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A B S T R A C T

This paper deals with the frequency–amplitude response of superharmonic resonance of second order (order
two) of electrostatically actuated Micro-Electro-Mechanical System (MEMS) cantilever resonators. The structure
of MEMS resonators consists of a cantilever resonator over a parallel ground plate, with a given gap in between,
and under AC voltage. This resonance results from hard excitations and AC voltage frequency near one-fourth
of the natural frequency of the resonator. The forces acting on the resonator are the nonlinear electrostatic
force to include fringe effect, and a linear damping force. In order to solve the dimensionless partial differential
equation of motion along with boundary and initial conditions, two types of models are developed, namely
Reduced Order Models (ROMs), and Boundary Value Problem (BVP) model. The BVP model is essentially
a finite difference model with a discretization in time only. ROMs are developed using one through five
modes of vibration. The Method of Multiple Scales (MMS), numerical integrations using MATLAB, as well
as a continuation and bifurcation analysis are used to solve the ROMs. The BVP model, resulting from using
finite differences for time derivatives, is also numerically integrated. Five modes of vibration ROM is found
to make accurate predictions in all amplitudes. A softening effect of the response is predicted. The response
consists of a bifurcation with a bifurcation point of amplitude one fourth of the gap, and a stable branch in
larger frequencies with a pull-in instability end point at three fourths of the gap. The bifurcation point shifts to
lower frequencies as the voltage and/or fringe effect increase, and/or damping decreases. If damping increases,
the branches coalesce, peak amplitude decreases, and a linear behavior is experienced.
. Introduction

Applications of Micro-Electro-Mechanical Systems (MEMS) are mi-
romotors, microswitches, microrelays, microresonators, micromirrors,
icropumps, microvalves, and microfilters [1–4]. MEMS offer benefits

uch as low power draw requirements and physical space-saving [2].
hese benefits translate to applications in the medical field such as
ody sensor network and micropumps for drug delivery. MEMS can
e used as body sensor network connected wirelessly to a central
rocessing hub [3]. This system has biomedical applications such as
otion monitoring and bio-signal collection of vital parameters. Such

pplications are useful for sport, fitness, and healthcare. MEMS can
lso be used as integrated drug delivery systems, which incorporate
drug reservoir, micropumps, valves, microsensors, and microchan-

els [4]. The key components in these applications are microsensors.
hey provide feedback to the system. The structure of MEMS resonator
onsists of beam-type or plate-type flexible structure suspended over
parallel ground plate, and under Alternating Current (AC) voltage,
irect Current (DC) voltage, or both [1].

In order to understand the behavior, operating range, and lim-
tations of MEMS resonators, mathematical models are needed [5].

∗ Corresponding author.
E-mail addresses: dumitru.caruntu@utrgv.edu, caruntud2@asme.org (D.I. Caruntu).

Euler–Bernoulli beam theory is sufficient to investigate slender uniform
cantilever structures [6]. At the micro-level, forces such as fringe effect
and damping are no longer negligible. The fringe effect is an additional
electrostatic force due to electric field outside the volume between
the parallel plates [7]. The fringe effect becomes more significant
with increasing the gap distance between the beam and ground plate,
decreasing the width of the beam, or both. The electrostatic force and
the fringe effect produce a nonlinear behavior to include bifurcations
and pull-in instabilities [8]. Pull-in occurs when the electrostatic force
exceeds the mechanical restoring force, and consists of contact between
the tip of the cantilever resonator and the parallel ground plate [9–11].
Thus, mathematical models need to be developed in order to identify
and understand the behavior of the system, in general, and pull-in
phenomenon in particular. It has been shown that different mathe-
matical models can accurately investigate pull-in instability within the
dynamics of MEMS cantilevers [12–14]. Microcantilever beams were
modeled using the couple stress theory along with Galerkin method in
order to predict the DC pull-in voltage [12]. Node and domain transfor-
mation methods of reduced order model [13] were used to investigate
clamped–clamped (bridge) microbeam resonators. When compared to
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experimental data, the domain transformation method predicted the
pull-in voltage. Shooting and perturbation methods were used to an-
alyze the frequency-amplitude response of MEMS bridge microbeam
resonators [14]. Reduced order models up to five modes of vibration
were used and solved using a continuation and bifurcation method
(AUTO 07P software package) to predict the frequency-amplitude re-
sponse of parametric resonance of electrostatically actuated MEMS
cantilever resonators [15].

The electrostatic force is the attraction force between the MEMS
resonator and parallel ground plate and it is due to the applied volt-
age. The voltage can be manipulated through its magnitude and its
frequency if AC voltage, which are two factors that can influence the
ehavior of the system [16].

Superharmonic resonance of second order (order two) of electrostat-
cally actuated MEMS structures have been reported in the literature.
hayes et al. [17] investigated the nonlinear size-dependent behavior
f electrically actuated (AC voltage superimposed on a DC voltage)
EMS bridge microbeam resonators based on the modified couple

tress theory. A high-dimensional reduced order model was obtained
sing the Galerkin method. The pseudo-arclength continuation tech-
ique was employed to investigate the behavior of the system under
rimary and superharmonic excitations. The frequency- and voltage-
mplitude response curves of the system were constructed. The effect
f taking into account the length-scale parameter on the dynamic
ehavior of the system was investigated by comparing the predictions
f classical and modified couple stress theories. Abdel-Rahman and
ayfeh [18] reported the response of a bridge microbeam resonator

ensor under superharmonic and subharmonic electric actuations. The
odel incorporated nonlinearities due to moderately large displace-
ents and electric forces. The method of multiple scales was used.
oth, frequency–response and voltage–response curves predicted the
oexistence of multivalued solutions. The solution corresponding to

