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Abstract In this work the voltage response of

primary resonance of electrostatically actuated single

wall carbon nano tubes (SWCNT) cantilevers over a

parallel ground plate is investigated. Three forces act

on the SWCNT cantilever, namely electrostatic, van

der Waals and damping. While the damping is linear,

the electrostatic and van der Waals forces are nonlin-

ear. Moreover, the electrostatic force is also paramet-

ric since it is given by AC voltage. Under these forces

the dynamics of the SWCNT is nonlinear parametric.

The van der Waals force is significant for values less

than 50 nm of the gap between the SWCNT and the

ground substrate. Reduced order model method

(ROM) is used to investigate the system under soft

excitation and weak nonlinearities. The voltage-

amplitude response and influences of parameters are

reported for primary resonance (AC near half natural

frequency).

Keywords SWCNT resonators � Primary

resonance � Voltage response

1 Introduction

Carbon nanotubes (CNTs) have been discovered in

1991, and since then they have generated scientific and

technological interest due to their attractive physical

characteristics, high durability and light weight rela-

tive to metals, CNTs are formed by strong carbon-to-

carbon covalent bonds [35] and they are high-aspect-

ratio structures. CNTs exhibit enhanced electrical

characteristics in comparison with most other con-

ductive materials, and has the potential for a defect-

free structure and the strongest material that has ever

been discovered [35]. The actual magnitude of these

properties depends on the diameter and chirality of the

nanotubes along with the number of walls [24].

Applications of CNTs as ideal mechanical compo-

nents are in the areas of mass sensors, nano-switches,

and resonators. Their exceptional mass-detecting

capability makes them excellent ‘‘mass spectrome-

ters.’’ CNTs mass sensing applications can be sepa-

rated into two categories: chemical sensors and

biosensors [27]. Sensitivity of resonator sensors is

given by their effective vibratorymass and their natural

frequencies, and it is affected by nonlinearities in the

system. The principle of resonator sensors consists of

their natural frequency shift due to additional mass that

attaches to the resonator. Usually the fundamental

mode of vibration is used for sensing. Both, the

additionalmass and its location on the sensor change its

dynamic response. CNTs’ excellent sensitivity is due

to (1) their low weight, a tiny addition of atoms will

D. I. Caruntu (&) � L. Luo
Mechanical Engineering Department, University of

Texas-Rio Grande Valley, Edinburg, TX 78541, USA

e-mail: dumitru.caruntu@utrgv.edu;

caruntud2@asme.org;

dcaruntu@yahoo.com

123

Meccanica

DOI 10.1007/s11012-016-0461-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-016-0461-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-016-0461-8&amp;domain=pdf


represent a large fraction of the overall weight, and (2)

the fact that CNTs are ultra-rigid, having extremely

high fundamental resonant frequency. The added mass

can be either a point mass or a homogeneous layer

covering the full length of the CNT. To determine at

which point along the cantilever the mass was added, a

method of measuring the resonant frequencies of the

beamwithout andwith varied addedmasses for several

vibration modes was developed [33].

Models and results of CNT sensors were reported in

the literature. There are four main models to investi-

gate the mechanical behaviors of nanostructures:

quantum mechanics, atomistic simulation, continuum

modeling, and lumped system modeling. Yet due to

the complex nature of these models, the most

commonly seen model involves classic beam theory

[17] to eventualy include nonlocal effects [22].

Models of CNT cantilevers as a spring with nano-

scale mass attached to the free end were reported in the

literature [34]. The results showed a good agreement

with theoretical and experimental data reported in the

literature. The two positions of attached mass on the

CNTs resulted in two different nonlinear characteris-

tics, namely softening and hardening effects. Chowd-

hury and Adhikari [12] investigated two different

cases (1) fixed-free (cantilever) CNTs with mass

attached to the free end, and (2) fixed–fixed (bridge)

CNTs with mass attached at the midpoint. By chang-

ing the mass, the frequency shift occurred in a smaller

range in the bridge case than that in cantilever case.

