A FREE BOUNDARY PROBLEM FOR TWO-DIMENSIONAL GAS DYNAMICS EQUATIONS

Katarina Jegdić
Department of Computer and Mathematical Sciences
University of Houston - Downtown

Sunčica Čanić, University of Houston
Barbara Lee Keyfitz, Ohio State University

Texas PDE Seminar
University of Texas - Pan American
March 26-27, 2011

INTRODUCTION

- Reflection of a shock by a wedge
- two-dimensional Riemann problems for systems of conservation laws
* steady / unsteady transonic small disturbance equations
* nonlinear wave system
* gas dynamics equations (isentropic, adiabatic)
- shock reflection
* regular reflection (strong, weak)
* Mach reflection
* Guderley reflection
- self-similar coordinates $\Rightarrow\left\{\begin{array}{l}\text { mixed type (hyperbolic, elliptic) system } \\ \text { free boundary value problem } \\ \text { nonlinear problem }\end{array}\right.$
- theory of second order elliptic equations with mixed boundary conditions (Dirichlet and oblique) and fixed point theory
- Result
- Riemann problem for the isentropic gas dynamics equations
- strong regular reflection
- existence of a local solution in weighted Holder spaces

SHOCK REFLECTION

- motivating problem: airflow past object
- types of reflection
strong regular reflection

weak regular reflection

Mach reflection inc. shock

TWO-DIMENSIONAL RIEMANN PROBLEMS

$U_{t}+F(U)_{x}+G(U)_{y}=0, U: \mathbb{R}^{2} \times[0, \infty) \rightarrow \mathbb{R}^{m}$
similarity variables $\xi=x / t$ and $\eta=y / t$
reduced system:

$$
\partial_{\xi}(F-\xi U)+\partial_{\eta}(G-\eta U)=-2 U
$$

initial data becomes boundary data at infinity

- the reduced system changes type:
hyperbolic in the far field, mixed type near the origin
- resolve one-dimensional discontinuities in the far field
- formulate a free boundary problem for the reflected shock and the subsonic state * theory of second order elliptic equations with mixed boundary conditions (Gilbarg, Trudinger, Lieberman)
* fixed point theorems
- adiabatic gas dynamics equations $E=\frac{1}{\gamma-1} \frac{p}{\rho}+\frac{u^{2}+v^{2}}{2}$

$$
\begin{array}{ccccccc}
\rho_{t} & + & (\rho u)_{x} & + & (\rho v)_{y} & = & 0 \\
(\rho u)_{t} & + & \left(\rho u^{2}+p\right)_{x} & + & (\rho u v)_{y} & = & 0 \\
(\rho v)_{t} & + & (\rho u v)_{x} & + & \left(\rho v^{2}+p\right)_{y} & = & 0 \\
(\rho E)_{t} & + & (u(\rho E+p))_{x} & + & (v(\rho E+p))_{y} & = & 0
\end{array}
$$

- isentropic gas dynamics equations $\quad p=p(\rho)$

$$
\begin{array}{cccccc}
\rho_{t} & + & (\rho u)_{x} & + & (\rho v)_{y} & = \\
(\rho u)_{t} & +\left(\rho u^{2}+p\right)_{x} & + & (\rho u v)_{y} & = & 0 \\
(\rho v)_{t} & + & (\rho u v)_{x} & + & \left(\rho v^{2}+p\right)_{y} & = \\
\hline
\end{array}
$$

- nonlinear wave system $\quad p=p(\rho)$

$$
\begin{aligned}
& \rho_{t}+(\rho u)_{x}+(\rho v)_{y}=0 \\
&(\rho u)_{t}+p_{x} \\
&(\rho v)_{t}
\end{aligned}
$$