superharmonic excitation consisted of three branches meeting at
wo saddle–node bifurcation points and showing a hardening effect
or bridges. Caruntu et al. [19] investigated the voltage–amplitude
esponse of superharmonic resonance of second order (order two) of
EMS cantilever resonators under hard AC electrostatic actuation.
C frequency was near one-fourth of the natural frequency of the
antilever. The electrostatic force included fringe effect. Reduced Order
odels (ROMs), and Boundary Value Problem (BVP) model, were

sed. The voltage–amplitude response showed a softening effect and
hree saddle–node bifurcation points. They reported that the pull-in
oltage was not affected by damping or detuning frequency. Najar
t al. [20] used a discretization technique combining the differential
uadrature method (DQM) and the finite difference method (FDM) for
he space and time in order to investigate the dynamic behavior of
n electrostatic bridge microbeam actuator. They accounted for sys-
em nonlinearities due to mid-plane stretching and electrostatic force.
imit-cycle solutions of the microactuator were investigated using the
onlinear algebraic system resulted from DQM–FDM. Floquet theory
nd/or longtime integration were used to assess the stability of these
olutions. The method was applied for large excitation amplitudes
nd large quality factors for secondary resonances of the first mode.
hey showed that DQM–FDM technique improves convergence of the
ynamic solutions. Nayfeh and Younis [21] investigated the dynamics
f electrically actuated bridge microbeam resonators under secondary
esonance excitations. The microbeams were excited by DC voltage,
nd AC voltage with a frequency tuned near half their fundamental
atural frequencies (superharmonic excitation of order two). The ef-
ects of varying the DC bias, damping, and AC excitation amplitude on
he frequency–response curves have been reported. The DC bias was
ignificantly larger than the AC voltage. They also reported that the
ynamic pull-in instability can occur at an electric load much lower
han a purely DC voltage and of the same order of magnitude as that
n the case of primary-resonance excitation. Al-Ghamdi et al. [22]
xperimentally investigated the primary, superharmonic of order two,
2

nd subharmonic of order one-half resonances of electrostatic MEMS
ctuators consisting of two parallel cantilevers with an end plate un-
er direct electrostatic excitation. The experiments were conducted
n soft vacuum to reduce squeeze-film damping, and the actuator
esponse was measured optically using a laser vibrometer. Alsaleem
t al. [23] reported on modeling and experimental investigation of
onlinear resonances of electrostatically actuated resonators consisting
f two cantilever beams with a proof mass attached to their tips. A
onlinear forcing composed of a DC parallel-plate electrostatic load
uperimposed on an AC harmonic load was used. Investigations of
rimary, superharmonic and subharmonic resonances, as well as dy-
amic pull-in, were conducted. A nonlinear spring–mass–damper model
ccounting for squeeze-film damping and the parallel-plate electrostatic
orce was utilized. Safety and integrity of MEMS resonators based
n the simulated basin of attraction and the observed experimental
ata were reported. Ibrahim et al. [24] reported on the dynamics of
antilever microbeams under multiple harmonic electrostatic excitation
requencies. The response of microcantilevers were simulated for pri-
ary resonance, and secondary resonances, namely superharmonic of

rder two and subharmonic of order one half. Galerkin method has
een used to develop a reduced order model. The response under three
C sources excitation was investigated.

In conclusion, superharmonic resonances were reported in the lit-
rature for electrostatically actuated MEMS microbeam resonators,
amely microbridges (clamped–clamped) [17,18,20,21],
icrocantilevers (clamped-free) [19,24], and lumped models [22,23].
he superharmonic resonance occurred at two different AC frequencies,
epending on the voltage, i.e. the case of AC only, and the case of
oth DC and AC. An important distinction is that, if the actuating
oltage consisted of AC component only [19], then the superharmonic
esonance of second order occurred for AC frequency near one fourth of
he natural frequency of the resonator. If the actuating voltage included
oth components DC and AC, in which the DC voltage was much
arger than the AC voltage [17,18,20–24], then the superharmonic
esonance of second order occurred for AC frequency near one half
f the natural frequency. Reference [19] reported only the voltage–
mplitude response. Frequency–amplitude responses of electrostatically
ctuated microbridges [17,18,20,21], and microcantilevers [24] have
een reported in the literature.

Present work is an extension of Caruntu et al. [19] and reports
he nonlinear frequency–amplitude response of superharmonic reso-
ance of second order of electrostatically actuated MEMS cantilever
esonators. The applied AC voltage is in the realm of hard excitation
ith the frequency near one-fourth natural frequency. A resonance

or AC frequency as low as one-fourth of natural frequency is a very
mportant benefit of this work, when compared to other studies that
nclude a DC voltage larger than the AC voltage of frequency near half
atural frequency to produce the same type of resonance. Two different
odels of investigation result from transforming the dimensionless
artial differential equation into an ordinary differential equation, or
system of ordinary differential equations. The first type of models are
OMs, which are based on Galerkin procedure [11,15,25]. ROMs use

he modes of vibration of the resonator. Specifically, they use the mode
hapes as a basis of functions. ROMs consist of a system of ordinary
ifferential equations in time along with initial conditions. The size of
he system depends on the number of modes of vibration used. The
econd model is a BVP model in which the time derivatives of the
imensionless partial differential equation of motion are replaced by
inite differences. This way, the model results in a system of BVPs,
.e. one BVP at each step in time. These models are solved using either
nalytical or numerical methods.

