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Abstract. This paper deals with the voltage–amplitude response of paramet-
ric resonance of micro-electromechanical system (MEMS) cantilever beam res-
onators actuated solely by fringing electrostatic fields. The system comprises a 
micro cantilever beam positioned parallel to a ground plate, connected via an AC 
voltage source which leads to electrostatic actuation. The ground plate has a hole 
allowing the cantilever beam deflections larger than the gap and therefore eliminat-
ing the pull-in phenomenon. A fringing field capacitance model (based on Saku-
rai’s empirical formula) is used in this work and compared to a more traditional 
fringing field model based on Palmer’s formula. The fringing field is the electric 
field between the ground plate and the beam’s top and sidewalls. In both models, 
due to the configuration of the ground plate with a hole, the parallel-plate capaci-
tance is removed, so only the fringe field actuation is considered. For parametric 
resonance, the AC voltage frequency is near the resonator’s natural frequency. A 
nondimensionalized partial differential equation governing the system is reduced 
to a single-mode Reduced Order Model (ROM), which is then analytically solved 
using the Method of Multiple Scales (MMS). The resulting voltage–amplitude 
bifurcation diagram reveals a trivial solution and two branches, one stable and 
one unstable, emerging from super- and subcritical bifurcation points. A two-
mode ROM is also developed and solved numerically to verify these findings, and 
the resulting equations are implemented in AUTO-07p (a continuation and bifur-
cation analysis software) to obtain further voltage response data. Fringing field 
capacitance model predictions are compared against fringing field model based 
on Palmer’s formula predictions, and against the case of ground plate with no hole 
modeled by Palmer’s formula. 

Keywords: MEMS cantilever · Fringe-field actuation · Voltage–amplitude 
response 

1 Introduction 

Micro-electromechanical Systems (MEMS) technologies enable the creation of struc-
tures, systems, and devices at the micron scale [1]. At their core, MEMS integrate 
mechanical microstructures, microsensors, microactuators, and microelectronics onto
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a single silicon chip. Due to their low production cost, compact size, minimal power 
consumption, adaptable geometry, and application-specific functionality, MEMS have 
become a preferred alternative to traditional sensors and actuators [2]. Various actuation 
methods are used in MEMS devices, including electrostatic, electrothermal, electro-
magnetic, and piezoelectric techniques. Among these, electrostatic actuation is widely 
favored for its simple design, fast response time, and ease of fabrication [3], though 
it presents challenges such as high driving voltages and significant nonlinearities. A 
deep understanding of the nonlinear dynamic response of MEMS is crucial for the 
development and precise control of novel devices. 

The MEMS field has grown significantly, with potential applications across diverse 
industries [4]. MEMS are now widely used in biomedical, automotive, defense, com-
munications, and aerospace domains. In particular, the field of biomedical MEMS (bio-
MEMS) has advanced considerably through the integration of MEMS technology and 
biological sciences. This integration has enabled the development of biosensors, diag-
nostic tools, drug delivery systems, and surgical instruments [5]. One application is the 
dynamic-mode cantilever biosensor, used to detect pathogens by measuring shifts in 
resonant frequency due to mass loading from attached bacteria or viruses [6]. These 
sensors can measure cell mass with high sensitivity and monitor bacterial growth. For 
instance, Ilic et al. [7] demonstrated the detection and quantification of E. coli using a 
dynamic-mode cantilever sensor, and this approach has since been adopted in multiple 
studies for rapid bacterial detection [6]. 

