sense of the inequality is
inverted, and so

−2x ≤ −10 ÍÑ x ≥ −10

−2
ÍÑ x ≥ −5.

The solution set is therefore [−5 ; +∞[. ◭

The method above can be generalised for the case of a product of linear factors. To investigate the set on
the line where the inequality

(a1x + b1) · · · (anx + bn) > 0, (1.1)

holds, we examine each individual factor. By trichotomy, for every k, the real line will be split into the three
distinct zones

{x ∈ R : akx + bk > 0} ∪ {x ∈ R : akx + bk = 0} ∪ {x ∈ R : akx + bk < 0}.

Here the sign ∪, read “union” means that elements of all the sets involved are considered. We will call

the real line with punctures at x = −ak
bk

and indicating where each factor changes sign the sign diagram

corresponding to the inequality (1.1).

13 Example Consider the inequality

x2 + 2x − 35 < 0.

1. Form a sign diagram for this inequality.

2. Write the set {x ∈ R : x2 + 2x − 35 < 0} as an interval or as a union of intervals.

3. Write the set
{

x ∈ R : x2 + 2x − 35 ≥ 0
}

as an interval or as a union of intervals.

4. Write the set

{

x ∈ R :
x + 7

x − 5
≥ 0

}

as an interval or as a union of intervals.
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5. Write the set

{

x ∈ R :
x + 7

x − 5
≤ −2

}

as an interval or as a union of intervals.

Solution: ◮

1. Observe that x2 + 2x − 35 = (x − 5)(x + 7), which vanishes when x = −7 or when x = 5. In
neighbourhoods of x = −7 and of x = 5, we find:

x ∈ ]−∞ ; −7[ ]−7 ; 5[ ]5 ; +∞[

x + 7 − + +

x − 5 − − +

(x + 7)(x − 5) + − +

On the last row, the sign of the product (x + 7)(x − 5) is determined by the sign of each of
the factors x + 7 and x − 5.

2. From the sign diagram above we see that

{x ∈ R : x2 + 2x − 35 < 0} = ]−7 ; 5[ .

3. From the sign diagram above we see that
{

x ∈ R : x2 + 2x − 35 ≥ 0
}

= ]−∞ ; −7] ∪ [5 ; +∞[ .

Notice that we include both x = −7 and x = 5 in the set, as (x + 7)(x − 5) vanishes there.

4. From the sign diagram above we see that
{

x ∈ R :
x + 7

x − 5
≥ 0

}

= ]−∞ ; −7] ∪ ]5 ; +∞[ .

Notice that we include x = −7 since
x + 7

x − 5
vanishes there, but we do not include x = 5

since there the fraction
x + 7

x − 5
would be undefined.

5. We must add fractions:

x + 7

x − 5
≤ −2 ⇐Ñ x + 7

x − 5
+ 2 ≤ 0 ⇐Ñ x + 7

x − 5
+

2x − 10

x − 5
≤ 0 ⇐Ñ 3x − 3

x − 5
≤ 0.

We must now construct a sign diagram puncturing the line at x = 1 and x = 5:

x ∈ ]−∞ ; 1[ ]1 ; 5[ ]5 ; +∞[

3x − 3 − + +

x − 5 − − +

3x − 3

x − 5
+ − +

We deduce that
{

x ∈ R :
x + 7

x − 5
≤ −2

}

= [1 ; 5[ .

Notice that we include x = 1 since
3x − 3

x − 5
vanishes there, but we exclude x = 5 since there

the fraction
3x − 3

x − 5
is undefined.

◭
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Homework

1.3.1 Problem

1. Determine a sign diagram for the set

{x ∈ R : x(x + 1)(x − 1) < 0}.

2. Using the sign diagram obtained, write the set {x ∈ R : x(x + 1)(x − 1) < 0} as a union of intervals.

3. Write the set

{

x ∈ R :
x(x − 1)

x + 1
≥ 0

}

as a union of intervals.

4. Write the set

{

x ∈ R :
x(x − 1)

x + 1
≥ −1

}

as an interval.

1.4 Functions

We will take a very narrow approach here to the definition of a function, one that will be useful to our
purposes.

14 Definition A function f : Dom (f) → R, x 7Ï f(x) from the set Dom (f) to the real numbers is the
collection of the following ingredients:

1. A collection of inputs Dom (f) called the domain of definition of the function, being the largest set of
real numbers for which the output of the function is a real number.

2. A name for the function, typically f, g, h, etc.

3. A name for a typical input, normally x.

4. An assignment rule or formula, that associates to every input x a unique output f(x).

We will give here some examples of functions.

15 Example Consider the function

f :
R Ï R

x 7Ï x − x2

.

Observe that the domain of definition is R since the expression x − x2 is a real number for every x ∈ R. We
have, for instance,

f(0) = 0−02 = 0, f(2) = 2−22 = −2, f(1+
√

2) = 1+
√

2−(1+
√

2)2 = 1+
√

2−(1+2
√

2+2) = −2−
√

2.

16 Example Consider the function

f :
R \ {0, 1} Ï R

x 7Ï 1

x − x2

.

Since the denominator vanishes when x − x2 = 0 ÍÑ x(1 − x) = 0 ÍÑ x ∈ {0, 1}, the domain of definition
is all real numbers excluding those two numbers, which we write as R \ {0, 1}, pronounced “R without the set
containing 1 and 2.” We have, for instance,

f

(

1

2

)

=
1

1

2
− 1

4

= 4.
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17 Example Consider the function

f :
]−∞ ; −7] ∪ [5 ; +∞[ Ï R

x 7Ï
√

x2 + 2x − 35

.

By example 13, the quantity under the square root is strictly negative for x ∈ ]−7 ; 5[, and hence, the formula
will not give a real number output. We must consider only those numbers for which the quantity under the
square root is positive and hence the domain of definition of the function is ]−∞ ; −7] ∪ [5 ; +∞[.

18 Definition Let f and g be two functions and let the point x be in both of their domains. Then f + g is
their sum, defined at each point x by

(f + g)(x) = f(x) + g(x).

The difference f − g is defined by
(f − g)(x) = f(x) − g(x),

and their product fg is defined by
(fg)(x) = f(x) · g(x).

Furthermore, if g(x) 6= 0, then their quotient is defined as

(

f

g

)

(x) =
f(x)

g(x)
.

The composition f ◦ g (“f composed with g”) is defined at the point x by

(f ◦ g)(x) = f(g(x)).

19 Example Let

f :
R \ {0} Ï R

x 7Ï 1

x

, g :
[−5 ; 5] Ï R

x 7Ï
√

25 − x2

.

Find

1. (f + g)(2)

2. (fg)(2)

3. (f ◦ g)(2)

4. (g ◦ f)(2)

Solution: ◮ We have

1. (f + g)(2) = f(2) + g(2) =
1

2
+

√
21

2. (fg)(2) =
1

2
·
√

21 =

√
21

2

3. (f ◦ g)(2) = f(g(2)) = f(
√

21) =
1√
21

4. (g ◦ f)(2) = g(f(2)) = g

(

1

2

)

=

√

25 − 1

4
=

3
√

11

2

◭
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We conclude this section with some special names that will be used throughout these notes.

20 Definition A function p : R → R whose formula is of the form

p(x) = anxn + an−1xn−1 + · · · + a1x + a0,

where the ak ∈ R are constants, an 6= 0, is called a polynomial function of degree n. If n = 0 then

p(x) = a

for some real constant numbers a, this is called a constant function. If n = 1 then

p(x) = a + bx

for some real numbers a, b, with b 6= 0, this is called an affine function. If n = 2 then

p(x) = a + bx + cx2

for some real numbers a, b, c, with c 6= 0, this is called a quadratic function.

21 Definition Let p(x) and q(x) be two polynomials with real coefficients, and let Z = {x ∈ R : q(x) = 0}.

The function r : R \ Z → R with formula r(x) =
p(x)

q(x)
is called a rational function.

22 Definition The function with assignment rule x 7Ï f(x) is said to be algebraic if y = f(x) is a solution
of an equation of the form

pn(x)yn + · · · + p1(x)y + p0(x) = 0,

where the p0(x), p1(x), . . . , pn(x) are polynomials in x. A function that satisfies no such equation is said to be
transcendental.

23 Example The function

p :
R Ï R

x 7Ï x3 − x + 1

is a polynomial function of degree 3.

The function

r :
R Ï R

x 7Ï x

x2 + 2x + 2

is a rational function.

The function

a :
[0 ; +∞[ Ï R

x 7Ï
√

x +

√

x +
√

x

is a algebraic function.
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Homework

1.4.1 Problem Determine the domain of definition of the assignment rule x 7Ï √
x +

√
−x.

1.4.2 Problem Determine the domain of definition of the assignment rule x 7Ï 1√
x +

√
−x

.

1.4.3 Problem Determine the domain of definition of the assignment rule x 7Ï x + 1

(x − 1)
√

x
.

1.4.4 Problem Consider the functions

f :
R Ï R

x 7Ï
√

x2 + 1

, g :
]−∞ ; −1] ∪ [1 ; +∞[ Ï R

x 7Ï
√

x2 − 1

.

1. Determine (f + g)(2).

2. Determine (fg)(2).

3. Determine (f ◦ g)(2).

4. Determine (g ◦ f)(2).

1.5 Infinitesimals

We now want to informally introduce the concepts of nearness and smallness.
What does it mean for one point to be “near” another point? We could argue that 1 is near to 0, but, for

some purposes, this distance could be too “far.” We could certainly say that 0.5 is closer to 0 than 1 is, but
then again, for some purposes, even this distance could be “far.” Mentioning a specific number “near” 0, like
1 or 0.5 fails in what we desire for “nearness” because mentioning a specific point immediately gives a “static”
quality to “nearness”: once you mention a specific point, you could mention infinitely many more points which
are closer than the point you mentioned. The points in the sequence

0.1, 0.01, 0.001, 0.0001, . . .

get closer and closer to 0 with an arbitrary precision. Notice that this sequence approaches 0 through values
> 0. This arbitrary precision is what will be the gist of our concept of “nearness.” “Nearness” is dynamic: it
involves the ability of getting closer to a point with any desired degree of accuracy. It is not static.

Again, the points in the sequence

−1

2
, −1

4
, −1

8
, − 1

16
, . . .

are arbitrarily close to 0, but they “approach” 0 from the left. Once again, the sequence

+
1

2
, −1

3
, +

1

4
, −1

5
, . . .

approaches 0 from both above and below. After this long preamble, we may formulate our first definition.

24 Definition The notation x Ï a, read “x tends to a,” means that x is very close, with an arbitrary degree
of precision, to a. Here x can approach a through values smaller or larger than a. We write x Ï a+ (read “x
tends to a from the right”) to mean that x approaches a through values larger than a and we write x Ï a−
(read “x tends to a from the left”) we mean that x approaches a through values smaller than a.
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25 Definition Given a function f and a point a ∈ R, we write f(a+) for the value that f(x) attains when
x → a+. Similarly, we write f(a−) for the value that f(x) attains when x → a−.

26 Example Given f : R → R,

f(x) =































√
4 − x if x < 4,

1 if x = 4,

3 if x > 4.

Then
f(4−) =

√
4 − 4 = 0, f(4) = 1, f(4+) = 3.

Observe that also, for example,

f(0−) = 2, f(0) = 2, f(0+) = 2,

and
f(5−) = 3, f(5) = 3, f(5+) = 3.

−∞ +∞a

a+

a−
|

Figure 1.1: A neighbourhood of a.

27 Definition A neighbourhood of a point a is an interval containing a.

Notice that the definition of neighbourhood does not rule out the possibility that a may be an endpoint of the
the interval. Our interests will be mostly on arbitrarily small neighbourhoods of a point. Schematically we
have a diagram like figure 1.1.

28 Definition (Infinitesimal) We say that a given formula f(x) in the variable x is infinitesimal as x → 0,
written f(x) = o (1) if f(x) → 0 as x → 0. We also say that f is small oh of 1.

We make the following observations, which we will take as axioms.

29 Axiom If x → 0 and if n ≥ 1, n ∈ N, then xn = o (1).

30 Axiom (The Sum of Infinitesimals is an Infinitesimal) If x → 0 and if a(x) = o (1) and b(x) = o (1),
then a(x) + b(x) = o (1).

31 Axiom (The Product of an Infinitesimal and a Constant is an Infinitesimal) If x → 0 and if a(x) =
o (1) and λ ∈ R, λ 6= 0, then λa(x) = o (1).

32 Axiom (The Product of Infinitesimals is an Infinitesimal) If x → 0 and if a(x) = o (1) and b(x) = o (1),
then a(x)b(x) = o (1).
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33 Example Justify the assertion that f(x) = x3 − x = o (1) as x → 0.

Solution: ◮ We have x3 = o (1) and x = o (1) as x → 0 by Axiom 29. Also, −x = o (1) by Axiom
31. Finally, x3 − x = x3 + (−x) = o (1) by Axiom 30. ◭

We would like to compare now how “fast” two infinitesimals formulas tend toward zero. In order to
motivate the following definitions, let us consider a numerical example. Consider a very small number, say,

0.0000000100023 =
1

108
+

2

1012
+

3

1013
.

In comparison to
1

108
, the sum

2

1012
+

3

1013
is very small, practically negligible. In other words, the number

1

108
overwhelms or dominates the sum

2

1012
+

3

1013
.

34 Definition Let m and n be non-zero natural numbers with m < n. We say that xm dominates xn as
x → 0. We also say that xn goes faster to 0 than xm , or that xm goes slower to 0 than xn. We write this

as xn = o (xm). In general, if
f(x)

g(x)
→ 0, we write f(x) = o (g(x)), and if a(x) − b(x) = o (c(x)), we write

a(x) = b(x) + o (c(x)). The term o (c(x)) is called the error term.

35 Axiom Let λ ∈ R, λ 6= 0, and f(x) = o (1) and g(x) = o (1). The o () symbol has the following properties:
as x → 0,

λo (f(x)) = o (f(x)) (1.2)

o (λf(x)) = o (f(x)) (1.3)

o (f(x)) ± o (f(x)) = o (f(x)) (1.4)

o (o (f(x))) = o (f(x)) (1.5)

f(x)g(x) = o (f(x)) (1.6)

f(x)g(x) = o (g(x)) (1.7)

o (f(x) + o (f(x))) = o (f(x)) (1.8)

o (f(x)n) = o
(

f(x)k) , n ≥ 2, n ∈ N, k = 1, 2, . . . , n − 1 (1.9)

o (f(x))
n = o ((f(x))n) , n ≥ 1, n ∈ N (1.10)

(f(x))no (f(x)) = o
(

(f(x))n+1
)

, n ∈ N (1.11)

o ((f(x))n)

f(x)
= o

(

(f(x))n−1
)

, n ≥ 2, n ∈ N (1.12)

36 Example As x Ï 0 we have o
(

x3
)

+ o
(

x4
)

= o
(

x3
)

, since the x3 term dominates over the x4 for small
x.

37 Definition Let n1 < n2 < · · · < nk be natural numbers. The dominant term as x → 0 of the polynomial

p(x) = an1
xn1 + an2

xn2 + · · · + ank xnk

is an1
xn1 . We write this as p(x) ∼ an1

xn1 , read “p of x is asymptotic to a sub one times x to the power n

sub 1.”

38 Example Given that a(x) = 2x2 +x3 +o
(

x3
)

and b(x) = x −4x4 +o
(

x4
)

, estimate the product a(x)b(x)
as x → 0.
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Solution: ◮ We have

a(x)b(x) =
(

2x2 + x3 + o
(

x3
)) (

x − 4x4 + o
(

x4
))

= 2x3 − 8x6 + o
(

2x6
)

+ x4 − 4x7 + o
(

x7
)

+ o
(

x4
)

+ o
(

−4x7
)

+ o
(

x7
)

= 2x3 + x4 + o
(

x4
)

,

since all other error terms are faster than o
(

x4
)

. ◭

39 Example As x → 0, 3x2 + 2x + x ∼ x.

40 Axiom (Product of Asymptotic Estimates) If p(x) and q(x) are polynomials, with p(x) ∼ axn and q(x) ∼
bxm as x → 0, then p(x)q(x) ∼ abxm+n as x → 0.

41 Example As x → 0, x(2x + 3x2)(3 + 4x)(5 + 6x) ∼ x · 2x · 3 · 5 = 20x2.

Homework

1.5.1 Problem Given a(x) = 2 + x2 + o
(

x2
)

and b(x) = x + o (x), as x → 0, estimate a(x)b(x) as x → 0.

1.6 Infinitely Large Quantities

42 Definition We use the symbol +∞ to denote a quantity that is larger than any positive real number.

Thus if P ∈ R, no matter how large P > 0 might be, we always have

0 < P < +∞.

43 Definition We use the symbol −∞ to denote a quantity that is smaller than any negative real number.

Thus if N ∈ R, N < 0, no matter how large |N| might be, we always have

−∞ < N < 0.

0 1 2 3 4 5 6 70-1-2-3-4-5-6-7
+∞−∞

Figure 1.2: The Real Line.

Geometrically, each real number can be viewed as a point on a straight line. We make the convention that
we orient the real line with 0 as the origin, the positive numbers increasing towards the right from 0 and the
negative numbers decreasing towards the left of 0, as in figure 1.2. We append the object +∞, which is larger
than any real number, and the object −∞, which is smaller than any real number. Letting x ∈ R, we make
the following conventions.

(+∞) + (+∞) = +∞ (1.13)
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(−∞) + (−∞) = −∞ (1.14)

x + (+∞) = +∞ (1.15)

x + (−∞) = −∞ (1.16)

x(+∞) = +∞ if x > 0 (1.17)

x(+∞) = −∞ if x < 0 (1.18)

x(−∞) = −∞ if x > 0 (1.19)

x(−∞) = +∞ if x < 0 (1.20)

x

±∞ = 0 (1.21)

Observe that we leave the following undefined:

±∞
±∞ , (+∞) + (−∞), 0(±∞).

44 Definition The notation x → +∞, read “x tends to plus infinity” means that increases without bound,
eventually surpassing any preassigned large positive constant. The notation x → −∞, read “x tends to
minus infinity” means that decreases without bound, eventually surpassing any preassigned large in magnitude
negative constant.

45 Definition Let m and n be non-zero natural numbers with m < n. We say that xn dominates xm as
x → ±∞. We also say that xn goes faster to ±∞ than xm , or that xm goes slower to ±∞ than xn . We write

this as xm = o (xn). In general, if
f(x)

g(x)
→ 0, we write f(x) = o (g(x)) as x → ±∞ and if a(x)−b(x) = o (c(x)),

we write a(x) = b(x) + o (c(x)). The term o (c(x)) is called the error term.

The properties expounded in the preceding section for little oh as x → 0 also hold for little oh as x → ±∞,
except for 29, which must be replaced by the following.

46 Axiom If x → ±∞ and if n ≥ 1, n ∈ N, then
1

xn = o (1).

We now change the definition of dominant term.

47 Definition Let n1 < n2 < · · · < nk be natural numbers. The dominant term as x → ±∞ of the polynomial

p(x) = an1
xn1 + an2

xn2 + · · · + ank xnk

is ank xnk . We write this as p(x) ∼ ankxnk , read “p of x is asymptotic to a sub k times x to the power n sub
k.”

48 Example As x Ï +∞ we have o
(

x3
)

+ o
(

x4
)

= o
(

x4
)

, since the x4 term dominates over the x3 for
large x.

49 Example Given that a(x) = 2x3 + x2 + o
(

x2
)

and b(x) = x4 − 4x + o (x), estimate the product a(x)b(x)
as x → +∞.
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Solution: ◮ We have

a(x)b(x) =
(

2x3 + x2 + o
(

x2
)) (

x4 − 4x + o (x)
)

= 2x7 − 8x4 + o
(

2x4
)

+ x6 − 4x3 + o
(

x3
)

+ o
(

x6
)

+ o
(

−4x3
)

+ o
(

x3
)

= 2x7 + x6 + o
(

x6
)

,

as x Ï +∞ since all other error terms are weaker than o
(

x6
)

. ◭

50 Example As x → +∞, 3x2 + 2x + x ∼ 3x2.

51 Axiom (Product of Asymptotic Estimates) If p(x) and q(x) are polynomials, with p(x) ∼ axn and q(x) ∼
bxm as x → 0, then p(x)q(x) ∼ abxm+n as x → ±∞.

52 Example As x → +∞, x(2x + 3x2)(3 + 4x)(5 + 6x) ∼ x · 3x2 · 4x · 6x = 72x5.

Homework

1.6.1 Problem Given a(x) = x3 + 2x2 + o
(

x2
)

and b(x) = x + o (1) as x → +∞, estimate a(x)b(x) as
x → +∞.

1.7 Distance on the Plane and Lines

We now introduce some concepts from analytic geometry that will be used throughout these notes.

53 Theorem (Distance Between Two Points on the Plane) The distance between the points A = (x1, y1), B =
(x2, y2) in R2 is given by

AB = d〈(x1, y1), (x2, y2)〉 :=
√

(x1 − x2)2 + (y1 − y2)2.

Proof: Consider two points on the plane, as in figure 1.3. Constructing the segments CA and
BC with C = (x2, y1), we may find the length of the segment AB, that is, the distance from A to
B, by utilising the Pythagorean Theorem:

AB2 = AC2 + BC2 ÍÑ AB =
√

(x2 − x1)2 + (y2 − y1)2.

❑

54 Example The length of the line segment joining the points (1, 2) and (−3, 4) on the plane is

√

(1 − (−3))2 + (2 − 4)2 =
√

16 + 4 = 2
√

5.

55 Definition Let a and b be real number constants. A vertical line on the plane is a set of the form

{(x, y) ∈ R2 : x = a}.

Similarly, a horizontal line on the plane is a set of the form

{(x, y) ∈ R2 : y = b}.
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Definition 55 is striking. It provides a link between Algebra and Geometry, and viceversa, between Geometry
and Algebra. For example, if we are given the equation of a horizontal line (Algebra), then we can graph it
(Geometry). Conversely, if we are given the picture of a horizontal line on the coordinate plane (Geometry),
we may find its equation (Algebra).

b

b

b

B(x2, y2)

A(x1, y1) C(x2, y1)|x2 − x1|

|y2 − y1|

Figure 1.3: Distance between two points.

