
Expert Systems With Applications 147 (2020) 113156

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

SLDeep: Statement-level software defect prediction using

deep-learning model on static code features

Amirabbas Majd

a , Mojtaba Vahidi-Asl a , ∗, Alireza Khalilian

b , Pooria Poorsarvi-Tehrani a ,
Hassan Haghighi a

a Faculty of Computer Science and Engineering, Shahid Beheshti University G. C., Tehran, Iran
b Department of Software Engineering, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran

a r t i c l e i n f o

Article history:

Received 4 July 2019

Revised 23 November 2019

Accepted 20 December 2019

Available online 23 December 2019

Keywords:

Defect

Software fault proneness

Machine learning

Fault prediction model

Software metric

a b s t r a c t

Software defect prediction (SDP) seeks to estimate fault-prone areas of the code to focus testing activities

on more suspicious portions. Consequently, high-quality software is released with less time and effort.

The current SDP techniques however work at coarse-grained units, such as a module or a class, putting

some burden on the developers to locate the fault. To address this issue, we propose a new technique

called as Statement-Level software defect prediction using Deep-learning model (SLDeep). The signifi-

cance of SLDeep for intelligent and expert systems is that it demonstrates a novel use of deep-learning

models to the solution of a practical problem faced by software developers. To reify our proposal, we

defined a suite of 32 statement-level metrics, such as the number of binary and unary operators used

in a statement. Then, we applied as learning model, long short-term memory (LSTM). We conducted ex-

periments using 119,989 C/C ++ programs within Code4Bench. The programs comprise 2,356,458 lines of

code of which 292,064 lines are faulty. The benchmark comprises a diverse set of programs and versions,

written by thousands of developers. Therefore, it tends to give a model that can be used for cross-project

SDP. In the experiments, our trained model could successfully classify the unseen data (that is, fault-

proneness of new statements) with average performance measures 0.979, 0.570, and 0.702 in terms of

recall, precision, and accuracy, respectively. These experimental results suggest that SLDeep is effective

for statement-level SDP. The impact of this work is twofold. Working at statement-level further alleviates

developer’s burden in pinpointing the fault locations. Second, cross-project feature of SLDeep helps defect

prediction research become more industrially-viable.

© 2020 Elsevier Ltd. All rights reserved.

1

t

c

q

2

c

p

w

S

a

t

m

V

i

T

m

d

(

o

c

c

s

2

e

R

a

h

0

. Introduction

Today, humans are increasingly relying on software for every

ask. Thus, the current software has become more complex and

ostly to develop. Meanwhile, we are still in trouble with low-

uality software; it has imposed large economic costs (Bird et al.,

009). To improve software quality and alleviate the underlying

osts, an approach has been to construct effective software defect

rediction (SDP) techniques. By using fault historical data along

ith static code features gathered from previous software versions,

DP techniques seek to develop prediction models. These models

re intended to shed light on problematic portions of the code in

he next release of software. This is achieved by predicting (esti-

ating) fault-prone code fragments. Once fault-prone portions are
∗ Corresponding author.

E-mail addresses: a.majd@mail.sbu.ac.ir (A. Majd), mo_vahidi@sbu.ac.ir (M.

ahidi-Asl), khalilian@eng.ui.ac.ir (A. Khalilian), h_haghighi@sbu.ac.ir (H. Haghighi).

w

&

l

n

ttps://doi.org/10.1016/j.eswa.2019.113156

957-4174/© 2020 Elsevier Ltd. All rights reserved.
dentified, testing and code review activities can focus on them.

he SDP research is therefore of great practical importance as it

akes software quality assurance activities more targeted and pro-

uctive. As a result, the high-quality software can be obtained

 Hall, Beecham, Bowes, Gray & Counsell, 2011).

To date, we are witnessing the advent of a proliferation

f SDP techniques. They have used different metrics such as

ode complexity (Radjenovi ́c, Heri ̌cko, Torkar & Živkovi ̌c, 2013),

ode micro-interactions (Lee, Nam, Han, Kim & In, 2016), and

melly statements (Palomba, Zanoni, Fontana, De Lucia & Oliveto,

017). In addition, they have been constructed based on differ-

nt learning models (Malhorta, 2015 ; Bowes, Hall and Petri ́c, 2018 ;

athore, 2017) such as decision trees, support vector machines

nd Naïve Bayes. The current techniques are either used to predict

ithin-project (Hall et al., 2011) or cross-project (Hosseini, Turhan

 Gunarathna, 2017) software defects. Often, SDP is used at code

evel prior to software release (Catal, 2011). However, SDP tech-

iques exist (Özakıncı, 2018) that can be used in early stages of

https://doi.org/10.1016/j.eswa.2019.113156
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.113156&domain=pdf
mailto:a.majd@mail.sbu.ac.ir
mailto:mo_vahidi@sbu.ac.ir
mailto:khalilian@eng.ui.ac.ir
mailto:h_haghighi@sbu.ac.ir
https://doi.org/10.1016/j.eswa.2019.113156

2 A. Majd, M. Vahidi-Asl and A. Khalilian et al. / Expert Systems With Applications 147 (2020) 113156

Fig. 1. The high-level overview of the SLDeep architecture.

p

d

i

m

d

t

a

S

2

p

a

d

s

b

f

c

v

t

A

m

o

T

w

C

r

i

f

w

t

l

t

g

T

u

m

T

m

i

r

m

i
software development such as requirements engineering, analysis,

and design. Finally, the current techniques are developed to work

at coarse-grained code areas such as a class, module, file, function,

or plug-in binaries (Hall et al., 2011 ; Hosseini et al., 2017). We ob-

serve that SDP techniques that work at finer granularities such as

statements have received little or no attention.

The wealth of current SDP techniques has profoundly helped

for improving software quality. In fact, the research community

acknowledges the benefits of SDP in vitro; however, limited real-

world applications have been a major criticism to SDP research

(Lanza, Mocci & Ponzanelli, 2016). One reason seems to lie in the

fact that with the current techniques, which rely on defect predic-

tion at higher granularities, developers have to spend non-trivial

time to detect and localize the faults within a module labeled as

fault-prone. Fine-grained defect prediction analysis can result in

acceleration of identifying fault locations (Kamei et al., 2016). Our

hypothesis is that statement-level SDP has much potential to pin-

point fault-prone locations. Consequently, faults would be detected

with less time and effort.

To reify our hypothesis, we propose a new technique, which we

call Statement-Level defect prediction using Deep-learning mod-

els (SLDeep). Our goal is to construct a prediction model that can

be used to classify a program statement as fault-prone or fault-

free. Fig. 1 depicts the high-level architecture of SLDeep. It works

on source code defect prediction at the statement level. Also, it is

designed neither for usage at early stages of the software devel-

opment lifecycle nor for online defect prediction. For statement-

level SDP, we first introduce a suite of 32 new code metrics that

measure some features of a statement. An example of such met-

rics is the number of binary operators used in a line of code.

The metric suite is intended to extract static information out of

a statement that can be used to effectively distinguish it with an-

other statement. The metrics are also intended to estimate how

much a statement is likely to be faulty. As its learning component,

SLDeep applies long short-term memory (LSTM) (Goodfellow, Ben-

gio & Courville, 2016) because it lends itself to the nature of our

data. LSTM is an effective deep-learning model in widespread us-

age (Sutskever, Vinyals and Le, 2014). The choice of LSTM is in

contrast to the existing literature, in which other models such as

logistic regression or Naïve Bayes have been successfully applied

(Radjenovi ́c et al., 2013). The volume and nature of our data ne-

cessitate a model with both high scalability and memorization fea-

tures, respectively. Model scalability is essentially needed as we

produce very large amounts of data due to our fine-grained anal-

ysis. Memorization is also needed to help the model learn code

structure as a sequence of statements and make more informative

decisions based on previously-observed statements. We decided to
reserve every extracted metric per each statement. This design

ecision exempts us from any feature selection preprocessing and

s a step towards a fully-automated technique. We give more argu-

ents on this decision in Section 5.

SLDeep can be used for both within-project and cross-project

efect prediction. 1 This capability offers practical utility because

he lack of fault data or difficulty in their collection have been

mong the reasons that hamper companies to apply within-project

DP techniques in practice (Turhan, Menzies, Bener and Di Stefano,

009). Cross-project defect prediction can be a viable case for com-

anies as it significantly reduces the effort in data collection. In

ddition, the existing within-project data might no longer be in-

icative of the current practices (Kitchenham, Mendes & Travas-

os, 2007), since practices change over time. As yet, a large num-

er of real-world projects have made their full source code and

ault data available at public repositories. In presence of such data,

ross-project defect prediction can provide significant potential in

ivo Zimmermann, Nagappan, Gall, Giger & Murphy, 2009).

To evaluate SLDeep, we have conducted experiments on more

han 10 0,0 0 0 C/ C ++ programs within Code4Bench (Majd, Vahidi-

sl, Khalilian, Baraani-Dastjerdi & Zamani, 2019). This bench-

ark comprises all versions of each program. For each statement

f each subject program, we measured our introduced metrics.

hen, we tokenized each statement to its lexemes. For fault data,

e used the corresponding ready-made information, available in

ode4Bench. Next, we made a matrix per program, in which each

ow is devoted to a statement. For each statement, the correspond-

ng columns are used for metric data, the including lexemes, the

ault data, and a label indicating fault-prone or fault-free. Finally,

e trained an LSTM model using the matrix of all programs.

The programs we used in our experiments are developed by

housands of developers for thousands of problems. Hence, the

earned model is not unique to a single project. It has been

rained using a diverse set of data along four dimensions: pro-

rams (projects, problems), versions, statements, and developers.

his property is a step towards a universal SDP model for a partic-

lar programming language. This viewpoint provides a novel for-

ulation for the SDP problem.

