A FREE BOUNDARY PROBLEM FOR TWO-DIMENSIONAL GAS DYNAMICS EQUATIONS

Katarina Jegdić

Department of Computer and Mathematical Sciences

University of Houston – Downtown

Sunčica Čanić, University of Houston Barbara Lee Keyfitz, Ohio State University

Texas PDE Seminar
University of Texas – Pan American
March 26-27, 2011

INTRODUCTION

- Reflection of a shock by a wedge
 - two-dimensional Riemann problems for systems of conservation laws
 - * steady / unsteady transonic small disturbance equations
 - * nonlinear wave system
 - * gas dynamics equations (isentropic, adiabatic)
 - shock reflection
 - * regular reflection (strong, weak)
 - * Mach reflection
 - * Guderley reflection

 - theory of second order elliptic equations with mixed boundary conditions (Dirichlet and oblique) and fixed point theory
- Result
 - Riemann problem for the isentropic gas dynamics equations
 - strong regular reflection
 - existence of a local solution in weighted Holder spaces

SHOCK REFLECTION

- motivating problem: airflow past object
- types of reflection

strong regular reflection weak regular reflection Mach reflection inc. shock refl. shock refl. shock refl. shock inc. shock inc. shock subsonic subsonic^{*} subsonic region region region Mach stem

supersonic region

TWO-DIMENSIONAL RIEMANN PROBLEMS

$$U_t + F(U)_x + G(U)_y = 0, U : \mathbb{R}^2 \times [0, \infty) \to \mathbb{R}^m$$

similarity variables $\xi = x/t$ and $\eta = y/t$

reduced system:

$$\partial_{\xi}(F - \xi U) + \partial_{\eta}(G - \eta U) = -2U$$

initial data becomes boundary data at infinity

- the reduced system changes type:
 hyperbolic in the far field, mixed type near the origin
- resolve one-dimensional discontinuities in the far field
- formulate a free boundary problem for the reflected shock and the subsonic state
 - * theory of second order elliptic equations with mixed boundary conditions (Gilbarg, Trudinger, Lieberman)
 - * fixed point theorems

• adiabatic gas dynamics equations $E = \frac{1}{\gamma - 1} \frac{p}{\rho} + \frac{u^2 + v^2}{2}$

$$\rho_t + (\rho u)_x + (\rho v)_y = 0
(\rho u)_t + (\rho u^2 + p)_x + (\rho u v)_y = 0
(\rho v)_t + (\rho u v)_x + (\rho v^2 + p)_y = 0
(\rho E)_t + (u(\rho E + p))_x + (v(\rho E + p))_y = 0$$

ullet isentropic gas dynamics equations p=p(
ho)

$$\rho_t + (\rho u)_x + (\rho v)_y = 0
(\rho u)_t + (\rho u^2 + p)_x + (\rho u v)_y = 0
(\rho v)_t + (\rho u v)_x + (\rho v^2 + p)_y = 0$$

ullet nonlinear wave system p=p(
ho)

unsteady transonic small disturbance equation

$$u_t + uu_x + v_y = 0, \quad -v_x + u_y = 0$$

Euler equations for potential flow, pressure gradient system

ISENTROPIC GAS DYNAMICS EQUATIONS

$$\begin{aligned} \rho_t + (\rho u)_x + (\rho v)_y &= 0 \\ (\rho u)_t + (\rho u^2 + p)_x + (\rho u v)_y &= 0 \\ (\rho v)_t + (\rho u v)_x + (\rho v^2 + p)_y &= 0 \\ \hline \\ p &= p(\rho), \ c^2(\rho) := p'(\rho) > 0 \ \text{and increasing} \end{aligned}$$

$$\overline{U} = (\rho, u, v)$$

Initial data: $\overline{U}_0=(
ho_0,u_0,0)$, $\overline{U}_1=(
ho_1,0,0)$

- fix $\rho_0 > \rho_1 > 0$
- fix $k \in (k_C(\rho_0, \rho_1), \infty)$

- set
$$u_0 = \sqrt{1 + k^2} \sqrt{\frac{(\rho_0 - \rho_1)(p(\rho_0) - p(\rho_1))}{\rho_0 \rho_1}}$$

 \bullet Formulate the problem in self-similar coordinates: $\xi=x/t$, $\,\eta=y/t\,$

$$(\rho U)_{\xi} + (\rho V)_{\eta} + 2\rho = 0$$

$$(U, V) \cdot \nabla U + U + p_{\xi}/\rho = 0$$

$$(U, V) \cdot \nabla V + V + p_{\eta}/\rho = 0$$

- here, $U:=u-\xi$ and $V:=v-\eta$
- when linearized about a constant state $\overline{U}_*=(\rho_*,u_*,v_*)$, the system is hyperbolic outside the circle $\ C_{\overline{U}_*}:\ (u_*-\xi)^2+(v_*-\eta)^2=c^2(\rho_*)$