Figure 1.4: A vertical line.

Figure 1.5: A horizontal line.

b

b

b

(x1, y1)

(x, y)

(x2, y2)

y
2

−
y

1

y
−

y
1

x − x1

x2 − x1

Figure 1.6: Theorem 56.

56 Theorem The equation of any non-vertical line on the plane can be written in the form y = mx + k,
where m and k are real number constants. Conversely, any equation of the form y = ax + b, where a, b are
fixed real numbers has as a line as a graph.

Proof: If the line is parallel to the x-axis, that is, if it is horizontal, then it is of the form y = b,
where b is a constant and so we may take m = 0 and k = b. Consider now a line non-parallel
to any of the axes, as in figure 1.6, and let (x, y), (x1, y1), (x2, y2) be three given points on the
line. By similar triangles we have

y2 − y1

x2 − x1
=

y − y1

x − x1
,

which, upon rearrangement, gives

y =

(

y2 − y1

x2 − x1

)

x − x1

(

y2 − y1

x2 − x1

)

+ y1,
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and so we may take

m =
y2 − y1

x2 − x1
, k = −x1

(

y2 − y1

x2 − x1

)

+ y1.

Conversely, consider real numbers x1 < x2 < x3, and let P = (x1, ax1 + b), Q = (x2, ax2 + b),
and R = (x3, ax3 + b) be on the graph of the equation y = ax + b. We will shew that

d〈P, Q〉 + d〈Q, R〉 = d〈P, R〉.

Since the points P, Q, R are arbitrary, this means that any three points on the graph of the
equation y = ax + b are collinear, and so this graph is a line. Then

d〈P, Q〉 =
√

(x2 − x1)2 + (ax2 − ax1)2 = |x2 − x1|
√

1 + a2 = (x2 − x1)
√

1 + a2,

d〈Q, R〉 =
√

(x3 − x2)2 + (ax3 − ax2)2 = |x3 − x2|
√

1 + a2 = (x3 − x2)
√

1 + a2,

d〈P, Q〉 =
√

(x3 − x1)2 + (ax3 − ax1)2 = |x3 − x1|
√

1 + a2 = (x3 − x1)
√

1 + a2,

from where
d〈P, Q〉 + d〈Q, R〉 = d〈P, R〉

follows. This means that the points P, Q, and R lie on a straight line, which finishes the proof
of the theorem. ❑

Figure 1.7: m > 0 Figure 1.8: m < 0 Figure 1.9: m = 0 Figure 1.10: m = ∞

57 Definition The quantity m =
y2 − y1

x2 − x1
in Theorem 56 is the slope or gradient of the line passing through

(x1, y1) and (x2, y2). Since y = m(0) + k, the point (0, k) is the y-intercept of the line joining (x1, y1) and
(x2, y2). Figures 1.7 through 1.10 shew how the various inclinations change with the sign of m.

58 Example By Theorem 56, the equation y = x represents a line with slope 1 and passing through the
origin. Since y = x, the line makes a 45◦ angle with the x-axis, and bisects quadrants I and III. See figure 1.11

59 Example A line passes through (−3, 10) and (6, −5). Find its equation and draw it.

Solution: ◮ The equation is of the form y = mx+k. We must find the slope and the y-intercept.
To find m we compute the ratio

m =
10 − (−5)

−3 − 6
= −5

3
.

Thus the equation is of the form y = −5

3
x + k and we must now determine k. To do so, we

substitute either point, say the first, into y = −5

3
x + k obtaining 10 = −5

3
(−3) + k, whence k = 5.
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The equation sought is thus y = −5

3
x + 5. To draw the graph, first locate the y-intercept (at

(0, 5)). Since the slope is −5

3
, move five units down (to (0, 0)) and three to the right (to (3, 0)).

Connect now the points (0, 5) and (3, 0). The graph appears in figure 1.12. ◭

Figure 1.11: Example 58.

b

b

Figure 1.12: Example 59.

b

b

b

Figure 1.13: Example 60.

60 Example Three points (4, u), (1, −1) and (−3, −2) lie on the same line. Find u.

Solution: ◮ Since the points lie on the same line, any choice of pairs of points used to compute
the gradient must yield the same quantity. Therefore

u − (−1)

4 − 1
=

−1 − (−2)

1 − (−3)

which simplifies to the equation
u + 1

3
=

1

4
.

Solving for u we obtain u = − 1
4
. See figure 1.13.◭

b

b

b

B(x2, y2)

A(x1, y1) C(x2, y1)

b b MAMA

b

MBMB

(x, y)

Figure 1.14: Midpoint of a line segment.

61 Theorem (Midpoint of a Line Segment) The point
(x1 + x2

2
,

y1 + y2

2

)

lies on the line joining A(x1, y1)

and B(x2, y2), and it is equidistant from both points.

Proof: First observe that it is easy to find the midpoint of a vertical or horizontal line segment.

The interval [a ; b] has length b − a. Hence, its midpoint is at a +
b − a

2
=

a + b

2
.
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Let (x, y) be the midpoint of the line segment joining A(x1, y1) and B(x2, y2). With C(x2, y1),
form the triangle △ABC, right-angled at C. From (x, y), consider the projections of this point
onto the line segments AC and BC. Notice that these projections are parallel to the legs of
the triangle and so these projections pass through the midpoints of the legs. Since AC is a
horizontal segment, its midpoint is at MB = ( x1+x2

2
, y1). As BC is a horizontal segment, its

midpoint is MA = (x2, y1+y2

2 ). The result is obtained on noting that (x, y) must have the same
abscissa as MB and the same ordinate as MA. ❑

Homework

1.7.1 Problem Find the distance of the line segments having (1, −2) and (−3, 4) as endpoints.

1.7.2 Problem Find the equation of the line passing through (1, −2) and (−3, 4).

1.7.3 Problem What is the slope of the line with equation
x

a
+

y

b
= 1?

1.7.4 Problem Let (a, b) ∈ R2. Find the equation of the straight line joining (a, b) and (b, a).

1.7.5 Problem Which points on the line with equation y = 6 − 2x are equidistant from the axes?

1.7.6 Problem In figure 1.15, point M has coordinates (2, 2), points A, S are on the x-axis, point B is on the

y-axis △SMA is isosceles at M , and the line segment SM has slope
1

2
. Find the coordinates of points A, B, S.

b

b

bb

M

AS

B

Figure 1.15: Problem 1.7.6.
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2.1 Graphs of Functions

62 Definition The graph of a function f is the set on the plane

Γf = {(x, y) ∈ R2 : x ∈ Dom (f) , y = f(x)}.

63 Example Consider the function

Id :
R Ï R

x 7Ï x

,

called the identity function. By example 58, we know that its graph is the straight line that appears in figure
1.11.

64 Example Consider the function

f :
R Ï R

x 7Ï −5

3
x + 5

By example 59, we know that its graph is the straight line that appears in figure 1.12.

−1

0

1

−1 0 1

Figure 2.1: Example 65. y = f(x)
Figure 2.2: Fails the vertical line
test. Not a function.

Figure 2.3: Fails the vertical line
test. Not a function.

65 Example Demonstrate that the graph of the function

f :
[−1 ; 1] Ï R

x 7Ï
√

1 − x2

is the upper semicircle in figure 65.

Solution: ◮ If y = f(x) =
√

1 − x2, then

x2 + y2 = 1 ÍÑ
√

(x − 0)2 + (y − 0)2 = 1,
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which means that any point (x, y) on the graph of the function is at distance 1 from the origin.
Since y ≥ 0, the points satisfying these requirement form the aforementioned semicircle. ◭

!
By the definition of the graph of a function, the x-axis contains the set of inputs and y-axis has
the set of outputs. Since in the definition of a function every input goes to exactly one output,
wee see that if a vertical line crosses two or more points of a graph, the graph does not represent
a function. We will call this the vertical line test for a function. See figures 2.2 and 2.3.

Given a function f , it is generally difficult to know a priori what its graph looks like. Most of the material on
this chapter will be dedicated to the investigation of tools for sketching graphs of functions. In the subsections
below we will informally discuss some features of graphs of (algebraic) functions, which will be elaborated
later on.

2.1.1 Symmetry

66 Definition A function f is even if for all x in its domain, −x is also in its domain, and it is verified that
f(x) = f(−x), that is, if the portion of the graph for x < 0 is a mirror reflexion of the part of the graph for
x > 0. This means that the graph of f is symmetric about the y-axis. A function g is odd if for all x, −x is
also in its domain, and it is verified that g(−x) = −g(x), in other words, g is odd if it is symmetric about the
origin. This implies that the portion of the graph appearing in quadrant I is a 180◦ rotation of the portion of
the graph appearing in quadrant III, and the portion of the graph appearing in quadrant II is a 180◦ rotation
of the portion of the graph appearing in quadrant IV.

67 Example The function whose graph appears in figure 2.4 is even. The function whose graph appears in
figure 2.5 is odd.

Figure 2.4: The graph of an even function. Figure 2.5: The graph of an odd function.

2.1.2 Continuity

Heuristically speaking, a continuous function at the point x = a is one whose graph has no “breaks” at the
point x = a.

What could possibly go wrong and make a function discontinuos? Let us consider the following three
types of discontinuities. Let f be a function and a ∈ R. Assume that f is defined in a neighbourhood of a, but
not precisely at x = a. Which value can we reasonably assign to f(a)? Consider the situations depicted in
figures 2.6 through 2.8. In figure 2.6 it seems reasonably to assign a(0) = 0. What value can we reasonably

assign in figure 2.7? b(0) =
−1 + 1

2
= 0? In figure 2.8, what value would it be reasonable to assign? c(0) = 0?,

c(0) = +∞?, c(0) = −∞? The situations presented here are typical, but not necessarily exhaustive. Thus
of the three discontinuous functions in figures 2.6 through 2.8, only that of figure 2.6 has a chance of being
continuous, and that happens only if one defines a(0) as 0.
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2.1.3 Intercepts

68 Definition Given a function f , the set

{(x, f(x)) ∈ R2 : x ∈ Dom (f) , f(x) = 0}

is called the set of x-intercepts (zeroes or roots) of f . If f is defined at 0, then the point (0, f(0)) is called the
y-intercept of f . In other words, the intercepts are the places where the graph of a function touches the axes.

69 Example In figure 2.9, the points A, B, C are the x-intercepts of the function and the point L is the
y-intercept.

bc

Figure 2.6: y = a(x).

bc

Figure 2.7: y = b(x).

bc

Figure 2.8: y = c(x).

b

AA

b

BB

b

CC

b LL

Figure 2.9: Intercepts

2.1.4 Asymptotes

70 Definition Given a function f we write f(−∞) for the value that f may eventually approach for large
(in absolute value) and negative inputs and f(+∞) for the value that f may eventually approach for large (in
absolute value) and positive input. The line y = b is a (horizontal) asymptote for the function f if either

f(−∞) = b or f(+∞) = b.

Figure 2.10: f(x) → b as
x → +∞.

Figure 2.11: f(x) → b as
x → +∞.

Figure 2.12: f(x) → b as
x → −∞.

Figure 2.13: f(x) → b as
x → −∞.

Heuristically, the line y = b is an asymptote of the function, if eventually, the graph of the function gets
closer and closer to it without actually touching it. Figures 2.10 through 2.13 shew different ways in which the
line y = b can be the asymptote of a function.
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71 Example Find the asymptotes, if any, of the function

f :
R \ {−1, 1} Ï R

x 7Ï (2x + 1)2(1 − 3x)2

x4 − 1

.

Solution: ◮ To do this, we find the dominant terms of the numerator and denominator as
x → ±∞:

y =
(2x + 1)2(1 − 3x)2

x4 − 1
∼ (2x)2(−3x)2

x4
= 36,

which means that y = 36 is its horizontal asymptote. ◭

72 Example Find the asymptotes, if any, of the function

g :
R \ {−1, 1} Ï R

x 7Ï (2x + 1)3(1 − 3x)2

x4 − 1

.

Solution: ◮ To do this, we find the dominant terms of the numerator and denominator as
x → ±∞:

y =
(2x + 1)3(1 − 3x)2

x4 − 1
∼ (2x)3(−3x)2

x4
= 72x,

which tends to ±∞ as x ± ∞, and hence does not have a horizontal asymptote.1 ◭

73 Example Find the asymptotes, if any, of the function

h :
R \ {−1, 1} Ï R

x 7Ï (2x + 1)(1 − 3x)

x4 − 1

.

Solution: ◮ To do this, we find the dominant terms of the numerator and denominator as
x → ±∞:

y =
(2x + 1)(1 − 3x)

x4 − 1
∼ (2x)(−3x)

x4
= − 6

x2
→ 0,

as x ± ∞, and hence y = 0 is its horizontal asymptote. ◭

2.1.5 Poles

74 Definition Let k > 0 be an integer. A function f has a pole of order k at the point x = a if (x−a)k−1f(x) Ï
±∞ as x Ï a, but (x − a)kf(x) as x Ï a is finite. Some authors prefer to use the term vertical asymptote,
rather than pole.

75 Example Find the poles, if any, of the function

h :
R \ {−1, 1} Ï R

x 7Ï (2x + 1)(1 − 3x)

x4 − 1

.

1The expert will note that this curve has a slanted asymptote, but we will discuss these later in the text.
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Solution: ◮ To do this, we find the real zeroes of the denominator:

x4 − 1 = 0 ÍÑ (x − 1)(x + 1)(x2 + 1) ÍÑ x ∈ {−1, 1},

from where the lines x = −1 and x = 1 are poles. ◭

76 Example Find the poles, if any, of the function

r :
R \ {−1, 1} Ï R

x 7Ï (2x + 1)(1 − 3x)

x4 + 1

.

Solution: ◮ To do this, we find the real zeroes of the denominator. But since 1 + x4 = 1 + (x2)2

is 1 plus a real square, and real squares are always positive, the denominator is never 0, as it
is, in fact, always ≥ 1. This means that r does not have any poles. ◭

x = a

Figure 2.14: f(x) → −∞
as x → a+.

x = a

Figure 2.15: f(x) → +∞
as x → a+.

x = a

Figure 2.16: f(x) → −∞
as x → a−.

x = a

Figure 2.17: f(x) → +∞
as x → a−.

Figures 2.14 through 2.17 exhibit the various ways a function may have a pole.

2.1.6 Monotonicity

77 Definition A function f is said to be increasing (respectively, strictly increasing) if a < b ÍÑ f(a) ≤
f(b) (respectively, a < b ÍÑ f(a) < f(b)). A function g is said to be decreasing (respectively, strictly
decreasing) if a < b ÍÑ g(a) ≤ g(b) (respectively, a < b ÍÑ g(a) < g(b)). A function is monotonic if
it is either (strictly) increasing or decreasing. By the intervals of monotonicity of a function we mean the
intervals where the function might be (strictly) increasing or decreasing.

! If the function f is (strictly) increasing, its opposite −f is (strictly) decreasing, and viceversa.

The following theorem is immediate.

78 Theorem A function f is (strictly) increasing if for all a < b for which it is defined

f(b) − f(a)

b − a
≥ 0 (respectively,

f(b) − f(a)

b − a
> 0).

Similarly, a function g is (strictly) decreasing if for all a < b for which it is defined

g(b) − g(a)

b − a
≤ 0 (respectively,

g(b) − g(a)

b − a
< 0).
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79 Definition If there is a point a for which f(x) ≤ f(M) for all x in a neighbourhood centred at x = M

then we say that f has a local maximum at x = M . Similarly, if there is a point m for which f(x) ≥ f(m) for
all x in a neighbourhood centred at x = m then we say that f has a local minimum at x = m. The maxima
and the minima of a function are called its extrema.

2.1.7 Convexity

80 Definition A function f : Dom (f) Ï R is (mid-point) convex in Dom (f) if for all a, b, in Dom (f) and

f

(

a + b

2

)

≤ f(a) + f(b)

2
.

Similarly, a function g : Dom (g) Ï R is concave in Dom (g) if for all a, b, in Dom (g)

g

(

a + b

2

)

≥ g(a) + g(b)

2
.

By the intervals of convexity (concavity) of a function we mean the intervals where the function is convex
(concave). An inflexion point is a point where a graph changes convexity.2

Consider figure 2.18, where

A = (a, f(a)), B = (b, f(b)), M =

(

a + b

2
,

f(a) + f(b)

2

)

, L =

(

a + b

2
, f

(

a + b

2

))

.

The definition of convexity has the following geometric interpretation: for any line segment joining two points
on the curve, the midpoint of the line segment lines on top of the curve, and hence, the line segment itself
lies on top of the curve. See figure 2.18. Observe that if f is convex, then −f is concave, and so in a concave
curve, any line segment joining two points on the curve, lies below the curve. See figure 2.19.

b
AA b

BB
b

MM

b

LL

Figure 2.18: A convex curve.

b
A′A′

b
B′B′

b
M ′M ′

b
L′L′

Figure 2.19: A concave curve.

Homework

2.1.1 Problem Draw the graph of a function f meeting the following conditions:

1. f is continuous everywhere;

2American books, bowing to Newspeak, have created such terms as “concave up” and concave down.” Their goal is to reduce
vocabulary, thereby stultifying students even more. We will not follow such practice here.
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2. f has zeroes at x = −3, x = 1, and x = 2

3. f(−∞) = f(+∞) = −∞

4. f(−1) = 2

5. f(5) = −16

2.1.2 Problem Draw the graph of a function f meeting the following conditions:

1. f is everywhere continuous;

2. f(−2) = f(0) = f(2) = 0;

3. f(−∞) = 0, f(+∞) = +∞

4. f(−4) = −1, f(−1) = 1 , f(1) = −1, f(4) = 1

2.1.3 Problem Draw the graph of a function f meeting the following conditions:

1. f is continuous in R \ {0};

2. f has a pole at x = 0, with f(0−) = −∞ and f(0+) = +∞;

3. f(−∞) = −∞, f(+∞) = +∞

2.1.4 Problem Consider the functions f and g in the figure below. You may assume that they are composed
solely of straight line segments.

1. Draw f + g .

2. Draw f ◦ g .

3. Draw 2f + g .

1
2
3
4
5

−1
−2
−3
−4
−5
−6

1 2 3 4 5−1−2−3−4−5−6 b b

b

b

b b

Figure 2.20: f

1
2
3
4
5

−1
−2
−3
−4
−5
−6

1 2 3 4 5−1−2−3−4−5−6 b

b b

b b

b

Figure 2.21: g
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2.2 Transformations of Graphs of Functions

2.2.1 Translations

81 Theorem Let f be a function and let v and h be real numbers. If (x0, y0) is on the graph of f , then
(x0, y0 + v) is on the graph of g , where g(x) = f(x) + v , and if (x1, y1) is on the graph of f , then (x1 − h, y1)
is on the graph of j, where j(x) = f(x + h).

Proof: Let Γf , Γg , Γj denote the graphs of f, g, j respectively.

(x0, y0) ∈ Γf ⇐Ñ y0 = f(x0) ⇐Ñ y0 + v = f(x0) + v ⇐Ñ y0 + v = g(x0) ⇐Ñ (x0, y0 + v) ∈ Γg .

Similarly,

(x1, y1) ∈ Γf ⇐Ñ y1 = f(x1) ⇐Ñ y1 = f(x1 − h + h) ⇐Ñ y1 = j(x1 − h) ⇐Ñ (x1 − h, y1) ∈ Γj.

❑

82 Definition Let f be a function and let v and h be real numbers. We say that the curve y = f(x) + v is
a vertical translation of the curve y = f(x). If v > 0 the translation is v up, and if v < 0, it is v units down.
Similarly, we say that the curve y = f(x + h) is a horizontal translation of the curve y = f(x). If h > 0, the
translation is h units left, and if h < 0, then the translation is h units right.

83 Example Figures 2.23 through 2.25 shew various translations of the graph of a function f .

−5
−4
−3
−2
−1

0
1
2
3
4
5

−5−4−3−2−10 12 3 4 5

bb b b b
b

b

b

Figure 2.22: y = f(x).
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−3
−2
−1

0
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−5−4−3−2−10 1 23 4 5

b
b b b b

b

b

b

Figure 2.23:
y = f(x) + 1.

b

−5
−4
−3
−2
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0
1
2
3
4
5

−5−4−3−2−10 1 2 3 45

b b b b
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Figure 2.24:
y = f(x + 1).
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3
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Figure 2.25:
y = f(x + 1) + 1.

2.2.2 Reflexions

84 Theorem Let f be a function If (x0, y0) is on the graph of f , then (x0, −y0) is on the graph of g , where
g(x) = −f(x), and if (x1, y1) is on the graph of f , then (−x1, y1) is on the graph of j, where j(x) = f(−x).

Proof: Let Γf , Γg , Γj denote the graphs of f, g, j respectively.

(x0, y0) ∈ Γf ⇐Ñ y0 = f(x0) ⇐Ñ −y0 = −f(x0) ⇐Ñ −y0 = g(x0) ⇐Ñ (x0, −y0) ∈ Γg .

Similarly,

(x1, y1) ∈ Γf ⇐Ñ y1 = f(x1) ⇐Ñ y1 = f (−(−x1)) ⇐Ñ y1 = j (−x1) ⇐Ñ (−x1, y1) ∈ Γj.

❑

85 Definition Let f be a function. The curve y = −f(x) is said to be the reflexion of f about the x-axis and
the curve y = f(−x) is said to be the reflexion of f about the y-axis.
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86 Example Figure 2.26 shews the graph of the function f . Figure 2.27 shews the graph of its reflexion a

about the x-axis, and figure 2.28 shews the graph of its reflexion b about the y-axis.

−5
−4
−3
−2
−1

0
1
2
3
4
5

−5−4−3−2−1012345
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Figure 2.26: y = f(x).
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Figure 2.27: y = −f(x).
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Figure 2.28: y = f(−x).
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Figure 2.29: y =
−f(−x).

2.2.3 Distortions

87 Theorem Let f be a function and let V 6= 0 and H 6= 0 be real numbers. If (x0, y0) is on the graph of f ,

then (x0, Vy0) is on the graph of g , where g(x) = Vf(x), and if (x1, y1) is on the graph of f , then
(x1

H
, y1

)

is

on the graph of j, where j(x) = f(Hx).

