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Abstract. This paper deals with the voltage—amplitude response of paramet-
ric resonance of micro-electromechanical system (MEMS) cantilever beam res-
onators actuated solely by fringing electrostatic fields. The system comprises a
micro cantilever beam positioned parallel to a ground plate, connected via an AC
voltage source which leads to electrostatic actuation. The ground plate has a hole
allowing the cantilever beam deflections larger than the gap and therefore eliminat-
ing the pull-in phenomenon. A fringing field capacitance model (based on Saku-
rai’s empirical formula) is used in this work and compared to a more traditional
fringing field model based on Palmer’s formula. The fringing field is the electric
field between the ground plate and the beam’s top and sidewalls. In both models,
due to the configuration of the ground plate with a hole, the parallel-plate capaci-
tance is removed, so only the fringe field actuation is considered. For parametric
resonance, the AC voltage frequency is near the resonator’s natural frequency. A
nondimensionalized partial differential equation governing the system is reduced
to a single-mode Reduced Order Model (ROM), which is then analytically solved
using the Method of Multiple Scales (MMS). The resulting voltage—amplitude
bifurcation diagram reveals a trivial solution and two branches, one stable and
one unstable, emerging from super- and subcritical bifurcation points. A two-
mode ROM is also developed and solved numerically to verify these findings, and
the resulting equations are implemented in AUTO-07p (a continuation and bifur-
cation analysis software) to obtain further voltage response data. Fringing field
capacitance model predictions are compared against fringing field model based
on Palmer’s formula predictions, and against the case of ground plate with no hole
modeled by Palmer’s formula.

Keywords: MEMS cantilever - Fringe-field actuation - Voltage—amplitude
response

1 Introduction

Micro-electromechanical Systems (MEMS) technologies enable the creation of struc-
tures, systems, and devices at the micron scale [1]. At their core, MEMS integrate
mechanical microstructures, microsensors, microactuators, and microelectronics onto
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a single silicon chip. Due to their low production cost, compact size, minimal power
consumption, adaptable geometry, and application-specific functionality, MEMS have
become a preferred alternative to traditional sensors and actuators [2]. Various actuation
methods are used in MEMS devices, including electrostatic, electrothermal, electro-
magnetic, and piezoelectric techniques. Among these, electrostatic actuation is widely
favored for its simple design, fast response time, and ease of fabrication [3], though
it presents challenges such as high driving voltages and significant nonlinearities. A
deep understanding of the nonlinear dynamic response of MEMS is crucial for the
development and precise control of novel devices.

The MEMS field has grown significantly, with potential applications across diverse
industries [4]. MEMS are now widely used in biomedical, automotive, defense, com-
munications, and aerospace domains. In particular, the field of biomedical MEMS (bio-
MEMS) has advanced considerably through the integration of MEMS technology and
biological sciences. This integration has enabled the development of biosensors, diag-
nostic tools, drug delivery systems, and surgical instruments [5]. One application is the
dynamic-mode cantilever biosensor, used to detect pathogens by measuring shifts in
resonant frequency due to mass loading from attached bacteria or viruses [6]. These
sensors can measure cell mass with high sensitivity and monitor bacterial growth. For
instance, Ilic et al. [7] demonstrated the detection and quantification of E. coli using a
dynamic-mode cantilever sensor, and this approach has since been adopted in multiple
studies for rapid bacterial detection [6].

Electrostatic actuation primarily results from the electric field between two oppo-
sitely charged parallel plates, creating an attractive force [3]. This system includes a
flexible cantilever beam and a conductive ground plate, with a dielectric medium filling
the gap g between them. The electrostatic force F, exerted on the cantilever beam is
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where C is the capacitance and V) is the excitation voltage. For a rectangular cross-
section, capacitance depends on the beam’s length /, width W, the gap g, and the dielectric
constant ¢, of the medium [8]. As the beam deflects toward the ground plate, the gap
changes, altering the capacitance. When the applied voltage exceeds a critical threshold,
in the case of ground plate with no hole, pull-in instability may occur, causing the beam
to collapse, one of the most significant nonlinear phenomena in electrostatic MEMS
devices [9].

