A Deep Reinforcement Learning Approach to
Traffic Management

Osvaldo Castellanos
College of Engineering and Computer Science
University of Texas Rio Grande Valley
Edinburg, Texas, USA
osvaldo.castellanosO1 @utrgv.edu

Abstract—In this paper, we aim to investigate the applica-
bility of deep reinforcement learning techniques to solve traffic
congestion in road intersections. This ranges from reviewing
foundational reinforcement learning concepts, to the formulation
of the intersection problem, and finally to extended investigations
in the application of multi-agent deep reinforcement learning
techniques.

Current research in traffic signal control that also applies
multi-agent reinforcement learning train agents in specific, or
even single, environments. Our goal is to train a system that
can be practical in multiple settings, under multiple conditions.
Overall, in this project, our goal is to apply the system to
simulations of large-scale areas.

Index Terms—Deep Reinforcement Learning, Traffic Control,
deep learning, machine learning

I. INTRODUCTION

Inner-city traffic congestion causes more than just personal
frustration while driving. It’s a serious contributor to higher
levels of air pollution, fuel consumption, and noise pollution
[5]. In the United States, traffic infrastructure designed to
alleviate congestion range in different ways. One solution is to
employ fixed-time traffic signal controls. This type of solution
is commonly used in cities and easy to set up and maintain.
However, because the timing-signal is predetermined based
on historic traffic data, it is not well an efficient solution
when traffic congestion deviates from the data that was used to
calibrate it. Fixed-time traffic signal controls are not dynamic
to the different peaks and lows of congestion throughout a day,
seasons, or even special events such as concerts.

Another solution is adaptive traffic signal control. This
solution may be more expensive than fixed-time due to the
extra hardware installation and maintenance that is required
to make traffic signal controls responsive to real-time traffic
conditions. However, research has shown that it is an effective
way to reduce congestion. There are different approaches to
making traffic signals adaptive, and in this paper we will focus
on reinforcement learning techniques.

Research in applying reinforcement learning techniques to
traffic congestion has expanded in the last few years [3]-
[5]. And yet, certain empirical constraints have limited the
founded results to actually help real-life congestion. Studies
limit their focus to simplified parameters in their environments,

Thanks to the Dwight D. Eisenhower Fellowship for support.

such as limited lanes, driving behavior, and traffic congestion.
Aside from addressing the listed limitations in current studies,
research in applying multi-agent reinforcement learning is the
next step.

II. BACKGROUND

The field of deep reinforcement learning is making large
strides of progress in being applied to various types of appli-
cations with varying levels of success. As of today, it is hoped
that it will achieve viable methods for creating autonomous
systems [1]. Although reinforcement learning techniques have
been researched since the late 1980’s [7], they have not been
as prominent in machine learning research as supervised, and
to an extent unsupervised, learning has. The rapid progress of
the last decade in neural networks and deep learning helped
introduce a spotlight on reinforcement learning after the group
at DeepMind used deep reinforcement learning to teach an
agent to play Atari games [2]. Following the research laid out
by the DeepMind group, different applications of deep rein-
forcement learning have been investigated: from robotics and
control theory, to web crawling, to solving traffic congestion
problems.

The following subsections will outline the necessary knowl-
edge on reinforcement learning and how it applies to the traffic
congestion problem.

A. Formal Reinforcement Learning

Reinforcement learning has a rich, mathematical history
particularly with work of the 1950s from the American math-
ematician Richard Bellman. Bellman is famous in computer
science for dynamic programming and his interest in math-
ematically finding optimal solutions to control problems [7].
However, before delving further into Bellman’s work, it would
be meaningful to provide a broad overview of the process in
how learning takes place.

In the reinforcement learning model, a decision-making
entity known as an agent can gather feedback on its decisions
from an external environment. Ideally, an agent’s decisions,
or actions, will have a consequence that alters the state of
the environment in some way. Throughout this process, the
environment has the ability to provide an agent with a reward
signal. The reward signal’s purpose is to provide information
to the agent as to whether the action just taken aligns with



an agents’ overall strategy. For example, if an agent were a
puppy and its environment was a puppy training center, then
a puppy’s policy would be to repeat the actions that give it
the most treats.

