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Abstract—The Gateway to Astronaut Photography of Earth is
a database that archives all photographs and related data from
or about space since 1961. There are millions of photos in this
database, many of which require annotation. Proper annotation
is vital for an archive to have effective searching and sorting. This
paper will explore the recent work in the field of computer vision
and propose a deep learning model to help classify geographical
features in astrophotography.

I. INTRODUCTION

Image processing has always been a hard problem to
digitalize. Is it possible use a computer to see what humans
see? The brain gives humans the capacity to recognize text
and read or differentiate between a monkey and another
human. While these tasks are fathomable to humans, it has
been a difficult problem to solve using computers. However,
in the recent years, there has been major progress in the
field of computer vision with the rediscovery of deep learn-
ing methods. Groundbreaking work with deep convolutional
neural networks has shown that, with the current potential
available from computer hardware, computers have matched
or exceeded human performance in some domains of visual
recognition tasks. As humans, we are able to subconsciously
process images at any given point all day. How is it possible for
us to see, label, classify, and recognize patterns? The primary
visual pathway is the communication between our eyes and our
brain that allows for us to see and observe the environment
around us. Our eyes have receptors that receive stimuli from
light bouncing from objects and use that as the input image or
visuals to be processed. While this seems natural to us, there
is an incredibly deep and complex hierarchical network of
neurons under the hood that handles processing of our vision,
allowing us to recognize, label, and classify objects. There
is also an inherent method of learning involved. Our brains
learn by example about the things that they havent encountered
before. Eventually, the brain recognizes patterns in what the
eyes receive. If the brain is able to learning, then with sufficient
training, it will be capable of forming models or schemas of
the environment.

The architecture of neural networks are modeled after the
human brain. This research dates back to the 1950s and
1960s where D.H Hubel and T.N Wiesal were able to study
and model the brain of mammals [2]. They were able to

demonstrate that the neurons in the visual cortex of a cat
and monkey responded directly to the perceived environment.
Hubel and Wiesal discovered that there were two types of
visual neuron cells, simple cells (S cells) and complex cells (C
cells) [2]. In vision, there is the notion of a receptive field of a
single sensory neuron. This field highlights the region of retina
which activates the neuron. To keep the explanation within the
scope of this survey, they were able to see that the hierarchal
structure of how the neurons operates played a significant role
in the brains ability to process images. Fukushima was the
first to implement a neural network, which he coined as the
Neocognitron, that was inspired by the hierarchical structure
and concept of simple and complex cells. This was the first
neural network capable of learning how to recognize patterns
and objects.

The first convolutional neural network was pioneered by
Le Cun, Bengio, Bottou, and Haffner for their work with
LeNet-5. Their network shed some light on CNNs, a special
kind of multi-layer neural networks that, like most neural
networks, are trained with some form of back-propagation.
CNNs are engineered to, with minimal preprocessing, take an
image input and recognize visual patterns. The group produced
LeNet-5 which was able to take in images of hand-written
numbers and classify each digit.

LeNet-5 architecture is fundamental in this field because
it provided insight about images and their features. Their
methods showed that image features are embedded within the
entire image and that its possible to use convolutions to learn
and find these features in all possible locations of the image.
The group was able to revolutionize the area of deep learning
with their network. Its features include using convolution to
extract spatial features, non-linear transformations in the form
of tanh or sigmoids, sparse connection matrix between layers
to compensate for high computation costs, subsampling using
spatial average of maps, and a convolutional layer consisting
of 3 layers: convolution, pooling, non-linearity.

The research was conducted around 1998, so there werent
any powerful GPUs and CPUs were still slow. This forced the
group to architect the model to save parameters and computa-
tion to compensate for the lack of potential in hardware at the
time. The field of deep learning fell silent as most research
made little progress. It was not until movements like the



spread of smartphones that everyone had access to the web and
an affordable quality camera. With a computer in everyones
pockets, more and more data has spread and become readily
available. Computer power has increased significantly with the
recent advancements in computer architecture and hardware.
CPUs have become faster and more powerful. Since GPUs
have become widely available, they have also been adopted
as a general-purpose computing instruments. The trends in
increased data and computation are what allowed for the field
of deep learning and neural networks to boom again.