To the authors’ best knowledge, this is the first time when (1)
he frequency–amplitude response of superharmonic resonance of sec-
nd order of electrostatically actuated MEMS cantilever resonators
ubjected to hard excitations, with (2) an AC frequency near one
ourth of the natural frequency, and (3) using several methods of
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investigation, is reported. (4) Present research predicts the existence
of pull-in for this resonance for a range of frequencies. Only two other
investigations reported on superharmonic resonance of electrostatically
actuated MEMS cantilever resonators. One investigation reported only
on voltage–amplitude response [19]. The other investigation used both
DC voltage and small AC voltage with a frequency near half natural
frequency [24], not one fourth as in this paper, and did not predict
the unstable branches in the response; moreover, they reported only
a very particular dimensional case. Present research uses the Method
of Multiple Scales (MMS) for solving one mode of vibration ROM and
predicting the frequency–amplitude response. Two through five modes
of vibration ROMs are solved using AUTO 07P, a continuation and
bifurcation software, to predict the frequency–amplitude bifurcation
diagram. A convergence investigation shows that ROM with five modes
of vibration should be used for both small and large (compared to
the gap) amplitudes. This is similar to Caruntu et al. [19]. The five
term ROM is also numerically integrated in MATLAB to predict time
responses of the structure. Moreover, BVP model is numerically inte-
grated in MATLAB and used to predict time responses of the structure
as well. The only other work investigating superharmonic resonance
of electrostatically actuated MEMS cantilever resonators reported in
the literature and using ROMs and BVPs models, and methods such
as MMS, direct numerical integration, and AUTO 07 for continuation
and bifurcation is Ref. [19] which reported only the voltage–amplitude
response. (5) Present work reports that MMS is valid for amplitudes less
than 0.1 of the gap, and unreliable for larger amplitudes. ROM and BVP
models are valid for all range of amplitudes provided that a sufficient
number of modes of vibration used in the ROM, and small enough
timestep size for BVP are considered. Five modes of vibration ROM
accurately predicts the frequency–amplitude response of the system.
In Ref. [24], the authors reported only time responses resulting from
numerical integration of ROM with at least three modes of vibration.
This approach did not provide the unstable branches in the response.
Also, they did not report a convergence study by the number of modes
of vibration in order to determine the necessary number of modes in
the ROM. ‘‘While Abdel-Rahman and Nayfeh [18] used the method
of multiple scales, Nayfeh and Younis [21], and Ghayesh et al. [17],
used reduced order models to include 4 and 16 modes of vibration,
respectively. However, neither Ghayesh et al. [17] nor Nayfeh and You-
nis [21] reported a convergence criterion for determining the number
of modes of vibration necessary in the model’’ [19]. (6) The effect
of voltage, fringe, and damping on the amplitude–frequency response
are also reported. These effects on superharmonic resonance of second
order of electrostatically actuated MEMS cantilever resonators were
reported in Ref. [19], yet only on the voltage-amplitude response. These
effects were not reported in Ref. [24]. Their model did not include the
fringe effect, the AC voltage was much less than the DC voltage, and
the work rather focused on multi-frequency excitations.

2. Partial differential equation of motion

The motion of electrostatically actuated Euler–Bernoulli cantilever
resonator, Fig. 1, is given by the following dimensionless partial dif-
ferential equation, and boundary and initial conditions [11,19,26]

⎧

⎪

⎨

⎪

⎩

𝜕2𝑢
𝜕𝜏2

+ 𝑏∗ 𝜕𝑢
𝜕𝜏 + 𝜕4𝑢

𝜕𝑧4
= 𝛿⋅𝑉 2

(1−𝑢)2
+ 𝑓𝛿⋅𝑉 2

(1−𝑢)

𝑢 (0, 𝜏) = 𝜕𝑢
𝜕𝑧 (0, 𝜏) =

𝜕2𝑢
𝜕𝑧2 (1, 𝜏) =

𝜕3𝑢
𝜕𝑧3 (1, 𝜏) = 0

𝑢 (𝑧, 0) = 𝑓 (𝑧) , 𝜕𝑢𝜕𝜏 (𝑧, 0) = 𝑔 (𝑧)

(1)

here 𝑢 = 𝑢 (𝑧, 𝜏), z, and 𝜏 are dimensionless transverse displacement
deflection) of the resonator, dimensionless longitudinal coordinate,
nd dimensionless time, respectively. They are given by

= 𝑤 ; 𝑧 = 𝑥 ; 𝜏 = 𝑡 ⋅ 1
2

√

𝐸𝐼0 (2)

𝑔 𝓁 𝓁 𝜌𝐴0

3

Fig. 1. Uniform cantilever beam MEMS resonator under electrostatic actuation.

where w is the dimensional transverse displacement of the cantilever,
x dimensional longitudinal coordinate, t dimensional time, 𝓁 beam
length, g gap between the cantilever and ground plate, 𝜌 density, and
E Young modulus. 𝐴0 and 𝐼0 are the cross-section area and moment
of inertia of the cantilever, respectively. Functions 𝑓 (𝑧) and 𝑔 (𝑧) are
he initial deflection and velocity of the resonator, respectively. In the
resent work only AC voltage is considered. The dimensionless AC
oltage 𝑉 (𝜏) is as follows

(𝜏) = cos𝛺∗𝜏 (3)

he dimensionless parameters in Eq. (1) are 𝑏∗ dimensionless damp-
ng parameter, 𝛿 dimensionless amplitude of the electrostatic excita-
ion force (or dimensionless voltage) parameter, and 𝑓 dimensionless
ringe parameter, 𝛺∗ dimensionless frequency of excitation, and 𝜔𝑖
imensionless 𝑖th natural frequency. They are given by

∗ = 𝑏𝓁2

𝑔
√

𝜌𝐸𝐴0𝐼0
, 𝛿𝑖 =

𝜀0𝑊 𝓁4𝑉 2

2𝑔3𝐸𝐼0
, 𝑓 =

0.65𝑔
𝑊

,

𝛺∗ = 𝛺𝓁2

√

𝜌𝐴0
𝐸𝐼0

, 𝜔𝑖 = 𝜔𝑖𝓁
2

√

𝜌𝐴0
𝐸𝐼0

(4)

where b is viscous damping per unit length, W beam width, 𝜀0 per-
ittivity of free space, 𝛺 dimensional frequency of excitation, and 𝜔𝑖

dimensional 𝑖th natural frequency.
Palmer’s formula [7,19,26,27] consisting of the two terms at the

right-hand side of Eq. (1) is used for the electrostatic force including
the fringe effect. This formula holds for structures that do not fall in
the category of narrow beams.