In our experiments, we considered an accuracy neighborhood.

hat is, for a fault-free statement labeled as fault-prone by the

odel, we take the prediction as true if the really faulty statement

s at most n lines before or after that statement. For our accu-

acy neighborhood set to four, in the experiments, we could train a

odel with average performance measures 0.988, 0.581, and 0.715

n terms of recall, precision, and accuracy, respectively. For the un-
1 See Section 2 for concepts and definitions.

A. Majd, M. Vahidi-Asl and A. Khalilian et al. / Expert Systems With Applications 147 (2020) 113156 3

s

s

0

h

F

c

c

0

t

p

m

m

u

t

s

m

c

T

f

l

s

l

m

z

o

d

g

l

b

w

S

l

n

e

p

t

2

w

r

s

2

m

(

o

s

u

f

2

f

f

m

w

(

a

o

r

w

o

t

d

a

c

t

s

t

d

u

M

m

t

6

u

c

n

2

i

o

c

s

a

r

t

c

v

s

2

H
een data at the test stage, 2 our trained model successfully clas-

ified them with average performance measures 0.979, 0.570, and

.702 in terms of recall, precision, and accuracy, respectively. We

ave also conducted an experiment in which we used Random-

orest model instead of LSTM as the leaner component. For ac-

uracy neighborhood set to four, the Random-Forest model could

lassify the unseen data with average performance measures 0.182,

.580, and 0.627 for recall, precision, and accuracy, respectively. In

he context of SDP, recall is the key measure because it shows the

ercent of really faulty statements that are labeled as faulty by the

odel. A high recall implies that the model could effectively esti-

ate the fault-prone statements of the code, which is in line with

ltimate goal of SDP research. Therefore, based on our experimen-

al results, we concluded that SLDeep with LSTM is effective for

tatement-level SDP and can be successfully adopted.

We provided every methodological, contextual, and perfor-

ance information regarding our method and experiments, ac-

ording to 14 criteria suggested by Hall et al. (Hall et al., 2011).

his information makes the usage of SLDeep clear and straight-

orward for researchers and practitioners. The information also al-

ows other researchers to qualitatively and quantitatively synthe-

ize results in future systematic studies. We made our codes pub-

icly available at: https://github.com/sldeep/SLDeep . In addition, we

ade our training data publicly available at http://doi.org/10.5281/

enodo.3268512 , with DOI 10.5281/zenodo.3268512 .

For researchers, SLDeep can open a new avenue to leverage and

ptimize other deep-learning models. It can also help to define ad-

itional fine-grained statement-level code metrics for other pro-

ramming languages. For practitioners, SLDeep can assist to spend

ess time in finding faulty statements. As a result, more faults can

e found and fixed. Therefore, we can release higher quality soft-

are in presence of limited resources.

To sum up, the main contributions of this paper are as follows:

• A survey of the literature, highlighting gaps, strengths, weak-

nesses, and lessons-learned

• A new formulation for software defect prediction

• The introduction of 32 novel source code metrics at statement-

level
• SLDeep, a new LSTM-based system for statement-level software

defect prediction

• Empirical studies of applying SLDeep on more than 10 0,0 0 0

C/ C ++ programs in Code4Bench

• Empirical studies of applying Random Forest on the subject

programs and comparison with SLDeep

• A discussion on the considerations, implications, limitations,

and threats to the validity

The remainder of this paper is organized as follows: In

ection 2 , we present the required background and survey the re-

ated work. We give the details of the methodology of our tech-

ique in Section 3 . Empirical studies and experimental results are

laborated in Section 4 . We provide a discussion on different as-

ects of SLDeep and the results in Section 5 . Finally, we conclude

he paper in Section 6 .

. Background and related work

In this section, we briefly explain the fundamental concepts,

hich are required for the rest of the paper. Then, we present a

eview of the main body of the SDP literature. We conclude this

ection with lessons-learned and the specific gaps that we address.
2 We mean predicting the fault-proneness of new statements.
.1. Foundations

Software defect (fault) prediction techniques leverage software

etrics along with fault data to construct a predictive model

 Catal, 2011). The fault data may come from the previous versions

f the current software project or they may be taken from other

imilar software projects (Malhorta, 2015). The resulting model is

sed to predict the fault-prone portions of the unseen software,

or example the next release of the same software (Hosseini et al.,

017). When the training data of the prediction model are taken

rom the same project, we would achieve a within-project de-

ect prediction (WPDP) system. In contrast, when the whole or

ajority of the training data are taken from other projects, we

ould achieve a cross-project defect prediction (CPDP) system

 Hosseini et al., 2017). The presence of indicative software data and

n appropriate learning model significantly influence the efficacy

f SDP techniques.

In general, the aim of SDP techniques is an optimized usage of

esources in the software team and to deliver high-quality soft-

are. In particular, SDP techniques seek to identify faulty areas

f the code, to estimate the number of remaining defects, and to

rack and localize the faulty modifications to the code.

Three components are often required to construct a defect pre-

iction system (Catal, 2009). First, a version control system such

s Subversion

3 is required to store source code data. Second, a

hange management system such as Bugzilla 4 is required to cap-

ure the fault-related data. Finally, a helper tool is needed to gather

oftware metrics out of the version control system. For predic-

ion, software metrics are used as independent variables and fault

ata are used as dependent variables. The prediction models are

sed to identify fault-prone modules often before system testing.

enzies, Greenwald and Frank (2006) showed that with a robust

odel, the likelihood of fault detection can be 71%, which is higher

han the likelihood of fault detection with code reviews, which is

0%. Catal and Diri (Catal, 2009) enumerate several advantages in

sing the SDP techniques:

• Improving testing process by focusing on fault-prone code areas
• Achieving high-quality software through better testing
• Identifying refactoring candidates labeled as fault-prone
• Reduction in the underlying costs
• Achieving more robust software

Next, the question arises as to the advances and the current

hallenges in SDP techniques. We will explore this question in the

ext subsection.

.2. Literature review

As of today, a myriad of SDP techniques has appeared, present-

ng novel methods and rich empirical studies. An important body

f literature can be found in the existing systematic studies, which

omprise only those studies that have passed certain quality as-

essment criteria. In this section, first we review several system-

tic studies to highlight major advances and challenges they have

eported. Then, we review a number of individual studies to ob-

ain additional lessons and to help to place our own work in the

urrent body of knowledge. We note that the list of research we in-

estigate here is not comprehensive. Therefore, any missing work

hould not imply to be undervalued.

.2.1. Defect prediction in general

There exist a number of systematic studies (Hall et al., 2011 ;

osseini et al., 2017 ; Malhorta, 2015 ; Radjenovi ́c et al., 2013) that
3 https://subversion.apache.org/ .
4 https://www.bugzilla.org/ .

https://github.com/sldeep/SLDeep
http://doi.org/10.5281/zenodo.3268512
http://doi.org/10.5281/zenodo.3268512
https://subversion.apache.org/
https://www.bugzilla.org/

4 A. Majd, M. Vahidi-Asl and A. Khalilian et al. / Expert Systems With Applications 147 (2020) 113156

e

m

m

e

c

(

f

a

t

a

s

m

B

2

l

u

r

e

s

t

p

f

r

s

t

d

p

c

p

a

l

t

n

t

v

e

p

l

i

f

l

d

e

r

s

T

fi

t

w

w

a

t

p
review defect prediction techniques from different aspects such as

learning model and code metrics.

Kamei et al. (2016) conducted an empirical study, in which they

investigated the performance of just-in-time models 5 in the con-

text of cross-project SDP. They used 11 open-source projects in

their study. They found that the constructed prediction models are

more effective when used with process metrics because they are

built at finer granularities. They have also found that just-in-time

models tend to perform better in cross-project context when: the

models are trained on similar projects, the data of several projects

are combined and used, and ensembles are developed from several

models built on several projects.

The ensemble of different learning models in the context of SDP

was explored by Rathore and Kumar (Rathore, 2017). They evalu-

ated the resulting model on several datasets and found that the

resulting ensemble led to higher accuracy.

In a study on five common classification models, Gao et al.

(Gao, Khoshgoftaar, Wang & Seliya, 2011) investigated the effect

of feature selection techniques in the context of the SDP problem.

They conducted the experiments on a large software system and

reported several key findings. Particularly, they observed that for

the code metrics and models they used the reduction in the num-

ber of code metrics up to 85% did not adversely impact on the ef-

fectiveness of prediction models. This is of paramount importance

for practitioners who want to collect as few metrics as possible.

Multi-objective formulation of the SDP problem is the key con-

tribution made by Canfora et al. (2015) . In single-objective formu-

lation, the aim is to maximize precision and recall of the model.

However, this goal can be insufficient for an effective model. In

fact, for a developer who is responsible to test fault-prone classes,

the required time and effort plays a major role; the larger class

would need more time. As a result, the researchers suggested mea-

suring the goodness of a model based on the time it incurs on the

developer to pinpoint the fault. Then, this knowledge is incorpo-

rated into multi-objective SDP.

Lee et al. (2016) proposed micro-interaction metrics for the

SDP context. These metrics capture interaction information of de-

velopers such as file editing and browsing events. In the experi-

ments, they could construct models with higher accuracy and cost-

effectiveness. The new metrics also provide novel insights for the

developers regarding their ineffective actions.

The experiments by Bowes et al. (Bowes, 2016) sought to under-

stand the nature of faults that can be detected by each prediction

model. They used four classifiers on NASA dataset and found that

a different set of defects can be detected by each model. Boucher

and Badri (Boucher, 2018) conducted an empirical study to find

appropriate techniques for threshold computation in the SDP con-

text. They found that receiver operating characteristic (ROC) out-

performs other techniques for threshold calculation. Since ROC is a

supervised technique, it can be used in situations where fault data

are available. Based on the existing findings on fault-proneness,

Palomba et al. (2017) developed specific SDP models for smelly 6

classes. They considered measuring the smelly intensity by a new

code metric and constructed a model based on process metrics

in addition to the new metric. In the experiments, researchers

achieved higher accuracy using the resulting model. They also

found that the new code metric is relevant and could reduce the

model entropy.