Accurately modeling fringing capacitance between two conductors has long been
a focus in the Very Large-Scale Integration (VLSI) community [10]. While fringing
effects are minor in wide beams, they become significant in narrow-beam geometries
[11]. Fringe-actuated MEMS devices have demonstrated practical applications [8, 11,
12]. Van der Meijs and Fokkema [ 10] reported the difference between traditional parallel-
plate capacitance Cp, and fringing capacitances, where the electric field extends to the
top and side walls of the cantilever. The fringing capacitances C; and Cy4 are between
resonator’s top surface and the ground plate, and C; and C3 between resonator’s sides and
the ground plate, in a 2D system. Chang [13] developed an accurate, but mathematically
complex, formula using conformal mapping techniques to account for these effects. To
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simplify modeling, empirical capacitance formulas such as Sakurai and Tamaru [14]
have been proposed.

This paper employs Sakurai and Tamaru [14] empirical capacitance formula, which
includes contributions from fringe fields acting on the top and sidewalls of the cantilever,
to investigate the voltage—amplitude response of parametric resonance of fringe-actuated
MEMS cantilever beams parallel to a ground plate with a hole. The Method of Multiple
Scales (MMS) and a two-term Reduced Order Model (2T ROM) are used.

In parametric resonance [15], the frequency of the AC voltage is near the beam’s
first natural frequency. However, the actuation force operates at twice that frequency.
Both MMS and 2T ROM are used to predict bifurcation points of the voltage—amplitude
response. The results from both models, fringing capacitance model based on Ref. [14]
and fringing model based on Palmer’s formula, are compared and discussed. MMS aligns
well with ROM at small amplitudes. However, MMS fails to capture instabilities seen
at higher amplitudes.

2 Equation of Motion

Figure 1 shows a flexible MEMS cantilever beam positioned above a fixed ground plate
with a rectangular hole that allows deflections beyond the gap distance. When an AC
voltage is applied between the two electrodes, a fringing electrostatic force is generated,
inducing vibration in the beam. The dimensionless partial differential equation of motion
for the cantilever beam based on the capacitance model, along with the corresponding
boundary conditions, are

Pu  du g du _ 0158 Crf*s 5
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where the dimensionless variables and parameters are as follows: u is the beam’s deflec-
tion, T time, z longitudinal coordinate, b* damping parameter, § voltage parameter, V
voltage, Cy capacitance constant, and f* capacitance fringe parameter. Note that the
first term on the right-hand side of Eq. (2) results from (}_1 2% y2 Sakurai and Tamaru

u)2
[14], from which C lfu)z V2, that is the term resulting from the electric field directly
between the resonator and the ground plate, has been removed in order to model the
fringe actuation in the case of ground plate with a hole. Table 1 shows the dimensional
and dimensionless variables/parameters/constants. The empirical formula [14] used to
describe the 2-D line capacitance that considers fringe contributions from the top and
side walls of the beam is given by

2/9
G o_ 1.15(%) n 2.80(5) )
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where C is the capacitance per unit length, ¢, is a dielectric constant, gg permittivity of
free space, W beam width, & beam thickness, and g initial gap distance.
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Fringe Field Lines

Ground Plate

Fig. 1. Fringe field electrostatically actuated MEMS cantilever resonator

For this formula, the relative error is within 6% for 0.3 < W/g <30and 0.3 < h/g
< 30. The first term of Eq. (4) can be considered as contributions from lower and upper
surfaces, while the second term represents the side wall contribution [14]. Dimensionless
variables/parameters, Eq. (2), are
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where the dimensionless parameter f is the fringe parameter of the fringe model based on
Palmer’s formula [16], and 2* dimensionless AC frequency. The dimensional variables,
parameters and constants are as follows: w deflection, ¢ time, x longitudinal coordinate,
[ beam length, Ag beam cross-section area, Iy beam cross-section moment of inertia, b
damping coefficient, p material density, E Young’s modulus, 2 AC frequency, and V)
voltage amplitude.