Proof: Let Γf , Γg , Γj denote the graphs of f, g, j respectively.

(x0, y0) ∈ Γf ⇐Ñ y0 = f(x0) ⇐Ñ Vy0 = Vf(x0) ⇐Ñ Vy0 = g(x0) ⇐Ñ (x0, Vy0) ∈ Γg .

Similarly,

(x1, y1) ∈ Γf ⇐Ñ y1 = f(x1) ⇐Ñ y1 = f
(x1

H
· H
)

⇐Ñ y1 = j
(x1

H

)

⇐Ñ
(x1

H
, y1

)

∈ Γj.

❑

88 Definition Let V > 0, H > 0, and let f be a function. The curve y = Vf(x) is called a vertical distortion
of the curve y = f(x). The graph of y = Vf(x) is a vertical dilatation of the graph of y = f(x) if V > 1 and a
vertical contraction if 0 < V < 1. The curve y = f(Hx) is called a horizontal distortion of the curve y = f(x)
The graph of y = f(Hx) is a horizontal dilatation of the graph of y = f(x) if 0 < H < 1 and a horizontal
contraction if H > 1.
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Figure 2.30: y = f(x)
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Figure 2.31: y =
f(x)
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Figure 2.32: y = f(2x)

−7
−6
−5
−4
−3
−2
−1

0
1
2
3
4
5
6
7

−7−6−5−4−3−2−10 1 2 34 5 6 7

b

b b
b

bb

b

b

b b

Figure 2.33: y =
f(2x)

2
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89 Example Consider the function f whose graph appears in figure 2.30.

In figure 2.31. we have the graph of the function a with a(x) =
f(x)

2
.

In figure 2.32 we have the graph of the function b with b(x) = f(2x).

In figure 2.33 we have the graph of the function c with c(x) =
f(2x)

2
.

Homework

2.2.1 Problem For the functional curve y = f(x) in figure 2.34, draw y = f(x + 1), y = f(1 − x) and
y = −f(1 − x).

−5
−4
−3
−2
−1

0
1
2
3
4
5

−5−4−3−2−1 0 1 2 3 4 5

b b

b b

b

b

b

b

b

Figure 2.34: Problem 2.2.1.
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3 Introduction to the Infinitesimal Calculus

3.1 Continuity

90 Definition A function f is continuous at x = a if as ε Ï 0,

f(a + ε) = f(a) + o (1) .

This means, essentially, that if x → a, then f(x) → f(a).

91 Example Let K ∈ R. Demonstrate that the constant function

f :
R Ï R

x 7Ï K

is continuous.

Solution: ◮ Let a ∈ R be fixed. Then

f(a + ε) = K = K + 0 = K + o (1) = f(a) + o (1) ,

proving that a constant function is continuous. ◭

92 Example Demonstrate that the identity function

Id :
R Ï R

x 7Ï x

is continuous.

Solution: ◮ Let a ∈ R be fixed. Then

Id(a + ε) = a + ε.

Since ε Ï 0 means the same as ε = o (1), we have proved that

Id(a + ε) = a + ε = Id(a) + o (1) ,

and so the identity function is continuous. ◭

93 Example Demonstrate that the square function

Sq :
R Ï R

x 7Ï x2

is continuous.
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Solution: ◮ Let a ∈ R be fixed. Then

Sq(a + ε) = a2 + 2aε + ε2.

Since a is fixed, ε Ï 0 implies that 2aε = o (1). Also, ε2 = o (1), and so we have proved that

Sq(a + ε) = a2 + 2aε + ε2 = Sq(a) + o (1) + o (1) = Sq(a) + o (1) ,

and so the square function is continuous. ◭

94 Example If

f(x) =































√
x + 2 + b if − 2 ≤ x < 0

a + 2x if 0 ≤ x < 1

1 − 2x2 if x ≥ 1

is continuous in its domain of definition, determine the value of (a, b).

Solution: ◮ The conditions stipulate that

f(0−) = f(0+) ÍÑ
√

2 + b = a, f(1−) = f(1+) ÍÑ a + 2 = −1,

whence a = −3 and b = −3 −
√

2. ◭

95 Theorem Let f and g be continuous at x = a. Then f + g and fg are also continuous at x = a.

Proof: We are given that as ε Ï 0,

f(a + ε) = f(a) + o (1) , g(a + ε) = g(a) + o (1) .

Then

(f +g)(a+ε) = f(a+ε)+g(a+ε) = f(a)+o (1)+g(a)+o (1) = f(a)+g(a)+o (1) = (f +g)(a)+o (1) ,

proving that f + g is continuous at x = a.

Similarly,

(fg)(a + ε) = f(a + ε) · g(a + ε)

= (f(a) + o (1)) · (g(a) + o (1))

= f(a)g(a) + o (f(a)) + o (g(a)) + o (1)

= (fg)(a) + o (1) ,

since f(a) and g(a) are constants. This proves that fg is continuous at x = a. ❑

96 Theorem (Law of Inertia) If g is continuous at x = a and g(a) 6= 0, then there exists a neighbourhood
of x = a where g keeps the same sign as g(a).

Proof: We are given that
g(a + ε) = g(a) + o (1) .



31

Chapter 3

The quantity o (1) will eventually (as ε Ï 0) be smaller in absolute value than, say
|g(a)|

2
. But

then this means that

g(a+ε) ≈ g(a)+
|g(a)|

2
ÍÑ g(a)− g(a)

2
< g(a+ε) < g(a)+

g(a)

2
ÍÑ g(a)

2
< g(a+ε) <

3g(a)

2
,

and so g(a + ε) keeps the same sign as g(a) for a sufficiently small neighbourhood of a. ❑

97 Lemma As ε → 0,
1

1 + o (1)
= 1 + o (1) .

Proof: For if |t| < 1 then

1 − t2 < 1 ÍÑ (1 + t)(1 − t) < 1 ÍÑ 1 − t <
1

1 + t
.

Now, if 0 < t < 1 then 1 < 1 + t and so
1

1 + t
< 1, obtaining

1 − t <
1

1 + t
< 1, 0 < t < 1,

which gives the lemma in this case.

Let us assume now that −1

2
< t < 0. We claim that

1

1 + t
< 1 − t + 2t2.

To prove this, observe that

−1

2
< t ÍÑ 1 + 2t > 0 ÍÑ 1 + t > −t > 0,

and so

0 < t2(1 + 2t) ÍÑ 1 < 1 + t2 + 2t3

ÍÑ 1 < 1 − t2 + 2t2 + 2t3

ÍÑ 1 < (1 + t)(1 − t) + (1 + t)2t2

ÍÑ 1

1 + t
< 1 − t + 2t2,

as was to be shewn. Hence, for −1

2
< t < 0, we have

1 − t <
1

1 + t
< 1 − t + 2t2,

which gives the lemma in the remaining case. ❑

98 Theorem If g is continuous at x = a and g(a) 6= 0, then
1

g
is also continuous at x = a.
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Proof: By Theorem 96, for sufficiently ε close 0, g(a + ε) 6= 0. Hence

(

1

g

)

(a + ε) =
1

g(a + ε)

=
1

g(a) + o (1)

=
1

g(a)
· 1

1 + o
(

1

g(a)

)

=
1

g(a)
· 1

1 + o (1)

=
1

g(a)
· (1 + o (1))

=
1

g(a)
+ o

(

1

g(a)

)

=
1

g(a)
+ o (1) ,

by Lemma 97. This proves that
1

g
is continuous at x = a.

❑

99 Corollary If the functions f and g are continuous at x = a and if g(a) 6= 0, then
f

g
is continuous at

x = a.

Proof: Immediate from theorems 95 and 98. ❑

100 Corollary (Polynomials are continuous functions) Let p : R → R be a polynomial with real coeffi-
cients. Then p is continuous at every a ∈ R.

Proof: The proof is by induction on the degree on the degree of p. If deg p = 0, then p is a
constant function, which is continuous by example 91.

If deg p = 1 then p(x) = ax+b, for some constants a, b. Since the identity function is continuous
by example 92, the function x 7Ï ax is continuous being the product of two continuous functions
x 7Ï x and x 7Ï a. We then see that p is the sum of the continuous functions x 7Ï ax and
x 7Ï b.

Assume now that any polynomial of degree n − 1 is continuous at x = a. Then if

p(x) = anxn + an−1xn−1 + · · · + a1x + a0 = x(anxn−1 + an−1xn−2 + · · · + a1) + a0 := xq(x) + a0,

where deg q(x) = n − 1. By the induction hypothesis, q(x) is continuous at x = a. By example
92, the identity functions is continuous, and so x 7Ï xq(x) is the product of two continuous
functions, and hence continuous. Since the constant function x 7Ï a0 is continuous, p is then
the sum of two continuous functions and hence continuous.

❑
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101 Corollary (Rational Functions are Continuous) Let p(x) and q(x) be two polynomials with real coef-
ficients. Let Z = {x ∈ R : q(x) = 0}. Then the rational function

r :
R \ Z Ï R

x 7Ï p(x)

q(x)

is continuous.

Proof: This is immediate from Corollary 100 and Theorem 98. ❑

f(a)

f(b)

t

sa b

Figure 3.1: Intermediate Value Theorem.

f(a)

f(b)

t

sa b

Figure 3.2: Intermediate Value Theorem.

102 Theorem Let g be continuous at x = a and f continuous at x = g(a). Then f ◦ g is continuous at x = a.

Proof: We are given that as ε → 0, then

f(g(a) + ε) = f(g(a)) + o (1) , g(a + ε) = g(a) + o (1) .

We must shew that
(f ◦ g)(a + ε) = (f ◦ g)(a) + o (1) .

We have

(f ◦ g)(a + ε) = f(g(a + ε)) = f(g(a) + o (1)) = f(g(a)) + o (1) = (f ◦ g)(a) + o (1) ,

as was to be shewn. ❑

103 Definition Let f : Dom (f) → R and assume ]a ; b[ ⊆ Dom (f). We say that f is continuous in ]a ; b[ if
f is continuous at every point x ∈ ]a ; b[.

104 Definition Let f : Dom (f) → R and assume [a ; b] ⊆ Dom (f). We say that f is continuous in [a ; b] if f

is continuous at every point x ∈ ]a ; b[ and if f(a+) = f(a) and f(b−) = f(b).

105 Theorem (Darboux’s Intermediate Value Theorem) Let f : [a ; b] → R be continuous in [a ; b]. Let
m = min(f(a), f(b)) and M = max(f(a), f(b)). Then, for every t ∈ [m ; M], there exists s ∈ [a ; b] such that
f(s) = t.
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Proof: We shall not give a rigorous proof of this assertion, but refer the reader to figures 3.1
and 3.2. Since there are no breaks in the graph, the graph will not “jump over” the horizontal
line y = t. ❑

106 Corollary A continuous function defined on an interval maps that interval into an interval.

Proof: This follows at once from the Intermediate Value Theorem and the definition of an
interval. ❑

107 Theorem (Bolzano’s Theorem) If f : [u ; v] Ï R is continuous and f(u)f(v) < 0, then there is a w ∈
]u ; v[ such that f(w) = 0.

Proof: This follows at once from the Intermediate Value Theorem by putting a = min(f(u), f(v)) <

0 and b = max(f(u), f(v)) > 0 . ❑

108 Corollary Every polynomial of odd degree and real coefficients has at least one real root.

Proof: Since p(−∞) and p(+∞) have opposite sign, this follows by the Intermediate Value
Theorem. ❑

109 Example Demonstrate that the polynomial p(x) = x5 − x − 1 has a root α in [1 ; 2]. Further, find an

interval of length
1

10
or smaller that contains this root.

Solution: ◮ Observe that p(1) = −1 < 0 and p(2) = 29 > 0, and so, since the polynomial
changes sign in [1 ; 2], by Bolzano’s Theorem, the polynomial has a root α ∈ [1 ; 2]. In fact, we
find

p(1.1) ≈ −0.5, p(1.2) ≈ 0.3,

and so α ∈ [1.1 ; 1.2], which is an interval of length
1

10
containing the zero. Still

p(1.15) ≈ −.14, p(1.17) ≈ 0.02,

meaning that α ∈ [1.15 ; 1.17]. This interval has length 1.17 − 1.15 = 0.02 =
1

50
, so we have

done better than the required
1

10
.

◭

110 Theorem (Weierstrass Theorem) A continuous function f : [a ; b] Ï R attains a maximum and a mini-
mum on [a ; b].

Proof: By Darboux’s Theorem and by Bolzano’s Theorem, f ([a ; b]) is a closed finite interval.
The minimum sought is the left endpoint of this interval and the maximum sought is the right
endpoint of this interval. ❑

Homework

3.1.1 Problem Given that the equation x7 − x6 − 2x4 + x3 + 1 = 0 has exactly three different real roots, find
intervals, of length 1 or shorter, containing each root.
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3.1.2 Problem Let p(x), q(x) be polynomials with real coefficients such that

p(x2 + x + 1) = p(x)q(x).

Prove that p must have even degree.

3.1.3 Problem A function f defined over all real numbers is continuous and for all real x satisfies

(f(x)) · ((f ◦ f)(x)) = 1.

Given that f(1000) = 999, find f(500).

3.1.4 Problem Suppose that f : [0 ; 1] Ï [0 ; 1] is continuous. Prove that there is a number c in [0 ; 1] such
that f(c) = 1 − c.

3.1.5 Problem (Universal Chord Theorem) Suppose that f is a continuous function of [0 ; 1] and that f(0) =
f(1). Let n be a strictly positive integer. Prove that there is some number x ∈ [0 ; 1] such that f(x) = f(x+1/n).

3.2 Graphical Differentiation

In this section we will take a very informal approach to differentiation. A more formal approach will be given
in the next section.

111 Definition Let f be a continuous function and let A(a, f(a)) be a point on the graph of the function. We
say that f is smooth at A if upon imagining a particle travelling at some steady speed along the curve, then
the particle does not experience an abrupt change of direction.

b

A

Figure 3.3: Smooth
curve at A.

b

A

Figure 3.4: Corner at A.

b

A

Figure 3.5: Cusp at A.

b

A

Figure 3.6: Tangent line
at x = a.

112 Example Figure 3.3 gives an example of a smooth curve. The curve in figure 3.4 has a “sharp corner”
at A and it is not smooth. The curve in figure 3.5 is a “cusp.”

113 Definition If f is an affine function, we define the tangent line at any point A(a, f(a)) to be the line that
is the graph of f . Otherwise, if f is a smooth function at the point A(a, f(a)), then tangent line at A is the
unique line with the following properties:

1. for a sufficiently small neighbourhood of A, the line just touches the curve at A.

2. for this sufficiently small neighbourhood of A, the portion of the curve inside the neighbourhood is on
only one side of the line.

The derivative of f at x = a, denoted by f ′(a), is the slope of the tangent line at x = a.
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114 Example Figure 3.6 gives an example of the tangent line to a curve.

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5

Figure 3.7: Example 115.

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5

b

Figure 3.8: Example 115.

115 Example For the curve in figure, find, approximately, the value of f ′(1).

Solution: ◮ We draw a line through the point (1, f(1)) that just grazes the curve, as in figure
3.8. We compute the slope of this line:

3 − (−1)

2 − 0
= 2.

Hence we find f ′(1) = 2.

◭

116 Definition If a function f is differentiable at every point x of its domain, then the derivative function of
f , denoted by f ′, is the function with assignment rule x 7Ï f ′(x).

Given the graph of a smooth curve, we can approximately obtain the graph of its derivative by taking the
following steps.

1. We divide up the domain of f into intervals of the same length.

2. For each endpoint x of an interval above, we look at the point (x, f(x)) on the graph of f .

3. We place a ruler so that it is tangent to the curve at (x, f(x)).

4. We find the slope of the ruler. Recall that any two points on the tangent line (the ruler) can be used to
find the slope.

5. We tabulate the slopes obtained and we plot these values, obtaining thereby an approximate graph of f ′.

To further aid our graphing of the derivative, we make the following observations.

1. If the function increases, then the slope of the tangent is positive.

2. If the function decreases, then the slope of the tangent is negative.
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3. If the curve is convex, then the slope of the tangent increases.

4. If the curve is concave, then the slope of the tangent decreases.

See figures 3.9 through 3.12 for several examples.

Figure 3.9: Increasing and convex. Figure 3.10: Decreasing and convex.

Figure 3.11: Increasing and concave. Figure 3.12: Decreasing and concave.

117 Example Find an approximate graph for the derivative of f given in figure 3.13.

Solution: ◮ Observe that from the remarks following figure 3.10, we expect f ′ to be positive in
[−1.4; −0.6], since f increases there. We expect f ′ to be 0 at x = −0.6, since f appears to have
a (local) maximum there. We expect f ′ to be negative in [−0.6; 0.6] since f decreases there. We
expect f ′ to be 0 at x = 0.6, since f appears to have a (local) minimum there. Finally we expect
f ′ to be positive for [0.6; 1.4] since f is increasing there.

In our case we obtain the following (approximate) values for f ′(x).

x −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

f ′(x) 4.88 3.32 2 0.92 0.08 −0.52 −0.88 −1 −0.88 −0.52 0.08 0.92 2 3.32 4.88

An approximate graph of the strong derivative appears in figure 3.14. ◭
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−2

−1

0

1

2

−2 −1 0 1 2

Figure 3.13: Example 117. y = f(x)

−2

−1

0

1

2

−2 −1 0 1 2

Figure 3.14: Example 117. y = f ′(x)

118 Example Figure 3.16 gives an approximate graph of the derivative of the graph appearing in figure 3.15.
We see that the curve is increasing and so the derivative is positive. As the curve travels the interval ]−1 ; 0[,
the slope of the tangent is going from almost horizontal (slope 0) to almost vertical (infinite slope). At x = 0
the tangent is vertical, and so the derivative has a pole there. As the curve travels the interval ]0 ; +1[, the
slope of the tangent going from almost vertical to almost 0.

−1

0

1

−1 0 1

Figure 3.15: Example 118. y = f(x)

−1

0

1

−1 0 1

Figure 3.16: Example 118. y = f ′(x)

To obtain the graph of the derivative above, we have served ourselves of the table below.

x −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

f ′(x) 0.3 0.4 0.5 0.6 1.0 +∞ 1.0 0.6 0.5 0.4 0.3

Homework

3.2.1 Problem Draw an example of a curve that is everywhere continuous, but fails to be differentiable for
x ∈ {−1, 0, 1}.

3.2.2 Problem Draw an example of a curve f that is everywhere continuous, differentiable in R\ {−2, 2}, and
such that f ′(x) = −1 for x < −2, f ′(x) = 0 for −2 < x < 2 and f ′(x) = 1 for x > 2.

3.2.3 Problem Draw an example of a curve f that is continuous and differentiable in R \ {0}, and such that
f(0+) = +∞, f ′(0+) = +∞, f(0−) = −∞, f ′(0−) = −∞, f ′(−∞) = 0, f ′(+∞) = 0, f(1) = 1 and f(−1) = −1.
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3.2.4 Problem Draw an example of an everywhere differentiable curve y = f(x) with

f(−2) = f(0) = f(2) = 0, f(−1) = 4, f(1) = −2, f ′(−1) = f ′(0) = f ′(1) = f ′(2) = 0,

f(+∞) = 0, f(−∞) = −2, f ′′(x) > 0 for x ∈ ]−∞ ; −2[ , f ′′(x) < 0 for x ∈
]

+
5

2
; +∞

[

or explain why such a curve does not exist.

3.2.5 Problem Use the graph in figure 3.17 below to complete the following table for a function f . Also, make
a rough sketch of f ′.

x −1 −0.4 −0.2 0 0.2 0.4 1

f(x)

f ′(x)

−1

0

1

−1 0 1

Figure 3.17: Problem 3.2.5.

3.2.6 Problem Use the graph in figure 3.18 below to complete the following table for a function f . Also, make
a rough sketch of f ′.

x −1 −0.4 −0.2 0 0.2 0.4 1

f(x)

f ′(x)

−1

0

1

−1 0 1

Figure 3.18: Problem 3.2.6.

3.3 The Strong Derivative

Given a finite number of points, we can find infinitely many curves passing through them. See for example
figure 3.19, where we see three very different curves f, g, h each simultaneously passing through the points
A, B, C. Thus plotting a few points of the graph of a function can give a misleading picture.
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b

b

b

A

C

B

f
g

h

Figure 3.19: A few points do not a graph determine.

By the same token, given a formula, the plotting of a few points does not give the salient features of a graph.
For example, let us say that we wanted to graph y = 4x − x3. In figures 3.20 through 3.23 we have chosen
a few selected points on the curve and interpolated between them through lines. But relying on this method
does not give proof that the graph will not have more turns or bends, say, or that it will grow indefinitely for
values of x of large magnitude.

Figure 3.20: Four
plot points.

Figure 3.21: Seven
plot points.

Figure 3.22: Ten
plot points.

Figure 3.23: One
thousand plot
points.

But for all its faults, the progression of shapes in figures 3.20 through 3.23 suggests that a “reasonable”
graph can be approximated by a series of straight lines. By a “reasonable” graph we mean one that does not
have many sharp turns, does not oscillate wildly, does not have many jumps or many asymptotes, and that it
is mostly continuous and “smooth.” Admittedly, these concepts are vague, but we will gain more insight into
them as we progress.

b
b
(a, f(a))

Figure 3.24: Left secant
through (a, f(a)).

b

b

(a, f(a))

Figure 3.25: Right secant
through (a, f(a)).

b
(a, f(a))

Figure 3.26: Line grazing
(a, f(a)).

How do we choose the lines to approximate a given “reasonable” curve? Given a function f consider the
point (a, f(a)) on the graph of the function. What happens around this point? If we approached a through
values x < a and joined the line with endpoints (x, f(x)) and (a, f(a)), we would obtain a secant line like that
of figure 3.24. If we approached a through values x > a and joined the line with endpoints (a, f(a)) and
(x, f(x)), we would obtain a secant line like that of figure 3.25. Eventually, on getting closer to (a, f(a)) we
obtain a line just barely grazing the curvethat is, “tangent” to the curveat the point (a, f(a)), as in figure
3.26.