For the past six decades, government space agencies have
been sending astronauts to space. While in space, astronauts
conduct various experiments and gather as much data as they
can about the type of environment they are in. For the past
six decades, they have also been manning astronauts with
powerful cameras that are able to capture images of space,
including detailed images of earth, as well as the moon. As
the years went, the camera equipment aboard the International
Space Station became more powerful, allowing for more
detailed imagery. While astronauts were taking images on the
scale of a thousand to five thousand per mission, they were
not recording what the images were, nor what they included,
in terms of geographical features.

As this database grew in size, the manpower and annotation
need to make it a successful and useful archive became more
exponential. In 2014, there were almost two million images
in the database [9]. While there is no released number of
the current number of images in the database, the database
continues to grow. While there are some people working on
annotating the images, describing the contents, the location,
and various geographical features, the whole process is tedious
and in need a efficient and effective solution to improve the
time and accuracy it takes to categorize an image. Doing so
would help the images be useful and of relevance to people
as well as researchers in need of spatial imagery. Whether
it be just to admire the Earth from space or to analyze
the vegetation, climate change, or witness and report natural
disasters, organizing the data is the first step to a more useful
archive that will be of value and importance to many people.

II. DEEP LEARNING USING CONVOLUTIONAL NEURAL
NETWORKS

The basic mechanism behind a neural network is taking
an input through hidden layers. These layers are columns
of neurons which are fully connected to every neuron in
the preceding layer. After the input goes through all the
layers, it will reach a last fully connected layer where the
output will be predicted. The final classifier layer contains
classification scores for all possible predictions. To summarize,
neural networks receive a vector in parameters as input, take
the input through a series of hidden layers of neurons that
are fully connected to all neurons in previous layers, and then
through a final fully connected layer containing scores for each
classification.

Convolutional neural networks are similar to regular neural
networks like the one discussed above. The layers contain

neurons that have weights and can learn. The neurons in each
layer receive inputs from the preceding layer, performs the
dot product, followed by an optional non-linearity. The main
architectural differences of a CNN vs a regular neural network
comes from the fact that CNNs are explicitly designed to take
an image as the input. This allows for the design of the network
to be geared towards certain desirable properties which can
reduce the amount of parameters needed and allow for have
an efficient feed forward function.

An image input does not scale well with traditional neural
networks. The image can be represented as a matrix of pixels
with the dimensions height and width. A black and white
image can be represented with an additional dimension to
consider the grayscale for each pixel, giving the input a
3x3x1 size. On the other hand, a full colored image can be
represented with an additional dimension to consider each
of the red, green, and blue values of the pixels, giving the
input a size of 3x3x3. Regular neural networks have trouble
compensating for the scale of the image input size. The
CIFAR-10 dataset contains images that are only 32x32x3 in
size so the first hidden layer of fully-connected neurons in a
typical neural network would have 3072 weights which may
seem trivial, but an RBG image with 256x256 width and
height would produce 196,608 weights. If a network needs
to consider more neurons, the number of parameters of input
for each layer would increase significantly. To summarize, the
connectivity of a traditional neural network can be costly for
image processing and the size of parameters would result in
overfitting.

Convolutional neural network architectures are geared to-
wards handling the nature of an images input. A CNNs layers
have a 3-dimensional structure to consider: width, height,
and depth. Rather than having all the neurons connect to
the neurons in the preceding layer, only a small region is
connected. By the time the input reaches the final layer, it
will have been transformed into a single vector of scores for
the possible classification or prediction. Each layer between
the input and the final output layer will be a series of hidden
layers that have these basic components: convolutional layer,
rectified linear unit (ReLU) layer, or a pooling layer. The two
main tasks that are done by the layers of a CNN are: using
hidden layers to extract features and using the final layer as a
classifier.

• Hidden Layers
– Convolutional Layer: finds the output for each neu-

ron which is connected to a small region in the input
layer by computing the dot product of their weights
and the region they are connected to from the input
layer neurons.

– Rectified Linear Unit (ReLU) Layer: applies an
elementwise activation function

– Pooling Layer: uses the spatial dimensions and ap-
plies a downsampling operation

• Fully Connected Layer
– The final layer of the network. It is responsible for



computing the scores amongst the different possible
classifications. Using the CIFAR-10 dataset as an
example, the output of this layer would be in the
size 1x1x10. The depth is 10 because there are only
10 possible classifications in CIFAR-10.