3 Parametric Resonance

The dimensionless AC frequency, 2%, is defined as a function of the natural frequency
wk, the detuning frequency o, and a small bookkeeping parameter ¢ (used in the method
of multiple scales, MMS). During parametric resonance, Q* is close to the natural
frequency of the cantilever beam (Q2* ~ wy)

Q* =y + o (7

where the k-th dimensionless natural frequency is wy = @yl*</pAo/Ely, and @y is the
corresponding dimensional frequency. The detuning frequency o represents the differ-
ence between the AC frequency and the natural frequency. The dimensionless voltage
and voltage square used in this research are given by

Ry -
V(1) = cosQ*t, V? = S+ Z(eZzQ 1y 2R z) ®
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One can notice from Egs. (2) and (8) that the fringe electrostatic force has a frequency
near twice the first natural frequency of the beam, resulting in parametric resonance.

4 Method of Multiple Scales

The Method of Multiple Scales (MMS) is a perturbation method. Both forcing terms at
the right-hand side of Eq. (2) are expanded in Taylor series, retaining terms up to the
third and fifth powers. Terms accompanied by the bookkeeping parameter ¢ are small
terms indicating soft actuation and weak damping [16] in the system
Pu W sy (1 paut 3 4 ad) 4 Crep*sv2(l 2 3 9)
vangs 3, = 015 (+u+,u+u)+ ref (I 4+ yru+ You” + Y3u’)
Constant Cy is obtained from the empirical capacitance formula in [14], while v

are constant coefficients derived from the Taylor expansion of 1/(1 — )1/, which
appears in the differential equation of motion Eq. 2. The time derivatives are given by
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where Ty = t is the fast time scale and 77 = ¢ t is the slow time scale. The derivatives
with respect to T and 77 are denoted by D¢ and D1, respectively. The uniform expansion
of u(t, z) is considered as follows
u=up+euy, andu® = u(()4) + euY‘) (11)
Substitute Eqs. (10) and (11) into Eq. (9). Based on the powers of the bookkeeping
parameter &, two problems, namely the zeroth- and first-order, result as follows

¥ D3ug + ul’ =0 (12)
e D3uy +ul® = —2DoDyug — b* Doug + 0.155\/2(1 + 2u + 3u3 + 4u3)+cff*sv2(1 P + Youd + Y3ud)
(13)
The solution of the zeroth-order problem Eq. (12) is given by [17]:
up = AT 0 + A(Ty)e "+ 0] (14)

By substituting Eq. (14) into Eq. (13), the secular terms (terms proportional to eifo Toy
are collected, and their sum is set to zero. Complex amplitude A and its conjugate A are

A= Eake’ﬁ" &A= Eakeﬂﬂ" (15)

where ai and By are real amplitude and real phase, respectively. Once Eq. (15) is applied
in the secular terms equation, the resulting equation is divided by ¢’ Denoting

y=0T1— B (16)



18 D. I. Caruntu and M. Martinez

both, the real and imaginary components of the secular terms’ equation are separated
and set equal to zero. The derivatives with respect to the slow scale 77 of amplitude g,
and phase difference y, are equated to zero to obtain the steady-state solutions as

acwrgy + Mggz ( S Gf 1/;1)(2 +cos2y) 4 2084 g4 (130 + Cf‘j'*¢3)(3 4 2c082y) = 0 (17)
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It is important to note that these equations are satisfied by the trivial solution a = 0.
Furthermore, a non-trivial solution is given by

19)
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a= 8=
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where go = [(¢idz, g4 = [pjdz.

5 Reduced Order Model

A Reduced Order Model (ROM) using two modes of vibration (two terms) is developed
using the first two mode shapes of a cantilever beam in order to obtain steady-state
solutions. With enough terms, this technique is considered accurate for capturing both
weak and strong nonlinearities, as well as small and large amplitude responses [16]. The
dimensionless deflection u in Eq. (2) is considered as follows

w2 = Y0 GO (20)

where N denotes the number of terms (vibration modes) considered, u;(t) are the time-
dependent functions to be determined, and ¢;(z) are the mode shapes of the cantilever
beam. Increasing the number of terms generally leads to convergence of the ROM solu-
tions [17]. However, a trade-off always exists between accuracy and computational cost.
The differential equation of motion used for ROM is given by Eq. (2) after it is multi-
plied by (1 — u)?. The resulting (1 — u)”/*) is expanded in Taylor series and terms up
to the fifth power of u are retained, where Ay are the Taylor polynomial coefficients. The
resulting equation, using the Galerkin method, is multiplied by ¢,, and integrated from O
to 1, resulting a system of N second order differential equations, n = 1,2,...N as follows