- unsteady transonic small disturbance equation

$$
u_{t}+u u_{x}+v_{y}=0, \quad-v_{x}+u_{y}=0
$$

- Euler equations for potential flow, pressure gradient system

ISENTROPIC GAS DYNAMICS EQUATIONS

$$
\begin{aligned}
& \rho_{t}+(\rho u)_{x}+(\rho v)_{y}=0 \\
& (\rho u)_{t}+\left(\rho u^{2}+p\right)_{x}+(\rho u v)_{y}=0 \\
& (\rho v)_{t}+(\rho u v)_{x}+\left(\rho v^{2}+p\right)_{y}=0 \\
& p=p(\rho), c^{2}(\rho):=p^{\prime}(\rho)>0 \text { and increasing } \\
& \bar{U}=(\rho, u, v)
\end{aligned}
$$

Initial data: $\quad \bar{U}_{0}=\left(\rho_{0}, u_{0}, 0\right), \bar{U}_{1}=\left(\rho_{1}, 0,0\right)$

- fix $\rho_{0}>\rho_{1}>0$
- fix $k \in\left(k_{C}\left(\rho_{0}, \rho_{1}\right), \infty\right)$
- set $u_{0}=\sqrt{1+k^{2}} \sqrt{\frac{\left(\rho_{0}-\rho_{1}\right)\left(p\left(\rho_{0}\right)-p\left(\rho_{1}\right)\right)}{\rho_{0} \rho_{1}}}$
- Formulate the problem in self-similar coordinates: $\xi=x / t, \eta=y / t$

$$
\begin{aligned}
& (\rho U)_{\xi}+(\rho V)_{\eta}+2 \rho=0 \\
& (U, V) \cdot \nabla U+U+p_{\xi} / \rho=0 \\
& (U, V) \cdot \nabla V+V+p_{\eta} / \rho=0
\end{aligned}
$$

- here, $U:=u-\xi$ and $V:=v-\eta$
- when linearized about a constant state $\bar{U}_{*}=\left(\rho_{*}, u_{*}, v_{*}\right)$, the system is hyperbolic outside the circle $C_{\bar{U}_{*}}:\left(u_{*}-\xi\right)^{2}+\left(v_{*}-\eta\right)^{2}=c^{2}\left(\rho_{*}\right)$

- Solution in the hyperbolic part of the domain

If $k \in\left(k_{C}\left(\rho_{0}, \rho_{1}\right), \infty\right)$, then:

1) Ξ_{s} is outside the sonic circles $C_{\bar{U}_{1}}, C_{\bar{U}_{a}}, C_{\bar{U}_{b}}$
2) quasi-1-d Riemann problem at Ξ_{s} has a solution (shock - shock)

- two solutions: $\bar{U}_{F}=\left(\rho_{F}, u_{F}, 0\right)$ and $\bar{U}_{R}=\left(\rho_{R}, u_{R}, 0\right)$
Ξ_{s} is subsonic w.r.t. \bar{U}_{F} when $k \in\left(k_{C}, \infty\right)$
Ξ_{s} is subsonic w.r.t. \bar{U}_{R} when $k \in\left(k_{C}, k_{*}\right)$
Ξ_{s} is supersonic w.r.t. \bar{U}_{R} when $k \in\left(k_{*}, \infty\right)$
- Two types of regular reflection

Case 1: Ξ_{s} is subsonic w.r.t. the solution at $\Xi_{s} \Rightarrow$ strong regular reflection
Case 2: Ξ_{s} is supersonic w.r.t. the solution at $\Xi_{s} \Rightarrow$ weak regular reflection

- Numerical simulations for the adiabatic gas dynamics equations
- using CLAWPACK software
- transonic (strong) and supersonic (weak) regular reflection

- Free boundary problem describing transonic regular reflection

reduced system in Ω
jump conditions along Σ
symmetry conditions along Σ_{0}
Dirichlet condition for ρ on σ
Dirichlet conditions at Ξ_{s}