Mehdipour et al. [27] indicated for cantilevers that the

increase of the amount and the distance from the fixed

edge of the attached mass resulted in a decrease of the

dynamic pull-in voltage if electrostatically actuated.

The mass sensitivity increased as the mass was moved

towards the tip of the cantilever. Georgantznos and

Anifantis [18] utilized a spring–mass-based finite

element formulation for investigating single- and

multi-walled carbon nanotube dynamics. They

showed that the frequency shift is almost constant in

several basic vibrational modes independent of the

location of the added mass to the CNT.

Electrostatically actuated CNT is a beam structure

in capacitive arrangement with a parallel plate elec-

trode, or placed between a pair of parallel plate

electrodes. The CNT is driven by DC and AC voltages

between the CNT and plate electrode or electrodes [3].

The deflection of carbon nanotubes occurs under the

attractive electrostatic and van der Waals forces. The

CNT electrode deflects up to where its elastic force

balances the attractive forces. Beyond a critical

voltage or frequency the CNT electrode loses stability

and suddenly drops on the fixed electrode. This is

called pull-in phenomenon. This phenomenon is used

for switches, capacitors, and resonators [16]. Caruntu

and Luo [7] reported the frequency response of

primary resonance of electrostatically actuated CNTs.

Nano-electromechanical systems (NEMS) include

CNT nano-switches. They have the capability of

offering high resonant frequencies in the gigahertz

range, and the advantage of low energy consumption

[27]. Yet, because of their size, these nano-electrome-

chanical systems have a low output signal level [1].

These switches are designed as CNT suspended over a

parallel ground electrode. The applied voltage across

the CNT and rigid plate has an upper limit, beyond

which the CNT collapses on the ground plate. This

voltage limit is called the ‘‘pull-in voltage’’ [27] and

depends upon the gap-length ration of the CNT, as

well as frequency of actuation if AC electrostatically

actuated. The dominant approach in the investigation

of pull-in behaviors of electrostatically actuated

NEMS in general, and CNTs in particular, is contin-

uum modeling [16]. After this voltage is released, the

beams elastic properties will cause the CNT to return

to its undeformed position [32]. Dequesnes and Aluru

[14] reported that the dynamic pull-in voltage of nano-

switches is smaller than the static pull-in voltage, and

that the van der Waals force had an significant effect

on the pull-in voltage. Due to the pull-in time analysis,

the switching frequency ranges from tens to hundreds

of GHz. Dequesnes et al. [13] also indicated that

fixed–fixed switches were less sensitive to van der

Waals force than cantilevers. Numerical simulation

showed a closed match with the experimental data.

Mahdavi et al. [23] investigated the amplitude

frequency response of free vibration of double-walled

carbon nanotube (DWCNT). They used both Euler–

Bernoulli and Timoshenko models, and showed that

van der Waals forces have a significant effect on the

response. They also reported the influence of length to

outer diameter ratio on the response.

Methods used to investigate the nonlinear dynamics

of micro- and nano-electromechanical systems (M/

NEMS) reported in the literature include the Method

of Multiple Scales (MMS) and the reduced order

model (ROM) method. These methods are used to

predict the frequency and voltage responses of
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electrostatically actuated CNT. Hajnayeb and Khadem

[20] reported the behavior of double-walled CNTs

bridges under AC and DC voltage actuation with the

excitation frequency near natural frequency and twice

natural frequency. Both MMS and ROM showed a

hardening behavior for low DC voltage and a soften-

ing behavior for high DC voltage in the frequency

response, and supercritical and subcritical bifurcations

in the voltage response, respectively. Ouakad and

Younis [30] investigated clamped–clamped CNTs

with a certain level of slackness, and DC voltage

actuation. They showed that increasing the level of the

initial curvature increases the amplitude, and

decreases the pull-in DC voltage. Rasekh et al. [31]

used ROM to simulate the static and dynamic behavior

to include the pull-in phenomenon of CNT bridges

under DC and AC voltage actuation. The increase of

the initial gap distance resulted in an increase of the

pull-in voltage. The pull-out phenomenon was pre-

vented for gaps less than 1 nm due to van der Waals

forces. They reported that softening behavior was due

to electrical actuation, and hardening behavior was

due to the stretching of the neutral axes of CNT.