Zj’\,]jA,k:l itjujug i — 22211‘:1 iijujhpj; + Zi itjhy; + Zz/ ey @i ”t”j“khm‘jk

-2 Zjvj wvzuilrh,,i,' + ZN w-zuihni +b* Z k=1 ijujug by

—2p* Z;,; iujhyj + b* Z i = 8V2{0.15hy + Cpf *lhn— 21
A Z uihpi — Ao Z u,u] nij — A3 Z k= ujujiug hy g —

A Zi,j,k,l:l uittjugughyjjeg = As Zi,j,k,l,m:l gttt im Pjji 1}
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where n = 1,2,...N, hj,j, j, = f(l)¢jl¢j2 ... ¢j,dz, and A are coefficients resulting from
the ROM Taylor expansion. The numerical integration of 2T ROM and simulation of
time responses of the cantilever beam are carried out using MATLAB [17]. AUTO-07p,
a continuation and bifurcation software package, is utilized to solve Eq. (21) and predict
the voltage-amplitude response [16, 17].

6 Results and Conclusions

Cantilever dimensionless mode shapes ¢;(z), and dimensionless natural frequencies wy
used in this research are given in Ref. [18]. Table 1 shows dimensional data of a typi-
cal MEMS resonator, and Table 2 the dimensionless parameters from Table 1 and Eq.
(6). Figure 2 (left) shows the voltage—amplitude response of the capacitance model as
predicted by the Method of Multiple Scales (MMS) and the two-term Reduced Order
Model (2T ROM). The voltage parameter ¢ is plotted on the x-axis, while Umax (the
dimensionless deflection of the free end of the cantilever) is on the y-axis. MMS predicts
three solutions: one of zero amplitude and two of non-zero amplitudes. They consist of
stable and unstable branches. Solid lines represent stable solutions, while dashed lines
indicate unstable ones. The MMS solution using a Sth-degree Taylor polynomial for
the fringe electrostatic force in Eq. (10) shows a stronger softening effect, i.e. stronger
bending to lower voltage values at larger amplitudes of the branches than the one using
a 3rd-degree Taylor polynomial. This illustrates that including higher-order terms in the
Taylor expansion within MMS yields more accurate results at large amplitudes. Bifur-
cation points A and B are subcritical and supercritical bifurcation points, respectively, C
a saddle-node bifurcation point, and D end point of BD stable branch.

Table 1. Typical MEMS Cantilever Resonator Dimensional System Parameters

Parameter Symbol | Value | Unit
Young’s Modulus E 169 GPa
Material Density p 2330 | kg/m3
Beam Length l 300 pm
Beam Width w 20 um
Beam Thickness h 2 um
Initial Gap Distance | g 8 sm

Figure 2 (right) shows a time response of the structure. One can notice the agreement
between the time response and 2T ROM AUTO predictions.

Figure 3 (left) shows a comparison between the voltage responses at parametric
resonance of the fringe capacitance model (CAP) based on Sakurai and Tamara [14]
and the fringe model (F) based on Palmer formula [18, 19]. The capacitance model
was modified to include only fringe contributions (i.e., the parallel-plate capacitance
component is neglected). The fringe model based on Palmer’s formula was also adjusted
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Table 2. Dimensionless System Parameters

Parameter Symbol Value
Voltage Parameter 0 0.1
Damping Parameter b 0.001
Fringe Parameter f 0.26
Cap Fringe Parameter s 0.29395
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Fig. 2. Capacitance model for b = 0.001, f = 0.26, f* = 0.29395, 0 = -0.002282, w1 =
3.516015: (left) Voltage-amplitude response of parametric resonance of fringe electrostatically
actuated MEMS cantilever resonator; (right) 2T ROM time response (TR) for initial amplitude
Up =0and § = 0.0858.

