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Abstract. This work investigates tibiofemoral joint kinematic deviations across 
two walking conditions, Normal, and Fast, using the Gait Deviation Index (GDI). 
The primary objective was to assess the sensitivity of the GDI to variations in speed 
with a focus on intra-subject comparisons. Motion capture data from one healthy 
adult was recorded using a Vicon system and analyzed using a Joint Coordinate 
System (JCS) framework. Gait cycles for both conditions were segmented based 
on heel strike events and time-normalized to enable consistent comparison. The 
knee flexion angle for each cycle was computed. Singular Value Decomposition 
(SVD) was applied exclusively to control data from the normal condition to extract 
dominant mode shapes. Gait Deviation Index scores were then computed for each 
stride during the Fast walking condition relative to the Normal walking. The result-
ing average GDI score for the fast condition was approximately 88.89, which falls 
close to one standard deviation of the reference value of 100. This suggests that 
although the amplitude of joint angles differed, the underlying movement patterns 
remained largely consistent across conditions. These findings highlight the GDI 
score as a sensitive and interpretable method for detecting kinematic inconsistency 
induced by walking speed. 

Keywords: Tibiofemoral flexion-extension · Fast versus Normal walking · 
Rehabilitation 

1 Introduction 

Human gait is a highly coordinated, three-dimensional motor task that reflects the com-
plex interplay of the musculoskeletal and nervous systems. Subtle deviations in joint 
kinematics can signal compensatory strategies, biomechanical inefficiencies, or under-
lying pathology. Quantifying these deviations in a way that is both sensitive and inter-
pretable remains a critical challenge in biomechanics. Among the tools developed to 
address this, the Gait Deviation Index (GDI) has emerged as a widely accepted metric 
to summarize overall gait quality using a reduced set of orthogonal gait patterns derived 
from high-dimensional joint kinematic data [1]. 

The GDI is typically computed through dimensionality reduction techniques such as 
Singular Value Decomposition (SVD) or Principal Component Analysis (PCA). These
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techniques allow for the decomposition of gait waveforms into a series of ranked orthog-
onal modes that capture dominant patterns of variability [2]. In the original formulation 
by Schwartz et al. [1], the GDI was based on projecting an individual’s gait data onto a 
normative basis constructed from healthy control strides, and deviations were quantified 
in terms of Euclidean distance from the mean control representation. 

Recent advances have highlighted the potential of customizing the SVD basis to 
specific populations, improving sensitivity to deviations within targeted cohorts [3]. 
Building on this framework, the present study investigates how walking speed influence 
tibiofemoral joint kinematics in healthy individuals. Rather than applying SVD to the 
combined dataset, the SVD basis was computed exclusively from the Normal walking 
condition, enabling the assessment of the alignment relative to a subject’s own typical 
gait or to a matched control group. 

This paper reports a comprehensive analysis of gait deviation across two conditions, 
namely Fast walking and Normal walking, for a single subject, offering individual-level 
insights and implications. Mode shapes from the SVD decomposition are presented to 
provide a deeper understanding of how deviations manifest relative to dominant gait pat-
terns. Ultimately, this work aims to advance the application of mode-based gait analysis 
for early detection of deviations, subject-specific gait monitoring, and future integration 
into clinical decision-making frameworks. 

2 Methodology 

2.1 Experimental Setup 

Motion data were collected using a Vicon optical motion capture system (Vicon Motion 
Systems Ltd., Oxford, UK) operating at a sampling rate of 100 Hz. The system was 
calibrated prior to each session to ensure sub-millimeter accuracy in marker track-
ing. Reflective markers were placed on key anatomical landmarks including the greater 
trochanter, medial and lateral femoral epicondyles, medial and lateral malleoli, and the 
tibial tuberosity, supplemented by rigid clusters mounted on the mid-thigh and mid-
shank. All trials were performed over a flat, unobstructed walkway under laboratory 
conditions. The subject walked without shoes. Subjects self-selected their speed based 
on prompts given to them before the exercise to capture natural walking patterns. The 
prompts were: 

• Normal: “Walk as you would normally.” 
• Fast: “Walk as if you were late to an important meeting.” 