Regarding damping, a variety of sources such as air damping,
acoustic radiation, support loss, phonon scattering, and thermoelastic
loss can contribute to the overall damping of a MEMS resonator [28].
However, depending on the operating condition of the system, different
loss mechanisms are more dominant. In this paper, it is assumed that
the dominant damping loss is due to air damping. For MEMS, there
are four regimes of air damping: (1) intrinsic, (2) rarefied, (3) viscous,
and (4) squeeze film [28]. Intrinsic and rarefied regimes are at relative
high vacuum of less than 10 Pa and between 10–1000 Pa, respectively.
Viscous and squeeze film fall under pressure values between 1000 Pa
– 1 atm. The quality factor 𝑄 and the damping coefficient per length
𝑏 [29–32] in present work are for damping in rarefied gas, [29].

3. Superharmonic resonance of second order

The dimensionless frequency 𝛺∗ of the AC voltage between the
antilever and the parallel ground plate is near one fourth of the
irst dimensionless natural frequency 𝛺∗ ≈ 𝜔1∕4, [19]. Using 𝜎 as

a frequency detuning parameter, and 𝜀 as a dimensionless parameter
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⎧

⎪

⎪

⎨

⎪

⎪

utilized as a bookkeeping device in MMS to indicate small terms of the
equation, the AC voltage frequency can be written as

∗ =
𝜔1
4

+ 𝜀𝜎 (5)

onsidering small damping, Eq. (1) can be written as

𝜕2𝑢
𝜕𝜏2

+ 𝜀𝑏∗ 𝜕𝑢
𝜕𝜏

+ 𝜕4𝑢
𝜕𝑧4

=
[

𝛿
(1 − 𝑢)2

+
𝑓𝛿

(1 − 𝑢)

]

𝑉 2 (6)

One should mention that the voltage parameter 𝛿 should be large
enough to produce hard excitations in order for this resonance to occur.

4. Method of multiple scales

MMS is used in this work to investigate the frequency–amplitude re-
sponse of superharmonic resonance of second order of electrostatically
actuated cantilever resonators. In Eq. (6), the nonlinear electrostatic
force and fringe effect are expanded in Taylor series and terms up to
the cubic power are retained. The solution of the resulting equation
is assumed as 𝑢 = 𝑢1 (𝜏)𝜙1 (𝑧), where 𝜙1 (𝑧) is the mode shape of the
first mode of vibration and 𝑢1 is a function of time to be determined.
The mode shapes 𝜙𝑖 (𝑧) of a beam satisfy the orthonormality condi-
tions [19]. Using the Taylor expansions up to cubic powers, and in
order to model hard excitations, Eq. (6) becomes

̈1𝜙1 + 𝜀𝑏∗𝑢̇1𝜙1 + 𝜔2
1𝑢1𝜙1 = 𝑐1𝛿𝑉

2 + 𝜀𝛿𝑉 2
3
∑

𝑘=1
𝑐𝑘+1𝑢

𝑘
1𝜙

𝑘
1 (7)

where 𝜔1 is the first natural frequency, and 𝑐𝑛 = 𝑛 + 𝑓 , 𝑛 = 1, 2, 3, 4.
The bookkeeping parameter 𝜀 [33,34] indicates small terms in Eq. (7).
The first term on the right hand side of Eq. (7), namely 𝑐1𝛿𝑉 2, term
belonging to the electrostatic force, does not contain the bookkeeping
parameter 𝜀 while all other terms of the Taylor polynomial contain 𝜀.
This is the way hard electrostatic excitations are MMS modeled in this
work. As opposed to this case, in the case of soft excitation, i.e. the
electrostatic force is relatively small, all terms at the right-hand side of
Eq. (7) contain 𝜀 including 𝑐1𝛿𝑉 2. Assume a uniform expansion [35]
of 𝑢1 as 𝑢1 = 𝑢10

(

𝑇0, 𝑇1
)

+ 𝜀𝑢11
(

𝑇0, 𝑇1
)

, where the fast-time scale and
the slow-time scale [15], are 𝑇0 = 𝑡 and 𝑇1 = 𝜀𝑡, respectively. After
multiplying Eq. (7) by 𝜙1 and integrating from zero to one, the uniform
expansion is substituted into the resulting equation. Then, equating
the coefficients of the same powers of 𝜀, the following two problems,
namely zero-order and first-order, result [19]

Order 𝜀0 ∶ 𝐷2
0𝑢10 + 𝜔2

1𝑢10 = 𝑐1𝑔0𝛿𝑉
2 (8)

Order 𝜀1 ∶ 𝐷2
1𝑢11 + 𝜔2

1𝑢11 = −2𝐷0𝐷1𝑢10 − 𝑏∗𝐷0𝑢10 + 𝛿𝑉 2
3
∑

𝑘=1
𝑐𝑘+1𝑔𝑘𝑢

𝑘
1

(9)

where 𝐷𝑛 = 𝜕
𝜕𝑇𝑛

, 𝑛 = 1, 2, and 𝑔𝑛 = ∫ 1
0 𝜙𝑛+1

1 𝑑𝑧, 𝑛 = 1, 2, 3. Due to the
orthonormality property of the mode shapes, 𝑔1 = 1. Solving Eq (8)
and substituting the solution in Eq. (9), collecting the secular terms
(terms containing 𝑒𝑖𝜔1𝑇0 ) from the resulting equation and setting their
sum equal to zero, the steady-state solutions (steady amplitude 𝑎′ = 0
and steady phase 𝛾 ′ = 0) result as follows [19]

𝜎 = − 𝛿
4𝜔1

[

1
4 𝑐2 +

1
2 (𝐾 + 𝛬)𝑐3𝑔2

+
(

3
16 𝑎2 + 3

4𝐾
2 + 3

2𝛬
2 + 3

2𝛬𝐾
)

𝑐4𝑔3
]