to exclude the parallel-plate capacitance, retaining only fringe field contributions. The
main difference between the two models lies in the fringe contributions they consider.
The capacitance model accounts for contributions from both the top and sidewalls of the
beam, while the fringe model includes only the top surface contributions. The capacitance
model exhibits a much narrower resonant zone (between A and B) compared to the fringe
model while the bifurcation points are shifted toward significantly lower voltages. This
is due to a larger fringe contribution in the capacitance model, thus requiring a smaller
voltage parameter to induce a response. Notably, the capacitance model can also predict
system behavior at amplitudes greater than the gap, a regime the fringe model fails to
capture. Although the accuracy of the capacitance model’s predictions at large amplitudes
(e.g., branch 3) still needs verification, perhaps through the use of an alternative fringe
capacitance equation, its ability to model behavior beyond the gap distance is significant.
Given that this study focuses on system behavior at amplitudes greater than the gap
between the cantilever and the ground plate, the capacitance model offers a substantial
advantage over the fringe model. Finally, note that the detuning frequency selected for
each voltage response must lie within the resonant zone of its corresponding frequency
response. In this case, since the resonant zones of the capacitance and fringe models
overlap slightly, the same detuning frequency was used for both voltage responses (o1
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= -0.002282). Underestimating or overestimating the fringe effect parameter can lead
to instability for lower or larger voltages than anticipated.

Figure 3 (right) shows a comparison of voltage-amplitude responses of parametric
resonance between capacitance model (Cap) in the case of ground plate with a hole and
the Palmer formula model to include fringe effect (ES + F) in the case of a ground
plate without a hole. Since the frequency response resonant zones of the capacitance
and fringe models do not fall within the same resonant zone, two different detuning
frequencies are used for this comparison, o1 and o3. If the detuning frequency is not
between the two bifurcation points subcritical and supercritical of the corresponding
frequency response, then zero voltage response will be produced. Detuning frequency
o1 is for the capacitance (Cap) model while o> is for Palmer electrostatic + fringe (ES
+ F) case. So, a direct comparison between Cap and ES + F cannot be made.

However, one can notice that when compared to the ground plate without a hole
modeled by Palmer (electrostatic + fringe) formula, the ground plate with a hole modeled
by the capacitance model shows that: 1) the amplitudes are much larger going beyond
the gap distance (Umax > 1) as the cantilever can deflect through the hole, 2) the voltage
range between the subcritical and supercritical bifurcation points is lower, 3) the voltage
of the supercritical bifurcation point is significantly lower. On should notice that for the
ground plate without a hole the maximum deflection is the gap (Umax = 1) when the
beam makes contact the ground plate, i.e. experiences a pull-in phenomenon.

Overall, comparing voltage responses due to different actuation models is significant
in determining how adding fringe contributions affects the behavior of the system. Future
work includes primary resonance [20] as well as NEMS [21, 22].
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Fig. 3. Voltage-amplitude response of parametric resonance of fringe electrostatically actuated
MEMS cantilever resonator ™ = 0.001,f = 0‘26,f* =0.29395, w1 =3.516015. (left) Capacitance
model versus fringe model for o = -0.002282. (right) Ground plate with a hole, capacitance model,
o1 = -0.002282, versus ground plate without a hole, Palmer formula (ES + F), oo = -0.012475.

References

1. Mayurika, J.B.: A review study on MEMS. J. Emerg. Technol. Innov. Res. 3(8), 748-753
(2016)

2. Faudzi, A., Sabzehmeidani, Y., Suzumori, K.: Application of MEMS as sensors: a review. J.
Robot. Mechatron. 32(2), 281-288 (2020)



22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

D. I. Caruntu and M. Martinez

Ghazali, A.A., et al.: A review of actuation and sensing mechanisms in MEMS-based sensor
devices. Nanoscale Res. Lett. 16(16), 1-21 (2021)

Nazir, S., Kwon, O.: Micro-electromechanical systems-based sensors and their applications.
Appl. Sci. Converg. Technol. 31(2), 4045 (2022)

Chircov, C., Grumezescu, A.M.: Microelectromechanical systems (MEMS) for biomedical
applications. Micromachines 13(2), 1-31 (2022)