In the simplest of cases, if our curve is the line L : y = mx + k, then in a neighbourhood of the point
x = a the tangent line to L should be itself! Given now the formula for a function f and a point (a, f(a)) on
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the graph of f , how do we determine the tangent line to f at (a, f(a))? Recall that if ε Ï 0, then a + ε is in a
neighbourhood of a. The slope of the secant line joining (a + ε, f(a + ε)) and (a, f(a)) is

f(a + ε) − f(a)

a + ε − ε
=

f(a + ε) − f(a)

ε
(3.1)

We denote the valueif there is oneof 3.1 as x Ï ε by f ′(a). Hence for fixed but small ε we have

f(a + ε) − f(a)

ε
≈ f ′(a) ÍÑ f(a + ε) ≈ f(a) + f ′(a)ε.

There is, generally, an error in taking the dextral side as an approximation for the sinistral side on the
above formula. We will settle for having an error of the order of o (ε), which will normally will be a good
compromise for most of the formulæ we will encounter. This prepares the ground for our main definition of
this section.

119 Definition Let f be a function and let a ∈ Dom (f). When there is a number f ′(a) such that

f(a + ε) = f(a) + f ′(a)ε + o (ε) as ε Ï 0

then we say that the function f has a strong derivative f ′(a) or that f is strongly differentiable at x = a.
If we consider the set {x ∈ Dom (f) : f ′(x) exists} then we may form the function x 7Ï f ′(x) with domain
Dom (f ′) = {x ∈ Dom (f) : f ′(x) exists}. We call the function f ′ the strong derivative of f . We will also often

use the symbol
d

dx
f(x) to denote the function x 7Ï f ′(x).

120 Definition If f ′ is itself differentiable, then the function (f ′)′ = f ′′ is the second derivative of f . It is also

denoted by
d2

dx2
f(x). We similarly define the third, fourth, etc., derivatives. It is customary to denote the

first three derivatives of a function with primes, as in f ′, f ′′, f ′′′, and any higher derivative with either roman
numbers or with the order of the derivative enclosed in parenthesis, as in f iv , fv or f (4), f (5), etc.

We will give but two very simple examples of the computation of derivatives. These will be needed in this
chapter. More substantial examples will appear in subsequent chapters.

121 Lemma The strong derivative of a constant function is the 0 function. In symbols, if f is a function with
assignment rule f(x) = k, constant, then for all x, f ′(x) = 0.

Proof: We have
f(x + ε) = k = k + 0 · ε + 0ε2 = k + 0 · ε + o (ε) ,

which proves the assertion. ❑

! For ellipsis we will write (k)′ = 0 or
d

dx
k = 0.

122 Lemma The strong derivative of the identity function x 7Ï x is the constant function x 7Ï 1.

Proof: If f(x) = x we have

f(x + ε) = x + ε = x + 1 · ε + 0ε2 = x + 1 · ε + o (ε) ,

and so f ′(x) = 1. ❑

! For ellipsis we will write (x)′ = 1 or
d

dx
x = 1.
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3.4 Derivatives and Graphs

In this section we prove the remarks preceding figures 3.9 through 3.12, which will help us with the graphing
in subsequent chapters.

123 Theorem If f is strongly differentiable at x then f is continuous at x.

Proof: We have f(x + ε) = f(x) + f ′(x)ε + o (ε). If ε > 0 and ε Ï 0 then f(x + ε) = f(x+) and
similarly if ε < 0 and ε Ï 0 f(x + ε) = f(x−). Hence we have f(x+) = f(x) = f(x−), and f is
continuous at x. ❑

124 Theorem Let f be strongly differentiable at x. If f ′(x) > 0 then f is increasing in a neighbourhood of x,
if f ′(x) < 0 then f is decreasing in a neighbourhood of x.

Proof: We have f(x + ε) − f(x) = f ′(x)ε + o (ε). For ε very small, this means that

f(x + ε) − f(x) ≈ f ′(x)ε,

that is, the sign of f(x + ε) − f(x) is the same as the sign of f ′(x)ε. Thus if ε > 0 and f ′(x) > 0,
then f(x + ε) > f(x), that is, f is increasing. If ε > 0 and f ′(x) < 0, then f(x + ε) < f(x), that is,
f is decreasing. Similar conclusions are reached when considering ε < 0 and the theorem is
proved. ❑

125 Definition If f is strongly differentiable at x and f ′(x) = 0, then we say that x is a stationary point of f .

126 Definition If there is a point a for which f(x) ≤ f(a) for all x in a neighbourhood centred at x = a

then we say that f has a local maximum at x = a. Similarly, if there is a point b for which f(x) ≥ f(b) for
all x in a neighbourhood centred at x = b then we say that f has a local minimum at x = b.

127 Theorem If f is strongly differentiable at x = a, f ′(a) = 0, and f ′ changes from + to − in a neighbourhood
of a then x = a is a local maximum. If f is strongly differentiable at x = b, f ′(b) = 0, and f ′ changes from −
to + in a neighbourhood of b then x = b is a local minimum.

Proof: By Theorem 124, when f ′ changes from + to −, f is increasing and then decreasing in a
neighbourhood of x = a. By Weierstrass’s Theorem (Theorem 110), f assumes a maximum on a
closed neighbourhood containing a. It cannot be to the left of a since the function is increasing
there, and it cannot be to the right of a since the function is decreasing there. Hence the
maximum must be at x = a and so f(x) ≤ f(a) for x in a neighbourhood of a. The result just
obtained applied to −f yields the second half of the theorem. ❑

128 Lemma If f ′ increases in a neighbourhood of x, then f is convex in a neighbourhood of x. Similarly, if
f ′ decreases in a neighbourhood of x, then f is concave in a neighbourhood of x.

Proof: Let ε > 0. Then

f(x) = f(x − ε + ε) = f(x − ε) + f ′(x − ε)ε + o (ε) ,

f(x) = f(x + ε − ε) = f(x + ε) − f ′(x + ε)ε + o (ε) .

Adding,
2f(x) = f(x + ε) + f(x − ε) +

(

f ′(x − ε) − f ′(x + ε)
)

ε + o (ε) .

For ε very small we then have

2f(x) ≈ f(x + ε) + f(x − ε) +
(

f ′(x − ε) − f ′(x + ε)
)

ε.
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If f ′ is increasing then f ′(x − ε) − f ′(x + ε) < 0. Since ε > 0 this implies that

2f(x) < f(x + ε) + f(x − ε),

which means that f is convex in a neighbourhood of x. This result now applied to −f gives the
second half of the theorem. ❑

129 Theorem A twice strongly differentiable -function f is convex in a neighbourhood of x = a if f ′′(a) > 0.
It is concave in a neighbourhood of x = b if f ′′(b) < 0.

Proof: This follows from Lemma 128 and Theorem 124. ❑

130 Example The graph of the strong derivative f ′ of a function f is given in figure 3.27. Then according to
Theorem 127 f has a local minimum at x = −2 and x = 2, and a local maximum at x = 0 and x = 4.

131 Example Figure 3.28 below shews the graph of a function f . At the point A, f ′ > 0 and f ′′ < 0. At B,
f ′ = 0, f ′′ < 0. At C, f ′ < 0, f ′′ < 0. At D, f ′ = 0 and f ′′ > 0. At E, f ′ > 0, f ′′ > 0.

1
2
3
4
5
6

−1
−2
−3

1 2 3 4 5 6−1−2−3−4

b bb b

Figure 3.27: Example 130.

b
b

b

b
bA

B

C D E

Figure 3.28: Example 131.

Homework

3.4.1 Problem Draw an example of a curve p satisfying the following criteria:

1. p is everywhere differentiable,

2. p(−3) = p(0) = p(2) = 0,

3. p(x) < 0 if x ∈ ]−∞ ; −3[ ∪ ]0 ; 2[,

4. p(x) > 0 if x ∈ ]−3 ; 0[ ∪ ]2 ; +∞[,

5. −2 < p(x) <
3

2
for x ∈ [−3 ; 2],

6. p has an inflexion point near x = −1

3
,

7. p(−∞) = −∞, p(+∞) = +∞.
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3.4.2 Problem Draw an example of a curve f satisfying the following criteria:

1. f is everywhere differentiable,

2. f ′(x) > 0 for all x ∈ R,

3. f(−∞) = −1, f(+∞) = 1,

4. f ′′(x) > 0 for x < 0, f ′′(x) < 0 for x > 0,

5. f(0) = f ′′(0) = 0.

3.4.3 Problem In figure 3.29 below the graph of f ′ is given for a certain function f : [0 ; 6] → R. Find the
x-coordinate of the local maximum of f . How many inflexion points does the graph of f have?

3.4.4 Problem The graph of the derivative f ′ of a certain function f defined on [−3; 2] is given in figure 3.30
below.

Find the x-coordinate of the local minimum of f .

1

2

3

4

5

6

−1

−2

−3

−4

−5

−6

1 2 3 4 5 6−1−2−3−4−5−6

b
b

b

b

b

Figure 3.29: Problem 3.4.3.

1

2

3

4

5

6

−1

−2

−3

−4

−5

−6

1 2 3 4 5 6−1−2−3−4−5−6

Figure 3.30: Problem 3.4.4.

3.4.5 Problem Suppose f : R → R is everywhere differentiable and that f(+∞) = K, a constant. Must
f ′(+∞) = 0?

3.5 Graphical Integration

We now consider the following problem: Given a sufficiently “decent curve”1, what is the area bounded by the
curve and the x-axis in a given finite interval?

1A curve that pays its taxes, observes the Torah, and goes to synagogue every Shabath. . . .
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a b

Figure 3.31:

∫ b

a

f ≥ 0

c d

Figure 3.32:

∫ d

c

f ≤ 0

1
2
3
4

−1
−2
−3
−4
−5
−6

1 2 3 4−1−2−3−4−5−6

b b

b

b b b

Figure 3.33: 133

132 Definition Let f be a function. We denote the signed area between f and the x-axis between x = a and

x = b by

∫ b

a

f or

∫ b

a

f(x)dx. The symbol

∫ b

a

f is read “the (definite) integral of f from a to b. See figures

3.31 and 3.32.

! We will normally use the notation

∫ b

a

f in the cases when we are given a picture of f , and

we will relegate the notation

∫ b

a

f(x)dx when we are given a formula for f . Also, there is nothing

holy about which variable of integration to use. Thus

∫ b

a

f(x)dx =

∫ b

a

f(t)dt =

∫ b

a

f(u)du, etc.

133 Example Figure 3.33 is composed of lines and semicircles. One finds

1.

∫ −3

−4

f = 2(1) since the figure between the curve and the x-axis is a rectangle of base 1 and height 2.

2.

∫ −2

−3

f =

(

2 + 4

2

)

1 = 3 since the figure between the curve and the x-axis is a trapezoid with bases of

length 2 and 4 and height 1.

3.

∫ −2

−4

f = 2 + 3 = 5 by adding the areas of the rectangle and the trapezoid.

4.

∫ 0

−2

f = 2. The figure consists of two triangles, one with height 4 above the x-axis (and hence having

positive area, and another one with height 2 below the x-axis (thus having negative area). To find the
area we enclose both triangles in a rectangle ABCD with vertices at A = (−2, 4), B = (0, 4), C = (0, −2),
D = (−2, −2). Put E = (−2, 0) and F = (0, 0). Observe that the area of ABCD is the area of rectangle
ABFE minus the area of rectangle CDEF hence it is 2(4) − 2(2) = 4. The area of the triangles is half
this, that is, 2. Another approach is the following. Let a be the length of base of the triangle with positive
area and let b the length of the base of the triangle with negative area. Then a + b = 2. Also, by similar

triangles,
4

a
=

2

b
, and hence a = 2b. Thus 2b + b = 2 ÍÑ b =

2

3
and a =

4

3
. Whence the area of the

two triangles is 1
2
( 4

3
)(4) − 1

2
( 2

3
)(2) = 2, as before.

5.

∫ 0

−1

f = −5

9
. Observe that the area sought is composed of a triangle of base 1 − 2

3
=

1

3
(with positive

area) and the triangle of the preceding part of base
2

3
and height 2 (with negative area). Again, by similar

triangles, if h is the height of the triangle of base
1

3
then

h
1
3

=
2
2
3

, thus h = 1. Thus the area sought is

1
2
( 1

3
)(1) − 1

2
( 2

3
)(2) = − 1

2
.
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6.

∫ 2

0

f =
π

2
since the figure between the curve and the x-axis is a semicircle of radius 1.

7.

∫ 1

0

f =
π

4
since the figure between the curve and the x-axis is a quarter circle of radius 1.

8.

∫ 3

0

f =
π

2
− π

4
=

π

4
by adding the (positive) area of the semicircle to the (negative) area of the quarter

circle.

9.

∫ 4

0

f = 0 since the areas of the semicircles cancel each other.

In the particular case when the function is a straight line, it is easy to compute the integral.

1
2
3

−1
−2
−3
−4
−5

1 2 3−1−2−3−4−5

Figure 3.34: Example 134.

134 Example Find the area of the plane region

{(x, y) ∈ R2 : 1 ≤ x ≤ 3, 0 ≤ y ≤ x

2
+ 1}.

Solution: ◮ This is the area under the line y =
x

2
+ 1 and above the x-axis, bounded by the

vertical lines x = 1 and x = 3, as depicted in figure 3.34. Since this is a trapezoid with height 2

and parallel bases of length
3

2
and

5

2
, we obtain

∫ 3

1

(x

2
+ 1
)

dx =
2

2

(

3

2
+

5

2

)

= 4.

◭

Homework

3.5.1 Problem The graph of a function f defined on [−3; 4] is given in figure 3.35 below. It is composed of a
semicircle and lines.

If g(x) =

∫ x

−3

f(t)dt , find g(2). Where does g attain its absolute maximum value?
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1

2

3

4

5

−1

−2

−3

−4

−5

1 2 3 4 5−1−2−3−4−5

Figure 3.35: Problem 3.5.1.

3.5.2 Problem Give a geometric argument to justify that

∫ t

0

xdx =
t2

2
.

3.5.3 Problem Give a geometric argument to justify that

∫ 3

−2

(2x + 1)dx = 10.

3.5.4 Problem Give a geometric argument to justify that

∫ 1

−1

√
1 − x2dx =

π

2
.

3.6 The Fundamental Theorem of Calculus

In this section we seek to establish a link between differentiation and integration.

135 Definition Let f be a function. Then t 7Ï
∫ t

a

f is the function that for each value of t gives the area

between the graph of f and the x-axis bounded by vertical lines at x = a and x = t. We prefer to write, in

brief,

∫

a

f rather than t 7Ï
∫ t

a

f .

From the additivity of area, one has

136 Theorem (Chasles’ Rule)

∫ b

a

f +

∫ c

b

f =

∫ c

a

f .

Letting a = b = c in Chasles’ Rule 136 one obtains

∫ a

a

f +

∫ a

a

f =

∫ a

a

f ÍÑ
∫ a

a

f =

∫ a

a

f −
∫ a

a

f

hence

137 Theorem

∫ a

a

f = 0.

Letting a = c and using Rule 137 one obtains

∫ b

a

f +

∫ a

b

f =

∫ a

a

f ÍÑ
∫ a

a

f =

∫ a

a

f −
∫ a

b

f = −
∫ a

b

f,

whence
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138 Theorem

∫ b

a

f = −
∫ a

b

f .

Given constants a and b how are

∫

a

f and

∫

b

f related? We have

∫ b

a

f =

∫ t

a

+

∫ b

t

f =

∫ t

a

−
∫ t

b

f ÍÑ
∫ t

a

=

∫ b

a

f +

∫ t

b

f,

hence

∫

a

f and

∫

b

f differ by the constant

∫ b

a

f .

b

b

b bb

ta

∫ t

a

f

t + ε

Figure 3.36: Fundamental Theorem of Calculus.

b bb

b CCbAA

b
BB

ta t + ε

∫ t+ε

t

f

f
(t

)

Figure 3.37: Fundamental Theorem of Calculus.

The area in diagram 3.37 below is given exactly by

∫ t+ε

t

f =

∫ t+ε

a

f −
∫ t

a

f.

If ε is very small, the region is nearly trapezoidal, composed of a rectangle of height f(t) and width ε and
△ABC of height f(t + ε) − f(t) and width ε. Hence, for ε very small

∫ t+ε

a

f −
∫ t

a

f ≈ f(t)ε +
ε

2
(f(t + ε) − f(t)).

If, besides, f is continuous, then, as ε → 0, f(t + ε) − f(t) = o (1). Whence we deduce,

∫ t+ε

a

f −
∫ t

a

f ≈ f(t)ε +
ε

2
(f(t + ε) − f(t)) = f(t)h + o (ε) .

If we put I(t) =

∫ t

a

f , what we are saying is that as ε → 0,

I(t + ε) ≈ I(t) + f(t)ε + o (ε) ÍÑ I ′(t) ≈ f(t).
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Upon replacing the approximation symbol with true equality we obtain the following link between derivatives
and integrals.

139 Theorem (First Form of the Fundamental Theorem of Calculus) If f is continuous on [a ; b] and x ∈
[a ; b] then

I ′(t) =
d

dt

∫ t

a

f = f(t).

140 Definition A primitive (or antiderivative) of a function f is a function F such that F ′ = f .

By the First Form of the Fundamental Theorem of Calculus, I(t) =

∫ t

a

f(x)dx is a primitive of f(x). If c is a

constant and F(t) =

∫ t

c

f(x)dx, then

I(t) − F(t) =

∫ t

a

f(x)dx −
∫ t

c

f(x)dx =

∫ t

a

f(x)dx +

∫ c

t

f(x)dx =

∫ c

a

f(x)dx,

whence I(t) and F(t) differ by a constant. Since by Lemma 121, the derivative of a constant function is 0, we
have

(I(t) − F(t))′ = 0.

Assuming for the moment that the derivative of a sum is the sum of the derivatives (a fact that will be proved
in Theorem 153), we have

I ′(t) − F ′(t) = (I(t) − F(t))′ = 0 ÍÑ I ′(t) = F ′(t),

which means that any two primitives of f only differ by a constant. This means that we may write

F(t) =

∫ t

a

f(x)dx + k,

for some constant k. This in turn gives

F(b) − F(a) =

(
∫ b

a

f(x)dx + k

)

−
(
∫ a

a

f(x)dx + k

)

=

∫ b

a

f(x)dx,

since by Theorem 137,

∫ a

a

f(x)dx = 0. Furthermore, since

d

dx
F(x) = f(x),

let us write then
dF(x) = f(x)dx. (3.2)

We have then demonstrated the following theorem.

141 Theorem (Second Form of the Fundamental Theorem of Calculus) Let the function f be continuous
on [a ; b] and let F be a primitive of f . Then

∫ b

a

f(x)dx =

∫ b

a

dF(x) = F(x)
∣

∣

∣

b

a
= F(b) − F(a).
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142 Example Since x 7Ï x + 1

x8 + 1
is continuous everywhere, the First Form of Fundamental Theorem of

Calculus asserts that

d

dx

∫ x

a

t + 1

t8 + 1
dt =

x + 1

x8 + 1
.

Notice that at this stage, we have no idea how to obtain

∫ x

a

t + 1

t8 + 1
dt.

1
2
3
4
5

−1
−2
−3
−4
−5

1 2 3 4 5−1−2−3−4−5

Figure 3.38: x 7Ï f(x).

1
2
3
4
5

−1
−2
−3
−4
−5

1 2 3 4 5−1−2−3−4−5

b

b
b

b

b

b

b

b
b

b

b

Figure 3.39: t 7Ï
∫ t

−5

f .

1
2
3
4
5

−1
−2
−3
−4
−5

1 2 3 4 5−1−2−3−4−5
b

b

b

b b b b b

b

b

b

Figure 3.40: t 7Ï d

dt

∫ t

−5

f .

143 Example Given the curve f : [−5 ; 5] → R in figure 3.38 we have the graph of a function f . We tabulate

approximate values of

∫

−5

f below, and plot these in the graph 3.39.

t −5 −4 −3 −2 −1 0 1 2 3 4 5

I(t) =

∫ t

−5

f 0 −3

2
−2 −3

2
−1

2

1

2

3

2

5

2
3

5

2
1

We then tabulate approximate values of I ′(t), and plot them in the graph 3.40.

t −5 −4 −3 −2 −1 0 1 2 3 4 5

I ′(t) −2 −1 0 1 1 1 1 1 0 −1 −2

It seems that the graphs of x 7Ï f(x) and x 7Ï I ′(x) resemble one another, giving empirical evidence of the
First Form Fundamental Theorem of Calculus.

Homework

3.6.1 Problem For the function f : [−1 ; 1] → R in figure 3.41 below, graph F : x 7Ï
∫ x

−1

f , x ∈ [−1 ; 1] and

F ′ : x 7Ï d

dx

∫ x

−1

f , x ∈ [−1 ; 1].
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0

1

0 1

Figure 3.41: Problem 3.6.1.

1
2
3
4

−1
−2
−3
−4
−5
−6

1 2 3 4−1−2−3−4−5−6
b

b b

b b

b

Figure 3.42: f for problem 3.6.2.

3.6.2 Problem Consider the function f in figure 3.42 below. You may assume it is composed solely of straight
line segments.

1. Draw f ′, the derivative of f .

2. Complete the following table.

∫ −5

−5 f =
∫ −4

−5 f =
∫ −3

−5 f =
∫ −2

−5 f =
∫ −1

−5 f =

∫ 0
−5 f =

∫ 1
−5 f =

∫ 2
−5 f =

∫ 3
−5 f =

∫ 4
−5 f =

3. Complete the following table.

∫ −5
−5 f ′ =

∫ −4
−5 f ′ =

∫ −3
−5 f ′ =

∫ −2
−5 f ′ =

∫ −1
−5 f ′ =

∫ 0

−5 f ′ =
∫ 1

−5 f ′ =
∫ 2

−5 f ′ =
∫ 3

−5 f ′ =
∫ 4

−5 f ′ =

4. Using the table in part 3 or otherwise, draw the graph of
∫

−5
f ′.
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In this chapter we study polynomials and their graphs. In order to do the latter, we demonstrate the Power
Rule, the Sum Rule, the Product Rule, and the Chain Rule for derivatives. We also study the integration of
polynomial functions and some algebraic topics related to the roots of a polynomial.