−
𝛿𝛬𝑐𝑜𝑠𝛾
4𝜔1𝑎

[

1
4 𝑐2 + 1

2 (𝛬 +𝐾) 𝑐3𝑔2 +
(

9
16𝑎

2 + 3
4𝐾

2 + 𝛬2 + 3
2𝛬𝐾

)

𝑐4𝑔3
]

(10)

and

0 = −1
2
𝑏∗𝑎𝜔1 + 𝛿𝛬𝑠𝑖𝑛𝛾

[ 1
4
𝑐2 +

1
2
(𝛬 +𝐾) 𝑐3𝑔2

+
( 3
16

𝑎2 + 3
4
𝐾2 + 𝛬2 + 3

2
𝛬𝐾

)

𝑐4𝑔3
]

(11)

⎩

4

where

𝛾 = 4𝜎𝑇1 − 𝛽, 𝛾 ′ = 4𝜎 − 𝛽′ (12)

=
𝛿𝑔0(1 + 𝑓 )

4
(

𝜔2
1 − 4𝛺∗2

) , 𝐾 =
𝛿𝑔0(1 + 𝑓 )

2𝜔2
1

(13)

and 𝑎 and 𝛽 are amplitude and phase, respectively. Eqs. (10) and
(11) are parametric equations, where the parameter is 𝛾. For given
voltage 𝛿 , fringe f and damping b* parameters, the steady-state am-
plitude 𝑎 and detuning frequency parameter 𝜎 are determined from
these equations. Eqs. (10) and (11) give the (𝜎, 𝑎) frequency–amplitude
response, or bifurcation diagram, of the superharmonic resonance of
second order. The amplitude of the tip of the cantilever resonator is
given by 𝑈max = 𝑎𝜙1 (1).

. Reduced order models

The partial differential equation of motion is transformed into a
et of non-explicit ordinary differential equations, i.e. ROMs [11] to
nclude several modes of vibration. These models are based on the
alerkin procedure and use the undamped linear mode shapes of the
antilever beam as an orthogonal basis of functions. The ROM solution
s assumed to be 𝑢(𝑧, 𝜏) =

∑𝑁
𝑖=1 𝑢𝑖(𝜏)𝜙𝑖(𝑧), where 𝑁 = 2, 3, 4, 5 is the

umber of ROM terms (or modes of vibration), 𝑢𝑖 are time dependent
unctions to be determined, and 𝜙𝑖 are the linear undamped mode
hapes of uniform cantilever beams. The dimensionless equation of
otion Eq. (1) is multiplied by (1 − 𝑢)2 in order to eliminate any
isplacement terms from appearing in the denominators [27,28]. Next,
OM solution is substituted into the resulting equation, which is then
ultiplied by 𝜙𝑛 (𝑧) and integrated from 𝑧 = 0 to 1, where 𝑛 =
, 2,… , 𝑁 . This results in a ROM system of 𝑁 second order differential
quations as follows [19]
𝑁

𝑖=1
𝑢̈𝑖𝐴𝑛𝑖 +

𝑁
∑

𝑖=1
𝜔2
𝑖 𝑢𝑖𝐴𝑛𝑖 + 𝑏∗

𝑁
∑

𝑖=1
𝑢̇𝑖𝐴𝑛𝑖 = 𝛿𝑉 2

(

𝑐1ℎ𝑛 + 𝑓
𝑁
∑

𝑖=1
𝑢𝑖ℎ𝑛𝑖

)

(14)

here 𝑛 = 1, 2,… , 𝑁 and 𝑖, 𝑗, 𝑘 = 1, 2,… , 𝑁 and

𝑛𝑖 = ℎ𝑛𝑖 − 2
𝑁
∑

𝑗=1
𝑢𝑗ℎ𝑛𝑖𝑗 +

𝑁
∑

𝑗,𝑘=1
𝑢𝑗𝑢𝑘ℎ𝑛𝑖𝑗𝑘, ℎ𝑛 = ∫

1

0
𝜙𝑛𝑑𝑧 ,

ℎ𝑛𝑖 = ∫

1

0
𝜙𝑖𝜙𝑛𝑑𝑧, ℎ𝑛𝑖𝑗 = ∫

1

0
𝜙𝑖𝜙𝑗𝜙𝑛𝑑𝑧 , ℎ𝑛𝑖𝑗𝑘 = ∫

1

0
𝜙𝑖𝜙𝑗𝜙𝑘𝜙𝑛𝑑𝑧 ,

(15)
The system of second-order differential Eqs. (14) is then trans-

ormed into a system of first order differential equations. Four cases,
amely 𝑁 = 2, 𝑁 = 3, 𝑁 = 4, and 𝑁 = 5 are investigated
sing AUTO 07P, a software package for continuation and bifurcation
roblems [36]. ‘‘In this work, time responses for specified parameters
re generated using a MATLAB ODE solver, namely ode15s. One should
ention that ode15s is a multistep, variable order solver based on
umerical differentiation formulas (NDFs)’’, [19,37,38].

. Boundary value problem model

Another model, namely the Boundary Value Problem model, is used
o investigate the frequency–amplitude response of the superharmonic
esonance. The initial conditions considered for the numerical sim-
lations in this work are zero initial velocity and initial deflection
0.

Considering a time sequence (𝜏)𝑛 and denoting 𝑢
(

𝑧, 𝜏𝑛
)

= 𝑢𝑛, the
ime partial derivatives of Eq. (1) are converted to difference quotients.
t results a 4th order space dependent ordinary differential equation in
erms of 𝑧 for each step in time 𝜏𝑛. The resulting system of first-order
ifferential equations for each step in time 𝜏𝑛 is given by [19]

𝑦′𝑘,𝑛 = 𝑦𝑘+1,𝑛 , 𝑘 = 1, 2, 3

𝑦′4,𝑛 = − 𝑦1,𝑛−2𝑦1,𝑛−1+𝑦1,𝑛−2
(𝛥𝜏)2

− 𝑏∗ 𝑦1,𝑛−𝑦1,𝑛−2
2𝛥𝜏

+ 𝛿
(1−𝑦1,𝑛)

[

𝑓 + 1
(1−𝑦1,𝑛)

]

cos2 𝛺 ⋅ 𝜏𝑛

(16)
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Table 1
Dimensional system parameters.