Choudhary et al. (Choudhary, Kumar, Kumar, Mishra & Catal,

2018) conducted experiments to investigate the change metrics to-

gether with code metrics to enhance the precision of SDP mod-

els. The researchers used different versions of Eclipse projects as
5 They are models that are applied to identify fault-introducing changes.
6 Code smells are the sign of poor design and design decisions.

s

t

F

9

xperimental subjects. In addition to utilizing the existing change

etrics, they introduced several new ones. They observed that SDP

odels with new change metrics outperform SDP models with the

xisting metrics. In addition, change metrics provide advantages in

onstruction of high-performance SDP models.

To improve the precision of SDP models, Shippey et al.

 Shippey, Bowes & Hall, 2019) considered extracting features of

aulty Java code. To achieve this, they used a bottom-up analysis on

bstract syntax tree (AST) n-grams. They leveraged non-parametric

esting to identify the association between the defects of software

nd AST n-grams. They used open-source and commercial software

ystems as their subjects. Finally, they built SDP models on three

achine-learning classifiers, namely J48, Random Forest, and Naïve

ayes.

.2.2. Deep learning for defect prediction

Yang et al. (Yang, Lo, Xia, Zhang & Sun, 2015) used deep-

earning models for the prediction of defect-prone changes. Partic-

larly, they used a deep belief network to extract a set of met-

ics (features) for code change measurement. The metrics were

xtracted from fourteen initial features related to change mea-

urement. Then, they trained a classifier on the extracted metrics

o predict the defect-prone code changes. They evaluated the ap-

roach on six large open-source projects.

Qiao and Wang (Qiao, 2019) proposed to apply deep learning

or effort-aware just-in-time SDP. The researchers used ten met-

ics that measure code changes from various aspects such as the

ize of the changed code and developers’ experience. Then, they

rained a deep-learning model to predict the number of potential

efects. They evaluated the proposed approach on six open-source

rojects. As the researchers mentioned, deep learning fits to SDP

ontext because it is capable of selecting effective input features

articularly when the relationship between the inputs and outputs

re complex.

Fan et al. (Fan, Diao, Yu, Yang & Chen, 2019) applied deep-

earning on the vector-encoded structure of the programs for

he SDP problem. Particularly, they used attention-based recurrent

eural network as deep-learning model. To extract the code struc-

ure, they built the AST of a program and mapped it to a numerical

ector. Their model also applies the attention mechanism to gen-

rate effective f eatures for SDP. They evaluated the proposed ap-

roach on seven open-source Java projects.

Manjula and Florence (Manjula, 2018) addressed the SDP prob-

em using a combination of genetic programming and deep learn-

ng. Particularly, they applied genetic programming to optimize

eatures and employed deep learning for classification. They have

everaged improved versions of both genetic programming and

eep learning customized to their application. The researchers

valuated their hybrid approach on five datasets of the PROMISE

epository of software defects.

Pan et al. (Pan, Lu, Xu & Gao, 2019) applied an improved ver-

ion of convolutional neural network (CNN) for within-project SDP.

he researchers built a dataset of source codes, namely Simpli-

ed PROMISE to promote datasets in CNN-related studies. Then,

hey evaluated their approach on different versions of 12 projects

ithin the generated dataset. Finally, they compared the approach

ith baseline deep-learning based SDP approaches.

Dong et al. (Dong, Wang, Li, Xu & Zhang, 2018) focused on

ddressing the SDP problem for Android APKs. They proposed a

echnique to generate customized metrics (features) to capture the

roperties of decompiled APK files. Their technique extracts both

yntactical and semantic metrics of the decompiled APK files. Then,

hey applied deep-learning techniques to train an SDP model.

inally, the researchers evaluated their approach on more than

0,0 0 0 files that are decompiled from 50 Android APKs.

A. Majd, M. Vahidi-Asl and A. Khalilian et al. / Expert Systems With Applications 147 (2020) 113156 5

i

b

r

a

o

t

a

2

u

i

c

l

g

c

m

u

t

t

i

R

s

t

(

M

fi

2

W

t

t

v

M

t

n

F

i

H

a

(

l

S

b

l

2

c

t

d

t

fi

t

T

c

r

E

p

p

o

a

l

l

v

o

p

T

c

p

t

i

3

s

m

t

w

l

p

t

S

s

s

3

v

c

f

i

t

a

I

b

w

p

e

u

t

t

p

r

o

i

a

r

p

t

g

S

3

t
Dam et al. (Dam et al., 2018) proposed to build SDP models us-

ng tree-structured LSTM network. As they mentioned, LSTM fits

est to the structure of AST, which are an appropriate intermediate

epresentation of the source code. The researchers evaluated their

pproach on two datasets; one is an open-source project and the

ther is PROMISE repository. The experiments showed the effec-

iveness of the proposed approach both for within-project as well

s cross-project SDP.

.2.3. Statement-Level software code metrics

There exists a plethora of software code metrics that have been

sed in different software quality assurance studies, in general, and

n software defect prediction studies, in particular. The metrics are

ategorized into various groups, such as object-oriented, function-

evel, and statement-level. From the generality point of view, each

roup of the existing source code metrics can be divided into two

ategories, namely general-purpose and special-purpose. The for-

er category includes software code metrics that are commonly

sed in studies. The latter category includes software code metrics

hat are defined for a certain study; they are often customized for

he specific context in which they are applied.

Fenton and Bieman (Fenton, 2014) provide a comprehensive

ntroduction to software metrics including statement-level ones.

adjenovi ́c et al. (Radjenovi ́c et al., 2013) elaborate on different

oftware code metrics including statement-level ones in the con-

ext of software defect prediction. Moreover, Nuñez-Varela et al.

 Nuñez-Varela, Pérez-Gonzalez, Martínez-Perez & Soubervielle-

ontalvo, 2017) investigate source code metrics used in different

elds of software engineering.

.3. Conclusions

A number of lessons can be drawn from the systematic studies.

e learn that more robust and richer methodologies are required

o build prediction models (Hall et al., 2011). In addition, we need

o consider defining different code metrics that are more rele-

ant for real-world, industrial applications (Radjenovi ́c et al., 2013).

achine-learning models largely contribute to the success of SDP

echniques. However, they have been applied in a limited man-

er and much more potential remain untouched (Malhorta, 2015).

inally, we learn that cross-project SDP is significantly promis-

ng. It has merits that can be effectively adopted by companies.

owever, several important challenges should be addressed, such

s the capability to deal with heterogeneous source code data

 Hosseini et al., 2017).

From other studies, additional lessons can be drawn. First, we

earn that fine-grained code metrics increase the success rate of

DP techniques. In addition, cross-project SDP can significantly

enefit from datasets that include several other projects, particu-

arly those that are similar to the project at hand (Kamei et al.,

016). We learn that using more automated mechanisms in model

onstruction would lead to elimination of developer’s burden. In

his case it is highly likely that SDP techniques are adopted in in-

ustry. An implication we can draw from multi-objective SDP is

hat better prediction models are those that minimize the time to

nd the faulty statement (Canfora et al., 2015). We also learn that

o meet specific design goals, one may need to define new metrics.

he existing code metrics may lose effectiveness in certain new

ircumstances (Lee et al., 2016). Furthermore, we can learn than

elevant metrics can reduce the entropy of the prediction models.

nsemble models tend to improve the overall performance of the

rediction system (Palomba et al., 2017).

Based on the identified challenges, the high-level goals of this

aper are twofold. First, it aims at further alleviating the devel-

per’s burden in fault detection and localization. Second, it aims

t making SDP more industrially-viable. On the grounding of the
essons-learned, we consider working at finer granularity, particu-

arly statement-level. This implies that we need to define new rele-

ant metrics. We should also leverage better model that can handle

ur fine-grained data. We accomplish this requirement through ex-

loiting the potentials of deep-learning models, particularly LSTM.

o reach industrial scale and adoption, we consider developing

ross-project models through as much an automated process as

ossible. The concrete details of the methodology in the construc-

ion and integration of the mentioned components are articulated

n the next section.

. Methodology

To build an effective SDP system, we propose to work at

tatement-level. For this purpose, we should define relevant code

etrics to estimate fault-proneness of each statement. We present

he list of the introduced metrics in Section 3.1 . The training data

e produce are different from the typical data produced in the

iterature, in terms of the nature and size. Hence, we should ap-

ly a relevant learning model. We propose to use LSTM. The de-

ails of applying this model are elaborated in Section 3.2 . Our new

DP technique, namely SLDeep, is developed by integrating the

tatement-level metrics with learning model. We describe the re-

ulting SLDeep in Section 3.3.

.1. Metric suite

Metrics in the context of SDP are considered as independent

ariables. We introduce 32 statement-level metrics to capture the

omplexity of a statement, which may adversely influence to its

ault-proneness. In particular, we define 10 external-linear and 22

nternal-linear metrics, which are listed in Tables 1 and 2 , respec-

ively. External-linear metrics capture external, contextual char-

cteristics that may influence on the complexity of a statement.

nternal-linear metrics estimate the complexity of a statement

ased on the existing properties in that statement itself. Note that

e take each line as the unit of our computation. As an exam-

le, the occurrence of a statement in a recursive function is an

xternal-linear metric. In contrast, the number of binary operators

sed in a statement is an instance of an internal-linear metric.

To achieve effective metrics, we leverage the insights used in

he literature in defining coarse-grained metrics. Then, we adapt

hem to obtain fine-grained, relevant metrics. The metric suite we

rovided is intended to have the following properties:

• They capture different static features of a statement
• The metrics are expressive enough to distinguish as much sim-

ilar statements as possible
• They reflect some complexity aspects of a statement that re-

lates to fault-proneness

It is worth mentioning that the list of the statement-level met-

ics presented here is not intended to be comprehensive; many

ther metrics can be defined. However, we consider only the ex-

sting metrics on the assumption that they are representative of

ny other metrics that can be defined. We note also that the cur-

ent metric suite can be used for C-based programming languages,

articularly for C and C ++ . However, this is not a limitation to our

echnique. One can easily redefine the metrics to adapt new tar-

et language. We give more arguments regarding these points in

ection 5.