Pujol-Villa, F, Villa, R., Alvarez, M.: Nanomechanical sensors as a tool for bacteria detection
and antibiotic susceptibility testing. Front. Mech. Eng. 6(44), 1-18 (2020)

Ilic, B., Czaplewski, D., Craighead, H.G., Neuzil, P., Campagnolo, C., Batt, C.: Mechanical
resonant immunospecific biological detector. Appl. Phys. Lett. 77(3), 450-452 (2000)
Batra, R.C., Porfiri, M., Spinello, D.: Capacitance estimate for electrostatically actuated
narrow microbeams. Micro Nano Lett. 1(2), 71-73 (2007)

Liu, X., Zhang, L., Zhang, M.: Studies on pull-in instability of an electrostatic MEMS actuator:
dynamical system approach. J. Appl. Anal. Comput. 12(2), 850-861 (2022)

Van der Meijs, N.P., Fokkema, J.T.: VLSI circuit reconstruction from mask topology. Integr.
VLSIJ. 2, 93-98 (1984)

Krakover, N., Ilic, B.R., Krylov, S.: Micromechanical resonant cantilever sensor actuated by
fringing electrostatic fields. J. Micromech. Microeng. 32, 054001 (2022)

Krakover, N., Ilic, B.R., Krylov, S.: Resonant pressure sensing using a micromechanical
cantilever actuated by fringing electrostatic fields. In: 2018 Proc. IEEE Int. Conf. Micro
Electro Mech. Syst. (MEMS), pp. 846—849 (2018)

Chang, W.H.: Analytical IC metal-line capacitance formulas. IEEE Trans. Microw. Theory
Techn., 608-611 (1976)

Sakurai, T., Tamaru, K.: Simple formulas for two- and three-dimensional capacitances. IEEE
Trans. Electron Devices 30(2), 183-185 (1983)

Moran, K., Burgner, C., Shaw, S., Turner, K.: A review of parametric resonance in micro
electromechanical systems. IEICE Nonlinear Theory Appl. 4(3), 198-224 (2013)

Caruntu, D.I., Martinez, 1., Knecht, M.W.: Parametric resonance voltage response of elec-
trostatically actuated micro-electro-mechanical systems cantilever resonators. J. Sound Vib.
362, 203-213 (2016)

Caruntu, D.I., Juarez, E.: Coaxial vibrations of electrostatically actuated DWCNT resonators:
amplitude-voltage response of parametric resonance. Int. J. Non-Linear Mech. 142, 103982
(2022)

Caruntu, D.I., Knecht, M.W.: Microelectromechanical systems cantilever resonators under
soft alternating current voltage of frequency near natural frequency. J. Dyn. Syst. Meas.
Control 137, 041016 (2015)

Palmer, H.B.: The capacitance of a parallel-plate capacitor by the Schwartz-Christoffel
transformation. Trans. AIEE 56(3), 363-366 (1937)

Caruntu, D.I., Martinez, I., Taylor, K.I.: Voltage-amplitude response of alternating current near
half natural frequency of electrostatically actuated MEMS resonators. Mech. Res. Commun.
52,25-31(2013)

Caruntu D.I., Reyes C.A.: Casimir effect on amplitude-frequency response of parametric
resonance of electrostatically actuated NEMS cantilever resonators. In: Chapter 15 in Devel-
opments and Novel Approaches in Biomechanics and Metamaterials. Series: Adv. Struct.
Mater., vol. 132, pp. 267-289. Springer, Cham (2020)

Caruntu, D.I., Beatriz, J.S.: Quantum dynamics effects on amplitude-frequency response
of superharmonic resonance of second-order of electrostatically actuated NEMS circular
plates. In: Chapter 4 in Theoretical Analyses, Computations, and Experiments of Multiscale
Materials, Series: Adv. Struct. Mater., pp. 69—104. Springer, Cham (2022)



	Models of Electrostatically Fringe Field Actuated MEMS Resonators: Voltage-Amplitude Response of Parametric Resonance
	1 Introduction
	2 Equation of Motion
	3 Parametric Resonance
	4 Method of Multiple Scales
	5 Reduced Order Model
	6 Results and Conclusions
	References