Beam width W 20 μm
Beam length 𝓁 300 μm
Beam thickness h 2.0 μm
Initial gap distance g 8.0 μm
Material density 𝜌 2330 kg/m3

Young’s modulus E 169 GPa
Permittivity of free space 𝜀0 8.854 × 10−12 C2/N-m2

Quality factor Q 4200
Peak AC Voltage 𝑉0 28.36 V

Table 2
Dimensionless system parameters.

Damping parameter 𝑏∗ 0.01
Voltage parameter 𝛿 0.5
Fringe correction parameter f 0.26

Table 3
First five natural frequencies and constant coefficients for uniform cantilever.

𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4 𝑖 = 5

𝜔𝑖 3.51605 22.03449 61.69721 120.90192 199.85953
𝐶𝑖 −0.73410 −1.01847 −0.99922 −1.00003 −0.99999

Table 4
g coefficients for Eq. (16).

𝑛 = 0 𝑛 = 1 𝑛 = 2 𝑛 = 3

𝑔𝑛 0.7830 1.0000 1.4778 2.3487

where 𝑛 = 3, 4, 5,…., ′ denotes derivative with respect to 𝑧, and the four
new variables for each step in time 𝜏𝑛 are as follows

𝑦𝑘,𝑛 =
𝑑𝑘−1𝑢𝑛
𝑑𝑧𝑘−1

, 𝑘 = 1, 2, 3, 4 (17)

he boundary value problem given by Eqs. (16) along with boundary
onditions is solved using bvp4c, a boundary value problem solver of
ATLAB, for each step in time 𝜏𝑛, 𝑛 = 3, 4, 5,…. This solver is based

n the three-stage Labatto formula which is a collocation formula.
he collocation polynomial provides a solution that is a fourth-order
ccurate uniformly in [0, 1] in our case [39].

. Numerical results

The superharmonic resonance of second order is investigated us-
ng the MMS, continuation and bifurcation analysis using AUTO 07
nd numerical integration using Matlab of ROMs with up to five
odes of vibration (5 terms), and numerical integration using Matlab

f the BVP model. The effects of parameters 𝛿, 𝑓 , and 𝑏∗ on the
requency–amplitude response are investigated. Tables 1 and 2 show
he dimensional and dimensionless parameters of the MEMS cantilever
sed for numerical simulations, respectively, in the case of rarefied
as regime [19]. Table 3 gives the first five dimensionless natural
requencies and the constants of the corresponding cantilever mode
hapes [8]. Table 4 gives the g-coefficients of Eqs. (10)–(13).

Fig. 2 shows the frequency–amplitude response (bifurcation dia-
ram) in accordance with MMS, five-term (modes of vibration) ROM
UTO 07P (5T AUTO), five-term ROM time responses (5T TR) using
ATLAB ode15s, and BVP time responses using MATLAB bvp4c. In the

horizontal axis is the detuning frequency 𝜎, and in the vertical axis is
max, the steady-state amplitude of the tip of the cantilever. The dashed
nd solid lines represent the unstable and stable steady-state amplitudes
f the system, respectively.

A comparison between the predictions of the models and methods
sed in this work shows that all predictions are in agreement for
mplitudes less than 0.1 of the gap. For amplitudes larger than 0.1 of
he gap, only the ROM (5T TR) time responses, BVP time responses,
5

Fig. 2. Frequency–amplitude response using MMS, 5T AUTO, 5T TR, and BVP4C;
𝑏∗ = 0.01, 𝑓 = 0.26, 𝛿 = 0.5, 𝜔1 = 3.5160, Mode 1.

and ROM (5T AUTO) AUTO 07P frequency–amplitude responses are
in agreement, providing accurate predictions. MMS is inaccurate for
amplitudes larger than 0.1. This is consistent with the fact that MMS
is not a reliable method for strong nonlinearities and large amplitudes.
Moreover, MMS uses only one mode of vibration and a third degree
Taylor polynomial approximation of the electrostatic force [27,35].
However, MMS has two important benefits, it predicts the existence
of these secondary resonances, and has excellent predictions for weak
nonlinearities and small amplitudes. On the other hand, ROMs with a
sufficient number of modes of vibration, and BVP models with suffi-
ciently small time stepsize used for numerical integration, are reliable
models for systems with strong nonlinearities and large amplitudes.
ROMs and BVP model use the exact partial differential equation of
motion. There is no approximation such as Taylor polynomials of the
electrostatic force to include fringe effect. This way the existence of
singularities of the differential equation is preserved. Also, it is known
that the larger the number of modes of vibration in the ROM, the more
accurate the predictions are [19]. However, the larger the number of
modes of vibration in the ROM, the larger the computational time.

The frequency–amplitude response shows a softening effect (5T
AUTO), i.e. branches in higher amplitudes are bent towards lower
frequencies. Because the end point B of the unstable branch has a lower
frequency than point C, the system experiences pull-in instability for
initial deflections above the unstable branch AB when the detuning
frequencies 𝜎 are between 𝜎𝐵 and 𝜎𝐶 , i.e. −0.058 ≤ 𝜎 < −0.045. This
is the first time when the pull-in phenomenon of this resonance is
predicted for a range of frequencies. One can notice that MMS predicts
erroneously that the system does not experience any pull-in instability
in this range of frequencies.