A way of formulating problems into mathematical equations
that can help us apply Bellman’s work in optimality, is to
transform the problem into a Markov Decision Processes
(MDPs). An MDP is a 5-tuple that consists of:

e S set of states,

o A set of actions,

« P transition probability functions,

¢ R reward function,

o G discounting factor for future rewards

With this information, we can use algorithms based on
the Bellman optimality equations to learn from an agents
interaction with an environment which action will yield the
highest reward. Figure 1 is a visual representation of the
interaction between the agent and the environment, and how
the parameters of the MDP model the learning process.

> Agent
state reward action

Sx R! A‘
R s

_S.. | Environment J<——

-—

-

Fig. 1. Abstract model of the learning process.

Some important terminology to keep in mind going forward
are the agent’s policy, reward signal, value function, and model
of the environment. The relationship between these terms and
its application to traffic signal control will be developed further
in the following section.

III. TRAFFIC INTERSECTIONS AS RL ENVIRONMENTS

In this section, we will see how traffic congestion will
be modeled as an environment in our reinforcement learning
approach.

The environment in our model is a road intersection between
four one-lane roads. For now, the cars populating the road are
simulated with two different settings. One setting is to have
cars populate either the horizontal or vertical lanes at a lower
rate than the other. The second setting is to populate both
lanes with cars at similar rates. This way, we can compare the
performance of the learning algorithm between both kinds of
traffic.

We define the agent to be a traffic signal controller in an
intersection. The agent’s action-set will be limited to be 0,
1, where O encodes the light sequence where the horizontal
lanes are green, and the vertical lanes are red. Following the
work of [3], we define the sequence of traffic signal lights
as statuses. The initial status encoded as 0" and represents
a green light on the horizontal lane and a red light on the
vertical lane. The 1" status is the inverse: a green traffic light

on the vertical lane, and a red traffic light on the horizontal
lane. In this model, we do not include a unique status for the
yellow light in the sequence. For now, we will have a strict
sequence for the yellow traffic light that will depend on the
current status and the action decided by the agent’s policy.

As an example, let us refer to Figure 1. If our current state
in the environment is status 0, and the agent’s policy chooses
action 0, that means that the horizontal lane continues to be
green. In this case, there is no need for a yellow light to occur.
Only in the case where we switch from one status to the other
will a yellow traffic light be required. The reasoning is that
this will allow cars ahead of a safe breaking distance, such as
the middle of the intersection, to drive through safely.

A. DON

A popular reinforcement learning algorithm that is we are
currently testing is the Deep Q-Network algorithm. To do so,
we use a traffic simulator that interfaces with an api called
gym.

The essence of the DQN algorithm is that the agent picks an
action with the highest Q-value. The Q-value can be thought of
us as the Quality of taking action A, in state S. The agent then
learns by being able to store the consequences of that action,
and updates a neural network to approximate the Q-value for
the next set of actions, in the next set of states.

The main equation of Q-learning is the Q-star function:

Q(s,a) = r+ ymax,Q(s',a’)

This function will be approximated by the neural network
using a loss formulated below:

L(6) = [Q(s,a) — r — y max, Q(Ss’, a’]]g

IV. SIMULATOR DESIGN

This section will describe the best features and advantages
of the main technologies used to develop the project. Addi-
tionally, the structure of the code and instructions on how to
access and run the code will be outlined.

A. OpenAl Gym

OpenAl is a non-profit organization dedicated to research
in general artificial intelligence. As part of their mission,
they developed a set of programs to help the reinforcement
learning research community share and expand on each others’
research. Gym is one of those programs and has had a
major impact on the community. Gym makes it accessible,
through an application program interface (API), to train and
compare reinforcement learning agents in multiple kinds of
environments that come within gym.

Additionally, gym was designed to make it easy to develop
custom environments, all while being able to leverage the
features that make gym a powerful tool for the reinforcement
learning researcher.



B. Pygame

An important open-source package used in this project
is the python library Pygame. It is a popular library for
making multimedia applications, like games, built on top of the
excellent SDL library. Like SDL, pygame is highly portable
and runs on nearly every platform and operating system.