These neural networks can extract features through a series
of convolutions, the main building block of a CNN. The formal
definition of a convolution is producing a 3rd function from
the combining and merging two sets of information via dot
product. In the context of these networks, convolutions result
in feature maps which are produced by running a filter through
the input data. This filter is inspired by our neuron cells by
acting as a receptive field with a typical size of 3x3. The
filter runs and slides through the input matrix, performs matrix
multiplication, sums the results, and adds it to the outgoing
feature map. Several convolutions are performed on the input
using different filters. Each of these filters results in a different
feature map which is then added together in the final output
layer. Like traditional neural networks, the output of the hidden
layers must be non-linear. This non-linearity is achieved by
utilizing an activation function such as ReLU. A stride is
used to determine how big of a slide a convolutional filter
should make. They are typically 1, so the filter slides pixel by
pixel. It is possible to increase your stride size to slide a larger
interval to achieve less overlap. The size of a outputted feature
map is smaller than the input size so, to prevent the feature
map from shrinking as it goes through the layers, padding is
utilized. Pooling layers are useful to shorten training time and
to consider overfitting. Pooling layers are commonly found
in between convolutional layers. They are placed to reduce
the dimensions of the size of parameters and can therefore
help with reducing computation needed. A common method
of pooling is max pooling, which is the best way to decrease
the feature map size and still consider the most significant
information by keeping only the maximum value in each
window.

Classification is handled by the last few layers. After an
input goes through every convolutional and pooling layer, it is
classified by going through one or more fully connected layers.
The data is converted from 3 dimensions to 1 dimension for
classification. The final layer is also similar to a regular neural
network as they are fully connected and have full connections
to all the activations in the previous layer. While a CNN is
also trained using backpropagation or gradient descent like a
typical neural network, the convolution operations add a few
degrees of complexity.

To summarize, CNNs have proven to be effective for
image recognition tasks. The basics of CNN architecture have
been described above. The remainder of this survey will be
dedicated towards discussing new CNN connectivity patterns
and new applications in research over the past few years.

A. AlexNet

The first neural network implemented on a GPU was suc-
cessfully done by Dan Cladiu Ciresan and Jurgen Schidhuber
with an NVIDIA GTX 280.

The biggest breakthrough in deep learning and image pro-
cessing since LeNet-5 in 1998 was the 2012 Deep Neural
Network AlexNet submitted for the ImageNet classification
challenge. AlexNet was responsible for popularizing, since
LeNet-5 from 1998, the field of deep learning with its results.
Krizhevsky and his group was able to take the same insights
that created LeNet-5 and explore them in a much deeper and
wider neural network. The main motivation was to train a
large, deep convolutional neural network to classify the 1.2
million high-resolution images in the ImageNet LSVRC-2010
contest into 1000 different classes [3]. They were able to
achieve top-1 and top-5 error rates of 37.5% and 17%, which
were significantly stronger than the previous state-of-the-art
results. AlexNet contained about 60 million parameters and
650,000 neurons. The network consisted of 5 convolutional
layers with a max pooling layer after the 1st, 2nd, 5th
convolution, followed by 3 fully-connected layers with a final
softmax of 1000. They also utilized some data augmentation
methods such as translations, reflections, and patch extractions,
to increase variability of the training images and compensate
for overfitting. Krizhevsky et al. were also able to incorporate
their dropout method to address the networks substantial
overfitting issue. The group utilized batch stochastic gradient
descent for to train the network. AlexNet was implemented on
two Nvidia GTX 580s which took up to 6 days to train.

B. VGGNet

The Visual Geometry Group at oxford wanted to provide
further insights towards themes explored from AlexNet. Si-
monyan and Zisserman were motivated to investigate the
effects of network depth on the performance. They were able
to successfully implement a convolutional neural network with
depth up to 16-19 layers [1]. This deep network, with the use
of small 3x3 filters, was able to push state-of-the-art-results.
Their work was able to place first in localization and second
in classification. VGGNet primarily used 3x3 convolutional
filters as opposed to AlexNets 11x11. The authors explain
that the motivation behind this is that a 5x5 receptive field
can be simulated while still retaining the advantages of using
smaller filters, such as reducing the number of parameters,
by combining two layers of 3x3 convolutional filters together.
A 7x7 receptive field can be simulated by combining 3
consecutive 3x3 convolutional filters. Another benefit of this
architecture is that having multiple convolutional layers allows
for multiple ReLU layers instead of just one. The group
utilized scale jittering as a method for data augmentation and
trained the network using batch gradient descent [1]. Their
network was trained on 4 Nvidia Titan Black GPUs which
took a total of 2-3 weeks.