Electrostatic actuation primarily results from the electric field between two oppo-
sitely charged parallel plates, creating an attractive force [3]. This system includes a 
flexible cantilever beam and a conductive ground plate, with a dielectric medium filling 
the gap g between them. The electrostatic force Fe exerted on the cantilever beam is 

Fe = 
1 

2 

∂C 

∂g 
V 2 0 (1) 

where C is the capacitance and V0 is the excitation voltage. For a rectangular cross-
section, capacitance depends on the beam’s length l, width W,  the  gap  g, and the dielectric 
constant εr of the medium [8]. As the beam deflects toward the ground plate, the gap 
changes, altering the capacitance. When the applied voltage exceeds a critical threshold, 
in the case of ground plate with no hole, pull-in instability may occur, causing the beam 
to collapse, one of the most significant nonlinear phenomena in electrostatic MEMS 
devices [9]. 

Accurately modeling fringing capacitance between two conductors has long been 
a focus in the Very Large-Scale Integration (VLSI) community [10]. While fringing 
effects are minor in wide beams, they become significant in narrow-beam geometries 
[11]. Fringe-actuated MEMS devices have demonstrated practical applications [8, 11, 
12]. Van der Meijs and Fokkema [10] reported the difference between traditional parallel-
plate capacitance Cpp and fringing capacitances, where the electric field extends to the 
top and side walls of the cantilever. The fringing capacitances C1 and C4 are between 
resonator’s top surface and the ground plate, and C2 and C3 between resonator’s sides and 
the ground plate, in a 2D system. Chang [13] developed an accurate, but mathematically 
complex, formula using conformal mapping techniques to account for these effects. To
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simplify modeling, empirical capacitance formulas such as Sakurai and Tamaru [14] 
have been proposed. 

This paper employs Sakurai and Tamaru [14] empirical capacitance formula, which 
includes contributions from fringe fields acting on the top and sidewalls of the cantilever, 
to investigate the voltage–amplitude response of parametric resonance of fringe-actuated 
MEMS cantilever beams parallel to a ground plate with a hole. The Method of Multiple 
Scales (MMS) and a two-term Reduced Order Model (2T ROM) are used. 

In parametric resonance [15], the frequency of the AC voltage is near the beam’s 
first natural frequency. However, the actuation force operates at twice that frequency. 
Both MMS and 2T ROM are used to predict bifurcation points of the voltage–amplitude 
response. The results from both models, fringing capacitance model based on Ref. [14] 
and fringing model based on Palmer’s formula, are compared and discussed. MMS aligns 
well with ROM at small amplitudes. However, MMS fails to capture instabilities seen 
at higher amplitudes. 

2 Equation of Motion 

Figure 1 shows a flexible MEMS cantilever beam positioned above a fixed ground plate 
with a rectangular hole that allows deflections beyond the gap distance. When an AC 
voltage is applied between the two electrodes, a fringing electrostatic force is generated, 
inducing vibration in the beam. The dimensionless partial differential equation of motion 
for the cantilever beam based on the capacitance model, along with the corresponding 
boundary conditions, are 

∂2u 

∂τ 2 
+ 

∂ 4u
∂z4 

+ b∗ ∂ u
∂τ 

= 
0. 15δ

(1 − u)2 
V 2 + 

Cf f ∗δ
(1 − u)(11/9) 

V 2 (2)

u(τ, 0) = 
∂u

∂z 
(τ, 0) = 

∂ 2u
∂z2 

(τ, 1) = 
∂ 3u
∂z3 

(τ, 1) = 0 (  3)

where the dimensionless variables and parameters are as follows: u is the beam’s deflec-
tion, τ time, z longitudinal coordinate, b∗ damping parameter, δ voltage parameter, V 
voltage, Cf capacitance constant, and f ∗ capacitance fringe parameter. Note that the 
first term on the right-hand side of Eq. (2) results from 1.15δ 

(1−u)2 
V 2, Sakurai and Tamaru 

[14], from which δ 
(1−u)2 

V 2, that is the term resulting from the electric field directly 

between the resonator and the ground plate, has been removed in order to model the 
fringe actuation in the case of ground plate with a hole. Table 1 shows the dimensional 
and dimensionless variables/parameters/constants. The empirical formula [14]  used  to  
describe the 2-D line capacitance that considers fringe contributions from the top and 
side walls of the beam is given by