.2. Learning model: long short-term memory

Most of the current SDP research relies on machine-learning

echniques to construct a learning model. The reason is that

6 A. Majd, M. Vahidi-Asl and A. Khalilian et al. / Expert Systems With Applications 147 (2020) 113156

Table 1

External-linear statement-level metrics introduced for the SLDeep.

ID Metric Description

1 Function Is the line located in a function

2 Recursive Function Is the line located in a recursive function

3 Blocks Count The number of nested blocks in which the line is located

4 Recursive Blocks Count The number of nested recursive blocks in which the line is located

5 FOR Block The number of nested FOR blocks in which the line is located

6 DO Block The number of nested DO WHILE blocks in which the line is located

7 WHILE Block The number of nested WHILE blocks in which the line is located

8 IF Block The number of nested IF blocks in which the line is located

9 SWITCH Block The number of nested SWITCH blocks in which the line is located

10 Conditional Count The number of single conditions checked to reach a line.

This includes the number of components in a compound condition as well as nested conditionals

Table 2

Internal-linear statement-level metrics introduced for the SLDeep.

ID Metric Description

11 Literal String The number of string literals in a line

12 Integer Literal The number of integer literals in a line

13 Literal Count The total number of literals in a line

14 Variable Count The number of variables in a line

15 IF Statement The number of IF conditions in a line

16 FOR Statement The number of FOR loops in a line

17 WHILE Statement The number of WHILE loops in a line

18 DO Statement The number of DO WHILE loops in a line

19 SWITCH Statement The number of SWITCH in a line

20 Conditional and Loop Count The number of loops and conditionals in a line

21 Variable Declaration The number of declared variables in a line

22 Function Declaration Count The number of declared functions in a line

23 Variable Declaration Statement The number of statements in which a variable is declared in a line

24 Declaration Count The number of declaration statements in a line

25 Pointer Count The number of pointers in a line

26 User-Defined Function Count The number of non-library functions called in a line

27 Function Call Count The number of called functions in a line

28 Binary Operator The number of binary operators used in a line

29 Unary Operator The number of unary operators used in a line

30 Compound Assignment Count The number of compound assignments in a line

31 Operator Count The total number of operators in a line

32 Array Usage The number of arrays used in a line

a

s

b

s

T

t

r

(

c

s

a

f

r

3

d

a

M

i

d

3

T

p

i

s
machine-learning models are tolerant to the imprecise and par-

tially incorrect data (Malhorta, 2015). For our SLDeep, we use

an effective machine-learning technique, namely long short-term

memory (LSTM), which belongs to the deep-learning sub-category.

We first give some required descriptions regarding the LSTM.

LSTM was invented in 1997 to address some of the mathemat-

ical issues introduced when modeling long sequences. Today, it is

also used to model the relationships between a sequence and other

sequences. LSTM belongs to recurrent neural networks (RNN) fam-

ily. A feed-forward neural network, which is extended to support

feedback connections, is called an RNN. An LSTM uses self-loops to

establish paths in which the gradient can flow for long durations.

In addition, the weights of self-loops are not fixed; they are deter-

mined dependent upon the context. Self-loops serve as internal re-

currence within units called LSTM cells. These cells have the same

input/outputs as ordinary RNNs. However, they have more param-

eters and several gating units that control the information flows

(Goodfellow et al., 2016).

Several studies (Graves, Mohamed & Hinton, 2013 ; Sutskever,

Vinyals and Le, 2014 ; Graves, 2012) showed that LSTM networks

are more effective in learning long-term dependencies than sim-

ple recurrent networks. Now, LSTM is increasingly used at Google

to model sequences in natural language processing. LSTMs are also

widely used for handwritten recognition, machine translation, and

parsing (Goodfellow et al., 2016).

In the following, we describe and justify the usage of LSTM in

SLDeep. For SDP problem, we need a binary classifier that is able to

classify any statement as either fault-free or fault-prone. Working

m

t statement-level implies that we take every statement into con-

ideration. This is why the amount of produced data is increased

y orders of magnitude. Hence, the scalability of the model es-

entially matters, particularly for adoption of SLDeep in industry.

he nature of our data is partially different from typical data in

he literature. In addition to metrics values, we augment the cor-

esponding row data of a statement, every token of that statement

see Section 3.3). Finally, we need a model with memorization to

onsider the code structure as a sequence of statements, not each

tatement in isolation. The reason lies in the fact that we seek to

pply a model that can learn based on what has been observed so

ar and to make more informative decisions. As a result of these

equirements, we found that LSTM could be a relevant model.

.3. SLDeep

Now, we integrate the introduced metric suite with LSTM to

evelop our proposed SDP system. Fig. 1 demonstrates the over-

ll structure of SLDeep. To train an LSTM model, a matrix so called

 P should be established per each program P . The i th row of M P

s devoted to the i th line (statement) of P . The columns of M P are

ivided into two broad categories. The first category is devoted to

2 metrics introduced in Section 3.1 and is fixed for every program.

he second category of columns is devoted to the individual tokens

resent in each line. This category is of paramount importance as

t serves us as a means to capture the code structure itself. The

econd category can also break any tie introduced using the code

etrics in the first category.

A. Majd, M. Vahidi-Asl and A. Khalilian et al. / Expert Systems With Applications 147 (2020) 113156 7

Table 3

The structure of the matrix constructed for each program to be given to LSTM model.

Rows/Columns Metric 1 Metric 2 … Metric 32 Token 1 Token 2 … Token max Class

Line 1 m 1, 1 m 1, 2 … m 1, 32 (t 1 , v 1) 1 (t 2 , v 2) 1 … (t max , v max) 1 fault-free/fault-prone

… … … … … … … … … …

Line n m n , 1 m n , 2 … m n , 32 (t 1 , v 1) n (t 2 , v 2) n … (t max , v max) n fault-free/fault-prone

Fig. 2. A sample code snippet from Code4Bench.

a

m

fi

o

v

o

o

a

k

t

w

T

o

v

c

s

e

c

s

s

o

t

s

k

a

s

h

s

m

i

r

T

p

4

s

W

e

p

m

F

4

w

t

C

g

p

f

v
A token is a sequence of one or more characters that comprise

 lexical unit within the source program (Aho, Lam, Sethi & Ull-

an, 2007). Keywords, operators, numbers, delimiters, and identi-

ers are examples of tokens. Particularly, we tokenize each line to

btain the comprising tokens. Each token is stored as a pair of (t,

), in which t is the token type and v is the token value. For tokens

f the type IDENTIFIER, we consider a number, which is unique

nly across a program, not all programs. The numbers are assigned

ccording to the order they are visited and are considered as to-

en values for identifiers. We compute the maximum number of

okens across all lines of all programs as max(NT i , j). Therefore, we

ould have:

he number of columns = 32 + max
(
N T i, j

)
(1)

NT : number of tokens for the j th row of program P i ,

1 ≤ i ≤ P , 1 ≤ j ≤ r i , P : the number of programs; r i : the number

f rows of program P i .

The tokens of each line are then padded alongside the metrics

alues. For rows whose tokens are less than max(t), we add suffi-

ient pairs of (0, 0). Table 3 shows the overall structure of the re-

ulting matrix. The last column of the matrix is devoted to whether

ach line is fault-free or fault-prone.

The overall metric and token information are intended to dis-

riminate very similar sequences of statements. For instance, con-

ider a sequence of statements as a = 0; c = 2 / a ; and a second

equence of statements as a = 1; c = 2 / a ; in which they differ

nly in an integer literal at the first statement. The metric suite

ogether with the extracted tokens would discriminate these two

equences.

To use SLDeep, one needs to compute metric data, extract to-

ens and construct a matrix for a given program (project). Then

n LSTM model is trained and used to predict whether a new un-

een statement is either fault-free or fault-prone. As an example of

ow we extract the presented metrics, consider the following code

nippet in Fig. 2 , which we have adopted from Code4Bench.

In Table 4 , we have depicted the value of each metric per state-

ent. The row numbers in the leftmost column correspond to the

dentifiers of statements in Fig. 2 . The column numbers in the first

ow correspond to the identifiers of metrics in Tables 1 and 2 .

SLDeep can be used in several scenarios, for instance:
• Train SLDeep using the current or several version(s) of a pro-

gram and apply it on the next release of the same project
• Train SLDeep using a project and apply it on another project
• Train SLDeep using the versions of several projects and apply it

on the next versions of the same or other projects

So far, we provided the details of SLDeep and its components.

hen the question arises as to how well SLDeep performs on real

rograms. We investigate this question in the next section.

. Empirical studies

To evaluate SLDeep, we have conducted experiments. In this

ection, we explain the process we followed to evaluate SLDeep.

e provide every detail in the process to enable replicating the

xperiments and reproducing the results. First, we explain the ex-

erimental setup and the methodology in conducting the experi-

ents. Then, we describe the performance measures we computed.

inally, we give the obtained results and interpret them.

.1. Experimental setup

Our experiment is guided by the following research questions:

• RQ1: How effective does SLDeep perform as measured in terms

of accuracy, precision, recall, and f-measure?
• RQ2: How scalable is SLDeep when applied on a large set of

real-world programs?
• RQ3: How is SLDeep compared with the alternative models

such as tree-based ones?
• RQ4: How is SLDeep compared with the similar related work to

interpret the competitiveness of the study?

To answer the research questions, we used a methodology,

hich is outlined in Fig. 3 . We explain the details of each step in

he following.