VGGNet architecture was relatively simple but its biggest
contribution was the insight it provided on network depth. To
conclude, the authors discovered the notion that CNNs need to
have sufficient depth to work effectively with the hierarchical
representation of visual data.



C. ResNet

With the advent of VGGNet, researchers began to look
towards increasing depth to achieve better performance. Driven
by the notion of depth, they wanted to answer the question:
Is learning better networks as easy as stacking more layers?
The Microsoft Asia research team was able to break through
the ceiling and successfully implement a neural network with
152 layers [4]. Their significantly deep network architecture
was able to win and place new records in classification,
detection, and localization in the ILSVRC 2015 competition.
The network was able to achieve an error rate of 3.6% which
is lower than the human error rate which is around 5-10%
depending on the persons skill and expertise.

The main idea of ResNet is behind their residual learning
framework which was motivated by an attempt to ease training
of networks that are substantially deeper than those used
previously [4]. The building block of this neural network is
the notion of a residual block. An input has to pass through
a series of layers which involve convolution, ReLU, followed
by another convolution, resulting in F(x). This input is then
added and combined with the original input to achieve H(x) =
F(x) + x. The addition allowed for effective backpropagation
as the gradient flowed with ease since the addition operates
resulted in a distributed gradient. The authors realized that it
is easier to optimize the residual mapping than to optimize the
original, unreferenced mapping [4].

ResNets biggest contribution is that they were able to imple-
ment a neural network that outperformed humans. ResNet is
the residual counterpart of classification neural network that
forms by adding shortcut connections to the plain VGGNet
networks. The identity shortcut follows two cases. If the
input and output have congruent dimensions, they can directly
jump to that layer. Otherwise, when the dimensions increase,
there are two paths: Introduce no extra parameters with no
extra zero entries for padding or match dimensions using
1x1 convolutions. For either of the two cases, shortcuts move
across feature maps with a stride of 2 [4]. The group was
able to implement a bottleneck architecture to address the
considerable amount of time required to train the network.
The residual function in each residual block is equipped with
a series of 3 convolutional layers: 1x1, 3x3, 1x1. Each 1x1 is
responsible for reducing then restoring the dimensions as the
input moves in between the layers. The identity shortcuts were
designed to be parameter free to consider time complexity and
model size. [4] Combined with the bottleneck architecture,
the group successfully implemented a deep residual learning
framework that bested human error rates.

D. FCN

Long et al. took the classification networks like VGGNet,
ResNet, or AlexNet and crafted them to exceed state-of-the-
art results for semantic segmentation tasks. They successfully
implemented a network, trained end-to-end, that was fully
convolutional and could take an input of arbitrary size and
produce correspondingly-sized output with efficient inference

and learning [6]. By doing so, they adapted the classifica-
tion convolutional neural networks into fully convolutional
networks, creating a model for segmentation tasks.

E. DenseNet

DenseNet are relatively recent, but Huang et al. were able
to offer an interesting perspective on neural networks. The
group realized that the recent trend of networks with increasing
layers highlighted the motivation for exploring different meth-
ods of connectivity. They also saw, with ResNet, that a key
characteristic of these successful deep networks is shortcutting
an input from an early layer to a later layer. Huang et al.
designed a densely connected convolutional neural network
which has condensed models, is easy to train and parameter
efficient. Rather than exploring a deep or wide architecture,
they combined feature maps through concatenation in contrast
to summation by a process described as feature reuse [5]. This
allowed for improved efficiency and increased the variation
from input to subsequent layers. The network also consists
of bottlenecking, inspired by ResNet, where the input is
introduced with a 1x1 convolution before reaching a 3x3
convolution.