C1 

εoεr 
= 1.15 

W

g 
+ 2.80 

h

g 

2/9 

(4) 

where C1 is the capacitance per unit length, εr is a dielectric constant, ε0 permittivity of 
free space, W beam width, h beam thickness, and g initial gap distance.
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Fig. 1. Fringe field electrostatically actuated MEMS cantilever resonator 

For this formula, the relative error is within 6% for 0.3 < W /g < 30 and 0.3 < h/g 
< 30. The first term of Eq. (4) can be considered as contributions from lower and upper 
surfaces, while the second term represents the side wall contribution [14]. Dimensionless 
variables/parameters, Eq. (2), are 

u = 
w 

g 
, z = 

x

l 
,  τ  = t

l2 
EI0 
ρA0 

(5) 

b∗ = b 
l2√

ρA0EI0 
, f = 

0. 65g
W 

, f ∗ = h2 /9

Wg−7/9 ,  δ  = 
ε 0Wl4

2g3EI0 
V 2 0

∗ = l 2
ρA0 

EI0 
(6) 

where the dimensionless parameter f is the fringe parameter of the fringe model based on 
Palmer’s formula [16], and ∗ dimensionless AC frequency. The dimensional variables, 
parameters and constants are as follows: w deflection, t time, x longitudinal coordinate, 
l beam length, A0 beam cross-section area, I0 beam cross-section moment of inertia, b 
damping coefficient, ρ material density, E Young’s modulus, AC frequency, and V0 
voltage amplitude. 

3 Parametric Resonance 

The dimensionless AC frequency, ∗, is defined as a function of the natural frequency 
ωk , the detuning frequency σ, and a small bookkeeping parameter ε (used in the method 
of multiple scales, MMS). During parametric resonance, ∗ is close to the natural 
frequency of the cantilever beam ( ∗ ≈ ωk ) 

∗ = ωk + εσ (7)

where the k-th dimensionless natural frequency is ωk = ωk l2
√

ρA0/EI0, and ωk is the 
corresponding dimensional frequency. The detuning frequency σ represents the differ-
ence between the AC frequency and the natural frequency. The dimensionless voltage 
and voltage square used in this research are given by

V (τ ) = cos ∗τ, V 2 = 1

2 
+ 

1 

4 
e2i 

∗t + e−2i ∗t (8)
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One can notice from Eqs. (2) and (8) that the fringe electrostatic force has a frequency 
near twice the first natural frequency of the beam, resulting in parametric resonance. 

4 Method of Multiple Scales 

The Method of Multiple Scales (MMS) is a perturbation method. Both forcing terms at 
the right-hand side of Eq. (2) are expanded in Taylor series, retaining terms up to the 
third and fifth powers. Terms accompanied by the bookkeeping parameter ε are small 
terms indicating soft actuation and weak damping [16] in the system 

∂2u 

∂τ 2 
+ 

∂ 4u
∂z4 

+ εb∗ ∂ u
∂τ 

= 0.15εδV 2 1 + 2u + 3u2 + 4u3 + Cf εf ∗δV 2(1 + ψ1u + ψ2u 
2 + ψ3u

3) (9)

Constant Cf is obtained from the empirical capacitance formula in [14], while ψk 

are constant coefficients derived from the Taylor expansion of 1/(1 − u)(11/9 ), which 
appears in the differential equation of motion Eq. 2. The time derivatives are given by 

∂ 
∂τ 

= D0 + ε D 1,
∂2

∂τ 2 
= D2 

0 + 2εD0D1 + ε2D 21 (10)

where T0 = t is the fast time scale and T1 = ε t is the slow time scale. The derivatives 
with respect to T0 and T1 are denoted by D0 and D1, respectively. The uniform expansion 
of u(τ, z ) is considered as follows 

u = u0 + εu1, and u(4) = u(4) 
0 + ε u(4)