Solution in the hyperbolic part of the domain

If $k \in (k_C(\rho_0, \rho_1), \infty)$, then:

- 1) Ξ_s is outside the sonic circles $C_{\overline{U}_1}, C_{\overline{U}_a}, C_{\overline{U}_b}$
- 2) quasi-1-d Riemann problem at Ξ_s has a solution (shock shock)
 - two solutions: $\overline{U}_F=(
 ho_F,u_F,0)$ and $\overline{U}_R=(
 ho_R,u_R,0)$
 - Ξ_s is subsonic w.r.t. \overline{U}_F when $k \in (k_C, \infty)$
 - Ξ_s is subsonic w.r.t. \overline{U}_R when $k \in (k_C, k_*)$
 - Ξ_s is supersonic w.r.t. \overline{U}_R when $k \in (k_*, \infty)$

• Two types of regular reflection

Case 1: Ξ_s is subsonic w.r.t. the solution at $\Xi_s \Rightarrow$ strong regular reflection

Case 2: Ξ_s is supersonic w.r.t. the solution at $\Xi_s \Rightarrow$ weak regular reflection

- Numerical simulations for the adiabatic gas dynamics equations
 - using CLAWPACK software
 - transonic (strong) and supersonic (weak) regular reflection

• Free boundary problem describing transonic regular reflection

reduced system in $\boldsymbol{\Omega}$

jump conditions along Σ

symmetry conditions along Σ_0

Dirichlet condition for ρ on σ

Dirichlet conditions at Ξ_s

Theorem: There exists a local solution $\rho \in H_{1+\alpha}^{(-\gamma)}$, $U, V \in H_{1+\epsilon}^{(-\gamma)}$ and $\Sigma \in H_{1+\alpha}$ of the above free boundary problem. $(0 < \epsilon < \alpha < \gamma < 1)$

Main idea.

 $\text{reduced system in } \Omega \Leftrightarrow \left\{ \begin{array}{l} \text{2nd order equation for } \rho \text{ in } \Omega \\ \text{two 1st order "transport" equations for } U \text{ and } V \text{ in } \Omega \end{array} \right.$

 $\text{jump conditions on } \Sigma \Leftrightarrow \left\{ \begin{array}{l} \text{oblique derivative boundary condition for } \rho \text{ along } \Sigma \\ \text{Dirichlet conditions for } U \text{ and } V \text{ along } \Sigma \\ \text{shock evolution equation } d\eta/d\xi = \Psi(\rho,\xi,\eta) \end{array} \right.$

Holder spaces

Let $S\subseteq\mathbb{R}^2$, $u:S\to\mathbb{R}$. Define

$$|u|_{0,S} := \sup |u(x)|$$

supermum norm

$$[u]_{\alpha;S} := \sup_{x \neq y} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}$$

 α -Holder seminorm

$$|u|_{\alpha;S} := |u|_{0;S} + [u]_{\alpha;S}$$

lpha-Holder norm

$$|u|_{k+\alpha;S}:=\sum_{j=0}^k|D^ju|_{0;S}+[D^ku]_{\alpha;S}\qquad (k+\alpha)$$
-Holder norm

Let $T \subseteq \partial S$ and $\delta > 0$. Let

$$S_{\delta;T} := \{ x \in S : \operatorname{dist}(x,T) > \delta \},\$$

and for a>0 and b such that $a-b\geq 0$, define

$$u_{a;\overline{S}\backslash T}^{(-b)}:=\sup_{\delta>0}\delta^{a-b}|u|_{a;S_{\delta;T}}\quad \text{weighted interior Holder norm}$$

Theorem: There exists a local solution $\rho \in H_{1+\alpha}^{(-\gamma)}$, $U,V \in H_{1+\epsilon}^{(-\gamma)}$ and $\Sigma \in H_{1+\alpha}$ of the free boundary problem

$$\begin{cases} a_{ij}(\rho,U,V)D^{ij}\rho + b_i(\rho,U,V)D^i\rho + c_{ij}(\rho,U,V)D^i\rho D^j\rho = 0\\ (U,V)\cdot\nabla U + U + p_\xi/\rho = 0\\ (U,V)\cdot\nabla V + V + p_\eta/\rho = 0 \end{cases} \text{ in } \Omega$$

$$\left. \begin{array}{l} \beta(\rho,U,V) \cdot \nabla \rho = F(\rho,U,V) \\ U = G(\rho,\xi,\eta) \\ V = H(\rho,\xi,\eta) \\ \frac{d\eta}{d\xi} = \Psi(\rho,\xi,\eta) \end{array} \right\} \text{ on } \Sigma: \eta = \eta(\xi)$$

$$ho_\eta=U_\eta=V=0 ext{ on } \Sigma_0$$

$$ho=f ext{ on } \sigma$$

$$\overline{U}(\Xi_s)=\overline{U}_F, \qquad \eta(\xi_s)=0$$

Remark. We introduce cut-off functions to ensure that:

- \cdot the 2nd order equation for ho is uniformly elliptic in Ω
- \cdot the condition for ho on Σ is uniformly oblique
- · the shock evolution equation is well-defined

Step 1. given $\Sigma_m \in \mathcal{K} \subset H_{1+\alpha}$, find ρ_m, U_m, V_m solving the fixed BP in Ω_m

$$\left. \begin{array}{l} a_{ij}(\rho,U,V)D^{ij}\rho + b_i(\rho,U,V)D^i\rho + c_{ij}(\rho,U,V)D^i\rho D^j\rho = 0 \\ (U,V)\cdot\nabla U + U + p_\xi/\rho = 0, \quad (U,V)\cdot\nabla V + V + p_\eta/\rho = 0 \end{array} \right\} \text{ in } \Omega$$

$$\begin{split} \beta(\rho,U,V)\cdot\nabla\rho&=F(\rho,U,V) \text{ on } \Sigma,\quad \rho_{\eta}=0 \text{ on } \Sigma_{0},\quad \rho|_{\sigma}=f,\quad \rho|_{\Xi_{s}}=\rho_{s}\\ U|_{\Sigma}&=G(\rho),\quad U|_{\Xi_{s}}=u_{F}-\xi_{s},\quad U_{\eta}=0 \text{ on } \Sigma_{0}\\ V|_{\Sigma}&=H(\rho),\quad V|_{\Xi_{s}}=0,\quad V=0 \text{ on } \Sigma_{0} \end{split}$$

- $\cdot \text{ fix } \omega, W, Z \in H_{1+\epsilon}^{(-\gamma)}$
- \cdot linearize the second order problem for density using ω,W,Z in the coefficients
- \cdot show that there exists a solution $\rho \in H^{(-\gamma)}_{1+\alpha}$ of this linear problem
- \cdot show that the map $\omega \mapsto \rho$ has a fixed point $\rho[W\!,Z]$
- · linearize the first order problem for pseudo-velocities using W,Z,
 ho[W,Z]
- \cdot show that there exists a solution $U,V\in H_{1+\epsilon}^{(-\gamma)}$ of this linear problem
- \cdot show that the map $(W,Z)\mapsto (U,V)$ is a contraction

Step 2. find Σ_{m+1} using the shock evolution equation $d\eta/d\xi=\Psi(\rho_m,\xi,\eta)$

 \cdot show that the map $\Sigma_m \mapsto \Sigma_{m+1}$ has a fixed point $\ \Sigma$

RELATED WORK

- steady transonic small disturbance equation
 - shock perturbation: Čanić-Keyfitz-Lieberman
- unsteady transonic small disturbance equation
 - strong regular reflection: Čanić-Keyfitz-Kim
 - weak regular reflection: Čanić-Keyfitz-Kim
 - Guderley reflection: Tesdall-Hunter
- nonlinear wave system
 - Mach reflection: Čanić-Keyfitz-Kim, Sever
 - strong regular reflection: Jegdić-Keyfitz-Čanić
 - weak regular reflection: Jegdić
 - Guderley reflection: Tesdall-Sanders-Keyfitz
- pressure-gradient system
 - weak regular reflection: Y.Zheng-D.Wang
- Euler equations for potential flow
 - weak regular reflection: G.Q.Chen-M.Feldman
- adiabatic/isentropic gas dynamics equations
 - T.Chang-G.Q.Chen, S.X.Chen et al., T.Zhang-Y.Zheng, T.P.Liu-V.Elling, A.Tesdall-R.Sanders

REFERENCES

- S. Čanić, B. L. Keyfitz, G. M. Lieberman, "A proof of existence of perturbed steady transonic shocks via a free boundary problem", Communications on Pure and Applied Mathematics, LIII (2000), 484-511.
- S. Čanić, B. L. Keyfitz, E. H. Kim, "Free boundary problems for the unsteady transonic small disturbance equation: transonic regular reflection", Methods and Applications of Analysis, 7 (2000), 313-336.
- S. Čanić, B. L. Keyfitz, E. H. Kim, "A free boundary problem for a quasi-linear degenerate elliptic equation: regular reflection of weak shocks", Communications on Pure and Applied Mathematics, LV (2002), 71-92.
- S. Čanić, B. L. Keyfitz, E. H. Kim, "Free boundary problems for nonlinear wave systems: Mach stems for interacting shocks", SIAM Journal on Mathematical Analysis, 37 (2006), 1947-1977.
- K. Jegdić, B. L. Keyfitz, S. Čanić, "Transonic regular reflection for the nonlinear wave system", Journal of Hyperbolic Differential Equations, 3 (2006), 1-32.
- K. Jegdić, "Weak regular reflection for the nonlinear wave system", Journal of Hyperbolic Differential Equations, 5 (2008), 399-420.
- K. Jegdić, B. L. Keyfitz, S. Čanić, "A free boundary problem for the isentropic gas dynamics equations transonic regular reflection", submitted.