Ghayesh et al. [19] also used ROM to examine the

nonlinear behavior of MEM cantilever under AC and

DC actuation. The system reported a hardening effect

for the frequency response in the cases of primary

resonance and superharmonic resonance. Nayfeh and

Younis [28] used ROM to analyze the pull-in

phenomenon of MEMs under DC and AC actuation

for low-voltage MEM switches. They reported both

frequency and voltage responses. Both methods MMS

and ROM were used to investigate primary and

parametric resonance of electrostatically actuated

MEMS resonators [4–10].

Voltage response of electrostatically actuated

CNTs consists of voltage-amplitude relationship of

the resonator. When a DC voltage is applied across a

CNT electrode, the cantilever CNT simply deflects,

whereas if an AC voltage is applied, the cantilever

CNT oscillates [21]. Pull-in voltage characteristics of

several nanotube-based electromechanical switches

are reported in the literature. For this a continuum

model for coupled energy domains, including: the

elastostatic, electrostatic, and the van der Waals, was

used. In a comparison with atomistic simulations,

numerical simulations based upon continuum models

closely matched the experimental data [13]. It can

further be concluded that the magnitude of the pull-in

voltage can be directly affected by the amount of van

der Waals forces present. Resonances can lead to

complex nonlinear dynamics phenomena, such as

hysteresis, dynamic pull-in, hardening and softening

behaviors, and frequency bands with an

inevitable escape from a potential well [29]. Volt-

age-amplitude response of electrostatically actuated

MEMS cantilevers under soft AC actuation was

reported in the literature [6]. They used MMS and

ROM (AUTO-07p). A good agreement between MMS

and five terms ROM results for amplitude less than

half the gap has been reported. Also the convergence

of the ROM due to increasing the number of modes of

vibration considered has been showed. Chaterjee and

Pohit [11] used ROM for voltage-amplitude response

of MEMs cantilever under DC and AC voltage

actuation.

This paper deals with the voltage response of

primary resonance of electrostatically actuated CNT

cantilevers. To the best of our knowledge this the first

time when (1) the reduced order model (ROM)method

[7] is used for investigating electrostatically actuated

CNT cantilevers, (2) the convergence of the ROM by

using two, three, four and five terms models is

reported, and (3) the dimensionless bifurcations and

pull-in voltages of the primary resonance of electro-

statically actuated CNTs are found. (4) The effects of

damping, voltage and van der Waals forces on the

voltage response are reported as well.

2 Differential equation of motion

Consider an electrostatically actuated SWCNT can-

tilever over a parallel ground plate, Fig. 1. A soft AC

voltage between the SWCNT and the plate actuates the

y

r g

Ground plate 

VAC 

Fig. 1 CNT cantilever under electrostatic, damping and van

der Waals forces
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SWCNT and leads it into vibration. Three forces act

on the SWCNT cantilever (a) electrostatic, due to the

soft AC voltage of frequency near half natural

frequency of the CNT, (b) van der Waals, and

(c) damping. The dimensionless equation of motion

is given by [7]

o2w

os2
þ o4w

oz4
¼ �b�

ow

os
þ df elec cos

2 X�sþ lf vdw ð1Þ

where the dimensionless variables w deflection, z lon-

gitudinal coordinate, s time are

w ¼ y

g
; z ¼ x

‘
; s ¼ t

‘2

ffiffiffiffiffiffi

EI

qA

s

ð2Þ

and where the corresponding dimensional variables

are y transverse displacement, x longitudinal coordi-

nate, and t time. The dimensionless damping coefficient

b*, dimensionless excitation (voltage) coefficient d,
dimensionless van der Waal coefficient l, and dimen-