2.2 Data Processing 

Marker trajectories were processed using Vicon Nexus software and exported into MAT-
LAB (The MathWorks, Inc., Natick, MA, USA) for further analysis. Raw marker data 
were filtered using a fourth-order low-pass Butterworth filter, with optimal cutoff fre-
quencies selected via residual analysis. Knee joint angles were computed following a 
Joint Coordinate System (JCS) framework based on the definitions of Grood and Suntay 
[4] and Caruntu and Hefzy [5]. The clinical angles were calculated using the modified
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flexion angle formula from Dabirrahmani et al. [6]. Gait cycles were segmented from 
heel strike to heel strike, normalized to 1001 data points representing every 0.1% from 
the 0–100% of the gait cycle, and organized into matrices where each column represented 
a full stride. 

2.3 Singular Value Decomposition (SVD) 

To characterize the primary patterns of knee joint kinematics during normal gait, Sin-
gular Value Decomposition (SVD) was applied to the control dataset. This decomposi-
tion facilitates the identification of dominant modes of variation within the gait cycles, 
enabling a compact representation of the data. 

Given a data matrix X ∈ Rnxp, where each column represents a time-normalized gait 
cycle comprising n time points and p strides, the SVD is defined as: 

X = U V T (1)

where: 

– U ∈ Rnxn is an orthogonal matrix whose columns are the left singular vectors, 
representing the temporal patterns (mode shapes) of the data. 

– ∈ Rnxp is a diagonal matrix containing the singular values σi, which quantify the 
contribution of each corresponding mode to the overall variance in the data. 

– V ∈ Rpxp is an orthogonal matrix whose columns are the right singular vectors, 
representing the projection of each stride onto the mode shapes. 

The singular values σi were squared to obtain the variance explained by each mode: 

Variancei = σ 2 i (2)

The cumulative variance accounted for (VAF) by the first m modes was then 
calculated as: 

VAF(m) = 
m 
i=1 σ 2i
p 
i=1 σ 2 i 

(3)

To determine the optimal number of modes moptim required to capture at least 99% 
of the total variance, the smallest m satisfying VAF(m) ≥ 0.99 was identified. The 
corresponding truncated matrices U ∈ Rnxmoptim , ∈ Rmoptimxmoptim , 

V ∈ Rpxmoptim were then extracted to form the reduced-order model: 

Xmoptim = Umoptim moptimV 
T 
moptim 

(4)

This reduced representation preserves the most significant features of the control 
gait data, facilitating subsequent analyses such as the computation of GDI.
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2.4 Gait Deviation Index Calculation 

To quantify deviations from the normal gait pattern, the Gait Deviation Index (GDI) was 
computed following the methodology described by Schwartz and Rozumalski [1]. 

First, the control and experimental gait strides were projected onto the orthonormal 
basis U derived from the Singular Value Decomposition (SVD) of the control data. This 
projection yielded feature coefficient matrices Ccontrol and Ccondition, defined as: 

Ccontrol = X T controlU (5)

Ccondition = X T conditionU (6)

where X T control and X 
T 
condition represent the time-normalized knee flexion angle matrices 

for the control and experimental strides, respectively, and each column of U corresponds 
to a mode shape. In this study, the control condition is the Normal walking speed, and 
the experimental condition is the Fast walking speed. 

Next, the mean feature vector of the control group, Ccontrolmean, was computed by 
taking the mean of Ccontrol across all control strides: 

Ccontrolmean = mean(Ccontrol) (7)

The Euclidean distance between each experimental stride’s feature vector and the 
mean control feature vector was then calculated to assess how far each experimental 
stride deviated from the control gait pattern: 

dcondition = Ccondition − Ccontrolm ean (8)

Similarly, the Euclidean distance was computed for each control stride relative to 
the control mean: 

dcontrol = Ccontrol − Ccontrolm ean (9)

These distances were then transformed by taking the natural logarithm to stabilize 
variance and improve normality: 

GDIconditionraw = ln(dcondition), GDIcontrolraw = ln(dcontrol ) (10)

The mean and standard deviation of the log-transformed control distances were 
calculated: 

μcontrolraw = mean(GDIcontrolraw) (11)

σcontrolraw = std (GDIcontrolraw) (12)

Using these values, z-scores for each experimental stride were computed: 

zGDI = 
GDIconditionraw − μcontrol raw

σcontrolraw 
(13)
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Finally, the GDI for each experimental stride was calculated by rescaling the z-scores 
according to the original GDI framework: 

GDI = 100 − 10(zGDI ) (14)

In this formulation, a GDI of 100 corresponds to a gait pattern identical to the control 
mean. Each 10-point decrease in GDI corresponds to one standard deviation of deviation 
from the control gait pattern. Strides with GDI scores below 90 are typically considered 
to show clinically meaningful deviations from normal gait. 