While OpenAI’s gym includes many free and basic en-
vironments, mujoco requires an additional verification and
set up step that is not ideal. Similarly, other research in
traffic congestion uses an external simulator that has less
than ideal set up requirements. The openness and portability
of Pygame made it an attractive engine to create the traffic
simulation as an environment to interface with gym. Direct
advantages of using Pygame include that its portable to all
major operating systems, does not require OpenGL, has multi
core CPU support, and uses optimized C, and Assembly code
for core functions.

C. Structure of the Programs on the GitHub Repository

All of the code used for this project is available in two
separate repositories hosted online on GitHub. The first repos-
itory is solely for the traffic simulator python file that manages
the simulation in Pygame, as well as the file structure to be
installed and compatible with the methods of gym.

Before cloning the GitHub repository of the code, it’s
required to install the dependencies of the project: gym,
pygame, keras, tensorflow.

The GitHub url for the repository is
https://github.com/oscastellanos/gym-traffic”. Anyone (using a
terminal on their operating system)can use the git commands
”git clone https://github.com/oscastellanos/gym-traffic” in
order to download a copy of the code to the directory of their
choosing. The next steps is to go to the directory and run the
commands “pip install -e .”

Now, whenever you import gym to your new script, you may
also import gym-traffic to make a traffic gym environment.

The second repository is for the DQN-traffic.py
script. The GitHub url for this repository is
“https://github.com/oscastellanos/DQN-traffic” and it can
be cloned using the same command described above. The
main purpose of these files is to provide a clear program that
trains our agent to perform in the gym-traffic environment of
above. The code provides the DQN solver class, and a score
logger file that saves rewards per run to a csv file and plots
it as a png image.

1) TrafficSimulator: The traffic simulator file has four main
types of classes, and two additional types that inherit from
these for object extensions. The container and controller class
of the file is the TrafficSim class that supports the methods that
will instantiate the other objects in the simulation, as well as
interface with external libraries, such as gym. The other classes
provide the abstractions for horizontal and vertical shapes of
cars, and the different flows of traffic of each lane, such as
north-bound traffic flows, east-bound traffic flows, etc. As an
example, a screenshot of the running program is shown below
in Figure 2.

LL)

Fig. 2. Snapshot of an intersection in the traffic simulation

2) TrEnv (Traffic Environment): The TrEnv file provides
the methods required by gym in order to work properly with
the framework. These methods are:

* step,

o render,

o reset

3) DQON-traffic: The DQN-traffic file initates a traffic signal
agent to use a DQN learning algorithm to solve the traffic
congestion problem.

An overview of the process is shown on Figure 3.

Traffic Simulator

Environment|

-----

OpenAl Gym .
TrEnv

Fig. 3. How the API’s communicate during learning.




V. EXPERIMENTS

In order to debug and make sure the implementation of the
code was behaving as expected and especially to verify that
the learning algorithm was functioning, we ran experiments
using the DQN-traffic.py file.

Examples of the output are shown below:

is 1. Action is 1.
: (min: 46, avg: 1302.375, max: 2510)

Action is 1

is 1. .
46, avg: 1317.4814814814815,

: (min:

Action is 1.
1332.4146341463415,

is 1.

: (min: 46, avg:

Action is 1

is 1. .
46, avg: 1347.1807228915663,

: (min:

Action is 1

is 1. .
46, avg: 1361.7857142857142,

: (min:

: 1, exploration: 0.7255664080186093, score:
Episode done in 2574 steps, total reward -63230.

Fig. 4. At the end of training one epoch.

Initially, there were a few bugs in the simulator that pre-
vented us to train more than 10,000 time steps per trial.

traffic-vl
—— score per run -
2500 4 last 100 runs average -
----- -1 score average goal
—-- trend
2000 1
wn 1500 A
2
[=]
?
1000 +
500 +
0

nuns
Fig. 5.

The logger will be updated to plot multiple trials with their
own lines in order to better compare the performance as the
sequence of trials are completed.

Also, updates to plot more metrics such as average max Q
value, episode return, and loss are currently in progress.