As subject programs, we used C/ C ++ codes from the

ode4Bench (Majd et al., 2019). This benchmark comprises pro-

rams written by different users for different problems. For each

air of problem and user, there exist several versions including

aulty and correct ones. The large number of users, problems, and

ersions of programs introduces much diversity in the available

8 A. Majd, M. Vahidi-Asl and A. Khalilian et al. / Expert Systems With Applications 147 (2020) 113156

Fig. 3. The experimental methodology we followed to evaluate and compare SLDeep.

Fig. 4. The high-level topology of the SLDeep learning model.

d

s

t

r

i

s

i

i
programs. In the extracted dataset, there exist 119,989 subject pro-

grams totaling 2356,458 lines of code with 292,064 faulty lines. For

all subject programs, the fault data are present in the benchmark.

More precisely, Code4Bench provides tables, in which the correct

and faulty versions for C/ C ++ programs are specified. In addition,

the exact faulty lines of defective programs are specified.

A major component of SLDeep is the learning model, which is

constructed using LSTM. To achieve the appropriate number of lev-

els and nodes, we made several trials, which is conventional in

machine-learning research. Therefore, we note that the parameters

of the LSTM we report here are not the best, optimized ones. How-

ever, they work well for our experimental data.

Our neural-network model comprises eight layers. The first two

layers are LSTMs, each with 150 nodes. The remaining parts of the

model are typical neural networks that comprise 256, 128, 64, 32,

16, and 2 nodes for the third to the eighth layers, respectively.

Fig. 4 depicts a high-level topology of our model.

The loops in the first two layers denote feedbacks. The first

LSTM layer takes as input the original data and a reverse version

of data. That is, the first layer reads the first row of each matrix

through the last row. Then, it reads the data inversely from the

last row of each matrix through the first row. This is meant to give

the model better inference of the code structure.

Further details of the layers are as follows:

• Bidirectional LSTM (150 nodes), with dropout (chance of each

node dropping out) on recurrent node set to 0.1
• LSTM (150 nodes), with dropout set to 0.2
• A dense (fully connected) layer of 256 nodes with ReLU

7 as ac-

tivation function and dropout set to 0.2, and batch normaliza-
7 The rectified linear unit (ReLU) is an activation function, which is a default

choice in modern neural networks (Goodfellow, 2016).

t

m

&

n

tion on its output and another dropout on the output of the

batch normalization set to 0.2
• A dense layer of 128 nodes with ReLU as activation function

and batch normalization on its output and dropout after the

batch normalization with dropout set to 0.25
• A dense layer of 64 nodes with ReLU as activation function and

batch normalization on its output and dropout after the batch

normalization with dropout set to 0.3
• A dense layer of 32 nodes with ReLU as activation function and

batch normalization on its output and dropout after the batch

normalization with dropout set to 0.4
• A dense layer of 16 nodes with ReLU as activation function and

batch normalization on its output and dropout after the batch

normalization with dropout set to 0.4
• A dense layer of 2 nodes with ReLU as activation function. This

is the last layer which predicts the output of each line.

In order to demonstrate the effect of LSTM on SLDeep, we con-

uct an additional experiment in which we employ another clas-

ifier rather than LSTM. We chose Random Forest (RF) because in

he context of CPDP, decision tree-based models have led to better

esults (Hosseini et al., 2017). SLDeep is also a CPDP system and an

nstance of transfer learning.

RF is an ensemble method that comprises a collection of clas-

ifiers (Han, Pei & Kamber, 2011). The aim of an ensemble is to

mprove the accuracy of the overall model. Each classifier in a RF

s a decision tree. However, RF is intended to offer a finer resolu-

ion than a single decision tree. RF has led to impressive results in

any applications such as computer security (Canfora, Iannaccone

 Visaggio, 2014). It is more robust to outliers and errors and is

ot subject to overfitting.

A. Majd, M. Vahidi-Asl and A. Khalilian et al. / Expert Systems With Applications 147 (2020) 113156 9

T
a

b
le

4

T
h

e

v

a
lu

e
s

o
f

m
e

tr
ic

s
p

re
se

n
te

d

in

T

a
b

le
s

1

a

n
d

2

fo

r
th

e

st

a
te

m
e

n
ts

in

th

e

co

d
e

sn

ip
p

e
t

p
re

se
n

te
d

in

F

ig
.

2
 .

1

2

3

4

5

6

7

8

9

1
0

11

1
2

1
3

1
4

1
5

1
6

17

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

1

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

2

0

0

0

0

0

0

0

0

3

1

0

1

0

0

0

0

0

0

0

1

4

5

4

0

0

0

0

0

0

0

5

0

5

4

0

1

0

4

0

4

4

4

1

0

1

0

0

0

0

0

0

0

0

2

2

1

0

0

0

0

0

0

3

1

1

5

0

0

0

0

1

0

1

0

5

1

0

2

0

1

0

0

0

0

1

0

2

2

2

0

1

0

0

0

1

1

2

1

4

0

0

0

1

1

0

2

0

6

1

0

3

0

2

0

0

0

0

2

0

2

2

3

0

1

0

0

0

1

1

3

1

5

0

0

0

2

1

0

3

0

7

1

0

4

0

2

0

0

1

0

3

0

0

0

2

1

0

0

0

0

0

0

2

0

2

0

0

0

1

0

0

1

0

8

1

0

4

0

2

0

0

1

0

3

0

0

0

5

1

0

0

0

0

0

0

5

0

5

0

0

0

1

1

0

2

2

9

1

0

3

0

1

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1
0

1

0

2

0

1

0

0

0

0

1

0

0

0

3

0

0

0

0

0

0

0

4

0

4

0

0

1

1

0

0

1

0

1
1

1

0

2

0

1

0

0

0

0

1

0

2

2

3

0

0

0

0

0

0

0

3

0

3

0

0

0

2

0

1

3

0

1
2

1

0

2

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1
3

1

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

2

0

2

0

0

0

0

0

0

0

0

1
4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

T

p

s

Y

C

G

C

c

b

d

o

t

o

n

c

m

l

F

u

t

v

t

s

w

4

f

S

s

5

n

l

n

s

a

n

c

f

t

i

s

A

P

R

F

p
We used Clang 5.0.1 8 tool to build AST of subject programs.

hen, we used the ASTs to compute the metrics on each subject

rogram. To run LSTM and RF, we used Keras, 9 TensorFlow, 10 and

cikit-learn. 11 For tokenization of statements, we used the LEX and

ACC tools. 12 We carried out the experiment on a system with CPU

ore i7-6800k @ 3.40, 64GB of RAM, and graphics NVIDIA GeForce

TX 1070 Ti. Note that machine-learning tools often leverage both

PU and GPU to achieve better efficiency.

As an essential preprocessing on programs, the empty lines and

omments were eliminated. In some cases, Clang was unable to

uild the program’s AST. Thus, we excluded these programs of our

ataset. In the resulting dataset, there might be some noise or

utlier data. However, we did not investigate or exclude them on

he assumption that our model handles them. Except for these, no

ther preprocessing was necessary.

To construct the prediction model, we run the tuned neural

etwork with the matrices of all programs as input. Each matrix

orresponds to a program. For our experimental data, we run the

odel for about one week using 10-fold cross-validation. The long-

asting execution of our model can be credited to two reasons.

irst, our training data is significantly voluminous. Second, we have

sed 10-fold cross-validation for model evaluation. Nevertheless,

his long-lasting execution can be justified by considering two ad-

antages. First, the resulting model tends to show universal proper-

ies, as it has learnt data from several projects and can be used on

everal other projects. Second, the training is one-time processing

hose costs are amortized to its usage in numerous applications.

.2. Performance measures

To evaluate the effectiveness of SLDeep, we computed four per-

ormance measures, which are the most common measures in the

DP literature (Malhorta, 2015). The measures are Accuracy, Preci-

ion, Recall, and F-Measure, which are computed using Eqs. (2) to

 , respectively. In the equations, true positive (TP) refers to the

umber of positive tuples (rows, lines of code) that were correctly

abeled by the classifier as positive. True negative (TN) refers to the

umber of negative tuples that were correctly labeled by the clas-

ifier as negative. False positive (FP) refers to the number of neg-

tive tuples that were incorrectly labeled as positive. Finally, false

egative (FN) refers to the number of positive tuples that were in-

orrectly labeled as negative. In our context, positive refers to the

ault-prone line. We report the raw values of TP, TN, FP, and FN

o enable computing other desirable measures. They help to facil-

tate the quantitative synthesis of the results for future systematic

tudies and meta-analysis.

ccuracy =

T P + T N

T P + T N + F P + F N

(2)

r ecision =

T P

T P + F P
(3)

e call =

T P

T P + F N

(4)

 − measure = 2 × pr ecision × r ecall

pr ecision + r ecall
(5)

Accuracy measures the recognition rate. That is, it refers to the

ercent of tuples that were correctly labeled. Precision measures
8 https://clang.llvm.org/index.html .
9 https://keras.io/ .

10 https://www.tensorflow.org/ .
11 https://scikit-learn.org/stable/ .
12 http://dinosaur.compilertools.net/ .

https://clang.llvm.org/index.html
https://keras.io/
https://www.tensorflow.org/
https://scikit-learn.org/stable/
http://dinosaur.compilertools.net/

10 A. Majd, M. Vahidi-Asl and A. Khalilian et al. / Expert Systems With Applications 147 (2020) 113156

Table 5

The experimental results of training SLDeep on subject programs when using different learning models.