sionless AC frequency X * are respectively given by

b� ¼ b
‘2
ffiffiffiffiffiffiffiffiffiffiffi

qAEI
p ; d ¼ V2

0

pe0‘4

EIg2

l ¼ C6r2p2R‘4g4

2EIg10
; X� ¼ X‘2

ffiffiffiffiffiffi

qA
EI

r ð3Þ

where q is mass density, A cross-section area,

EYoung’s modulus, I cross-section moment of inertia,

‘ CNT length, b viscous damping per unit length, e0 is
the permittivity of the space between the CNT and the

ground plate, V0 is the peak voltage of the applied AC

voltage V(t) = V0 cos (Xt), X is the AC frequency of

actuation, r the distance between the current position

of CNT and the ground plate, R the radius of CNT,

Fig. 1. Also, C6 is a constant characterizing the

interactions between the atoms, and r0 is the material

surface density [13, 14] Table 1. The cross-section

moment of inertia of the CNT can be written as I ¼

p R4
ext � R4

int

� �

=4 where Rext and Rint are the exterior

interior radii of CNT, respectively. The relationship

between the distance r between the CNT and the

ground plate, and the transverse deflection y of the

CNT is given by

r ¼ g� R� y ð4Þ

The dimensionless electrostatic and van der Waals

forces in Eq. (1) are as follows

f elec ¼ 1� wð Þ2�s2
h i�1

2

� log�2 1� w

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� wð Þ2

s2
� 1

s
0

@

1

A

ð5Þ

where s = R/g. The electrostatic force was computed

using the classical capacitance model. ‘‘The capaci-

tance per unit length for a cylindrical beam over a

conductive ground plane was used to determine the

dimensional electrostatic force per unit length’’ [13].

The van der Waals force was computed for a SWCNT

and a single monolayer of graphite as ground plane.

The van der Waals force was derived from the Waals

energy which has been modeled by the Lenard-Jones

potential. The total van der Waals energy was

computed as an integral over the surfaces of a shell

and the plane graphene of the Lenard-Jones potential,

Table 1 Constants

Symbol Description Value (unit)

e0 Permittivity of vacuum 8.85910-12 C2/N/m2

C6 Material constant 2.43910-78 Nm7

r Graphite surface density 3.8091019 m-2

E Young modulus 1.2091012 N/m2

q Density 1.409103 kg/m3

f vdw ¼
8 1� w� sð Þ4þ32 1� w� sð Þ3s
h

þ72 1� w� sð Þ2s2 þ 80 1� w� sð Þs3 þ 35 s4
i

1� wð Þ2�s2
h i

9
2

ð6Þ
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[13]. Van der Waals force cannot be neglected for gap

distance less than 50 nm. The frequency of AC is near

half natural frequency X* % xk/2, and can be written

as

X� ¼ xk

2
þ er ð7Þ

where r is frequency detuning parameter, e book-

keeping device, and xk dimensionless natural fre-

quency ( �xk is the corresponding dimensional natural

frequency) given by

xk ¼ �xk‘
2

ffiffiffiffiffiffi

qA
EI

r

ð8Þ

Damping force depends on the environment in

which the CNT cantilever system is vibrating. It is

assumed a viscous damping environment [4], there-

fore linear damping.