While the error rates of the DenseNet are on par with
ResNets, the architecture was able to reach these results with
significantly less parameters and computation. The groups
contribution was inspiring the community to consider different
architectures and connectivity patterns for convolutional neural
networks.

III.

IV. PROPOSED FRAMEWORK

Based on the previous breakthrough work in using deep
learning for computer vision, this proposed framework utilizes
a CNN to perform binary classification of satellite images.
The framework’s proposed model is shown below. It has two
convolutional layers that are followed by max pooling. Each
layer will run 128 filters of 3x3 size through the input for
feature extraction.

Fig. 1. Background subtraction flow

V. DATA AND TRAINING

The training data is obtained by extracting already annotated
images from the Gateway to Astronaut Photography of Earth.
Because the model is binary classification, the initial dataset



will have two classes of images: positive and negative. The
positive sample are images that primarily contain a mountain,
while the negative images do are images that do not contain
mountains (i.e. cities). The resolutions for these images vary
in resolutions anywhere from 492x515 to 4400x4600 pixels.
Some of these are extremely high resolution images which
provide a lot of details and information. To consider the lack
of computational power, the data was resized to 256x256x3.

Fig. 2. Example of positive data (mountains)

Fig. 3. Example of negative data (city)

Before performing large scale classification, the model is
assessed in small scale classification. The initial training set
consists of 500 positive and 500 negative samples. The training
set was also used as the validation set. There were 100 postive
and negative samples in the testing set. The optimizer used was
stochastic gradient descent with a learning rate of 0.01. The
best training performance is given below. Because the initial
dataset was small scale, the batch sizes and steps per iteration
were set at 32 each. The loss and accuracy began to degrade
after 5 epochs. This is likely due to the relatively high learning
rate.

Fig. 4. Proposed model’s training performance

VI. EXPERIMENTAL RESULTS

The model was tested on the 100 positive and negative
images. It was able to correctly classify 63/100 positive images
and 87/100 negative images. The model was able to achieve
an overall accuracy of 75%.

TABLE I
PERFORMANCE ON TEST SET

Label Accuracy
Positive 63%
Negative 87%

VII. FUTURE WORK

The next step for this project is to try satellite image seman-
tic segmentation. We want to do instance based segmentation
to find each and every feature in the image. This was our
initial plan but we need sufficient hardware and computation
to achieve this. Obtaining the dataset for training is also a
challenge as hand labeling pixel-wise segmentation is too labor
intensive.

VIII. CONCLUSION

We successfully trained a model to classify whether or not
an image contains mountains. We deployed this model to a
web app and created a dashboard for users to upload satellite
image and return classification results. Our results show us
that it is viable to train a model to help with the large scale
annotation process of astrophotography for the Gateway to
Astronaut Photography of Earth.

REFERENCES

[1] Simonyan, Karen, and Andrew Zisserman. ”Very deep convolu-
tional networks for large-scale image recognition.” arXiv preprint
arXiv:1409.1556. 2014.

[2] Hubel, David H., and Torsten N. Wiesel. Brain and Visual Perception:
the Story of a 25-Year Collaboration. Oxford University Press, 2005.

[3] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. ”Imagenet
classification with deep convolutional neural networks.” In Advances in
neural information processing systems, pp. 1097-1105. 2012.



[4] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. ”Deep
residual learning for image recognition.” In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 770-778.
2016.

[5] Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q.
Weinberger. ”Densely Connected Convolutional Networks.” In IEEE
conference on computer vision and pattern recognition, vol. 1, no. 2,
p. 3. 2017.

[6] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. ”Fully convolu-
tional networks for semantic segmentation.” In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3431-3440.
2015.

[7] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. ”U-net: Convo-
lutional networks for biomedical image segmentation.” In International
Conference on medical image computing and computer-assisted inter-
vention, pp. 234-241. Springer, Cham, 2015.

[8] Wang, Qi, Junyu Gao, and Yuan Yuan. ”A joint convolutional neural
networks and context transfer for street scenes labeling.” IEEE Trans-
actions on Intelligent Transportation Systems, 2017.

[9] Dickerson, Kelly. NASA Wants You to Help Sort Astronaut Pho-
tos of Earth at Night. Space.com, Future US, Inc., 5 Sept. 2014,
www.space.com/27023-nasa-astronaut-photos-earth-at-night.html.