Theorem: There exists a local solution $\rho \in H_{1+\alpha}^{(-\gamma)}, U, V \in H_{1+\epsilon}^{(-\gamma)}$ and $\Sigma \in H_{1+\alpha}$ of the above free boundary problem. $(0<\epsilon<\alpha<\gamma<1)$

Main idea.

$$
\begin{aligned}
& \text { reduced system in } \Omega \Leftrightarrow\left\{\begin{array}{l}
\text { 2nd order equation for } \rho \text { in } \Omega \\
\text { two 1st order "transport" equations for } U \text { and } V \text { in } \Omega
\end{array}\right. \\
& \text { jump conditions on } \Sigma \Leftrightarrow\left\{\begin{array}{l}
\text { oblique derivative boundary condition for } \rho \text { along } \Sigma \\
\text { Dirichlet conditions for } U \text { and } V \text { along } \Sigma \\
\text { shock evolution equation } d \eta / d \xi=\Psi(\rho, \xi, \eta)
\end{array}\right.
\end{aligned}
$$

- Holder spaces

Let $S \subseteq \mathbb{R}^{2}, u: S \rightarrow \mathbb{R}$. Define

$$
\begin{array}{ll}
|u|_{0 ; S}:=\sup |u(x)| & \text { supermum norm } \\
{[u]_{\alpha ; S}:=\sup _{x \neq y} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}}} & \alpha \text {-Holder seminorm } \\
|u|_{\alpha ; S}:=|u|_{0 ; S}+[u]_{\alpha ; S} & \alpha \text {-Holder norm } \\
|u|_{k+\alpha ; S}:=\sum_{j=0}^{k}\left|D^{j} u\right|_{0 ; S}+\left[D^{k} u\right]_{\alpha ; S} & (k+\alpha) \text {-Holder norm }
\end{array}
$$

Let $T \subseteq \partial S$ and $\delta>0$. Let

$$
S_{\delta ; T}:=\{x \in S: \operatorname{dist}(x, T)>\delta\},
$$

and for $a>0$ and b such that $a-b \geq 0$, define

$$
u_{a ; \bar{S} \backslash T}^{(-b)}:=\sup _{\delta>0} \delta^{a-b}|u|_{a ; S_{\delta ; T}} \quad \text { weighted interior Holder norm }
$$

Theorem: There exists a local solution $\rho \in H_{1+\alpha}^{(-\gamma)}, U, V \in H_{1+\epsilon}^{(-\gamma)}$ and $\Sigma \in H_{1+\alpha}$ of the free boundary problem

$$
\begin{aligned}
& a_{i j}(\rho, U, V) D^{i j} \rho+b_{i}(\rho, U, V) D^{i} \rho+c_{i j}(\rho, U, V) D^{i} \rho D^{j} \rho=0 \\
& (U, V) \cdot \nabla U+U+p_{\xi} / \rho=0 \\
& (U, V) \cdot \nabla V+V+p_{\eta} / \rho=0 \\
& \left.\begin{array}{l}
\beta(\rho, U, V) \cdot \nabla \rho=F(\rho, U, V) \\
U=G(\rho, \xi, \eta) \\
V=H(\rho, \xi, \eta) \\
\begin{array}{c}
d \eta \\
d \xi
\end{array}=\Psi(\rho, \xi, \eta) \\
\rho_{\eta}=U_{\eta}=V=0 \text { on } \Sigma_{0} \\
\quad \rho=f \text { on } \sigma \\
\bar{U}\left(\Xi_{s}\right)=\bar{U}_{F}, \quad \eta\left(\xi_{s}\right)=0
\end{array}\right\} \text { on } \Sigma: \eta=\eta(\xi)
\end{aligned}
$$

Remark. We introduce cut-off functions to ensure that:

- the 2 nd order equation for ρ is uniformly elliptic in Ω
- the condition for ρ on Σ is uniformly oblique
- the shock evolution equation is well-defined