3 Reduced order model (ROM) method

In order to conserve all singularities of the system, the

electrostatic and van der Waals forces are expanded in

Taylor series in their denominators and the first 8

terms from each expansion are kept. Equation (1)

becomes [7]

o2w

os2
þ b�

ow

os
þ o4w

oz4
¼ l

1

P

7

i¼0

kiwi

þ d cos2 X�s
1

P

7

j¼0

ajw j

ð9Þ

Multiplying Eq. (9) by its both denominators, it results

o2w

os2
þ b�

ow

os
þ o4w

oz4

� �

X

7

i¼0

kiw
i
X

7

j¼0

ajw
j

¼ l
X

7

j¼0

ajw
j þ d

X

7

i¼0

kiw
i cos2 X�s ð10Þ

ROM method is used to solve Eq. (10) for the CNT

cantilever. The solution of transverse deflection of

CNT is approximated by

w s; zð Þ ¼
X

N

k¼1

uk sð Þuk zð Þ ð11Þ

where uk(s) and uk(z) are the kth time varying

generalized coordinate and the kth linear undamped

mode shape of the uniform tube, respectively. N is the

number of terms considered in ROM. Substituting

Eq. (11) into Eq. (10) and using the followings

o2w s; zð Þ
os2

¼
X

N

k¼1

€uk sð Þuk zð Þ;

ow s; zð Þ
os

¼
X

N

k¼1

_uk sð Þuk zð Þ;

o4w s; zð Þ
oz4

¼
X

N

k¼1

x2
kuk sð Þuk zð Þ

ð12Þ

where xk is the kth natural frequency of the CNT, and

then multiplying the resulting equation byun,

n = 1,2,…,N, and integrating with respect to z from 0

to 1, N ROM 2nd order differential equations result as

follows

a0k0gn þ
X

7

p¼1

X

p

i¼1

aikp�i

X

N

n; j1; j2;...;jðp�iÞ
uj1uj2. . .ujðp�iÞgn; j1; j2;...;jðp�iÞ

þ
X

7

p¼1

X

7

i¼p

aik7þp�i

X

N

j1; j2;...;jðpþ7Þ
uj1uj2. . .ujðpþ7Þgn; j1; j2;...;jðpþiÞ

0

B

B

B

B

B

@

1

C

C

C

C

C

A

:

P

N

j1

€uj1 þ b�
P

N

j1

_uj1 þ
P

N

j1

x2
j1uj1

 !

¼
P

7

p¼0

apd cos2 X
�sþ lkp

� �

P

N

n; j1; j2;...;jp

uj1uj2. . .ujpgn; j1; j2;...;jp

ð13Þ
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where the coefficients gn,j1,j2,…,jp are given by

gn;j1;j2;...;jp ¼
Z 1

0

unuj1uj2. . .ujpdz ð14Þ

The system of differential equations (13) is trans-

formed into a system of 2 N first order differential

equations to be solved. For example, two terms ROM

is transformed into four first order differential equa-

tions as follows

yð1Þ ¼ u1 ) _yð1Þ ¼ yð2Þ
yð2Þ ¼ _u1 ) _yð2Þ ¼ €u1

yð3Þ ¼ u2 ) _yð3Þ ¼ yð4Þ
yð4Þ ¼ _u2 ) _yð4Þ ¼ €u2

ð15Þ

In this work, the number of terms of the ROM is

N = 2,…,5.

The ROM system of the resulting 2 N first order

non-explicit-coupled differential equations is solved

using AUTO 07P [15], a continuation and bifurcation

software for ordinary differential equations.

4 Numerical simulations

The voltage-amplitude response of the electrostatically

actuated CNT is investigated by conducting numerical

simulations for a typical CNT. Dynamic modal charac-

teristics of a cantilever to be used in the ROM consist of

natural frequencies and mode shapes and they are given

uk zð Þ ¼ cosh
ffiffiffiffiffiffi

xk

p
xð Þ � cos

ffiffiffiffiffiffi

xk

p
xð Þ

� ck sinh
ffiffiffiffiffiffi

xk

p
xð Þ � sin

ffiffiffiffiffiffi

xk

p
xð Þ½ � ð16Þ

and Table 2. The mode shape functions are orthonor-

mal. The dimensional characteristics of the typical

CNT are given in Table 3. Using these values the

dimensionless parameters of the system are deter-

mined and given in Table 4. The coefficients of the

denominator Taylor expansion, see Eqs. (10, 17), are

given in Table 5.