One can see that in the case of constant frequency and constant
voltage parameter 𝛿 = 0.5, pull-in could not be reached when the detun-
ing frequency parameter 𝜎 is outside the interval

(

𝜎𝐵 , 𝜎𝐶
)

, regardless
the values of the initial deflection 𝑢0. Outside this interval, the MEMS
resonator settles to amplitudes on the stable branches (solid lines) 1 and
3. In the case of constant voltage parameter 𝛿 = 0.5 and sweeping up the
frequency, the steady state amplitude stays on branch 1 at 0.05 of the
gap, and then increases until it reaches bifurcation point A. At this point
the stability is lost, and the steady state amplitude jumps from a value
of 𝑈max = 0.244 of the gap at point A to a value of about 𝑈max = 0.6 of
the gap on branch 3. The steady state amplitude decreases along branch
3 as the frequency continues to be swept up. When the frequency is

swept down, the steady state amplitude increases along branch 3 until
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Fig. 3. Time response using five term ROM; 𝑏∗ = 0.01, 𝑓 = 0.26, 𝛿 = 0.5; (a) 𝜎 = −0.06, 𝑢0 = 0.8, (b) 𝜎 = −0.05, 𝑢0 = 0.8, (c) 𝜎 = −0.04, 𝑢0 = 0.8, (d) 𝜎 = −0.04, 𝑢0 = 0.5.
Fig. 4. Time response using five term ROM; 𝑏∗ = 0.01, 𝑓 = 0.26, 𝛿 = 0.5; (a) 𝜎 = −0.03, 𝑢0 = 0.5, (b) 𝜎 = −0.03, 𝑢0 = 0.8, (c) 𝜎 = −0.02, 𝑢0 = 0.8, (d) 𝜎 = −0.1, 𝑢0 = 0.
it reaches point C, where the system loses stability and it experiences
pull-in, the amplitude reaching the value of 𝑈max = 1, i.e. the MEMS
antilever resonator makes contact with the ground plate.

All time responses, Figs. 3–5, show the dimensionless deflection 𝑢 of
he tip of the MEMS cantilever resonator as a function of dimensionless
ime 𝜏. Figs. 3 and 4 show the five-term ROM time responses. Fig. 5
hows the time response for bvp4c with a 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 = 0.0005 for (𝜏)𝑛.
ne should mention that an investigation regarding the value of the
imestep has been conducted. This investigation showed that for smaller
alues than 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 = 0.0005, no significant differences can be seen in
he time responses.

Figs. 3a and 3b do not contradict the existence of the unstable
ranch 2 and the existence of the endpoint B showing that from the
ame initial deflection 𝑢 = 0.8, if the frequency is less thanu 𝜎 , the
0 𝐵

6

frequency of point B, the microresonator settles to a small amplitude
on branch 1, and if the frequency is greater than 𝜎𝐵 but less than 𝜎𝐶 ,
then the microresonator experiences pull-in reaching the dimensionless
deflection 𝑢 = 1.

Figs. 3b and 3c not contradict the existence of branch 3 and the
endpoint C, showing that from the same initial deflection 𝑢0 = 0.8, if
the frequency is less than 𝜎𝐶 and greater than 𝜎𝐵 , the microresonator
experiences pull-in, and if the frequency is greater than 𝜎𝐶 , then the
microresonator settles to an amplitude on branch 3.

Figs. 3c and 3d do not contradict the existence of the unstable
branch 2, showing that for the same frequency 𝜎 = −0.04, if the initial
deflection 𝑢0 is above the unstable branch 2, then the microresonator
settles to and amplitude on the stable branch 3, and if the initial
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𝛿

Fig. 5. Time response using five term ROM; timestep = 0.0005, 𝑏∗ = 0.01, 𝑓 = 0.26,
= 0.5; (a) 𝜎 = −0.04, 𝑢0 = 0, (b) 𝜎 = −0.04, 𝑢0 = 0.8.

deflection 𝑢0 is below the unstable branch 2, then the resonator settles
to and amplitude on the stable branch 1.

Figs. 4a and 4b, and Figs. 4b and 4c, do not contradict the existence
of the stable branch 3, showing (1) that for the same frequency 𝜎 =
−0.03, regardless the initial deflections, 𝑢0 = 0.5 or 𝑢0 = 0.8, the
microresonator settles to the same amplitude on branch 3, and (2) that
for the same initial deflection 𝑢0 = 0.8, and two different frequencies
𝜎 = −0.02 and 𝜎 = −0.03, the microresonator settles to amplitudes on
the stable branch 3, respectively.

Figs. 3a and 4d do not contradict the existence of the stable branch
1 showing that for two different frequencies, both less than 𝜎𝐵 , and for
two different initial deflections 𝑢0 = 0.8 and 𝑢0 = 0, the microresonator
settles to amplitudes on branch 1.

Fig. 5a, with an initial deflection of 𝑢0 = 0, and a detuning frequency
parameter of 𝜎 = −0.04, shows a time response in agreement with
Fig. 2. Fig. 5b, with an initial deflection of 𝑢0 = 0.8, and a detuning
frequency parameter of 𝜎 = −0.04, also shows a time response in
agreement with Fig. 2.

A bias, due to hard excitations, is experienced in these time re-
sponses. The bias is given by the movement of the tip reaching greater
values in the positive direction than in the negative direction. One can
notice from all time responses that the amplitude due to the bias is not
significant when compared to the gap.

Fig. 6 illustrates the convergence of frequency–amplitude response
using two, three, four, and five terms ROM AUTO. This is necessary
in order to select the number of terms in the ROM to be used in the
investigation. Results using MMS are included since MMS solves one
term (mode of vibration) ROM. The softening effect, i.e. bending of
both branches towards lower frequencies at high amplitudes, increases
with the number of terms. The end point of the unstable branch
converges to point B, Fig. 2, and the end point of the stable branch
to point C, Fig. 2. The softening effect, the bifurcation point A and the
end point C show no significant difference between three, four, and five
terms ROM AUTO, while point B does. Since no significant changes
can be seen between four-term and five-term ROM AUTO responses,
five-term ROM AUTO is used in this research to investigate system’s
behavior for all amplitudes.