1 (11)

Substitute Eqs. (10) and (11) into Eq. (9). Based on the powers of the bookkeeping 
parameter ε, two problems, namely the zeroth- and first-order, result as follows 

ε0 : D2 
0u0 + u(4) 

0 = 0 (  12)

ε1 : D2 
0u1 + u(4) 

1 =  −2D0D1u0 − b∗D0u0 + 0.15δV 2 1 + 2u0 + 3u2 0 + 4u3 0 +Cf f 
∗δV 2(1 + ψ1u0 + ψ 2u20 + ψ3u

3
0)

(13)

The solution of the zeroth-order problem Eq. (12) is given by [17]: 

u0 = φ(z)[A(T1)e
iωk T0 + A(T1)e

−iωk T0 ] (14) 

By substituting Eq. (14) into Eq. (13), the secular terms (terms proportional to eiω0T0 ) 
are collected, and their sum is set to zero. Complex amplitude A and its conjugate A are 

A = 
1 

2 
ake

iβk & A = 
1 

2 
ake

−iβk (15) 

where ak and βk are real amplitude and real phase, respectively. Once Eq. (15)  is  applied  
in the secular terms equation, the resulting equation is divided by eiβk . Denoting 

γ = σ T1 − βk (16)
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both, the real and imaginary components of the secular terms’ equation are separated 
and set equal to zero. The derivatives with respect to the slow scale T1 of amplitude a, 
and phase difference γ, are equated to zero to obtain the steady-state solutions as 

aσ  ωk g2 + 
δ ag2
8 

3 

10 
+ Cf f ∗ψ1 (2 + cos2γ ) + 

δ a3g4
16 

3 

10 
+ Cf f ∗ψ3 (3 + 2cos2γ ) = 0 (17)

− 
1 

2 
b∗ωkag2 + 

1 

8 
δag2sin2γ 

3 

10 
+ Cf f 

∗ψ1 + 
1

16 
δa3g4sin2γ 

3 

5 
+ Cf f 

∗ψ3 = 0 

(18)

It is important to note that these equations are satisfied by the trivial solution a = 0. 
Furthermore, a non-trivial solution is given by 

a = 
8b∗ω1g2 − 2δg2sin2γ (3/10) + Cf f ∗ψ1

δg4sin2γ (3/5) + Cf f ∗ψ3 

,  δ  = 
80ω1 (3/2)b

∗ + b∗ cos2γ + σ sin2γ

3sin2γ + 10Cf f ∗ψ1sin2γ (1 + cos 2γ )
(19)

where g2 = 1 
0φ

2 
1dz, g4 = 1 

0φ
4
1dz. 

5 Reduced Order Model 

A Reduced Order Model (ROM) using two modes of vibration (two terms) is developed 
using the first two mode shapes of a cantilever beam in order to obtain steady-state 
solutions. With enough terms, this technique is considered accurate for capturing both 
weak and strong nonlinearities, as well as small and large amplitude responses [16]. The 
dimensionless deflection u in Eq. (2) is considered as follows 

u(τ, z) = N 

i=1 
ui (τ )φi (z ) (20)

where N denotes the number of terms (vibration modes) considered, ui(τ  )  are the time-
dependent functions to be determined, and φi(z) are the mode shapes of the cantilever 
beam. Increasing the number of terms generally leads to convergence of the ROM solu-
tions [17]. However, a trade-off always exists between accuracy and computational cost. 
The differential equation of motion used for ROM is given by Eq. (2) after it is multi-
plied by (1 − u) 2. The resulting (1 − u)(7/9 ) is expanded in Taylor series and terms up 
to the fifth power of u are retained, where λk are the Taylor polynomial coefficients. The 
resulting equation, using the Galerkin method, is multiplied by φn and integrated from 0 
to 1, resulting a system of N second order differential equations, n = 1,2,…N as follo ws