3 Results 

3.1 Flexion-Extension Patterns Across Strides 

The tibiofemoral flexion angle was evaluated across all recorded strides to characterize 
baseline motion patterns and identify deviations introduced by increased walking speed. 
Figure 1 shows the knee flexion angle plotted as a function of gait cycle percentage 
for both control (Normal walking) and experimental (Fast walking) conditions. Strides 
from the control condition, shown in blue, demonstrated a highly consistent progres-
sion through the gait cycle, with typical features including initial tibiofemoral flexion 
angle following heel strike, gradual extension during mid-stance, and a pronounced peak 
flexion during swing phase near 70% of the gait cycle. 

In contrast, strides from the Fast walking condition, shown in orange, exhibited con-
sistent patterns across strides but with systematic differences in flexion angle magnitudes 
compared to control strides. Specifically, these strides displayed higher flexion angles 
immediately following heel strike, indicating an increased degree of shock absorption 
at initial contact. The transition into terminal swing occurred earlier in the gait cycle, 
resulting in a leftward shift in the timing of peak flexion. Additionally, flexion angles at 
both the beginning (heel strike) and the end (pre-swing) of the gait cycle were elevated 
relative to control, while the flexion values during the foot-flat phase (approximately 
10–40% gait cycle) indicate the shortening of that phase. These results suggest that 
increased walking speed introduced shifts in the timing of flexion peaks in the entire 
gait while preserving the general signature of the knee flexion angle trajectory.
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Fig. 1. Tibiofemoral flexion angles across the gait cycle for Normal and Fast speed strides. Exper-
imental strides display higher initial flexion following heel strike, earlier transitions into terminal 
swing, and elevated flexion values at both initial contact and pre-swing phases. The foot-flat region 
experienced a shortening of that phase. 

3.2 Dominant Modes of Variation in Control Data 

Singular Value Decomposition (SVD) was applied to the control (Normal walking) 
flexion angle data to identify the dominant modes of variation during the gait cycle. 
Figure 2 illustrates the first few mode shapes, each scaled by their corresponding singular 
values to reflect their relative contribution to the total variance. 
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Fig. 2. Dominant flexion-extension mode shapes extracted from control strides via Singular Value 
Decomposition (SVD). Each mode shape is scaled by its singular value, illustrating its relative 
contribution to the overall variance in normal gait patterns. 

The first mode accounted for most of the variance and captured the primary flexion 
angle behavior of the knee, including the flexion following heel strike, the subsequent
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extension phase during mid-stance, and the peak flexion during swing. This mode rep-
resented the global structure of knee motion and dominated the control gait pattern. The 
second mode captured finer adjustments, including subtle shifts in the timing and ampli-
tude of peak flexion during swing phase. The third and subsequent modes reflected 
smaller, localized deviations, such as variations in the rate of flexion increase during 
swing or minor adjustments during early stance. 

The cumulative variance accounted for (VAF) analysis indicated that only the first 
mode was necessary to explain over 99% of the total variance in the control strides. 

3.3 Gait Deviation Index Scores 

GDI was computed for each stride to quantify deviations from the normal walking pattern 
based on the reduced-order control model. Figure 3 displays the GDI scores grouped by 
walking condition. Control strides exhibited high GDI values, with scores ranging from 
91.6 to 113.6 and a mean GDI of 100 ± 10. This range indicates minimal deviations 
from the control feature space, consistent with typical variability in normal g ait.

In contrast, experimental strides collected during fast walking showed systematically 
lower GDI scores, ranging from 86.02 to 92.5, with a mean GDI of 88.9 ± 3.1. 

Several experimental strides fell below the commonly accepted clinical threshold of 
90, suggesting the presence of substantial deviations from normal flexion-extension pat-
terns. These lower scores reflect both phase shifts and structural shape changes induced 
by the faster walking speed, consistent with observations of earlier terminal swing and 
increased flexion amplitudes noted in Sect. 3.1. 
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Fig. 3. Gait Deviation Index (GDI) scores for normal and fast strides. Control strides maintain 
high GDI scores indicating minimal deviation, while experimental strides show progressively 
lower scores, reflecting greater deviations from the normal flexion-extension pattern during fast 
walking.
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Overall, GDI analysis quantitatively confirmed that fast walking introduced shifts 
in the timing of flexion peaks, while decreasing the variability between each stride 
compared to the flexion signatures of normal walking. 