Fold Model Accuracy Neighborhood Recall Precision Accuracy F-Measure TP FN FP TN

1 LSTM 2 0.984978892 0.43127532 0.605148625 0.599888188 607,337 9262 800,898 634,313

4 0.987425214 0.581132626 0.716556601 0.731659353 792,859 10,097 571,475 677,379

RF 2 0 0 0.69949 0 0 616,599 0 1,435,211

4 0.207931692 0.578506956 0.630745049 0.305910526 166,960 635,996 121,645 1,127,209

2 LSTM 2 0.982750624 0.432426376 0.607182926 0.600585356 605,966 10,636 795,350 639,858

4 0.98853014 0.578351014 0.712971474 0.729752103 795,143 9226 579,702 667,739

RF 2 0 0 0.69948 0 0 616,602 0 1,435,208

4 0.195329507 0.582395831 0.629638222 0.292543099 157,117 647,252 112,660 1,134,781

3 LSTM 2 0.983132095 0.428904672 0.602984682 0.597250665 603,999 10,363 804,237 633,211

4 0.983146712 0.590579938 0.726890891 0.737900352 788,814 13,522 546,846 702,628

RF 2 0 0 0.70058 0 0 614,362 0 1,437,448

4 0.179345062 0.576398486 0.627552746 0.27356958 143,895 658,441 105,750 1,143,724

4 LSTM 2 0.989569282 0.423145905 0.591815519 0.592804825 609,639 6426 831,091 604,654

4 0.991646332 0.570326224 0.703819554 0.724163694 797,717 6720 600,986 646,387

RF 2 0 0 0.69975 0 0 616,065 0 1,435,745

4 0.18049 0.57849 0.6157 0.27514 16,628 75,497 12,116 123,740

5 LSTM 2 0.982394989 0.431728399 0.606522046 0.599845557 605,117 10,844 796,498 639,351

4 0.986830983 0.583162788 0.718277033 0.733102408 793,870 10,594 567,448 679,898

RF 2 0 0 0.6998 0 0 615,961 0 1,435,849

4 0.144328398 0.576854667 0.623003105 0.230888699 116,107 688,357 85,169 1,162,177

6 LSTM 2 0.986392563 0.425779062 0.595627275 0.594807732 608,982 8401 821,295 613,132

4 0.983296593 0.590351031 0.725060313 0.73776384 793,541 13,480 550,644 694,145

RF 2 0 0 0.6991 0 0 617,383 0 1,434,427

4 0.174066102 0.575031417 0.624545158 0.267237509 140,475 666,546 103,816 1,140,973

7 LSTM 2 0.989352518 0.420698738 0.588418031 0.590360604 608,526 6549 837,939 598,796

4 0.989584227 0.573254314 0.707019168 0.725965494 796,264 8381 592,760 654,405

RF 2 0 0 0.70023 0 0 615,075 0 1,436,735

4 0.205115299 0.57464521 0.628734142 0.302319809 165,045 639,600 122,167 1,124,998

8 LSTM 2 0.98950596 0.420599382 0.587125514 0.590290077 610,259 6472 840,668 594,411

4 0.990092333 0.573723858 0.707410043 0.726478721 797,257 7978 592,361 654,214

RF 2 0 0 0.69942 0 0 616,731 0 1,435,079

4 0.194082473 0.574462689 0.627294925 0.290140761 156,282 648,953 115,767 1,130,808

9 LSTM 2 0.986381317 0.428541051 0.600356271 0.597495517 608,617 8403 811,590 623,200

4 0.988530153 0.579906696 0.714088536 0.730989271 797,040 9248 577,388 668,134

RF 2 0 0 0.69928 0 0 617,020 0 1,434,790

4 0.20095797 0.574933292 0.627620491 0.297818607 162,030 644,258 119,794 1,125,728

10 LSTM 2 0.981714363 0.43421284 0.607080804 0.602111437 610,000 11,362 794,841 635,626

4 0.984355478 0.585824357 0.719645253 0.734513846 795,751 12,647 562,593 680,838

RF 2 0 0 0.69717 0 0 621,362 0 1,430,467

4 0.133296965 0.578697786 0.620294869 0.216683223 107,757 700,641 78,449 1,164,982

Average LSTM 2 0.98561726 0.427731175 0.599226169 0.596543996

4 0.987343817 0.580661285 0.715173887 0.731228908

RF 2 0 0 0.69943 0

4 0.181494347 0.577041633 0.625512871 0.275225181

T

s

e

p

s

a

t

s

b

f

f

r

t

s

f

a

m

a

t

t

t

0

r

the exactness of the model. That is, it states what percent of the

tuples that were labeled as positive, are really positive. Recall mea-

sures completeness of the model. It states what percent of positive

tuples are labeled as positive. Recall is an important measure for

SDP context because it refers to the power of the model in pre-

dicting fault-prone lines of code. Finally, F-Measure is the harmonic

mean between precision and recall (Han et al., 2011).

4.3. The results

Tables 5 and 6 present the experimental results of applying

SLDeep on the mentioned subject programs. The results are re-

ported based on the performance measures described in the last

section. Table 5 shows the performance measures of the trained

model while the results in Table 6 indicate the performance mea-

sures of the tested model. The rows in Table 5 correspond to the

rows in Table 6 . That is, they show the training and testing mea-

sures of the same model in the same fold and in the same iter-

ation. Each part of both tables corresponds to a certain fold in a

10-fold cross-validation. In the tables, we have reported the re-

sults of applying SLDeep as well as applying a RF model on the

subject programs. In our experiments, we considered an accuracy

neighborhood . That is, for a fault-free statement labeled as fault-

prone by the model, we take the prediction as true if the really

faulty statement is at most n lines before or after that statement.
he accuracy neighborhood is considered due to our fined-grained

tatement-level analysis. We repeated our experiments for two it-

rations where n is set to four and two.

In Addition to Tables 5 and 6 , Fig. 5 demonstrates the average

erformance measures for SLDeep and RF at training and testing

tages. Particularly, the left and right charts correspond to SLDeep

nd RF, respectively. Also, the top and bottom charts correspond to

raining and testing stages. In each chart, two groups of bars are

hown. The left and right groups are devoted to accuracy neigh-

orhoods two and four, respectively. In each group, the values of

our performance measures, namely recall, precision, accuracy, and

-measure, averaged over 10-folds are depicted from left to right,

espectively.

The results in Table 5 indicate how well the model fits on the

raining data. At the first iteration, the accuracy neighborhood is

et to two. This means that for a fault-free statement labeled as

ault-prone by the model, we take the prediction as true if the re-

lly faulty statement is at most two lines before or after that state-

ent. By this assumption, at the test stage SLDeep could achieve

verage performance measures 0.967, 0.415, 0.580, and 0.580 in

erms of recall, precision, accuracy, and f-measure, respectively. At

he next iteration, we set accuracy neighborhood to four. At the

est stage, SLDeep could achieve average performance measures

.979, 0.570, 0.702, and 0.721 in terms of recall, precision, accu-

acy, and f-measure, respectively.

A. Majd, M. Vahidi-Asl and A. Khalilian et al. / Expert Systems With Applications 147 (2020) 113156 11

Table 6

The experimental results of testing SLDeep on subject programs when using different learning models.