In this work a linear damping is assumed Eq (1). It

has been reported in the literature that the drag force

per unit length on a cylinder in free-molecular flow

[26] becomes linear if the ratio of the cylinder velocity

to the thermal velocity of the gas u/c is much smaller

than one [25]. As the thermal velocity is given by

Table 2 First five natural frequencies and mode shape coefficients for CNTs

k = 1 k = 2 k = 3 k = 4 k = 5

xk 3.51602 22.0345 61.70102 120.91202 199.85929

ck -0.734 -1.0185 -0.9992 -1.00003 -1.00000

Table 3 Dimensional parameters

Symbol Description Value (unit)

‘ Length of CNT 200910-9 m

R CNT radius 10-9 m

Rint CNT inner radius 0.665910-9 m

g Gap CNT—plate 20910-9 m

V Voltage applied 30910-3 V

Table 4 Dimensionless parameters

Symbol Description Value

d Electrostatic parameter 0.1902

l Van der Waals parameter 0.0005

b* Damping parameter 0.001

Table 5 Denominator Taylor expansion coefficients Eq. (9)

of electrostatic and van der Waals forces

Symbol Value Symbol Value

a0 13.586202 k0 0.1226795

a1 -20.99676 k1 -0.617992

a2 4.6816821 k2 1.2429685

a3 1.2246554 k3 -1.247656

a4 0.5279667 k4 0.6249998

a5 0.2830802 k5 -0.125001

a6 0.15756904 k6 -0.00000049

a7 0.10349291 k7 -0.00000044
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c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBT=mg

p

where kB = 1.380648528 * 10-23

J/K is Boltzman constant, T = 300 K is the assumed

gas temperature in this work, and

mg = 48.1 * 10-27 kg the mass of a gas molecule,

then the thermal velocity results as c = 415 m/s. On

the other hand the dimensionless displacement of the

free end of the CNT cylinder can be written as

u = Umax * cos (x1s ? b), [7], where Umax is the

amplitude of the free end and it is limited to the gap

g = 20 nm, and x1 = 3.51602 is the dimensionless

fundamental natural frequency, which can be used to

find the dimensional fundamental natural frequency

�x1 using Eq. (3) the same formula as for AC

frequency. The maximum velocity of the free end

can be then found as umax ¼ g �x1 which gives a value

of umax = 31 m/s. Therefore the ratio of the cylinder

velocity to the thermal velocity of the gas is umax/

c = 0.075 which is much smaller than one, so the

linear damping assumption holds for the investigated

CNT primary resonance.

Figure 2 shows the voltage amplitude response of

the CNT cantilever. In the horizontal axis is the

dimensionless voltage parameter d, and in the vertical
axis is the amplitude Umax of the free end of the CNT.

There is a limited range of the voltage parameter

(\0.4, Fig. 2) for which the CNT does not undergo a

pull-in phenomenon (contact with the ground plate

Umax = 1). Three distinct branches, two stable and

one unstable, are showed. Stable branches are

represented by solid lines and the unstable branch by

dash line. As the voltage is swept up, the amplitude

increases along branch 1 until it reaches the bifurca-

tion point A (0.131, 0.316), where the CNT loses

stability and jumps to an amplitude ofUmax = 0.56 on

branch 3. As the voltage continues to be swept up, the

amplitude increases along branch 3 until it reaches

point C (0.395, 0.593), where it loses stability and the

amplitude suddenly increases until the CNT goes into

pull-in. This is showed by the arrows below the

branches and oriented to the right-hand side and up. If

the initial amplitude of the CNT is on branch 3 and the

voltage is swept down, the amplitude decreases along

branch 3 until reaches point B (0.297, 0.532), where it

loses stability and jumps to a lower amplitude of

Umax = 0.047 on branch 1. Then, as the voltage

continues to be swept down to zero, the amplitude

Umax decreases to zero. This is showed by the arrows

above the branches and oriented to the left-hand side

and down.