4.1 Differentiating Power Functions

By a power function we mean a function of the form x 7Ï xα , where α ∈ R. In this chapter we will only
study the case when α is a positive integer.

If n is a positive integer, we are interested in how to graph x 7Ï xn. For n = 0, the function x 7Ï 1 is a
constant function, whose graph is the straight line y = 1 parallel to the x-axis. For n = 1, the function x 7Ï x

is the identity function, whose graph is the straight line y = x, which bisects the first and third quadrant. We
reproduce their graphs below in figures 4.1 through 4.2 for easy reference.

Figure 4.1: x 7Ï 1. Figure 4.2: x 7Ï x.

By the groundwork from the preceding chapter, we know we can gather information about the mono-
tonicity and convexity of the function x 7Ï xn by studying its first and second derivatives. For that we first
establish a series of lemmata.

144 Lemma The strong derivative of the square function x 7Ï x2 is the function x 7Ï 2x.

Proof: If f(x) = x2 we have

f(x + ε) = (x + ε)2 = x2 + 2xε + ε2 = f(x) + 2xε + o (ε) ,

proving the assertion. For ellipsis we will write (x2)′ = 2x or
d

dx
x2 = 2x. ❑

145 Lemma The strong derivative of the cubic function x 7Ï x3 is the function x 7Ï 3x2.
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Proof: If f(x) = x3 we have, using Lemma 144,

(x + ε)3 = (x + ε)(x2 + 2xε + o (ε))

= x3 + 2x2ε + O(xε2) + x2ε + 2xε2 + O(ε3)

= x3 + 3x2ε + o (ε) ,

as ε Ï 0, and so (x3)′ = 3x2 (or
d

dx
x3 = 3x2). ❑

We will now see that the pattern

d

dx
x0 = 0,

d

dx
x1 = 1,

d

dx
x2 = 2x,

d

dx
x3 = 3x2,

is preserved for higher powers of the exponent. Arguing as in Lemma 145, we obtain the following theorem.

146 Theorem (Power Rule) If n is a positive integer,
d

dx
xn = nxn−1.

Proof: If the strong derivative of
d

dx
xn = dn(x), we have

(x + ε)n+1 = (x + ε) (xn + dn(x)ε + o (ε))

= xn+1 + (xdn(x) + xn) ε + o (ε)

from where the strong derivative of xn+1 is xdn(x)+xn. Since d1(x) = 1, we have by recurrence,

d2(x) = xd1(x) + x1 = x · 1 + x = 2x

d3(x) = xd2(x) + x2 = x · (2x) + x2 = 3x2

d4(x) = xd3(x) + x3 = x · (3x2) + x3 = 4x3

d5(x) = xd4(x) + x4 = x · (4x3) + x4 = 5x4

d6(x) = xd5(x) + x5 = x · (5x4) + x5 = 6x5

d7(x) = xd6(x) + x6 = x · (6x5) + x6 = 7x6,

and so, by recursion, dn(x) = nxn−1. ❑

We may express the above result in the “differential” form

dxn = nxn−1dx. (4.1)

147 Example We have

d

dx
x3 = 3x2,

d

dx
x7 = 7x6,

d

dx
x1000 = 1000x999,

etc.
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4.2 Graphs of Power Functions

In this section we discuss how to graph functions with assignment rules of the form x 7Ï xn, where n ∈ N.
Observe that the natural domain of definition for such rules is R.

We already know that the graphs for the cases n = 0 and n = 1 are straight lines. Hence we will focus on
the cases when n ≥ 2.

1

−1

−2

1−1−2

Figure 4.3: y = x2.

1

−1

−2

1−1−2

Figure 4.4: y = x4.

1

−1

−2

1−1−2

Figure 4.5: y = x6.

We will see in Theorem 148 that for even n ≥ 2, the graphs of x 7Ï xn all resemble one another, and look
like those in figures 4.3 through 4.5. For −1 ≤ x ≤ 1, the higher the exponent, the flatter the graph (closer to
the x-axis) will be, since

|x| < 1 ÍÑ · · · < x6 < x4 < x2 < 1.

For |x| ≥ 1, the higher the exponent, the steeper the graph will be since

|x| > 1 ÍÑ · · · > x6 > x4 > x2 > 1.

We will also see that for odd n ≥ 3, the graphs of x 7Ï xn all resemble one another, and look like those
in figures 4.6 through 4.8.

1

−1

−2

1−1−2

Figure 4.6: y = x3.

1

−1

−2

1−1−2

Figure 4.7: y = x5.

1

−1

−2

1−1−2

Figure 4.8: y = x7.

We now address the problem of how to graph x 7Ï xn .

148 Theorem Let n ≥ 2 be an integer and f(x) = xn. Then

• if n is even, f is convex, f is decreasing for x < 0, and f is increasing for x > 0. Also, f(−∞) = f(+∞) =
+∞.



55

Chapter 4

• if n is odd, f is increasing, f is concave for x < 0, and f is convex for x > 0. Also, f(−∞) = −∞ and
f(+∞) = +∞.

Proof: If n ≥ 2 is even, n − 1 ≥ 1 is odd, and n − 2 is even. Now f ′(x) = nxn−1 and f ′′(x) =
n(n − 1)xn−2. Since xn−2 > 0 for all x 6= 0, f ′′(x) > 0 for x 6= 0 and so it is convex. Since
x < 0 ÍÑ xn−1 < 0 ÍÑ f ′(x) < 0, f is decreasing for x < 0. A similar argument shews that f

is increasing for x > 0. It is clear that f(−∞) = f(+∞) = +∞.

If n ≥ 3 is odd, n − 1 ≥ 1 is even, and n − 2 is odd. Now f ′(x) = nxn−1 and f ′′(x) = n(n − 1)xn−2.
Since xn−1 > 0 for all x 6= 0, f ′(x) > 0 for x 6= 0 and so it is increasing. Since x < 0 ÍÑ xn−2 <

0 ÍÑ f ′′(x) < 0, f is concave for x < 0. A similar argument shews that f is convex for x > 0.
It is clear that f(−∞) = −∞ and f(+∞) = +∞. ❑

Homework

4.2.1 Problem Graph the following transformations of power functions.

1. x 7Ï (x + 1)2

2. x 7Ï x2 + 1

3. x 7Ï (x + 1)2 + 1

4. x 7Ï −x3

5. x 7Ï 1 − x3

6. x 7Ï 1 − (x − 1)3

4.3 Integrals of Power Functions

Let n ∈ N and

F(x) =
xn+1

n + 1
.

Since
F ′(x) = xn,

F is a primitive of f : x 7Ï xn and so by the Second Form of the Fundamental Theorem of Calculus (Theorem
141), we deduce the following result.

149 Theorem Let n ∈ N. Then
∫ b

a

xndx =

∫ b

a

d
xn+1

n + 1
=

xn+1

n + 1

∣

∣

∣

b

a
=

bn+1

n + 1
− an+1

n + 1
.

Theorem 149 allows us to find areas of “curvy” regions.

150 Example Find the area of the plane region

{(x, y) ∈ R2 : 1 ≤ x ≤ 2, 0 ≤ y ≤ x2}.

Solution: ◮ This is the area under the curve y = x2 and above the x-axis, bounded by the
vertical lines x = 1 and x = 2, as depicted in figure 4.9. By Theorem 149, this is

∫ 2

1

x2dx =
x3

3

∣

∣

∣

2

1
=

8

3
− 1

3
=

7

3
.

◭
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1
2
3

−1
−2
−3
−4
−5

1 2 3−1−2−3−4−5

Figure 4.9: Example 150.

Homework

4.3.1 Problem Let a ∈ R be a constant and let n ∈ N. Prove that if n is even then
∫ a

−a

xndx =
2

n + 1
an+1

and that if n is odd then
∫ a

−a

xndx = 0.

4.4 Differentiating Polynomials

In this section we prove some standard differentiation rules.

151 Theorem (Constant-Times-Function Rule) If k ∈ R is a real number constant, and f is a strongly
differentiable function at x, then kf is strongly differentiable at x and (kf)′(x) = kf ′(x). Alternatively, in
differential notation,

dkf(x) = kdf(x).

Proof: We have

(kf)(x + ε) = k(f(x + ε))

= k (f(x) + f ′(x)ε + o (ε))

= kf(x) + kf ′(x)ε + o (ε) ,

from where the theorem follows. ❑

152 Example We have proved that (x2)′ = 2x. Hence (−3x2)′ = −3(x2)′ = −3(2x) = −6x.

153 Theorem (Sum Rule) If f, g are strongly differentiable functions at x, then f +g is strongly differentiable
at x and

(f + g)′(x) = f ′(x) + g ′(x).

Alternatively, in differential notation,

d(f(x) + g(x)) = df(x) + dg(x).

Proof: We have

f(x + ε) + g(x + ε) = (f(x) + f ′(x)ε + o (ε)) + (g(x) + g ′(x)ε + o (ε))

= (f(x) + g(x)) + (f ′(x) + g ′(x))ε + o (ε) ,



57

Chapter 4

from where the theorem follows. ❑

154 Example We have proved that (x2)′ = 2x and that (x)′ = 1. Hence (x2 + x)′ = (x2)′ + (x)′ = 2x + 1.

155 Example Let f(x) = 2x3 − x2 + 5x − 1. Find f ′(1) and f ′′(−1).

Solution: ◮ We have

f ′(x) = 2(3x2) − 2x + 5 = 6x2 − 2x + 5, f ′′(x) = 2(6x) − 2 = 12x − 2.

Hence f ′(1) = 9 and f ′′(−1) = −14. ◭

We now develop tools for differentiating more complex formulæ.

156 Theorem (Product Rule) If f, g are are strongly differentiable functions at x, then fg is strongly differ-
entiable at x and then (fg)′(x) = f ′(x)g(x) + f(x)g ′(x). Alternatively, in differential notation,

df(x)g(x) = f(x)dg(x) + g(x)df(x).

Proof: We have

f(x + ε)g(x + ε) = (f(x) + f ′(x)ε + o (ε)) (g(x) + g ′(x)ε + o (ε))

= f(x)g(x) + (f ′(x)g(x) + f(x)g ′(x)) ε + o (ε) ,

from where the theorem follows. ❑

! It is not true in general that (fg)′ = f ′g ′.

157 Example Let f(x) = x3 and g(x) = x4. Then from the Product Rule

(x7)′ = (x3 · x4)′ = x4(x3)′ + x3(x4)′ = x4(3x2) + x4(4x2) = 3x6 + 4x6 = 7x6,

which is what we expect from the Power Rule.

By recurrence we can apply the product rule to more than two functions.

158 Example

(x(x + x2)(1 + x + x2))′ = (x)′(x + x2)(1 + x + x2) + x(x + x2)′(1 + x + x2) + x(x + x2)(1 + x + x2)′

= 1(x + x2)(1 + x + x2) + x(1 + 2x)(1 + x + x2) + x(x + x2)(1 + 2x)

= (x + 2x2 + 2x3 + x4) + (x + 3x2 + 3x3 + 2x4) + (x2 + 3x3 + 2x4)

= 2x + 6x2 + 8x3 + 5x4.

159 Theorem (Chain Rule) If g is strongly differentiable at x and f is strongly differentiable at g(x), then
f ◦ g is strongly differentiable at x and (f ◦ g)′(x) = f ′ (g(x)) g ′(x). Alternatively, in differential notation,

d(f(g(x))) = f ′(g(x))dg(x).
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Proof: We have, putting ε1 = g ′(x)ε + o (ε),

f (g(x + ε)) = f(g(x) + g ′(x)ε + o (ε))

= f(g(x) + ε1)

= f(g(x)) + f ′(g(x))ε1 + O(ε2
1)

= f(g(x)) + f ′(g(x))(g ′(x)ε + o (ε)) + O((g ′(x)ε + o (ε))2)

= f (g(x)) + f ′ (g(x)) g ′(x)ε + o (ε)

and the theorem follows. ❑

160 Example Consider h(x) = (x + 1)2. Then h(x) = (f ◦ g)(x) with f(x) = x2 and g(x) = x + 1. Hence

((x + 1)2)′ = (f ◦ g)′(x) = f ′(g(x))g ′(x) = 2(x + 1)1(1) = 2x + 2.

161 Example
((x2 + x)3)′ = 3(x2 + x)2(2x + 1).

162 Example Using the Product Rule and the Chain Rule,

(x(x + a)2)′ = (x + a)2(x)′ + x((x + a)2)′ = (x + a)2 + 2x(x + a) = (x + a)(3x + a).

163 Example Using the Product Rule and the Chain Rule,

(x(x + a)2(x + b)3)′ = (x + a)2(x + b)3(x)′ + x(x + b)3((x + a)2)′ + x(x + a)2((x + b)3)′

= (x + a)2(x + b)3 + 2x(x + a)(x + b)3 + 3x(x + a)2(x + b)2

= (x + a)(x + b)2((x + a)(x + b) + 2x(x + b) + 3x(x + a))

= (x + a)(x + b)2(6x2 + x(4a + 3b) + ab).

164 Example Let f be strongly differentiable with f(4) = a and f ′(4) = b. If g(x) = x2f(x2), find g ′(2).

Solution: ◮ Using both the Product Rule and the Chain Rule

g ′(x) = 2xf(x2) + x2f ′(x2)(2x) = 2xf(x2) + 2x3f ′(x2).

Hence g ′(2) = 2(2)f(4) + 2(8)f ′(4) = 4a + 16b. ◭

In some situations we may apply the Fundamental Theorem of Calculus.

165 Example Find
d

dx

∫ x2

0

f(t)dt.

Solution: ◮ Put F(x) =

∫ x

0

f(t)dt. By Fundamental Theorem of Calculus, F ′(x) = f(x). By the

Chain Rule,
d

dx

∫ x2

0

f(t)dt =
d

dx
F(x2) = 2xF ′(x2) = 2xf(x2).

◭
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166 Example Let g(x) = x2

∫ x2

0

f(t)dt. Find g ′(x).

Solution: ◮ We use the product rule and example 165

g ′(x) = 2x

∫ x2

0

f(t)dt + x2 d

dx

∫ x2

0

f(t)dt

= 2x

∫ x2

0

f(t)dt + 2x3f(x2).

◭

Homework

4.4.1 Problem Find the following derivatives.

1. f ′(x) if f(x) = x(x − 1)(x + 1)

2. g ′(x) if g(x) = (ax + (bx + (cx + 1)2)3)4

3. h′(x) if h(x) = (x3 + 2)2(x2 + 2x + 2)3.

4. u′(x) if u(x) = x(x − 1)2(x + 2)3

5. v ′(x) if v(x) = 1 − (1 − (1 − (1 − (1 − x2)2)2)2)2

4.4.2 Problem Find a′(x) if a(x) = (1 + x)(1 + x + x2)(1 + x + x2 + x4)

4.4.3 Problem Let p be the polynomial of degree 100

a0x100 + a1x99 + a2x98 + · · · + a99x + a100 = (x − 2)50(2x − 1)50.

Find 100a0 + 99a1 + 98a2 + · · · + 2a98 + a99.

4.4.4 Problem Let f be an everywhere differentiable function and let g = f ◦ f . It is known that

f(1) = 2; f(2) = 3; f ′(1) = 1; f ′(2) = 1, f ′′(1) = −1, f ′′(2) = −1.

Find g ′(1) and g ′′(1).

4.4.5 Problem Consider an even function f : R Ï R whose derivative f ′ exists everywhere and which satisfies

f(1) = 2; f(−2) = 1; f ′(−1) = 1; f ′(2) = 2, f ′′(−1) = 0; f ′′(2) = 3.

If a(x) = xf(x2), find a′′(−1).

4.4.6 Problem Determine
d

dx

∫ x2

x

√
1 + t2dt.

4.5 Integrating Polynomials

Each of the differentiation rules given in the preceding section has a corresponding integration equivalent.

We recall here that the Second Form of the Fundamental Theorem of Calculus asserts that if f is continuous
in [a ; b] and F ′ = f , then

∫ b

a

f(x)dx =

∫ b

a

dF(x) = F(b) − F(a). (4.2)
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Most of the integration problems we will see in this course can be solved by reducing them to the form in 4.2.
The trick is to recognise the integrand as the derivative of some function, most times perhaps, as the result
of a differentiation through the Chain Rule.

167 Example Let f : [1 ; 2] → R be such that f ′ is continuous and suppose f(2) = a and f(5) = b. Determine
∫ 2

1

xf ′(x2 + 1)dx.

Solution: ◮ We recognise the integrand xf ′(x2 + 1) as de derivative of
f(x2 + 1)

2
. Hence

∫ 2

1

xf ′(x2 + 1)dx =

∫ 2

1

d

(

f(x2 + 1)

2

)

=
f(x2 + 1)

2

∣

∣

∣

2

1
=

f(5)

2
− f(2)

2
=

b − a

2
.

◭

168 Example We have

∫ 1

0

(2x + 1)(x2 + 1)2008dx =

∫ 1

0

d

(

(x2 + 1)2009

2009

)

=
(x2 + 1)2009

2009

∣

∣

∣

1

0
=

22009

2009
− 12009

2009
=

22009 − 1

2009
.

169 Example We have

∫ t

0

(2008x2007 + 1004x1003 + 502x501)(x2008 + x1004 + x502)10dx =

∫ t

0

d

(

(x2008 + x1004 + x502)11

11

)

=
(x2008 + x1004 + x502)11

11

∣

∣

∣

t

0

=
(t2008 + t1004 + t502)11

11
.

170 Theorem (Product of Function Times a Constant Rule) Let f be continuous on [a ; b] and let k ∈ R

be a constant. Then
∫ b

a

(kf(x))dx = k

∫ b

a

f(x)dx.

Proof: Let dF(x) = f(x)dx and dG(x) = kf(x)dx. By Theorem 151,

dG(x) = d(kF(x)).

Now, by the Second Form of the Fundamental Theorem of Calculus

∫ b

a

kf(x)dx =

∫ b

a

dG(x) =

∫ b

a

d(kF(x)) = kF(b) − kF(a) = k(F(b) − F(a)) = k

∫ b

a

f(x)dx.

❑

171 Theorem (Integral of a Sum Rule) Let f and g be continuous on [a ; b] Then

∫ b

a

(f(x) + g(x))dx =

∫ b

a

f(x)dx +

∫ b

a

g(x)dx.
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Proof: Let dF(x) = f(x)dx and dG(x) = g(x)dx. Now, by the Second Form of the Fundamental
Theorem of Calculus

∫ b

a

(f(x) + g(x))dx =

∫ b

a

d(F(x) + G(x))

= (F(x) + G(x))
∣

∣

∣

b

a

= (F(b) + G(b)) − (F(a) + G(a))

= F(b) − F(a) + G(b) − G(a)

=

∫ b

a

f(x)dx +

∫ b

a

g(x)dx.

❑

1

−1

1−1

Figure 4.10: Example 172.

172 Example Find the area of the plane region between the curves y = x2 and y = x3.

Solution: ◮ Observe that x2 = x3 ÍÑ x2(1 − x) = 0 ÍÑ x ∈ {0, 1}, and so the curves meet
at x = 0 and x = 1. In the interval 0 ≤ x ≤ 1, y = x2 lies atop of y = x3, as depicted in figure
4.10. By Theorems 149 and 171, this is

∫ 1

0

(x2 − x3)dx =

∫ 1

0

x2dx −
∫ 1

0

x3dx

=

∫ 1

0

d
x3

3
−
∫ 1

0

d
x4

4

=
x3

3

∣

∣

∣

1

0
− x4

4

∣

∣

∣

1

0

=
1

3
− 1

4

=
1

12
.

◭

We will know demonstrate one of the most powerful integration techniques, that of Integration by Parts.
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173 Theorem (Integration by Parts) Let f ′ and g ′ be continuous on [a ; b] Then

∫ b

a

f(x)dg(x) = f(x)g(x)
∣

∣

∣

b

a
−
∫ b

a

g(x)df(x).

Proof: By the Product Rule for derivatives,

d(f(x)g(x)) = f(x)dg(x) + g(x)df(x).

Integrating on both sides and using the Sum Rule for Integrals (Theorem 171),

d(f(x)g(x)) = f(x)dg(x) + g(x)df(x) ÍÑ
∫ b

a

d(f(x)g(x)) =

∫ b

a

f(x)dg(x) +

∫ b

a

g(x)df(x)

ÍÑ f(x)g(x)
∣

∣

∣

b

a
=

∫ b

a

f(x)dg(x) +

∫ b

a

g(x)df(x),

which readily gives the result.

❑

174 Example Let f be a continuously differentiable function such that f(0) = 0, f(1) = 1, and

∫ 1

0

f(x)dx =

−1

2
. Determine

∫ 1

0

xf ′(x)dx.

Solution: ◮ Integrating by parts,

∫ 1

0

xf ′(x)dx =

∫ 1

0

xdf(x) = xf(x)
∣

∣

∣

1

0
−
∫ 1

0

f(x)dx = f(1) −
∫ 1

0

f(x)dx = 1 −
(

−1

2

)

=
3

2
.

◭

175 Theorem (Integration by Substitution Rule) Let f ′ and g ′ be continuous on [a ; b] Then

∫ b

a

f(g(x))dg(x) =

∫ g(b)

g(a)

f(x)dx.

Proof: Let P′(x) = f(g(x))g ′(x)dx = and G′(x) = kf(x). Then

kF ′(x) = G′(x)

❑

Homework

4.5.1 Problem Evaluate

∫ a

0

(x + 1)100dx, where a is a real constant.

4.5.2 Problem Let f : [0 ; 4] → R be continuous. If

∫ 4

0

f(x)dx = 9, find

∫ 2

0

xf(x2)dx.

4.5.3 Problem Consider a continuously twice differentiable function f such that f(0) = a, f(1) = b,

∫ 1

0

f(x)dx =

c, f ′(0) = 2b, and f ′(1) = 2a. Find

∫ 1

0

xf ′(x)dx and

∫ 1

0

xf ′′(x)dx.
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4.6 Affine Functions

176 Definition Let m, k be real number constants. A function of the form x 7Ï mx + k is called an affine
function. In the particular case that m = 0, we call x 7Ï k a constant function. If, however, k = 0, then we
call the function x 7Ï mx a linear function.