Fold Model Accuracy Neighborhood Recall Precision Accuracy F-Measure TP FN FP TN

1 LSTM 2 0.955813581 0.398706792 0.552695181 0.562692705 65,608 3033 98,944 60,396

4 0.979574887 0.554338617 0.675709818 0.708014091 89,636 1869 72,063 64,413

RF 2 0 0 0.69892 0 0 68,641 0 159,340

4 0.187443309 0.550855895 0.612520342 0.27970842 17,152 74,353 13,985 122,491

2 LSTM 2 0.960284391 0.406192225 0.565393607 0.570898981 65,912 2726 96,356 62,987

4 0.97878835 0.553751185 0.679916309 0.707329496 88,181 1911 71,062 66,827

RF 2 0 0 0.69893 0 0 68,638 0 159,343

4 0.185099676 0.551327404 0.618446274 0.277150383 16,676 73,416 13,571 124,318

3 LSTM 2 0.962174441 0.420447469 0.575907641 0.585183564 68,197 2681 94,004 63,099

4 0.971137042 0.579277926 0.703321768 0.725687333 89,466 2659 64,978 70,878

RF 2 0 0 0.68911 0 0 70,878 0 157,103

4 0.180493894 0.578485945 0.615700431 0.275140855 16,628 75,497 12,116 123,740

4 LSTM 2 0.972157571 0.407542527 0.562735491 0.574321266 67,249 1926 97,762 61,044

4 0.985603839 0.554259014 0.681324321 0.709517488 88,728 1296 71,356 6660

RF 2 0 0 0.69658 0 0 69,175 0 158,806

4 0.1798 0.58014 0.62741 0.27452 144,638 659,799 104,676 1,142,697

5 LSTM 2 0.957216473 0.41807728 0.582123072 0.581970882 66,315 2964 92,304 66,398

4 0.975454737 0.570148207 0.69999693 0.719659304 87,788 2209 66,186 71,798

RF 2 0 0 0.69612 0 0 69,279 0 158,702

4 0.142860318 0.576779866 0.620257829 0.229000427 12,857 77,140 9434 128,550

6 LSTM 2 0.97120415 0.420053285 0.59232129 0.586458672 65,903 1954 90,989 69,135

4 0.972118024 0.582904166 0.72251635 0.728802006 85,002 2438 60,823 79,718

RF 2 0 0 0.70236 0 0 67,857 0 160,124

4 0.17694419 0.584378305 0.636057391 0.271638751 15,472 71,968 11,004 129,537

7 LSTM 2 0.977894962 0.433508555 0.599909642 0.600715283 68,614 1551 89,662 68,154

4 0.981272824 0.5881246 0.721889105 0.735455122 88,134 1682 61,722 76,443

RF 2 0 0 0.69223 0 0 70,165 0 157,816

4 0.220406164 0.608939063 0.637105724 0.323662375 19,796 70,020 12,713 125,452

8 LSTM 2 0.982162927 0.417270782 0.582465205 0.585705332 67,287 1222 93,968 65,504

4 0.985082823 0.573670985 0.70764669 0.725083629 87,895 1331 65,320 73,435

RF 2 0 0 0.6995 0 0 68,509 0 159,472

4 0.215901195 0.595247659 0.635667007 0.31687077 19,264 69,962 13,099 125,656

9 LSTM 2 0.967736734 0.418602144 0.588145503 0.584412193 66,019 2201 91,694 68,067

4 0.979199982 0.570169124 0.706457994 0.720692821 86,339 1834 65,088 74,720

RF 2 0 0 0.70076 0 0 68,220 0 159,761

4 0.20916834 0.580662427 0.635719643 0.307549923 18,443 69,730 13,319 126,489

10 LSTM 2 0.959250446 0.404872344 0.593476106 0.569412049 61,275 2603 90,069 74,015

4 0.977830194 0.576084501 0.719979646 0.725024123 84,155 1908 61,926 79,973

RF 2 0 0 0.71979 0 0 63,878 0 164,084

4 0.122143081 0.585855208 0.63598319 0.202142184 10,512 75,551 7431 134,468

Average LSTM 2 0.966589568 0.41452734 0.579517274 0.580177093

4 0.97860627 0.570272833 0.701875893 0.720526541

RF 2 0 0 0.69943 0

4 0.182026017 0.579267177 0.627486783 0.275738409

p

i

c

c

2

c

o

m

m

t

g

f

T

c

d

f

t

i

m

fi

i

a

s

q

s

l

e

C

g

r

h

e

i

q

o

t

d

r

t

t

p

i

l

e

d

t

c
Although we have achieved significantly high recall in the ex-

eriments on SLDeep, however, the precision is not so good. We

nvestigate this result from two aspects. First, this result is not un-

ommon in the SDP literature. In fact, the best models have typi-

ally achieved high recall at the cost of precision (Hosseini et al.,

017). In addition, in the context of software defect prediction, re-

all is the key, determinant measure because it shows the percent

f the really faulty statements that are labeled as faulty by the

odel. A high recall means that there is little likelihood for our

odel to miss a faulty statement. Second, we attribute this result

o the level of granularity in our analysis which is extremely fine-

rained. Statements in the programs are appeared in much diverse

orms. Many different statements can be semantically equivalent.

here are numerous degrees of freedom in the ways a statement

an be written. A same algorithm can be implemented in many

ifferent ways in a programming language. The judgment on the

aultiness of a statement is based on the program it appears and

he specifications that the program must fulfill. That is, the fault-

ness of a statement is a context-sensitive property. A same state-

ent appearing in two different programs may be fault-free in the

rst program and faulty in the second one. This makes the learn-

ng model confused. Therefore, the sequence of all statements in

 program should be considered when learning the faultiness of a

tatement. Fortunately, LSTM has been designed to learn such se-

uential data. However, in addition to the diversity in the forms a
tatement can appear, another important factor contributes to the

ow precision in our experiments. This factor is a specific prop-

rty of the Code4Bench programs that we used in our experiments.

ode4Bench includes vast number of program groups where each

roup comprises structurally-redundant programs. Each group cor-

esponds to the different versions of a program that a developer

as submitted for a problem. The versions are nearly the same

xcept for few changed statements. As a result, there exist many

dentical statements in different versions with very similar se-

uences, in which one statement is labeled as fault-free and an-

ther is labeled as faulty. This situation makes distinguishing of

he statements challenging even for an LSTM. Basically, the issue

oes not arise due to some limitations in the LSTM; but the issue

elates to the lack of extra distinguishing information in the men-

ioned situation. The adverse effect of the described issues causes

he model to identify many of the fault-free statements as fault-

rone which in turn leads to the low precision.

The cases in which accuracy neighborhood is greater than zero

mply that SLDeep may sometimes predict at quasi statement-

evel. Nevertheless, the amount of accuracy neighborhood is small

nough to offer significant benefits for the developer over the tra-

itional module/file/class/function levels.

These results can answer our first and second research ques-

ions mentioned in Section 4.1 . SLDeep seems to be effective in

lassifying statements as fault-free or fault-prone. In addition, the

12 A. Majd, M. Vahidi-Asl and A. Khalilian et al. / Expert Systems With Applications 147 (2020) 113156

Fig. 5. Comparison of SLDeep and RF at the training and testing phases. In each chart, two groups of bars are shown. The left and right groups are devoted to accuracy

neighborhoods two and four, respectively. Each group comprises four bars. The bars are dedicated to recall, precision, accuracy, and f-measure, from left to right, respectively.

l

s

c

t

c

t

s

s

m

e

a

a

m

l

f

d

t

d

5

S

v

W

v

a
results suggest that SLDeep is scalable since it could work on more

than 230 0,0 0 0 training data (lines of code) and yet it has achieved

very high effectiveness.

At the test stage of the experiments on RF, we could achieve

a recall of 0.182 and 0 for accuracy neighborhood set to 4 and

2, respectively. These results can answer our third research ques-

tion and suggest that RF is quite ineffective for statement-level de-

fect prediction. In order to evaluate the magnitude of statistical

results, we have managed for a Cohen d ’s test on the mean val-

ues of obtained recalls when applying LSTM and RF for the accu-

racy neighborhood 4 at the testing stage. For our calculated d value

38.069975 and based on the Cohen’s suggestion (Kampenes, Dybå,

Hannay & Sjøberg, 2007), it turns out that the mean recall values

differ by a large effect size, when applying LSTM and RF as the

learning model.

We have also managed for another experiment, in which we

used K-Nearest-Neighbor (KNN) as learning model. After nearly

three days of model execution, we obtained the results only for the

first fold. Particularly, we have achieved 0.647 and 0.634 for the re-

call measure at the training and testing stages, respectively. Then,

we stopped running the model due to our limitations in compu-

tational resources. Although the results of the first fold are not

enough to draw conclusive results, however, based on the results

in Tables 5 and 6 , we conjecture that the remaining folds produce

similar results.

Our fourth research question is associated with how well

SLDeep is compared to the related work. Most of the studies in the

SDP literature are focused on the prediction at file, class, module,

or function granularities, which are substantially coarser than our

statement-level granularity. In fact, a major novelty of our work
 e
ies in its fine-grained granularity, for which we had to employ

pecific statement-level code metrics. This feature hinders a fair

omparison to any of the studies in the literature. The competi-

iveness of our study to the body of literature can be interpreted

onsidering that it helps the developers to pinpoint the faulty loca-

ions more quickly. With existing techniques, a coarse-grained unit

uch as a function is labeled to be fault-prone. Then, the developer

hould employ a fault localization technique to find a list of state-

ents that are highly likely to be faulty. Using SLDeep, however,

xempts us from the fault localization step since it specifies the

pproximate locations of the faulty statements.

Overall, the results suggest that accounting for statement-level

nalysis, together with leveraging LSTM model as learner, has

uch potential to yield an effective, scalable SDP system. It can

ead to software with higher quality in less time and effort. There-

ore, SLDeep proved relevant; it can be successfully adopted at in-

ustrial scale for both WPDP and CPDP. After quantitative evalua-

ion of SLDeep, we should discuss around different aspects of its

esign and performance. The next section is dedicated to this goal.

. Discussion

So far, we provided the details of design and implementation of

LDeep and reported the results of evaluation. Yet, some high-level

iewpoints, considerations, and implications are still unexplored.

e should also discuss around the limitations and threats to the

alidity of the results. These aspects are covered in this section.

Most of the SDP research assumes that sufficient fault data are

vailable (Catal, 2011). However, this is not always the case. For

xample, a company may deal with a new project or fault data

A. Majd, M. Vahidi-Asl and A. Khalilian et al. / Expert Systems With Applications 147 (2020) 113156 13

h

t

a

c

l

t

a

c

t

t

n

a

t

t

a

b

H

c

i

fi

d

c

i

t

t

a

p

d

n

p

S

2

t

C

m

v

n

m

l

w

a

s

e

s

(

s

p

m

s

c

s

S

m

a

g

w

c

s

w

a

m

m

t

g

s

g

o

r

w

t

m

t

f

F

d

t

b

s

s

t

w

r

s

R

a

C

v

p

a

o

h

t

o

s

a

s

e

o

p

p

g

o

s

v

t

e

s

w

o

w

p

r

6

p

w

S

t

l

u
ave not been collected for some parts or the whole project of

he previous version. Even, the deployment of appropriate tools

nd collection of fault data might be too costly to be used by a

ompany (Hall, Bowes, Liebchen & Wernick, 2010). Similarly, col-

ecting metric data may be difficult or they may be unavailable at

he beginning of a project (Radjenovi ́c et al., 2013). In such cases,

pplying cross-project SDP systems such as SLDeep can be benefi-

ial.

For SLDeep, we have not used any feature selection or correla-

ion analysis on the metrics, despite the studies (Hall et al., 2011)

hat have shown the advantages of feature selection on SDP tech-

iques. The reason behind this design decision is twofold. First, we

ssume the LSTM model can partly address the redundancies in

he data and does not incorporate them in its further computa-

ions. Second, we see this point as a benefit that exempts us from

 non-trivial preprocessing and moves SLDeep one step forward to

ecome automated.

In the literature, there exist numerous deep learning models.

owever, we chose to adopt LSTM for our SDP problem. This is be-

ause LSTMs are generally used to model the sequence data. That

s, one can model dependency with an LSTM model. This property

ts best to our application. However, this is not the case for other

eep learning models. As an instance, consider stacked autoen-

oders, which have been widely used in many applications such as

mage processing and classification. Autoencoders are trained to re-

ain as much input data as possible (Goodfellow et al., 2016). They

ry to approximate the representation of the original, input data

nd are trained to produce a new representation with various good

roperties. During the training, the network tries to minimize the

ifference between the approximate representation and the origi-

al data. These characteristics do not satisfy the requirements of

rocessing source code sequence data.

The quality of the data essentially matters for research in

DP, particularly cross-project defect prediction (Hosseini et al.,

017). The data should be up to data, indicating the current prac-

ices in software development. To meet this requirement, we used

ode4Bench (Majd et al., 2019), which is the most recent bench-

ark comprising a rich set of programs developed in recent years.