5 Discussion and conclusions

Figure 3 illustrates the convergence of the voltage-

amplitude response with respect to the number of

terms N = 2,3,4 and 5 of ROM. One can notice the

convergence of the method. While the response in

amplitudes below Umax = 0.2 (20 % of the gap) does

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

U
m
ax

5T ROM

A  (0.131, 0.316)

B (0.297, 0.532)

C (0.395, 0.593)

Branch 1

Branch 2 Branch 3

Sweep up

Sweep down

Fig. 2 Voltage–amplitude

response AC near half

natural frequency by using

5T ROM. b* = 0.001,

r = -0.012, l = 0.0005
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not depend on the number of terms, for larger

amplitudes the number of terms becomes significant.

Using only two terms in the ROM leads to overesti-

mating both the amplitude and voltage of the bifur-

cation point A, overestimating the amplitude of the

bifurcation point B and the amplitude of pull-in point

C, and underestimating the pull-in voltage of point

C. Therefore, for reliable results five terms should be

considered in the ROM.

Figure 4 shows the effect of dimensionless damp-

ing parameter b* on the voltage-amplitude response.

Damping does not have significant effect on the large

amplitudes of the cantilever, which are about 0.55 of

the gap. However, the larger the damping, the larger

the pull-in voltage of point C and the larger the

bifurcation voltages of bifurcation points A and

B. Also, increasing damping decreases the difference

between the voltages of bifurcation points A and B,

jump up and jump down voltages.

Figure 5 illustrates the effect of dimensionless van

der Waals force parameter l on the voltage-amplitude

response. As the value of the van der Waals parameter

increases, (1) the amplitude of the pull-in point

C decreases, while (2) the voltage of pull-in point

Fig. 3 ROM convergence

for the voltage-amplitude

response by using two terms

(2T), 3T, 4T, and 5T ROM.

b* = 0.001, r = -0.012,

l = 0.0005

Fig. 4 Influence of

damping on the voltage

response by using 5T ROM.

r = -0.012, l = 0.0005
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C increases, and (3) the bifurcation points A and B shift

to lower amplitude and voltage values, i.e. the jump

phenomenon occurs at lower amplitude and voltage

values.

Figure 6 shows the effect of dimensionless detun-

ing frequency parameter r on the voltage-amplitude

response. As the detuning frequency is increasing

towards the resonance frequency, (1) the nonlinear

behavior of the system is strengthened, and (2) the

amplitude and voltage values of the bifurcation points

A and B increase, i.e. the jump up phenomenon at point

A occurs at higher voltage and larger amplitude if

larger frequency. One can notice that in the case of

r = -0.010 the CNT goes into pull-in directly from

bifurcation point A, while for the other two frequen-

cies, the amplitude jumps to larger amplitudes, and

then to pull-in as the voltage is swept up. (3) The

amplitude of pull-in instability point C increases and

its voltage decreases.

One should mention that ‘‘Casimir force is not

included in this model because it is not present for such

small gaps as in this work. Casimir force and van der

Waals force cannot act at the same time since they

describe the same physical phenomenon at different

Fig. 5 Influence of van der

Waals force on the voltage

response by using 5T ROM.

b* = 0.001, r = -0.012

Fig. 6 Influence of

frequency on the voltage

response by using 5T ROM.

b* = 0.001, l = 0.0005
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scales (gap values), Batra et al. [2]. While van der

Waals force models the phenomenon for gaps below

50 nm, Casimir force acts for gaps between 200 nm

and 1 lm. In between is a transition between van der

Waals force and Casimir force,’’ [7].

This work is limited in terms of numerical simu-

lations to the convergence of the voltage-amplitude

response with respect to the number of terms N = 2, 3,

4 and 5 of ROM, and the use of 5 terms ROM for

effects of various parameters. It does not address the

influence of the parametric errors in this approach.
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