Step 1. given $\Sigma_{m} \in \mathcal{K} \subset H_{1+\alpha}$, find ρ_{m}, U_{m}, V_{m} solving the fixed BP in Ω_{m}

$$
\left.\begin{array}{c}
a_{i j}(\rho, U, V) D^{i j} \rho+b_{i}(\rho, U, V) D^{i} \rho+c_{i j}(\rho, U, V) D^{i} \rho D^{j} \rho=0 \\
(U, V) \cdot \nabla U+U+p_{\xi} / \rho=0, \quad(U, V) \cdot \nabla V+V+p_{\eta} / \rho=0
\end{array}\right\} \text { in } \Omega
$$

- fix $\omega, W, Z \in H_{1+\epsilon}^{(-\gamma)}$
- linearize the second order problem for density using ω, W, Z in the coefficients
- show that there exists a solution $\rho \in H_{1+\alpha}^{(-\gamma)}$ of this linear problem
- show that the map $\omega \mapsto \rho$ has a fixed point $\rho[W, Z]$
- linearize the first order problem for pseudo-velocities using $W, Z, \rho[W, Z]$
- show that there exists a solution $U, V \in H_{1+\epsilon}^{(-\gamma)}$ of this linear problem
- show that the map $(W, Z) \mapsto(U, V)$ is a contraction

Step 2. find Σ_{m+1} using the shock evolution equation $d \eta / d \xi=\Psi\left(\rho_{m}, \xi, \eta\right)$

- show that the map $\Sigma_{m} \mapsto \Sigma_{m+1}$ has a fixed point Σ

RELATED WORK

- steady transonic small disturbance equation
- shock perturbation: Čanić-Keyfitz-Lieberman
- unsteady transonic small disturbance equation
- strong regular reflection: Čanić-Keyfitz-Kim
- weak regular reflection: Čanić-Keyfitz-Kim
- Guderley reflection: Tesdall-Hunter
- nonlinear wave system
- Mach reflection: Čanić-Keyfitz-Kim, Sever
- strong regular reflection: Jegdić-Keyfitz-Čanić
- weak regular reflection: Jegdić
- Guderley reflection: Tesdall-Sanders-Keyfitz
- pressure-gradient system
- weak regular reflection: Y.Zheng-D.Wang
- Euler equations for potential flow
- weak regular reflection: G.Q.Chen-M.Feldman
- adiabatic/isentropic gas dynamics equations
- T.Chang-G.Q.Chen, S.X.Chen et al., T.Zhang-Y.Zheng, T.P.Liu-V.Elling, A.Tesdall-R.Sanders

REFERENCES

- S. Čanić, B. L. Keyfitz, G. M. Lieberman, "A proof of existence of perturbed steady transonic shocks via a free boundary problem", Communications on Pure and Applied Mathematics, LIII (2000), 484-511.
- S. Čanić, B. L. Keyfitz, E. H. Kim, "Free boundary problems for the unsteady transonic small disturbance equation: transonic regular reflection", Methods and Applications of Analysis, 7 (2000), 313-336.
- S. Čanić, B. L. Keyfitz, E. H. Kim, "A free boundary problem for a quasi-linear degenerate elliptic equation: regular reflection of weak shocks", Communications on Pure and Applied Mathematics, LV (2002), 71-92.
- S. Čanić, B. L. Keyfitz, E. H. Kim, "Free boundary problems for nonlinear wave systems: Mach stems for interacting shocks", SIAM Journal on Mathematical Analysis, 37 (2006), 1947-1977.
- K. Jegdić, B. L. Keyfitz, S. Čanić, "Transonic regular reflection for the nonlinear wave system", Journal of Hyperbolic Differential Equations, 3 (2006), 1-32.
- K. Jegdić, "Weak regular reflection for the nonlinear wave system", Journal of Hyperbolic Differential Equations, 5 (2008), 399-420.
- K. Jegdić, B. L. Keyfitz, S. Čanić, "A free boundary problem for the isentropic gas dynamics equations - transonic regular reflection", submitted.