By virtue of Theorem 56, the graph of the function x 7Ï mx + k is a straight line. Since the derivative of
x 7Ï mx + k is (mx + k)′ = m, we see that x 7Ï mx + k is strictly increasing if m > 0 and strictly decreasing

if m < 0 in view of Theorem 124. If m 6= 0 then mx + k = 0 ÍÑ x = − k

m
, meaning that x 7Ï mx + k has

a unique zero (crosses the x-axis) at x = − k

m
. This information is summarised in the following tables.

x −∞ − k

m
+∞

ր

f(x) = mx + k 0

ր

Table 4.1: x 7Ï mx + k, with m > 0.

x −∞ − k

m
+∞

ց

f(x) = mx + k 0

ց

Table 4.2: x 7Ï mx + k, with m < 0.

4.7 Quadratic Functions

177 Definition Let a, b, c be real numbers, with a 6= 0. A function of the form

f :
R Ï R

x 7Ï ax2 + bx + c

is called a quadratic function.

178 Theorem Let a 6= 0, b, c be real numbers and let x 7Ï ax2 + bx + c be a quadratic function. Then its

graph is a parabola. If a > 0 the parabola has a local minimum at x = − b

2a
and it is convex. If a < 0 the

parabola has a local maximum at x = − b

2a
and it is concave.

Proof: Put f(x) = ax2 + bx + c. Completing squares,

ax2 + bx + c = a

(

x2 + 2
b

2a
x +

b2

4a2

)

+ c − b2

4a

= a

(

x +
b

2a

)2

+
4ac − b2

4a
,
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and hence this is a horizontal translation − b

2a
units and a vertical translation

4ac − b2

4a
units

of the square function x 7Ï x2 and so it follows from example ?? and Theorems 81 and 87, that
the graph of f is a parabola.

We have f ′(x) = 2ax + b. Assume first that a > 0. Then

f ′(x) > 0 ⇐Ñ x > − b

2a
, f ′(x) < 0 ⇐Ñ x < − b

2a
.

Thus the function decreases for values < − b

2a
and increases otherwise. Hence in view of

Theorem 127, it must have a minimum at x = − b

2a
. Since f ′′(x) = 2a > 0, f is convex by virtue

of Theorem 129. The case when a < 0 can be similarly treated. ❑

The information of Theorem 178 is summarised in the following tables.

x −∞ − b

2a
+∞

ց ր

f(x) = ax2 + bx + c 0

Table 4.3: x 7Ï ax2 + bx + c, with a > 0.

x −∞ − b

2a
+∞

f(x) = ax2 + bx + c 0

ր ց

Table 4.4: x 7Ï ax2 + bx + c, with a < 0.

179 Definition The point

(

− b

2a
,

4ac − b2

4a

)

lies on the parabola and it is called the vertex of the parabola

y = ax2 + bx + c. The quantity b2 − 4ac is called the discriminant of ax2 + bx + c. The equation

y = a

(

x +
b

2a

)2

+
4ac − b2

4a

is called the canonical equation of the parabola y = ax2 + bx + c.

!The parabola x 7Ï ax2 + bx + c is symmetric about the vertical line x = − b

2a
passing

through its vertex.

180 Corollary (Quadratic Formula) The roots of the equation ax2 + bx + c = 0 are given by the formula

ax2 + bx + c = 0 ⇐Ñ x =
−b ±

√
b2 − 4ac

2a
(4.3)



65

Chapter 4

Figure 4.11: No real zeroes. Figure 4.12: One real zero. Figure 4.13: Two real zeros.

If a 6= 0, b, c are real numbers and b2 − 4ac = 0, the parabola x 7Ï ax2 + bx + c is tangent to the x-axis
and has one (repeated) real root. If b2 − 4ac > 0 then the parabola has two distinct real roots. Finally, if
b2 − 4ac < 0 the parabola has two complex roots.

Proof: By Theorem 178 we have

ax2 + bx + c = a

(

x +
b

2a

)2

+
4ac − b2

4a
,

and so

ax2 + bx + c = 0 ⇐Ñ
(

x +
b

2a

)2

=
b2 − 4ac

4a2

⇐Ñ x +
b

2a
= ±

√
b2 − 4ac

2|a|

⇐Ñ x =
−b ±

√
b2 − 4ac

2a
,

where we have dropped the absolute values on the last line because the only effect of having
a < 0 is to change from ± to ∓.

If b2 −4ac = 0 then the vertex of the parabola is at

(

− b

2a
, 0

)

on the x-axis, and so the parabola

is tangent there. Also, x = − b

2a
would be the only root of this equation. This is illustrated in

figure 4.12.

If b2−4ac > 0, then
√

b2 − 4ac is a real number 6= 0 and so
−b −

√
b2 − 4ac

2a
and

−b +
√

b2 − 4ac

2a
are distinct numbers. This is illustrated in figure 4.13.

If b2 − 4ac < 0, then
√

b2 − 4ac is a complex number 6= 0 and so
−b −

√
b2 − 4ac

2a
and

−b +
√

b2 − 4ac

2a
are distinct complex numbers. This is illustrated in figure 4.11. ❑

! If a quadratic has real roots, then the vertex lies on a line crossing the midpoint between
the roots.

181 Example Consider the quadratic function f(x) = x2 − 5x + 3.

➊ Find f ′(x). Solve f ′(x) = 0 and hence find the
vertex of f . Determine the intervals of mono-
tonicity of f .

➋ Write this parabola in canonical form.

➌ Determine f ′′(x) and find the convexity intervals
of f .

➍ Find the x-intercepts and y-intercepts of f .

➎ Graph y = f(x), y = |f(x)|, and y = f(|x|).
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➏ Determine the set of real numbers x for which f(x) > 0.

Solution:

➊ We have f ′(x) = 2x − 5. Now, 2x − 5 = 0 ÍÑ x =
5

2
. At x =

5

2
we have f

(

5

2

)

= −13

4
, whence the

vertex is at

(

5

2
, −13

4

)

. Also,

f ′(x) > 0 ÍÑ 2x − 5 > 0 ÍÑ x >
5

2
,

and f will be increasing for x >
5

2
. It will be decreasing for x <

5

2
.

➋ Completing squares

y = x2 − 5x + 3 =

(

x − 5

2

)2

− 13

4
.

➌ We have f ′′(x) = (2x)′ = 2. Since f ′′(x) = 2 > 0 for all real values x, f is concave for all real values of x.

➍ For x = 0, f(0) = 02 − 5 · 0 + 3 = 3, and hence y = f(0) = 3 is the y-intercept. By the quadratic formula,

f(x) = 0 ⇐Ñ x2 − 5x + 3 = 0 ⇐Ñ x =
−(−5) ±

√

(−5)2 − 4(1)(3)

2(1)
=

5 ±
√

13

2
.

Observe that
5 −

√
13

2
≈ 0.697224362 and

5 +
√

13

2
≈ 4.302775638.

➎ The graphs appear in figures 4.14 through 4.16.

➏ From the graph in figure 4.14, x2 − 5x + 3 > 0 for values x ∈
]

−∞ ;
5 −

√
13

2

[

or x ∈
]

5 +
√

13

2
; +∞

[

.

Figure 4.14: y = x2 − 5x + 3 Figure 4.15: y = |x2 − 5x + 3| Figure 4.16: y = |x|2 − 5|x| + 3

182 Corollary If a 6= 0, b, c are real numbers and if b2 − 4ac < 0, then ax2 + bx + c has the same sign as
a.
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Proof: Since

ax2 + bx + c = a

(

(

x +
b

2a

)2

+
4ac − b2

4a2

)

,

and 4ac − b2 > 0,

(

(

x +
b

2a

)2

+
4ac − b2

4a2

)

> 0 and so ax2 + bx + c has the same sign as a.

❑

183 Example Prove that the quantity q(x) = 2x2 + x + 1 is positive regardless of the value of x.

Solution: The discriminant is 12 − 4(2)(1) = −7 < 0, hence the roots are complex. By Corollary 182, since its
leading coefficient is 2 > 0, q(x) > 0 regardless of the value of x. Another way of seeing this is to complete
squares and notice the inequality

2x2 + x + 1 = 2

(

x +
1

4

)2

+
7

8
≥ 7

8
,

since

(

x +
1

4

)2

being the square of a real number, is ≥ 0.

By Corollary 180, if a 6= 0, b, c are real numbers and if b2 − 4ac 6= 0 then the numbers

r1 =
−b −

√
b2 − 4ac

2a
and r2 =

−b +
√

b2 − 4ac

2a

are distinct solutions of the equation ax2 + bx + c = 0. Since

r1 + r2 = −b

a
, and r1r2 =

c

a
,

any quadratic can be written in the form

ax2 + bx + c = a

(

x2 +
bx

a
+

c

a

)

= a
(

x2 − (r1 + r2)x + r1r2

)

= a(x − r1)(x − r2).

We call a(x − r1)(x − r2) a factorisation of the quadratic ax2 + bx + c.

184 Example A quadratic polynomial p has 1 ±
√

5 as roots and it satisfies p(1) = 2. Find its equation.

Solution: Observe that the sum of the roots is

r1 + r2 = 1 −
√

5 + 1 +
√

5 = 2

and the product of the roots is

r1r2 = (1 −
√

5)(1 +
√

5) = 1 − (
√

5)2 = 1 − 5 = −4.1

Hence p has the form
p(x) = a

(

x2 − (r1 + r2)x + r1r2

)

= a(x2 − 2x − 4).

Since

2 = p(1) ÍÑ 2 = a(12 − 2(1) − 4) ÍÑ a = −2

5
,

the polynomial sought is

p(x) = −2

5

(

x2 − 2x − 4
)

.

1As a shortcut for this multiplication you may wish to recall the difference of squares identity: (a − b)(a + b) = a2 − b2 .
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4.8 Polynomials

4.8.1 Roots

In sections 4.6 and 4.7 we learned how to find the roots of equations (in the unknown x) of the type ax +b = 0
and ax2 + bx + c = 0, respectively. We would like to see what can be done for equations where the power of
x is higher than 2. We recall that

185 Definition A polynomial p(x) of degree n ∈ N is an expression of the form

p(x) = anxn + an−1xn−1 + · · · + a1x + a0, an 6= 0, ak ∈ R,

where the ak are constants. If the ak are all integers then we say that p has integer coefficients, and we write
p(x) ∈ Z[x]; if the ak are real numbers then we say that p has real coefficients and we write p(x) ∈ R[x]; etc.
The degree of the polynomial p is denoted by deg p. The coefficient an is called the leading coefficient of
p(x). A root of p is a solution to the equation p(x) = 0.

186 Example Here are a few examples of polynomials.

• a(x) = 2x + 1 ∈ Z[x], is a polynomial of degree 1, and leading coefficient 2. It has x = −1

2
as its only

root. A polynomial of degree 1 is also known as an affine function.

• b(x) = πx2 + x −
√

3 ∈ R[x], is a polynomial of degree 2 and leading coefficient π. By the quadratic
formula b has the two roots

x =
−1 +

√

1 + 4π
√

3

2π
and x =

−1 −
√

1 + 4π
√

3

2π
.

A polynomial of degree 2 is also called a quadratic polynomial or quadratic function.

• C(x) = 1 ≡ 1 · x02, is a constant polynomial, of degree 0. It has no roots, since it is never zero.

187 Theorem The degree of the product of two polynomials is the sum of their degrees. In symbols, if p, q

are polynomials, deg pq = deg p + deg q.

Proof: If p(x) = anxn +an−1xn−1 + · · ·+a1x+a0, and q(x) = bmxm +bm−1xm−1 + · · ·+b1x+b0,
with an 6= 0 and bm 6= 0 then upon multiplication,

p(x)q(x) = (anxn+an−1xn−1+· · ·+a1x+a0)(bmxm+bm−1xm−1+· · ·+b1x+b0) = anbmxm+n+· · · +,

with non-vanishing leading coefficient anbm . ❑

188 Example The polynomial p(x) = (1+ 2x + 3x3)4(1− 2x2)5 has leading coefficient 34(−2)5 = −2592 and
degree 3 · 4 + 2 · 5 = 22.

189 Example What is the degree of the polynomial identically equal to 0? Put p(x) ≡ 0 and, say, q(x) = x+1.
Then by Theorem 187 we must have deg pq = deg p + deg q = deg p + 1. But pq is identically 0, and hence
deg pq = deg p. But if deg p were finite then

deg p = deg pq = deg p + 1 ÍÑ 0 = 13,

nonsense. Thus the 0-polynomial does not have any finite degree. We attach to it, by convention, degree −∞.

2The symbol ≡ is read “identically equal to” and it means that both expressions are always the same, regardless of the value of the
input parameter.

3Much to the chagrin of our Vice-President for Academic Affairswho claims that 1 = 2it is not true that 0 = 1.
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190 Definition If all the roots of a polynomial are in Z (integer roots), then we say that the polynomial splits
or factors over Z. If all the roots of a polynomial are in Q (rational roots), then we say that the polynomial
splits or factors over Q. If all the roots of a polynomial are in C (complex roots), then we say that the
polynomial splits (factors) over C.

! Since Z ⊂ Q ⊂ R ⊂ C, any polynomial splitting on a smaller set immediately splits over a
larger set.

191 Example The polynomial l(x) = x2 − 1 = (x − 1)(x + 1) splits over Z. The polynomial p(x) = 4x2 − 1 =
(2x − 1)(2x + 1) splits over Q but not over Z. The polynomial q(x) = x2 − 2 = (x −

√
2)(x +

√
2) splits over

R but not over Q. The polynomial r(x) = x2 + 1 = (x − i)(x + i) splits over C but not over R. Here i =
√

−1
is the imaginary unit.

4.8.2 Taylor Polynomials

In order to motivate the following theorem, let us consider the next example.

192 Example Write x2 as a sum of powers of x − 1.

Solution: Observe that x = x − 1 + 1 and use the identity (a + b)2 = a2 + 2ab + b2 to obtain

x2 = (x − 1 + 1)2 = (x − 1)2 + 2(x − 1) + 1.

If such an identity is not known, one can proceed as follows, giving an idea of a general procedure. Put

x2 = a + b(x − 1) + c(x − 1)2,

where we stop at the second power since x2 has degree 2. Let x = 1. Then 1 = a. Differentiate to obtain

2x = b + 2c(x − 1).

Let again x = 1. This gives 2 = b. Differentiate a second time to obtain

2 = 2c,

whence c = 1. Hence we have a = 1, b = 2, c = 1 and so

x2 = a + b(x − 1) + c(x − 1)2 = 1 + 2(x − 1) + (x − 1)2,

as before.

193 Theorem (Taylor Polynomials) Let a ∈ R. Then any polynomial p(x) of degree n can be written as

p(x) = b0 + b1(x − a) + b2(x − a)2 + · · · + bn(x − a)n,

for some constants bk.

Proof: First observe that we stop at (x − a)n since p has degree n. Differentiating k times we
obtain

p(k)(x) = bkk! + (k+1)(k) · · · (2)bk+1(x−a) + · · · + (n)(n−1) · · · (n−k+1)bn(x−a)n−k.4

Letting x = a we obtain

bk =
p(k)(a)

k!
,

proving the theorem. ❑

4The symbol k!read “k factorial”is the product 1 · 2 · · · k. Thus for example 5! = 1 · 2 · 3 · 4 · 5 = 120. We define 0! = 1.
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194 Definition The expansion

p(x) = p(a) + p′(a)(x − a) +
p′′(a)

2!
(x − a)2 + · · · +

p(n)(a)

n!
(x − a)n (4.4)

is known as the Taylor polynomial expansion about x = a of p.

195 Example Find the Taylor polynomial expansion about x = −2 of p(x) = x3 + 2x + 1.

Solution: We have
p′(x) = 3x2 + 2, p′′(x) = 6x, p′′′(x) = 6.

Hence
p(−2) = −11, p′(−2) = 14, p′′(−2) = −12, p′′′(−2) = 6,

and

x3 + 2x + 1 = −11 + 14(x + 2) +
−12

2
(x + 2)2 +

6

6
(x + 2)3 = −11 + 14(x + 2) − 6(x + 2)2 + (x + 2)3.

4.8.3 Ruffini’s Factor Theorem

196 Theorem (Ruffini’s Factor Theorem) The polynomial p(x) is divisible by x − a if and only if p(a) = 0.

Thus if p is a polynomial of degree n, then p(a) = 0 if and only if p(x) = (x − a)q(x) for some polynomial
q of degree n − 1.

Proof: The Taylor expansion of p about x = a is

p(x) = p(a) + (x − a)

(

p′(a) +
p′′(a)

2!
(x − a) + · · · +

p(n)(a)

n!
(x − a)n−1

)

,

from where the result quickly follows. ❑

197 Example Find the value of a so that the polynomial

t(x) = x3 − 3ax2 + 2

be divisible by x + 1.

Solution: By Ruffini’s Theorem 196, we must have

0 = t(−1) = (−1)3 − 3a(−1)2 + 2 ÍÑ a =
1

3
.

198 Definition Let a be a root of a polynomial p. We say that a is a root of multiplicity m if p(x) is divisible
by (x − a)m but not by (x − a)m+1. This means that p can be written in the form p(x) = (x − a)mq(x) for
some polynomial q with q(a) 6= 0.

199 Corollary The number a is a root of multiplicity m if an only if

p(a) = p′(a) = p′′(a) = · · · = p(m−1)(a) = 0, p(m)(a) 6= 0.

Proof: This follows immediately by considering the Taylor expansion of p about x = a. ❑

200 Example Factor the polynomial p(x) = x5 − 5x4 + 11x3 − 13x2 + 8x − 2 over Z[x].
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Solution: We see that p(1) = 0, p′(1) = 0, p′′(1) = 0, p′′′(1) 6= 0. Hence (x − 1)3 = x3 − 3x2 + 3x − 1 divides p.
By long division

x2 − 2x + 2

x3 − 3x2 + 3x − 1
)

x5 − 5x4 + 11x3 − 13x2 + 8x − 2
− x5 + 3x4 − 3x3 + x2

− 2x4 + 8x3 − 12x2 + 8x

2x4 − 6x3 + 6x2 − 2x

2x3 − 6x2 + 6x − 2
− 2x3 + 6x2 − 6x + 2

0

and so
x5 − 5x4 + 11x3 − 13x2 + 8x − 2 = (x − 1)3(x2 − 2x + 2).

Observe that x2 − 2x + 2 does not factor over Z[x] and hence we are finished.

201 Corollary If a polynomial of degree n had any roots at all, then it has at most n roots.

Proof: If it had at least n + 1 roots then it would have at least n + 1 factors of degree 1 and
hence degree n + 1 at least, a contradiction. ❑

Notice that the above theorem only says that if a polynomial has any roots, then it must have at most its degree
number of roots. It does not say that a polynomial must possess a root. That all polynomials have at least one
root is much more difficult to prove. We will quote the theorem, without a proof.

202 Theorem (Fundamental Theorem of Algebra) A polynomial of degree at least one with complex num-
ber coefficients has at least one complex root.

! The Fundamental Theorem of Algebra implies then that a polynomial of degree n has
exactly n roots (counting multiplicity).

A more useful form of Ruffini’s Theorem is given in the following corollary.

203 Corollary If the polynomial p with integer coefficients,

p(x) = anxn + an−1xn−1 + · · · + a1x + a0.

has a rational root s
t

∈ Q (here s
t

is assumed to be in lowest terms), then s divides a0 and t divides an .

Proof: We are given that

0 = p
(s

t

)

= an

(

sn

tn

)

+ an−1

(

sn−1

tn−1

)

+ · · · + a1

(s

t

)

+ a0.

Clearing denominators,

0 = ansn + an−1sn−1t + · · · + a1stn−1 + a0tn.

This last equality implies that

−a0tn = s(ansn−1 + an−1sn−2t + · · · + a1tn−1).

Since both sides are integers, and since s and t have no factors in common, then s must divide
a0. We also gather that

−ansn = t(an−1sn−1 + · · · + a1stn−2 + a0tn−1),

from where we deduce that t divides an, concluding the proof. ❑
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204 Example Factorise a(x) = x3 − 3x − 5x2 + 15 over Z[x] and over R[x].

Solution: By Corollary 203, if a(x) has integer roots then they must be in the set {−1, 1, −3, 3, −5, 5}. We test
a(±1), a(±3), a(±5) to see which ones vanish. We find that a(5) = 0. By the Factor Theorem, x − 5 divides
a(x). Using long division,

x2 − 3

x − 5
)

x3 − 5x2 − 3x + 15
− x3 + 5x2

− 3x + 15
3x − 15

0

we find

a(x) = x3 − 3x − 5x2 + 15 = (x − 5)(x2 − 3),

which is the required factorisation over Z[x]. The factorisation over R[x] is then

a(x) = x3 − 3x − 5x2 + 15 = (x − 5)(x −
√

3)(x +
√

3).

205 Example Factorise b(x) = x5 − x4 − 4x + 4 over Z[x] and over R[x].

Solution: By Corollary 203, if b(x) has integer roots then they must be in the set {−1, 1, −2, 2, −4, 4}. We
quickly see that b(1) = 0, and so, by the Factor Theorem, x − 1 divides b(x). By long division

x4 − 4

x − 1
)

x5 − x4 − 4x + 4
− x5 + x4

− 4x + 4
4x − 4

0

we see that

b(x) = (x − 1)(x4 − 4) = (x − 1)(x2 − 2)(x2 + 2),

which is the desired factorisation over Z[x]. The factorisation over R is seen to be

b(x) = (x − 1)(x −
√

2)(x +
√

2)(x2 + 2).

Since the discriminant of x2 + 2 is −8 < 0, x2 + 2 does not split over R.

206 Lemma Complex roots of a polynomial with real coefficients occur in conjugate pairs, that is, if p is a
polynomial with real coefficients and if u + vi is a root of p, then its conjugate u − vi is also a root for p.
Here i =

√
−1 is the imaginary unit.