N 

i,j,k=1 
üiujuk hnijk − 2 

N 

i,j=1 
üiujhnij + 

N 

i=1 
üihni + 

N 

i,j,k=1 
ω2 
i uiujuk hnijk 

−2 
N 

i,j=1 
ω2 
i uiujhnij + 

N 

i=1 
ω2 
i uihni + b∗ N 

i,j,k=1 
u̇iujuk hnijk 

−2b∗ N 

i,j=1 
u̇iujhnij + b∗ N 

i=1 
u̇ihni = δV 2{0.15hn + Cf f ∗[hn− 

λ1 
N 

i=1 
uihni − λ2 

N 

i,j=1 
uiujhnij − λ3 

N 

i,j,k=1 
uiujuk hnijk− 

λ4 
N 

i,j,k,l=1 
uiujuk ul hnijkl − λ5 

N 

i,j,k,l,m=1 
uiujuk ulumhnijkl ]}

(21)
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where n = 1,2,…N , hj1j2...jp = 1 
0φj1 φj2 .  .  .  φjpdz, and λk are coefficients resulting from 

the ROM Taylor expansion. The numerical integration of 2T ROM and simulation of 
time responses of the cantilever beam are carried out using MATLAB [17]. AUTO-07p, 
a continuation and bifurcation software package, is utilized to solve Eq. (21) and predict 
the voltage-amplitude response [16, 17]. 

6 Results and Conclusions 

Cantilever dimensionless mode shapes φi(z), and dimensionless natural frequencies ωk 
used in this research are given in Ref. [18]. Table 1 shows dimensional data of a typi-
cal MEMS resonator, and Table 2 the dimensionless parameters from Table 1 and Eq. 
(6). Figure 2 (left) shows the voltage–amplitude response of the capacitance model as 
predicted by the Method of Multiple Scales (MMS) and the two-term Reduced Order 
Model (2T ROM). The voltage parameter δ is plotted on the x-axis, while Umax (the 
dimensionless deflection of the free end of the cantilever) is on the y-axis. MMS predicts 
three solutions: one of zero amplitude and two of non-zero amplitudes. They consist of 
stable and unstable branches. Solid lines represent stable solutions, while dashed lines 
indicate unstable ones. The MMS solution using a 5th-degree Taylor polynomial for 
the fringe electrostatic force in Eq. (10) shows a stronger softening effect, i.e. stronger 
bending to lower voltage values at larger amplitudes of the branches than the one using 
a 3rd-degree Taylor polynomial. This illustrates that including higher-order terms in the 
Taylor expansion within MMS yields more accurate results at large amplitudes. Bifur-
cation points A and B are subcritical and supercritical bifurcation points, respectively, C 
a saddle-node bifurcation point, and D end point of BD stable branch. 

Table 1. Typical MEMS Cantilever Resonator Dimensional System Parameters 

Parameter Symbol Value Unit 

Young’s Modulus E 169 GPa 

Material Density ρ 2330 kg/m3 

Beam Length l 300 μm 

Beam Width W 20 μm 

Beam Thickness h 2 μm 

Initial Gap Distance g 8 μm 

Figure 2 (right) shows a time response of the structure. One can notice the agreement 
between the time response and 2T ROM AUTO predictions. 

Figure 3 (left) shows a comparison between the voltage responses at parametric 
resonance of the fringe capacitance model (CAP) based on Sakurai and Tamara [14] 
and the fringe model (F) based on Palmer formula [18, 19]. The capacitance model 
was modified to include only fringe contributions (i.e., the parallel-plate capacitance 
component is neglected). The fringe model based on Palmer’s formula was also adjusted