4 Discussion 

This study evaluated the ability of the Gait Deviation Index (GDI) to quantify devia-
tions in tibiofemoral flexion angle patterns induced by changes in walking speed. The 
flexion-extension curves demonstrated that Fast walking introduced consistent shifts in 
kinematics, including higher flexion angles at heel strike and pre-swing phases, earlier 
initiation of terminal swing, and a shortened foot-flat region. Although the overall struc-
ture of the gait cycle was maintained, amplitude and phase shifts became apparent when 
walking speed increased. 

Singular Value Decomposition (SVD) of the control strides revealed that normal 
walking patterns could be accurately captured using a reduced number of modes, con-
sistent with prior literature describing the highly structured nature of human gait. Devi-
ations from these dominant control patterns were quantified using GDI. Experimental 
strides recorded during fast walking consistently exhibited lower GDI scores compared 
to control strides, indicating greater deviation from the normative gait feature space. Sev-
eral experimental strides fell below the clinical threshold of 90, suggesting that increased 
walking speed introduced deviations that were both statistically and potentially clinically 
meaningful. 

The lower GDI scores observed during fast walking reflect both phase shifts and 
amplitude differences. Such differences include earlier transitions into swing phase and 
elevated flexion at key gait events. These findings highlight that even within a healthy sub-
ject, systematic kinematic adjustments occur with changes in walking speed, which can 
be sensitively captured using SVD-based methods. While the general motion sequence 
of the gait cycle remained intact, these deviations could represent adaptations to maintain 
dynamic stability and propulsion efficiency at higher speeds. 

A key strength of the present analysis is the ability to distinguish consistent kinematic 
adaptations from random stride-to-stride variability. Despite deviations, experimental 
strides remained internally consistent, as evidenced by the structured nature of the flexion 
profiles. 

5 Future Work 

The findings of this study open several avenues for future research to enhance the utility 
and applicability of SVD-based gait analysis in both clinical and research settings. While 
the present study focused on deviations induced by changes in walking speed in a healthy 
adult, future work should expand the subject pool to include a more diverse population in 
terms of age, body morphology, and physical condition. Most importantly, extending the 
analysis to individuals with gait pathologies, such as cerebral palsy, spinal cord injuries, 
or post-stroke impairments would allow the methodology to be validated in clinical 
contexts, similar to efforts made in deriving GDI adaptations for specific populations 
[2].
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Further research should explore the contribution of higher-order modes beyond the 
first few dominant patterns, especially in pathological or compensatory gait conditions. 
While the first mode captures the global structure of flexion-extension movement, higher 
modes may reveal subtle deviations tied to specific events such as late stance deficiencies 
or swing phase abnormalities. Investigating the clinical interpretation of these modes and 
their correlation with rehabilitation outcomes could enhance the biomechanical relevance 
of SVD-based decompositions, as suggested in multi-mode analysis frameworks [2, 7]. 

In addition, integrating multi-modal gait data including electromyography (EMG), 
ground reaction forces, or metabolic energy expenditure, could provide a more com-
prehensive picture of neuromuscular control strategies. Combining SVD-based kine-
matic decomposition with techniques such as non-negative matrix factorization (NMF) 
or independent component analysis (ICA) for muscle synergy extraction could further 
contextualize observed deviations, as demonstrated in synergy-focused research [8]. 

From a methodological standpoint, exploring alternative or complementary dimen-
sionality reduction techniques such as tensor decompositions, sparse principal compo-
nent analysis (PCA), or hybrid SVD-ICA models, could improve the interpretability and 
robustness of gait pattern extraction [8, 9]. Such techniques may help isolate sources of 
variation that are not fully captured by the current SVD model, particularly in noisy or 
high-dimensional datasets. 

By pursuing these future directions, the SVD-based GDI framework could evolve 
into a more comprehensive and clinically meaningful tool for understanding both healthy 
and pathological gait dynamics. 

6 Conclusion 

This work evaluated the impact of walking speed on tibiofemoral flexion-extension pat-
terns using a Singular Value Decomposition (SVD)-based Gait Deviation Index (GDI) 
framework. Flexion angle profiles demonstrated that while the overall structure of the 
gait cycle was preserved under fast walking conditions, systematic amplitude and tim-
ing shifts occurred, including elevated initial flexion angles and earlier transitions into 
terminal swing. Quantitative analysis through GDI revealed that fast walking induced 
measurable deviations from the normative control pattern, with several strides exhibit-
ing GDI scores below the 90-point threshold indicative of clinically meaningful gait 
deviation. These findings highlight the sensitivity of SVD-based GDI to both phase and 
structural changes in gait and demonstrate its utility for detecting even subtle adaptations 
in healthy gait under altered walking conditions. 
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