Proof: Assume

p(x) = a0 + a1x + · · · + anxn
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and that p(u + vi) = 0. Since the conjugate of a real number is itself, and conjugation is
multiplicative (Theorem ??), we have

0 = 0

= p(u + vi)

= a0 + a1(u + vi) + · · · + an(u + vi)n

= a0 + a1(u + vi) + · · · + an(u + vi)n

= a0 + a1(u − vi) + · · · + an(u − vi)n

= p(u − vi),

whence u − vi is also a root. ❑

Since the complex pair root u ± vi would give the polynomial with real coefficients

(x − u − vi)(x − u + vi) = x2 − 2ux + (u2 + v2),

we deduce the following theorem.

207 Theorem Any polynomial with real coefficients can be factored in the form

A(x − r1)m1(x − r2)m2 · · · (x − rk)mk(x2 + a1x + b1)n1(x2 + a2x + b2)n2 · · · (x2 + alx + bl)
nl ,

where each factor is distinct, the mi, lk are positive integers and A, ri, ai, bi are real numbers.

4.9 Graphs of Polynomials

We start with the following theorem, which we will state without proof.

208 Theorem A polynomial function x 7Ï p(x) is an everywhere continuous function.

209 Theorem Let p(x) = anxn + an−1xn−1 + · · · + a1x + a0 an 6= 0, be a polynomial with real number
coefficients. Then

p(−∞) = (signum (an))(−1)n∞, p(+∞) = (signum (an))∞.

Thus a polynomial of odd degree will have opposite signs for values of large magnitude and different sign,
and a polynomial of even degree will have the same sign for values of large magnitude and different sign.

Proof: If x 6= 0 then

p(x) = anxn + an−1xn−1 + · · · + a1x + a0 = anxn
(

1 +
an−1

x
+ · · · +

a1

xn−1
+

a0

xn

)

∼ anxn,

since as x Ï ±∞, the quantity in parenthesis tends to 1 and so the eventual sign of p(x) is
determined by anxn , which gives the result. ❑

210 Corollary A polynomial of odd degree with real number coefficients always has a real root.

Proof: Since a polynomial of odd degree eventually changes sign, since it is continuous, the
corollary follows from Bolzano’s Intermediate Value Theorem ??. ❑
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211 Example Consider the polynomial p(x) = x3 + 4x2 + x − 6.

1. Prove that p splits over Z and find its factorisation. Also, determine its y-intercept.

2. Determine p(−∞) and p(+∞)

3. Find p′ and determine the intervals of monotonicity of p.

4. Determine any local extrema of p.

5. Find p′′ and determine the inflexion points of p and its convexity intervals.

6. Obtain an approximate graph of p.

Solution:

1. By Corollary 203, if there are integral roots of p they must divide −6. A quick inspection shews that
p(1) = 0 and so x − 1 divides p(x). By long division

x2 + 5x + 6

x − 1
)

x3 + 4x2 + x − 6
− x3 + x2

5x2 + x

− 5x2 + 5x

6x − 6
− 6x + 6

0

whence
p(x) = (x − 1)(x2 + 5x + 6) = (x − 1)(x + 2)(x + 3).

This means that p crosses the x-axis at x = −3, x = −2, and x = 1. Its y-intercept is (0, p(0)) = (0, −6).

2. Since the leading coefficient of p is 1 > 0 and since p has odd degree, by Theorem 209, p(x) ∼
(x)(x)(x) = x3, as x Ï +∞ and so p(−∞) = −∞ and p(+∞) = +∞.

3. p′(x) = 3x2 + 8x + 1, whose graph is a convex parabola. Using the Quadratic Formula

3x2 + 8x + 1 = 0 ⇐Ñ x =
−4 −

√
13

3
or x =

−4 +
√

13

3

and so x ≈ −2.54 or x ≈ −0.13. Since p′ is a convex parabola this means that

p′(x) > 0 ⇐Ñ x ∈
]

−∞ ;
−4 −

√
13

3

[

∪
]

−4 +
√

13

3
; +∞

[

,

and so p is increasing (approximately) in the intervals ]−∞ ; −2.54[ and ]−0.13 ; +∞[.

4. Since at x = −2.54 p′ changes sign from + to −, p has a local maximum there by virtue of Theorem
127, which is p(−2.54) ≈ 0.88. Also, p′ changes sign from − to + at x = −0.13 and so p has a local
minimum there, which is p(−0.13) ≈ −6.06.

5. We find p′′(x) = 6x +8. Now, p′′(x) = 0 ÍÑ x = −4

3
≈ −1.33 and p(−1.33) ≈ −2.61. Hence p changes

convexity (approximately) at (−1.33, −2.61).

6. The graph of p can be found in figure 4.17.

212 Example Consider the polynomial p(x) = x3 + x + 1.
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1. Prove that p is strictly increasing.

2. Prove that p has no positive roots.

3. Determine p(−∞) and p(+∞)

4. Prove that p has a unique real root and find an interval [a; b] of length <
1

4
containing this root.

5. Find p′′ and determine the inflexion points of p and its convexity intervals.

6. Obtain an approximate graph of p.

Solution:

1. We have p′(x) = 3x2 + 1 ≥ 1 > 0 since x2 is always positive.5 Since the derivative of p is always strictly
positive, p is always strictly increasing.

2. Since p is strictly increasing, p(x) > p(0) = 1 for x > 0. Hence values x > 0 can never make p zero.

3. By Theorem 209, p(−∞) = −∞ and p(+∞) = +∞.

4. Since p changes sign, it must have a root. Since p is strictly increasing, it can cross the x-axis only once.
Now, observe that

p(0) = 1, p(−1) = −1

so the root must lie in [−1; 0]. We bisect this interval and find p(−0.5) ≈ 0.375, so the root must lie
in [−1; −0.5]. We again bisect this interval and find that p(−0.75) ≈ −0.171875, so the root must lie
in [−0.75; −0.5]. Again, we bisect this interval and find that p(−0.625) ≈ 0.13, so the root must lie in
[−0.75; −0.625]. We now stop since we have reached an interval of within the desired length.

5. p′′(x) = 6x and so p is convex for x > 0 and concave for x < 0.

6. An approximate graph is shewn in figure 4.18
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Figure 4.17: Example 211.
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Figure 4.18: Example 212.

We now consider polynomials with real number coefficients and that split in R. Such polynomials have the
form

p(x) = a(x − r1)m1(x − r2)m2 · · · (x − rk)mk ,

where a 6= 0 and the ri are real numbers and the mi ≥ 1 are integers. Graphing such polynomials will be
achieved by referring to the following theorem.

5Another way of seeing that 3x2 + 1 > 0 always is by checking its discriminant.
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213 Theorem Let a 6= 0 and the ri are real numbers and the mi be positive integers. Then the graph of the
polynomial

p(x) = a(x − r1)m1(x − r2)m2 · · · (x − rk)mk ,

• crosses the x-axis at x = ri if mi is odd.

• is tangent to the x-axis at x = ri if mi is even.

• has a convexity change at x = ri if mi ≥ 3 and mi is odd.

Proof: Since the local behaviour of p(x) is that of c(x − ri)
mi (where c is a real number

constant) near ri , the theorem follows at once from Theorem 148. ❑

214 Example Make a rough sketch of the graph of y = (x + 2)x(x − 1). Determine where it achieves its
local extrema and their values. Determine where it changes convexity.

Solution: We have p(x) = (x + 2)x(x − 1) ∼ (x) · x(x) = x3, as x Ï +∞. Hence p(−∞) = (−∞)3 = −∞ and
p(+∞) = (+∞)3 = +∞. This means that for large negative values of x the graph will be on the negative side
of the y-axis and that for large positive values of x the graph will be on the positive side of the y-axis. By
Theorem 213, the graph crosses the x-axis at x = −2, x = 0, and x = 1.

Now, by the Product Rule,

p′(x) = x(x − 1) + (x + 2)(x − 1) + (x + 2)x

= 3x2 + 2x − 2.

Using the quadratic formula,

3x2 + 2x − 2 = 0 ÍÑ x = −1

3
−

√
7

3
≈ −1.22; x = −1

3
+

√
7

3
≈ 0.55.

From geometrical considerations, x ≈ −1.22 will be the x-coordinate of a local maximum, with y-coordinate
p(−1.22) ≈ 2.11 and x ≈ 0.55 will be the x-coordinate of a local minimum, with y-coordinate p(0.55) ≈ −0.63.

Also

p′′(x) = 6x + 2,

so p′′(x) > 0 for x > −1

3
and p′′(x) < 0 for x < −1

3
. This means that p is convex for x > −1

3
and concave

for x < −1

3
. The graph is shewn in figure 4.19.

215 Example Make a rough sketch of the graph of y = (x + 2)3x2(1 − 2x).

Solution: We have (x+2)3x2(1−2x) ∼ x3 ·x2(−2x) = −2x6. Hence if p(x) = (x+2)3x2(1−2x) then p(−∞) =
−2(−∞)6 = −∞ and p(+∞) = −2(+∞)6 = −∞, which means that for both large positive and negative values
of x the graph will be on the negative side of the y-axis. By Theorem 213, in a neighbourhood of x = −2,
p(x) ∼ 20(x + 2)3, so the graph crosses the x-axis changing convexity at x = −2. In a neighbourhood of 0,

p(x) ∼ 8x2 and the graph is tangent to the x-axis at x = 0. In a neighbourhood of x =
1

2
, p(x) ∼ 25

16
(1 − 2x),

and so the graph crosses the x-axis at x = 1
2
.
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Now,

p′(x) = 3(x + 2)2x2(1 − 2x) + 2(x + 2)3x(1 − 2x) − 2(x + 2)3x2

= x(x + 2)2(3x(1 − 2x) + 2(x + 2)(1 − 2x) − 2(x + 2)x)

= −x(x + 2)2(12x2 + 7x − 4),

and p′(x) = 0 when x = 0, −2, − 7

24
+

√
241

24
≈ 0.36, − 7

24
−

√
241

24
≈ −0.94. From geometrical considerations,

x = 0 and x = −2 are local minima, both with y-coordinate y = 0, and both x ≈ 0.36 (with corresponding
y = p(0.36) ≈ 0.48) and x ≈ −0.94 (with corresponding y-coordinate y = p(−0.94) ≈ 3.03) are local maxima.
The graph is shewn in figure 4.20.

216 Example Make a rough sketch of the graph of y = (x + 2)2x(1 − x)2.

Solution: The dominant term of (x + 2)2x(1 − x)2 is x2 · x(−x)2 = x5. Hence if p(x) = (x + 2)2x(1 − x)2

then p(−∞) = (−∞)5 = −∞ and p(+∞) = (+∞)5 = +∞, which means that for large negative values of x the
graph will be on the negative side of the y-axis and for large positive values of x the graph will be on the
positive side of the y-axis. By Theorem 213, the graph crosses the x-axis changing convexity at x = −2, it is
tangent to the x-axis at x = 0 and it crosses the x-axis at x = 1

2 . The graph is shewn in figure 4.21.

Figure 4.19: y = (x +
2)x(x − 1).

Figure 4.20: y = (x +
2)3x2(1 − 2x).

Figure 4.21: y = (x +
2)2x(1 − x)2.
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5 Rational Functions and Algebraic Functions

5.1 Inverse Power Functions

We now proceed to investigate the behaviour of functions of the type x 7Ï 1

xn
, where n > 0 is an integer.

217 Theorem The strong derivative of the reciprocal function x 7Ï 1

x
is the function x 7Ï − 1

x2
.

Proof: Put f(x) =
1

x
and g(x) = x. Observe that g ′(x) = 1 and f(x)g(x) = 1. Hence by the

product rule

0 =
d

dx
1 = f ′(x)g(x) + f(x)g ′(x) = xf ′(x) +

1

x
,

and solving for f ′(x) we obtain f ′(x) = − 1

x2
.

An alternate proof from the definition proceeds as follows. Let f(x) =
1

x
and x 6= 0. First observe

the algebraic identity
1

1 + t
= 1 − t +

t2

1 + t
.

Hence, if x 6= 0 is fixed,

1

x + ε
=

1

x
· 1

1 + ε/x
=

1

x

(

1 − ε

x
+

ε2

x2
· 1

(1 + ε/x)

)

.

Now, since ε Ï 0 we will have, eventually, |ε| <
|x|
2

. Hence
2

3
<

1

(1 + ε/x)
< 2. This means that

ε2

x2
· 1

(1 + ε/x)
= o (ε) ,

where the implied constant depends on (the fixed value of) x, and so

1

x + ε
=

1

x

(

1 − ε

x
+ o (ε)

)

=
1

x
− ε

x2
+ o (ε) ,

from where the assertion follows. ❑

218 Theorem If n > 0 is an integer and x 6= 0,
(

1

xn

)′
= (x−n)

′
= −nx−n−1.

Proof: Let f(x) = xn, g(x) =
1

x
, h(x) =

1

xn
. Then h = f ◦ g . By the Chain Rule (Theorem 159)

and Theorem 217,

h′(x) = f ′(g(x))g ′(x) = n

(

1

x

)n−1 (

− 1

x2

)

= − n

xn+1
= −nx−n−1,

as it was to be demonstrated. ❑
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! Theorems 146 and 218 say that if α is an integer, then (xα)′ = αxα−1.

With the derivatives of reciprocal powers determined, we can now address how to graph them.

219 Theorem Let n > 0 be an integer. Then

• if n is even, x 7Ï 1

xn
is increasing for x < 0, decreasing for x > 0 and convex for all x 6= 0.

• if n is odd, x 7Ï 1

xn
is decreasing for all x 6= 0, concave for x < 0, and convex for x > 0.

Thus x 7Ï 1

xn
has a pole of order n at x = 0 and a horizontal asymptote at y = 0.

Proof: Let h(x) =
1

xn
. By Theorem 218, h′(x) = − n

xn+1
and h′′(x) =

n(n + 1)

xn+2
. If n is odd,

then n + 1 is even and n + 2 is odd. Hence h′(x) > 0 for x 6= 0, proving that h is increasing
and h′′(x) has the same sign as x, proving that h is concave for x < 0 and convex for x > 0. A
similar argument is used for when n is even, completing the proof. ❑

Figure 5.1:

x 7Ï 1

x

Figure 5.2:

x 7Ï 1

x2

Figure 5.3:

x 7Ï 1

x3

Figure 5.4:

x 7Ï 1

x4

Figure 5.5:

x 7Ï 1

x5

Figure 5.6:

x 7Ï 1

x6

220 Example A few functions x 7Ï 1

xn
are shewn in figures 5.1 through 5.6.

Figure 5.7: x 7Ï
1

x − 1
− 1

Figure 5.8: x 7Ï
∣

∣

∣

∣

1

x − 1
− 1

∣

∣

∣

∣

Figure 5.9: x 7Ï
1

|x| − 1
− 1

221 Example Figures 5.7 through 5.9 shew a few transformations of x 7Ï 1

x
.
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5.2 The Quotient Rule

222 Theorem If g is strongly differentiable at x and g(x) 6= 0 then

(

1

g

)′
(x) = − g ′(x)

(g(x))2
.

Proof: Let a(x) =
1

x
. Then

1

g
= a ◦ g . By the Chain Rule (Theorem 159) and Theorem ??,

(

1

g

)′
(x) = a′(g(x))g ′(x) = − g ′(x)

(g(x))2
,

as we needed to shew. ❑

223 Corollary (Quotient Rule) If f, g are strongly differentiable at x and if g(x) 6= 0, then

(

f

g

)′
(x) =

f ′(x)g(x) − f(x)g ′(x)

(g(x))2
.

Proof: Using the Product Rule (Theorem 156) and Theorem 222,

(

f

g

)′
(x) =

(

f · 1

g

)′
(x)

= f ′(x)
1

g(x)
+ f(x)

(

1

g

)′
(x)

= f ′(x)
1

g(x)
+ f(x)

(

− g ′(x)

(g(x))2

)

=
f ′(x)g(x) − f(x)g ′(x)

(g(x))2
,

as desired. ❑

224 Example Find b′(x) if b(x) =
1 + x + x2

(x − x2)2

Solution: Use the Quotient Rule and the Chain Rule:

b′(x) =
(1 + 2x)(x − x2)2 − (1 + x + x2)(2(1 − 2x)(x − x2))

(x − x2)4

=
(1 + 2x)(x − x2) − (1 + x + x2)(2(1 − 2x))

(x − x2)3

= −−2 + 3x + 3x2 + 2x3

(x − x2)3
.

5.3 Rational Functions

225 Definition By a rational function x 7Ï r(x) we mean a function r whose assignment rule is of the

r(x) =
p(x)

q(x)
, where p(x) and q(x) 6= 0 are polynomials.

We now provide a few examples of graphing rational functions.
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226 Example Draw the curve x 7Ï x

x2 + 1
.

Solution: Put a(x) =
x

x2 + 1
. Observe that a(−x) = −a(x), which means that a is an odd function and hence

symmetric about the origin. Also

a′(x) =
(x2 + 1) − x(2x)

(x2 + 1)2
=

1 − x2

(x2 + 1)2
=

(1 − x)(1 + x)

(x2 + 1)2
.

Since (x2+1)2 is always positive, a′ changes sign when 1−x2 = (1−x)(1+x) changes sign. Hence a′(x) ≥ 0 if
x ∈ [−1; 1] and a′(x) < 0 otherwise. This means that a is increasing for x ∈ [−1; 1] and decreasing otherwise.
Moreover

a′′(x) =
d

dx

1 − x2

(x2 + 1)2
=

−2x(x2 + 1)2 − 2(2x)(1 − x2)(x2 + 1)

(x2 + 1)4
=

2x(x2 − 3)

(x2 + 1)3
.

Again a′′ will change sign when 2x(x2 − 3) = x(x −
√

3)(x +
√

3) changes sign. By means of a sign diagram
we see that a′′(x) ≥ 0 for x ∈ [−

√
3; 0]∪ [

√
3; +∞[, and so a is convex for x ∈ [−

√
3; 0]∪ [

√
3; +∞[ and concave

otherwise. The graph is shewn in figure 5.10.

Figure 5.10: x 7Ï x

x2 + 1 Figure 5.11: x 7Ï x2

x2 + 1
Figure 5.12: x 7Ï x2 +

1

x2

227 Example Draw the curve x 7Ï x2

x2 + 1
.

Solution: Put b(x) =
x2

x2 + 1
. Observe that b(−x) = b(x), which means that b is an even function and hence

symmetric about the y-axis. Also

b′(x) =
(2x)(x2 + 1) − 2x(x2)

(x2 + 1)2
=

2x

(x2 + 1)2
.

Since (x2 + 1)2 is always positive, b′ changes sign when x changes sign. Hence b′(x) ≥ 0 if x ≥ 0 and
b′(x) < 0 otherwise. This means that b is increasing for x ≥ 0 and decreasing otherwise. Moreover

b′′(x) =
d

dx

2x

(x2 + 1)2
=

2(x2 + 1)2 − 2(2x)(2x)(x2 + 1)

(x2 + 1)4
=

2 − 6x2

(x2 + 1)3
.

Again b′′ will change sign when 2 − 6x2 = 2(1 −
√

3x)(1 +
√

3x) changes sign. By means of a sign diagram

we see that b′′(x) ≥ 0 for x ∈
[

− 1√
3

; 1√
3

]

, and so b is convex for x ∈
[

− 1√
3

; 1√
3

]

and concave otherwise. The

graph is shewn in figure 5.11.

228 Example Draw the curve x 7Ï x2 +
1

x2
.
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Solution: Put c(x) = x2 +
1

x2
. Observe that c(−x) = c(x), which means that c is an even function and hence

symmetric about the y-axis. Also

c′(x) = 2x − 2

x3
=

2(x4 − 1)

x3
=

2(x − 1)(x + 1)(x2 + 1)

x3
.

We make a sign diagram investigating the sign changes of c′ near x = −1, x = 0, and x = 1. From this we
gather that c is increasing for x ∈ [−1; 0[∪[1; +∞[. Moreover

c′′(x) =
d

dx

(

2x − 2

x3

)

= 2 +
6

x4
.

We see that c′′ is always positive and hence it is always convex. The graph is shewn in figure 5.12.

Analogous to theorem 213, we now consider rational functions x 7Ï r(x) =
p(x)

q(x)
where p and q are

polynomials with no factors in common and splitting in R.

229 Theorem Let a 6= 0 and the ri are real numbers and the mi be positive integers. Then the rational
function with assignment rule

r(x) = K
(x − a1)m1(x − a2)m2 · · · (x − ak)mk

(x − b1)n1(x − b2)n2 · · · (x − bl)nl
,

• has zeroes at x = ai and poles at x = bj .

• crosses the x-axis at x = ai if mi is odd.

• is tangent to the x-axis at x = ai if mi is even.

• has a convexity change at x = ai if mi ≥ 3 and mi is odd.

• both r(bj−) and r(bj+) blow to infinity. If ni is even, then they have the same sign infinity: r(bi+) =
r(bi−) = +∞ or r(bi+) = r(bi−) = −∞. If ni is odd, then they have different sign infinity: r(bi+) =
−r(bi−) = +∞ or r(bi+) = −r(bi−) = −∞.

Proof: Since the local behaviour of r(x) is that of c(x−ri)
ti (where c is a real number constant)

near ri , the theorem follows at once from Theorem 148 and 219. ❑

230 Example Draw a rough sketch of x 7Ï (x − 1)2(x + 2)

(x + 1)(x − 2)2
.

Solution: Put r(x) =
(x − 1)2(x + 2)

(x + 1)(x − 2)2
. By Theorem 229, r has zeroes at x = 1, and x = −2, and poles at

x = −1 and x = 2. As x Ï 1, r(x) ∼ 3

2
(x − 1)2, hence the graph of r is tangent to the axes, and positive,

around x = 2. As x Ï −2, r(x) ∼ − 9

16
(x + 2), hence the graph of r crosses the x-axis at x = −2, coming

from positive y-values on the left of x = −2 and going to negative y=values on the right of x = −2. As

x Ï −1, r(x) ∼ 4

9(x + 1)
, hence the graph of r blows to −∞ to the left of x = −1 and to +∞ to the right of

x = −1. As x Ï 2, r(x) ∼ 4

3(x − 2)2
, hence the graph of r blows to +∞ both from the left and the right of

x = 2. Also we observe that

r(x) ∼ (x)2(x)

(x)(x)2
=

x3

x3
= 1,

and hence r has the horizontal asymptote y = 1. The graph of r can be found in figure 5.13.
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231 Example Draw a rough sketch of x 7Ï (x − 3/4)2(x + 3/4)2

(x + 1)(x − 1)
.