Fig. 7 illustrates the effect of the voltage parameter 𝛿 on the
frequency–amplitude response. For the voltage parameter 𝛿 = 0.1,
i.e. soft excitation, the system experiences a very low peak amplitude
𝑈max = 0.015 and linear behavior. As the system goes into hard
excitations, 𝛿 = 0.5 and 𝛿 = 0.8, a two branch softening effect nonlinear
7

Fig. 6. Convergence of frequency–amplitude response using MMS, two, three, four,
and five term ROM; 𝑏∗ = 0.01, 𝑓 = 0.26, 𝛿 = 0.5, 𝜔1 = 3.5160, Mode 1.

Fig. 7. Effect of damping parameter on the frequency–amplitude response using MMS
and 5T AUTO; 𝑓 = 0.26, 𝛿 = 0.5, 𝜔1 = 3.5160, Mode 1.

behavior occurs. For the nonlinear behavior, as the values of the voltage
parameter increases from 𝛿 = 0.5 to 𝛿 = 0.8 (1) the bifurcation
point A, as well as the end points B and C of the unstable and stable
branches, respectively, shift to lower frequencies, and (2) the ranges
of frequencies

(

𝜎𝐵 , 𝜎𝐶
)

,
(

𝜎𝐶 , 𝜎𝐴
)

and
(

𝜎𝐴, 0
)

for which the system
experiences pull-in from large initial deflection 𝑢0, large steady state
amplitudes on branch 3 from large initial deflection 𝑢0, and nonzero
amplitudes on branch 3, respectively, increase.

Fig. 8 illustrates the effects of the fringe parameter 𝑓 on the
frequency–amplitude response. Neglecting the fringe effect 𝑓 = 0 in the
model produces a significant error in the response of the microresonator
given in Table 1 for which 𝑓 = 0.26. Also, as the fringe parameter
increases from 𝑓 = 0.26 to 𝑓 = 1, the later corresponding to a narrower
beam (smaller width) and/or larger gap than Table 1, the nonlinear
softening behavior increases. Moreover, the bifurcation point A, as
well as the end points B and C of the unstable and stable branches,
respectively, shift to lower frequencies. Also, the interval of frequencies
for which the system reaches pull-in from higher amplitudes increases.
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Fig. 8. Effect of voltage parameter on the frequency–amplitude response using MMS
and 5T AUTO; 𝑏∗ = 0.01, 𝑓 = 0.26, 𝜔1 = 3.5160, Mode 1.

Fig. 9. Effect of fringe parameter on the frequency–amplitude response using MMS
and 5T AUTO; 𝑏∗ = 0.01, 𝛿 = 0.5, 𝜔1 = 3.5160, Mode 1.

Fig. 9 shows the effect of the damping parameter 𝑏∗ on the
requency–amplitude response. At lower values of the damping pa-
ameter, the system displays a nonlinear behavior with characteristics
f softening effect, while at larger values of the damping parameter
isplays linear dynamics characteristics. The maximum amplitude de-
reases with increasing the value of the damping parameter. At larger
alues of the damping parameter, the two branches coalesce, and the
ystem does not experience bifurcation and pull-in phenomena.

. Discussion and conclusions

This paper uses MMS, five-term ROM AUTO 07P (5T AUTO), five-
erm ROM time responses (5T TR), and BVP time responses to investi-
ate the nonlinear frequency–amplitude response of an electrostatically
ctuated MEMS cantilever resonator under superharmonic resonance of
he second order. There is agreement between all methods at ampli-
udes lower than 0.1 of the gap. At amplitudes larger than 0.1 of the
ap, MMS fails to predict the behavior of the system, while all other
8

methods make accurate predictions. The effects of the voltage 𝛿, fringe
, and damping 𝑏∗ parameters on the frequency-amplitude response
re reported. The nonlinear behavior of the system is enhanced by
ncreasing the voltage parameter and the fringe effect, and decreasing
amping. Increasing the values of the voltage parameter 𝛿 and fringe
arameter 𝑓 results in a shift of the bifurcation branches to lower fre-
uencies and an increase of the values of low steady-state amplitudes.
he resonator does not experience any instability when damping is

arge enough. The predicted softening effect is in agreement with data
eported in the literature [24].

In this investigation, it is assumed that the system operates under
‘squeeze damping in rarefied gas [29–32]. The Energy Transfer Model
f the Quality Factor, Bao and Yang [29], along with the MEMS
esonator characteristics in Table 1 to include the value of the Quality
actor, gives the value of damping parameter in Table 2. For the first
ode of vibration, as in this paper, this corresponds to an air pressure

f about 130 Pa’’, [19].
There are few limitations of this work. The first limitation is that this

ork uses Palmer’s formula, to describe the fringe effect. This formula
s not valid for narrow MEMS beam resonators. Therefore, these results
annot be used for narrow cantilever resonators. The structure of
he MEMS resonator used for numerical simulations in this paper is
ider than so called narrow structures. For narrow structures, it is

ecommended the use of Meijs–Fokkema, or Batra et al. [7] formulas.
atra et al. [7] formula is recommended for narrow microbeams with a
idth-to-thickness ratio between 0.5 and 2.0. In the present work, this

atio is 10. Ref. [7] also reported inaccurate values for Palmer’s formula
hen the width-to-thickness and gap-to-thickness ratios are between
.5 and 5, and 0.2 and 2, respectively. The corresponding ratios in
he present work are 10 and 4, respectively. A second limitation is
hat no experimental work is reported. A third limitation is that the
esults of the present work are valid only for Euler–Bernoulli beams,
.e. slender micro-cantilevers, with a length-to-thickness ratio greater
han 100, Labuschagne et al. [6]. In the present work, this ratio is 150.
herefore, the results of this work cannot be used for short cantilevers.
fourth limitation is that this work address only uniform cantilevers.

or non-uniform structures, one can see Refs. [40–44] for dynamic
odal characteristics of such structures and methods of finding these

haracteristics.
Future work could include the influence of Casimir effect in nano-

lectro-mechanical system (NEMS) resonators [45].
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