20 D. I. Caruntu and M. Martinez

Table 2. Dimensionless System Parameters 

Parameter Symbol Value 

Voltage Parameter δ 0.1 

Damping Parameter b 0.001 

Fringe Parameter f 0.26 

Cap Fringe Parameter f * 0.29395 
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Fig. 2. Capacitance model for b* = 0.001, f = 0.26, f * = 0.29395, σ = -0.002282, ω1 = 
3.516015: (left) Voltage-amplitude response of parametric resonance of fringe electrostatically 
actuated MEMS cantilever resonator; (right) 2T ROM time response (TR) for initial amplitude 
U0 = 0  and δ = 0.0858.

to exclude the parallel-plate capacitance, retaining only fringe field contributions. The 
main difference between the two models lies in the fringe contributions they consider. 
The capacitance model accounts for contributions from both the top and sidewalls of the 
beam, while the fringe model includes only the top surface contributions. The capacitance 
model exhibits a much narrower resonant zone (between A and B) compared to the fringe 
model while the bifurcation points are shifted toward significantly lower voltages. This 
is due to a larger fringe contribution in the capacitance model, thus requiring a smaller 
voltage parameter to induce a response. Notably, the capacitance model can also predict 
system behavior at amplitudes greater than the gap, a regime the fringe model fails to 
capture. Although the accuracy of the capacitance model’s predictions at large amplitudes 
(e.g., branch 3) still needs verification, perhaps through the use of an alternative fringe 
capacitance equation, its ability to model behavior beyond the gap distance is significant. 
Given that this study focuses on system behavior at amplitudes greater than the gap 
between the cantilever and the ground plate, the capacitance model offers a substantial 
advantage over the fringe model. Finally, note that the detuning frequency selected for 
each voltage response must lie within the resonant zone of its corresponding frequency 
response. In this case, since the resonant zones of the capacitance and fringe models 
overlap slightly, the same detuning frequency was used for both voltage responses (σ1
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= -0.002282). Underestimating or overestimating the fringe effect parameter can lead 
to instability for lower or larger voltages than anticipated.

Figure 3 (right) shows a comparison of voltage-amplitude responses of parametric 
resonance between capacitance model (Cap) in the case of ground plate with a hole and 
the Palmer formula model to include fringe effect (ES + F) in the case of a ground 
plate without a hole. Since the frequency response resonant zones of the capacitance 
and fringe models do not fall within the same resonant zone, two different detuning 
frequencies are used for this comparison, σ1 and σ2. If the detuning frequency is not 
between the two bifurcation points subcritical and supercritical of the corresponding 
frequency response, then zero voltage response will be produced. Detuning frequency 
σ1 is for the capacitance (Cap) model while σ2 is for Palmer electrostatic + fringe (ES 
+ F) case. So, a direct comparison between Cap and ES + F cannot be made.

However, one can notice that when compared to the ground plate without a hole 
modeled by Palmer (electrostatic + fringe) formula, the ground plate with a hole modeled 
by the capacitance model shows that: 1) the amplitudes are much larger going beyond 
the gap distance (Umax > 1) as the cantilever can deflect through the hole, 2) the voltage 
range between the subcritical and supercritical bifurcation points is lower, 3) the voltage 
of the supercritical bifurcation point is significantly lower. On should notice that for the 
ground plate without a hole the maximum deflection is the gap (Umax = 1) when the 
beam makes contact the ground plate, i.e. experiences a pull-in phenomenon.

Overall, comparing voltage responses due to different actuation models is significant 
in determining how adding fringe contributions affects the behavior of the system. Future 
work includes primary resonance [20]  as  well  as  NEMS [21, 22]. 
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Fig. 3. Voltage-amplitude response of parametric resonance of fringe electrostatically actuated 
MEMS cantilever resonator b* = 0.001, f = 0.26, f * = 0.29395,ω1 = 3.516015. (left) Capacitance 
model versus fringe model for σ = -0.002282. (right) Ground plate with a hole, capacitance model, 
σ1 = -0.002282, versus ground plate without a hole, Palmer formula (ES + F), σ2 = -0.012475. 
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