Solution: Put r(x) =
(x − 3/4)2(x + 3/4)2

(x + 1)(x − 1)
. First observe that r(x) = r(−x), and so r is even. By Theorem

229, r has zeroes at x = ±3

4
, and poles at x = ±1. As x Ï 3

4
, r(x) ∼ −36

7
(x − 3/4)2, hence the graph of r is

tangent to the axes, and negative, around x = 3/4, and similar behaviour occurs around x = −3

4
. As x Ï 1,

r(x) ∼ 49

512(x − 1)
, hence the graph of r blows to −∞ to the left of x = 1 and to +∞ to the right of x = 1.

As x Ï −1, r(x) ∼ − 49

512(x − 1)
, hence the graph of r blows to +∞ to the left of x = −1 and to −∞ to the

right of x = −1. Also, as x Ï +∞,

r(x) ∼ (x)2(x)2

(x)(x)
= x2,

so r(+∞) = +∞ and r(−∞) = +∞. The graph of r can be found in figure 5.14.

Figure 5.13: x 7Ï (x − 1)2(x + 2)

(x + 1)(x − 2)2
Figure 5.14: x 7Ï (x − 3/4)2(x + 3/4)2

(x + 1)(x − 1)

5.4 Algebraic Functions

232 Definition We will call algebraic function a function whose assignment rule can be obtained from a
rational function by a finite combination of additions, subtractions, multiplications, divisions, exponentiations
to a rational power.

233 Theorem Let q 6= 0 be an integer. The strong derivative of the function x 7Ï x1/q is the function

x 7Ï 1

q
· x1/q−1, whenever this last makes sense.

Proof: Put f(x) = x1/q , assuming this quantity is real. Then (f(x))q = x. Differentiating both
sides using the Chain Rule we have

q(f(x))q−1f ′(x) = ÍÑ qx(q−1)/qf ′(x) = 1.
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Solving for f ′ gives

f ′(x) =
1

q
· x1/q−1,

if this quantity is a real number, proving the result. ❑

! Theorems 146, 218, and 233, when combined with the Chain Rule, say that if α is a rational
number, then (xα)′ = αxα−1.

With the derivatives of rational powers determined, we can now address how to graph them.

234 Theorem Let |q| ≥ 2 be an integer. If

• if q is even then x 7Ï x1/q is increasing and concave for q ≥ 2 and decreasing and convex for q ≤ −2
for all x > 0 and it is undefined for x < 0.

• if q is odd then x 7Ï x1/q is everywhere increasing and convex for x < 0 but concave for x > 0 if q ≥ 3.
If q ≤ −3 then x 7Ï x1/q is decreasing and concave for x < 0 and increasing and convex for x > 0.

Proof: Let h(x) = x1/q . By Theorem 233, h′(x) =
x(1−q)/q

q
and h′′(x) =

(1 − q)x(2q−1)/q

q2
.

Assume first that q is even. Then x1/q is not real for x < 0 so we assume that x > 0. The

quantity h′(x) =
x(1−q)/q

q
is > 0 for q ≥ 2 and negative for q ≤ −2. If q ≥ 2 then h′′(x) =

(1 − q)x(2q−1)/q

q2
< 0 and if q ≤ −2 then h′′(x) > 0. Hence h is increasing and concave for q ≥ 2

and decreasing and convex for q ≤ −2

Assume now that q is odd. Then 1 − q is even and the sign of the quantity h′(x) =
1

q
·
(

x1/q
)1−q

is depends on the sign of
1

q
. Since 2q − 1 is odd, the sign of h′′(x) =

(1 − q)x(2q−1)/q

q2
is

signum ((1 − q)(x)). We have: if q ≥ 3, h′(x) > 0, h′′(x) < 0 for x > 0 and h′′(x) > 0 for
x < 0. Hence for q ≥ 3, h is increasing and it is convex for x < 0 but concave for x > 0. If
q ≤ −3 then h is decreasing and it is concave for x < 0 and decreasing convex for x > 0. ❑

A few of the functions x 7Ï x1/q are shewn in figures 5.15 through 5.26.

Figure 5.15:
x 7Ï x1/2

Figure 5.16:
x 7Ï x−1/2

Figure 5.17:
x 7Ï x1/4

Figure 5.18:
x 7Ï x−1/4

Figure 5.19:
x 7Ï x1/6

Figure 5.20:
x 7Ï x−1/6

We finish this section with an example.
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Figure 5.21:
x 7Ï x1/3

Figure 5.22:
x 7Ï x−1/3

Figure 5.23:
x 7Ï x1/5

Figure 5.24:
x 7Ï x−1/5

Figure 5.25:
x 7Ï x1/7

Figure 5.26:
x 7Ï x−1/7

235 Example Consider the function y = f(x) =
√

x − 1 +
√

2 − x.

1. For which x will the output of f be a real number?

2. Find f ′(x).

3. By examining f ′, prove that f increases for x <
3

2
and decreasing for x >

3

2
.

4. Prove that for all x in the domain of f one has f(x) ≤
√

2.

5. Find f ′′(x).

6. Determine in which intervals f is convex or concave.

7. Graph f .

Solution:

1. We need, simultaneously, x ≥ 1 and 2 ≥ x. This means that x ∈ [1; 2].

2. Via the Chain Rule:

d

dx
(x − 1)1/2 + (2 − x)1/2 =

1

2
(x − 1)−1/2 − 1

2
(2 − x)−1/2 =

1

2(x − 1)1/2
− 1

2(2 − x)1/2

3. f has a stationary point when f ′(x) = 0, that is, if

1

2(x − 1)1/2
=

1

2(2 − x)1/2
ÍÑ x − 1 = 2 − x ÍÑ x =

3

2
,

so f ′ has only one zero in [1; 2]. Since f ′ is continuous in ]1; 2[ and has only one zero there, it must be
negative in a portion of the interval and positive in the other. Examining values in ]1; 3

2 [ we see that f ′

is positive for there and negative in ] 3
2
; 2[.

4. By the above, x =
3

2
is a global maximum in [1; 2], and hence

f(x) ≤ f

(

3

2

)

=

√

3

2
− 1

√

2 − 3

2
= 2

√

1

2
=

√
2.

5. Via the Chain Rule:

f ′′(x) =
d

dx

1

2
(x − 1)−1/2 − 1

2
(2 − x)−1/2 = −1

4
(x − 1)−3/2 − 1

4
(2 − x)−3/2 = − 1

4(x − 1)3/2
− 1

4(2 − x)3/2
.

6. Observe that

f ′′(x) = − 1

4(x − 1)3/2
− 1

4(2 − x)3/2
= −1

4

(

1

(x − 1)3/2
+

1

(2 − x)3/2

)

.

Since the quantity in parenthesis is always positive, f ′′ is always negative, and hence it is everywhere
concave.
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7. The graph appears in figure 5.27.

0

1

2

3

0 1 2 3

Figure 5.27: y =
√

x − 1 +
√

2 − x
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6 Exponential and Logarithmic Functions

6.1 Exponential Functions

6.2 Differentiating Exponential Functions

6.3 Graphs of Exponential Functions

6.4 Integrating Exponential Functions

6.5 Logarithmic Functions

6.6 Algebraic Properties of Logarithms

6.7 Differentiating Logarithmic Functions Functions

6.8 Graphs of Exponential Functions

6.9 Integrating Exponential Functions

6.10 Exponential and Logarithmic Equations
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7 Goniometric Functions

7.1 The Sine and Cosine Functions

7.2 Differentiation of the Sine and Cosine

7.3 Integration of the Sine and Cosine

7.4 Graphs of the Sine and Cosine

7.5 Addition Formul

7.6 Inverse Sine and Cosine

7.7 Equations in Sine and Cosine

7.8 Other Goniometric Functions
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A Answers to Selected Problems

1.1.1 There are infinitely many answers. A rational number between then is 0.101. An irrational number
between then can be obtained by letting c = 0.12345678910 . . . be the Champernowne-Mahler constant, and
then taking

0.1 + 0.1 · c = 0.101234567891011 . . . .

1.3.1

1.
] − ∞; −1[ ] − 1; 0[ ]0; 1[ ]1; +∞[

2. ]−∞ ; −1[ ∪ ]0 ; 1[

3. ]−1 ; 0] ∪ [1 ; +∞[

4. We have

x(x − 1)

x + 1
≥ −1 ⇐Ñ x(x − 1)

x + 1
+ 1 ≥ 0 ⇐Ñ x(x − 1)

x + 1
+

x + 1

x + 1
≥ 0 ⇐Ñ x2 + 1

x + 1
≥ 0.

The numerator is always positive, since it is a square plus 1. The denominator is strictly positive for
x > −1. Hence the solution set is ]−1 ; +∞[.

1.4.1 {0}

1.4.2 ∅, the empty set.

1.4.3 ]0 ; 1[ ∪ ]1 ; +∞[

1.4.4

1. (f + g)(2) = f(2) + g(2) =
√

5 +
√

3.

2. Determine (fg)(2) = f(2) · g(2) =
√

5 ·
√

3 =
√

15.

3. Determine (f ◦ g)(2) = f(g(2)) = f(
√

3) = 2.

4. Determine (g ◦ f)(2) = g(f(2)) = g(
√

5) = 2.

1.5.1 a(x)b(x) = 2x + o (x) as x → 0.

1.6.1 a(x)b(x) = x4 + 2x3 + o
(

x3
)

as x → +∞.

1.7.1 This is
√

(1 − (−3))2 + (−2 − 4)2 =
√

16 + 36 = 2
√

13.

1.7.2 The slope of the line is
−2 − 4

1 − (−3)
=

−6

4
= −3

2
. The equation of the line is of the form y = −3

2
x + k.

Since (1, −2) is on the line

−2 = −3

2
(1) + k ÍÑ k = −2 +

3

2
= −1

2
.

The equation sought is thus y = −3

2
x − 1

2
.
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1.7.3 −b

a

1.7.4 y = −x + b + a

1.7.5 Let required point be (x, y). The distance of this point to its projection on the x-axis is |y| and similarly,
the distance of this point to its projection on the x-axis is |x|. We need

|y| = |x| ÍÑ |6 − 2x| = |x| ÍÑ 6 − 2x = x or 6 − 2x = −x.

The first case gives x = 2 and the point is (2, 2), and the second case gives x = 6 and the point is (6, −6).

1.7.6 Let (x, 0) be the coordinates of S. Since the slope of the line segment SM is
1

2
, we have

2 − x

2 − 0
=

1

2
ÍÑ x = 1,

whence S is the point (1, 0). Let (a, 0) be the coordinates of A. Since SM = MA, we have

√

(a − 2)2 + (0 − 2)2 =
√

(1 − 2)2 + (0 − 2)2 ÍÑ (a − 2)2 + 4 = 5 ÍÑ a ∈ {1, 3}.

This means that A is the point (3, 0). Let B be point (0, y). Since A, B, M are collinear, we may compute the
slope in two different ways to obtain,

y − 2

0 − 2
=

2 − 0

2 − 3
ÍÑ y − 2 = 4 ÍÑ y = 6.

Thus B is the point (0, 6).

2.1.1 There are infinitely many graphs satisfying the specified conditions. Figure A.1 shews one.

1
2
3
4

−1
−2
−3
−4
−5
−6

1 2 3 4−1−2−3−4−5−6

Figure A.1: Problem 2.1.1.

2.1.2 There are infinitely many graphs satisfying the specified conditions. Figure A.2 shews one.

2.1.3 There are infinitely many graphs satisfying the specified conditions. Figure A.3 shews one.
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1
2
3
4

−1
−2
−3
−4
−5
−6

1 2 3 4−1−2−3−4−5−6

Figure A.2: Problem 2.1.2.

1
2
3
4

−1
−2
−3
−4
−5
−6

1 2 3 4−1−2−3−4−5−6

Figure A.3: Problem 2.1.3.

2.2.1 Here is the graph of x 7Ï f(x + 1).

−5
−4
−3
−2
−1

0
1
2
3
4
5

−5−4−3−2−1 0 1 2 3 4 5

bb

b b

b

b

b

b

b

Figure A.4: y = f(x + 1).

Here is the graph of x 7Ï f(−x + 1).

Here is the graph of x 7Ï −f(−x + 1).



92

Answers to Selected Problems

−5
−4
−3
−2
−1

0
1
2
3
4
5

−5−4−3−2−1 0 1 2 3 4 5

b b

bb

b

b

b

b

b

Figure A.5: y = f(1 − x).

−5
−4
−3
−2
−1

0
1
2
3
4
5

−5−4−3−2−1 0 1 2 3 4 5

b b

bb

b

b

b

b

b

Figure A.6: y = −f(1 − x).

3.1.1 Let α < β < γ be the roots. Then

p(−1) = −4, p(0) = 1, p(1) = 0, p

(

3

2

)

= − 7

128
, p(2) = 41.

Hence α ∈ ]−1 ; 0[, β = 1, γ ∈
]

3

2
; 2

[

.

3.1.2 If p had odd degree, then, by the Intermediate Value Theorem it would have a real root. Let α be its
largest real root. Then

0 = p(α)q(α) = p(α2 + α + 1)

meaning that α2 + α + 1 > α is a real root larger than the supposedly largest real root α, a contradiction.

3.1.3 Observe that f(1000)f(f(1000)) = 1 ÍÑ f(999) =
1

999
. So the range of f include all numbers from

1

999
to 999. By the intermediate value theorem, there is a real number a such that f(a) = 500. Thus

f(a)f(f(a)) = 1 ÍÑ f(500) =
1

500
.

3.1.4 If either f(0) = 1 or f(1) = 0, we are done. So assume that 0 ≥ f(0) < 1 and 0 < f(1) ≤ 1. Put
g(x) = f(x)+x −1. Then g(0) = f(0)−1 < 0 and g(1) = f(1) > 0. By Bolzano’s Theorem there is a c ∈ ]0 ; 1[
such that g(c) = 0, that is, f(c) + c − 1 = 0, as required.

3.1.5 Consider g(x) = f(x) − f(x + 1/n), which is clearly continuous. If g is never 0 in [0 ; 1] then by the Law
of Inertia g must be either strictly positive or strictly negative. But then

0 = f(0) − f(1) =

(

f(0) − f

(

1

n

))

+

(

f

(

1

n

)

− f

(

2

n

))

+

(

f

(

2

n

)

− f

(

3

n

))

+ · · · +

(

f

(

n − 1

n

)

− f
(n

n

)

)

.

The sum of each parenthesis on the right is strictly positive or strictly negative and hence never 0, a contra-
diction.
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3.2.1 There are multiple answers here. One example appears below.

1
2
3

−1
−2
−3
−4
−5

1 2 3−1−2−3−4−5

3.2.2 There are multiple answers here. One example appears below.

1
2
3

−1
−2
−3
−4
−5

1 2 3−1−2−3−4−5

3.2.3 There are multiple answers here. One example appears below.

1
2
3

−1
−2
−3
−4
−5

1 2 3−1−2−3−4−5

b

b

3.2.4 Here is an example of such a curve.

1
2
3
4
5
6
7

−1
−2
−3
−4
−5
−6
−7
−8
−9

1 2 3 4 5 6 7−1−2−3−4−5−6−7−8−9
3.4.1 Below is an example of such a curve.

−5
−4
−3
−2
−1

0
1
2
3
4
5

−5−4−3−2−1 0 1 2 3 4 5

3.4.2 Below is an example of such a curve.

−5
−4
−3
−2
−1

0
1
2
3
4
5

−5−4−3−2−1 0 1 2 3 4 5
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3.5.2 The integral gives the area of the triangle with vertices at A(0, 0), B(t, 0), C(t, t). This is an isosceles

right triangle of area
t2

2
.

3.5.3 Observe that x 7Ï 2x + 1 is a straight line that crosses the x-axis at x = −1

2
. Since

∫ 3

−2

(2x + 1)dx =

∫ −1/2

−2

(2x + 1)dx +

∫ 3

−1/2

(2x + 1)dx, we decompose the region into two triangles: one with negative area

and the other with positive area. The triangle with negative area has vertices A(−2, 0), B(−2, −3), C(− 1
2
, 0)

and area −1

2
· 3

2
· 3 = −9

4
. The triangle with positive area has vertices C(− 1

2
, 0), D(3, 0), B(3, 7), and area

1

2
· 7

2
· 7 =

49

4
. Thus the total signed area is −9

4
+

49

4
= 10.

3.5.4 By example 65, the graph of f : [−1 ; 1] → R, x 7Ï
√

1 − x2 is an upper semicircle of radius 1. Hence,

its area is half of that of a circle of radius 1, that is
π

2
.

4.4.1

1. By the Product Rule:

f ′(x) = (x − 1)(x + 1) + x(x + 1) + x(x − 1)

= x2 − 1 + x2 + x + x2 − x

= 3x2 − 1

2. Using the Chain Rule:

g ′(x) = 4(ax + (bx + (cx + 1)2)3)3(a + 3(bx + (cx + 1)2)2)(b + 2c(cx + 1))

3. Using the Product Rule and the Chain Rule:

h′(x) = 2(3x2)(x3 + 2)(x2 + 2x + 2)3 + (x3 + 2)23(2x + 2)(x2 + 2x + 2)2

= 6x2(x3 + 2)(x2 + 2x + 2)3 + 6(x3 + 2)(x + 1)(x2 + 2x + 2)2

4. Using the Product Rule and the Chain Rule:

u′(x) = (x − 1)2(x + 2)3 + 2x(x − 1)(x + 2)3 + 3x(x − 1)2(x + 2)2

5. Put f(x) = 1 − x2. Then v(x) = f(f(f(f(f(x))))). Hence

v ′(x) = f ′(x) · f ′(f(x)) · f ′(f(f(x))) · f ′(f(f(f(x)))) · f ′(f(f(f(f(x)))))

= −2x · (−2(1 − x2)) · (−2(1 − (1 − x2)2)) · (−2(1 − (1 − (1 − x2)2)2)) · (−2(1 − (1 − (1 − (1 − x2)2)2)2))

= −32x · (1 − x2) · (1 − (1 − x2)2) · (1 − (1 − (1 − x2)2)2) · (1 − (1 − (1 − (1 − x2)2)2)2)

4.4.2 Use the Product Rule:

a′(x) = (1 + x + x2)(1 + x + x2 + x4) + (1 + 2x)(1 + x)(1 + x + x2 + x4) + (1 + x)(1 + x + x2)(1 + 2x + 4x3)

= 3 + 10x + 15x2 + 15x4 + 16x3 + 12x5 + 7x6.
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4.4.3 We have

100a0x99 + 99a1x98 + 98a2x97 + · · · + 2a98x + a99 = p′(x) = 50(x − 2)49(2x − 1)50 + 100(x − 2)50(2x − 1)49

and the desired quantity is

100a0 + 99a1 + 98a2 + · · · + 2a98 + a99 = p′(1) = −50 + 100 = 50.

4.4.4 We have

g(x) = f(f(x)) ÍÑ g ′(x) = f ′(x)f ′(f(x)) ÍÑ g ′(1) = f ′(1)f ′(f(1)) = 1 · f ′(2) = 1.

Also,
g(x) = f(f(x)) ÍÑ g ′(x) = f ′(x)f ′(f(x)) ÍÑ g ′′(x) = f ′′(x)f ′(f(x)) + (f ′(x))2f ′′(f(x)),

which gives

g ′′(1) = f ′′(1)f ′(f(1)) + (f ′(1))2f ′′(f(1)) = −1f ′(2) + (1)2f ′′(2) = −1(1) + 1(−1) = −2.

4.4.5 Since f is even, f ′ is odd and f ′′ is even. Thus we have

f(1) = 2; f(−1) = 2; f(−2) = 1; f(2) = 1

f ′(1) = −1 f ′(−1) = 1; f ′(2) = 2; f ′(−2) = −2;

f ′′(1) = 0; f ′′(−1) = 0; f ′′(2) = 3; f ′′(−2) = 3.

We have a′(x) = f(x2) + 2x2f ′(x2) and

a′′(x) = 2xf ′(x2) + 4xf ′(x2) + 4x3f ′′(x2),

whence
a′′(−1) = −2f ′(1) − 4f ′(1) − 4f ′′(1) = −2(−1) − 4(−1) = 6.

4.4.6 Put F(x) =

∫ x

a

√
1 + t2dt , where a is a constant. Then

∫ x2

x

√
1 + t2dt =

∫ x2

a

√
1 + t2dt −

∫ x

a

√
1 + t2dt = F(x2) − F(x).

By the Fundamental Theorem of Calculus, F ′(x) =
√

1 + x2, and by the Chain Rule,

d

dx
F(x2) − F(x) = 2xF ′(x2) − F ′(x) = 2x

√
1 + x4 −

√
1 + x2

4.5.1 We have
∫ a

−1

(x + 1)100dx =

∫ a

−1

d

(

(x + 1)101

101

)

=
(x + 1)101

101

∣

∣

∣

a

−1
=

(a + 1)101

101
.

4.5.2 36

4.5.3 We have, integrating by parts,

∫ 1

0

xf ′(x)dx =

∫ 1

0

xdf(x)

= xf(x)
∣

∣

∣

1

0
−
∫ 1

0

f(x)dx

= 1f(1) − 0f(0) − c

= b − c,
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and integrating by parts twice

∫ 1

0

xf ′′(x)dx =

∫ 1

0

xdf ′(x)

= xf ′(x)
∣

∣

∣

1

0
−
∫ 1

0

f ′(x)dx

= 1f ′(1) − 0f ′(0) − (f(1) − f(0))

= 2a − (b − a).

= 3a − b.
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GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or
without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a

world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document’s overall subject

(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are
none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains
a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the

Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose

the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque

copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified

Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document).
You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document
(all of its principal authors, if it has fewer than five), unless they release you from this requirement.
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C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was
based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version
it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of
these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties–for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the

Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but

different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is

included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all

other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting

from the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from

their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will

automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in

detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of

following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of

this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.
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