IsVariablelnitialized[0-28]

training init 1

Adam init loss

dense 3. dense_3_
group_deps

dense_3 ot

-
| dense2 inic
I, dense_1 it

Fig. 6. The architecture of the neural network used for DQN.

The next update to the architecture will be a convolutional
neural architecture that will take a pre-processed image of
the simulator and learn to extract the important features rather
than explicitly declaring them manually. This approach follows
the one taken by the DeepMind team to achieve human-level
performance on the majority of Atari games included in the
Arcade Learning Environment (and are also compatible in
OpenATI’s gym).

V1. FUTURE WORK
A. Multi-agent Extensions

We’ve developed a traffic simulator that allows us to test
a traffic signal control agent in multiple environments. In
addition to evaluating our algorithm to the state of practice
simulators, we will investigate how multi-agent reinforcement
learning algorithms can train a traffic signal agent to adapt to
different events that cause traffic. For example, events such as
cars stalling, accidents, and natural disasters like flooding. Our
simulator gives us control over parameters that can simulate
these conditions. We can specify environments with multiple
roads, intersections, traffic lights, and specify if zones aren’t
accessible to drivers. Thus, given an environment where an
event has taken place that causes traffic, the traffic signal
controller can coordinate routes to circumvent traffic-heavy
areas.

B. Flow, RLib, and SUMO

An alternative to continuing development of a simulator,
along with creating, testing, and iterating over learning algo-
rithms, is to use this preliminary work as a step to using other
traffic simulation and management software currently used in
research.

One such program is the open-sourced Flow library de-
veloped by the Mobile Sensing Lab at the University of
California Berkeley. The program they have developed is well
documented, has integration with other tools such as OpenAl’s



gym and AimSun’s API’s for real-world road simulation,
and was developed with high-performing and distributional
reinforcement learning frameworks such as RLib. One of the
many opportunities Flow could provide is to model sections
of interest of real cities for scalable multi-agent reinforcement
learning algorithms.

Another popular program in the traffic reinforcement learn-
ing research community is to use the Institute of Transportation
Systems at the German Aerospace Centers’ Simulation of
Urban Mobility (SUMO) to provide an API interface to a
widely adopted traffic and road simulation environment.

VII. CONCLUSIONS

We’ve developed a traffic simulator that allows us to test
a traffic signal control agent in multiple environments. This
preliminary work is a single step towards properly evaluating
our algorithm to the state of practice simulators, such as
SUMO and Flow.

The next step forward is to extend the traffic simulator to
support a network of multiple intersections, as well as, the
ability to dynamically adjust the driving conditions of distinct
lanes. These set of features will allow us to be able to test
multi-agent reinforcement learning algorithms in this specific
environment.

Additionally, we plan on developing more advanced fea-
tures, such as: wider range of driving behaviors, support for
multi-laned roads (which will expand the set of legal statuses),
and advanced traffic signals such as protected left turns.

Ultimately, we aim to investigate how multi-agent rein-
forcement learning algorithms can train a traffic signal agent
to adapt to different events that cause traffic. For example,
events such as cars stalling, accidents, and natural disasters
like flooding.

REFERENCES

[1] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage and Anil
Anthony Bharath. A Brief Survey of Deep Reinforcement Learning. arXiv
e-prints

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Toannis Antonoglou, Daan Wierstra and Martin Riedmiller. Playing Atari
with Deep Reinforcement Learning. arXiv e-prints

[3] Xiaoyuan Liang and Xusheng Du Deep Reinforcement Learning for
Traffic Light Control in Vehicular Networks. arXiv e-prints

[4] Seyed Sajad Mousavi, Michael Schukat and Enda Howley Traffic light
control using deep policy-gradient and value-function-based reinforce-
ment learning. arXiv e-prints

[5] Juntao Gao, Yulong Shen, Jia Liu, Minoru Ito and Norio Shiratori Adap-
tive Traffic Signal Control: Deep Reinforcement Learning Algorithm with
Experience Replay and Target Network. arXiv e-prints

[6] Marco Wiering Multi-Agent Reinforcement Learning for Traffic Light
Control. arXiv e-prints

[71 Richard Sutton and Andrew Barto Reinforcement Learning: An Intro-
duction, 2nd edition. MIT Press.