As suggested by Hosseini et al. (Hosseini et al., 2017), we pro-

ided several performance measures to give better grasp of the

ature and capabilities of the applied model. They reported that

ost of the SDP research has used the default parameters of the

earning models they utilized. As our model is a complex one

ith numerous components, the default parameter setting led to

 model, which was ineffective. Therefore, we had to manage for

ome trials to reach parameter settings for which SLDeep shows

ffectiveness. This is not abnormal since most of the current clas-

ifiers involve at least a parameter that needs to be carefully tuned

 Tantithamthavorn, McIntosh, Hassan & Matsumoto, 2016).

The programs we used in the experiments involve different ver-

ions of the programs developed by many developers for many

roblems. As a result, the training data is diverse along four di-

ensions: statements, developers, problems (projects), and ver-

ions. This property seems to result in a universal model. In prin-

iple, universality implies that the model can be used on any ver-

ion of any program. In practice, however, this is not the case for

LDeep and its training data. That said, diversity among four di-

ensions implies that SLDeep can be used for both within-project

nd cross-project defect prediction of multiple versions of the pro-

rams, at least at the context of the programs we used. Although

e have not provided explicit evidence for this claim, for the spe-

ific programs of Code4Bench, this claim is more likely to be aptly

tated. The reason is that Code4Bench contains of many versions

ith little difference. In addition, it comprises many programs that

re developed for the same problem. We note that universality

ay lead to reduction in the precision of the model. This point
anifests an important trade-off between universality and effec-

iveness.

The metrics suite and the experiments focus on C/ C ++ lan-

uages. However, this choice has been an implementation neces-

ity and should not imply as a limitation for SLDeep. Newer pro-

ramming languages such as C# or Java have been designed based

n the structures and experiences in C/ C ++ (Sebesta, 2016). As a

esult, it seems that the metric suite would work on C# and Java

ith little changes. The metrics are designed to capture static fea-

ures of the codes. Therefore, for a language with different gram-

ar and structure, one needs only to redefine the metrics to cap-

ure the intended feature. Hence, we expect the SLDeep shows ef-

ectiveness when implemented on other programming languages.

uture work will explore this hypothesis.

In real-world contexts, faults are relatively stochastic and fault

ata are highly imbalanced (Radjenovi ́c et al., 2013). Therefore,

he number of faults and their distribution may differ significantly

etween the two versions. 10-fold cross validation may not con-

ider all the factors present in real-world environments. However,

uch evaluations are common in the literature. Additional evalua-

ions that take the mentioned factors into account remain as future

ork.

Most of the SDP studies including our own have not incorpo-

ated fault severity into the model. Although some faults are more

evere than others, severity is hard to measure (Hall et al., 2011).

esearchers (Böhme, 2014) proposed to measure the severity of

 fault based on the patch that fixes that fault. Considering that

ode4Bench contains correct versions of the corresponding fault

ersions, some research can be conducted to train a model incor-

orating fault severities. This is an avenue for further research.

In the experiments, we did not explicitly investigate whether

 trained model on the i th version of a project, will be effective

n the (i + n) th version where n > 1. Note that this question

as been implicitly confirmed to hold partially true because we

rain on multiple versions of multiple programs and test on some

ther versions of some programs. For a developer whose coding

tyle and programming practices may remain unchanged through

 project, the model may be effective through consecutive regres-

ion versions. Nonetheless, concrete evidence necessitates curated

xperiments and remains as future work.

A possible threat to the external validity is the representative

f the programs. The programs in Code4Bench are not industrial

rojects and the resulting model may not be effective for such

rojects. We mitigate this threat by using more than 10 0,0 0 0 pro-

rams totaling 2356,458 lines of code, developed by thousands

f users for thousands of problems. Since we are working at

tatement-level, the very large amounts of statements seem to pro-

ide sufficient diversity into the training data. A threat concerning

he construct validity is the performance measures we used. How-

ver, the measures we used are common in the context of SDP re-

earch. The threats to the internal validity can be errors introduced

hen data collection or the tools we used. For data collection, an-

ther co-author checked a sample of data. As to the helper tools,

e note that they are developed by well-known institutes or com-

anies and are widely-used in code analysis and machine-learning

esearch.

. Conclusions and future work

The goal of this paper is to alleviate the developer’s burden in

inpointing the locations of faults, hence provide high-quality soft-

are with less time and effort. To achieve this goal, we proposed

LDeep, a technique for statement-level software defect predic-

ion. To realize SLDeep, we defined 32 statement-level metrics and

everaged long short-term memory as learning model. We eval-

ated SLDeep on more than 10 0,0 0 0 C/C ++ programs from the

14 A. Majd, M. Vahidi-Asl and A. Khalilian et al. / Expert Systems With Applications 147 (2020) 113156

F

F

G

G

G

H

K

K

M

M

M

M

N

P

Q

R

R

S

T

Y

Z

Code4Bench. In the experiments, SLDeep could successfully predict

fault-prone statements with average performance measures 0.979,

0.570, and 0.702 in terms of recall, precision, and accuracy, re-

spectively. Based on these results, SLDeep seems to be effective at

statement-level software defect prediction and can be adopted. The

significance of SLDeep lies in its novel usage of LSTM for a practi-

cal problem in the context of software engineering. It can lead to

save software development resources and more reliable software.

This work can be extended in several ways. First, we can ex-

plore to define additional metrics for C-based languages. Second,

we can adapt the current metrics for other common programming

languages such as Python and Kotlin. Third, new variants of LSTM

can be used to exploit their potentials. Fourth, Empirical studies

can be conducted to investigate the effects of layers and nodes of

LSTM in the overall performance of the model. Fifth, some exper-

iments can be carried out on programs in other application do-

mains, for example Android applications. Finally, empirical stud-

ies can be conducted to understand the success factors of SLDeep

in different contexts. This is particularly valuable for practitioners

to know the cases that SLDeep should be preferred to other tech-

niques.

Contribution statement

All authors have contributed to the scientific and write-up con-

tents of the paper.

Declaration of Competing Interest

None.

Acknowledgements

We thank the anonymous reviewers of the journal whose com-

ments helped us to make the revised version of paper stronger.

In addition, we are grateful to the cloud-computing center at Iran

University of Science and Technology for providing the access to

their system.

References

Aho, A. V. , Lam, M. S. , Sethi, R. , & Ullman, J. D. (2007). Compilers, principles, tech-

niques. second edition . Pearson Education Inc .
Bird, C. , Bachmann, A. , Aune, E. , Duffy, J. , Bernstein, A. , Filkov, V. , et al. (2009). Fair

and balanced?: Bias in bug-fix datasets. in proceedings of the the 7th joint meet-
ing of the European software engineering conference and the acm sigsoft sympo-

sium on the foundations of software engineering . ACM , 121–130 .

Böhme, M. , & Roychoudhury, A. (2014). Corebench: Studying complexity of regres-
sion errors. in proceedings of the 2014 international symposium on software testing

and analysis . ACM , 105–115 .
Boucher, A. , & Badri, M. (2018). Software metrics thresholds calculation techniques

to predict fault-proneness: An empirical comparison. Information and Software
Technology, 96 , 38–67 .

Bowes, D. , Hall, T. , & Petri ́c, J. (2018). Software defect prediction: Do different clas-

sifiers find the same defects? Software Quality Journal, 26 (2), 525–552 .
Canfora, G. , Iannaccone, A. N. , & Visaggio, C. A. (2014). Static analysis for the de-

tection of metamorphic computer viruses using repeated-instructions counting
heuristics. Journal of Computer Virology and Hacking Techniques, 10 (1), 11–27 .

Canfora, G. , Lucia, A. D. , Penta, M. D. , Oliveto, R. , Panichella, A. , &
Panichella, S. (2015). Defect prediction as a multiobjective optimization

problem. Software Testing, Verification and Reliability, 25 (4), 426–459 .

Catal, C. (2011). Software fault prediction: A literature review and current trends.
Expert systems with applications, 38 (4), 4626–4636 .

Catal, C. , & Diri, B. (2009). Investigating the effect of dataset size, metrics sets, and
feature selection techniques on software fault prediction problem. Information

Sciences, 179 (8), 1040–1058 .
Choudhary, G. R. , Kumar, S. , Kumar, K. , Mishra, A. , & Catal, C. (2018). Empirical anal-

ysis of change metrics for software fault prediction. Computers & Electrical Engi-
neering, 67 , 15–24 .

Dam, H.K., .Pham, T., Ng, S.W., .Tran, T., Grundy, J., Ghose, A. et al. (2018). A

deep tree-based model for software defect prediction. arXiv preprint arXiv: 1802.
00921 .

Dong, F. , Wang, J. , Li, Q. , Xu, G. , & Zhang, S. (2018). Defect prediction in android bi-
nary executables using deep neural network. Wireless Personal Communications,

102 (3), 2261–2285 .
an, G. , Diao, X. , Yu, H. , Yang, K. , & Chen, L. (2019). Software defect prediction via
attention-based recurrent neural network . Scientific Programming 2019 .

enton, N. , & Bieman, J. (2014). Software metrics: A rigorous and practical approach .
CRC press .

ao, K. , Khoshgoftaar, T. M. , Wang, H. , & Seliya, N. (2011). Choosing software metrics
for defect prediction: An investigation on feature selection techniques. Software:

Practice and Experience, 41 (5), 579–606 .
oodfellow, I. , Bengio, Y. , & Courville, A. (2016). Deep learning . MIT press .

raves, A. (2012). Supervised sequence labelling with recurrent neural networks . Berlin

Heidelberg: Springer-Verlag .
Graves, A . , Mohamed, A . R. , & Hinton, G. (2013). Speech recognition with deep re-

current neural networks. In 2013 IEEE international conference on acoustics, speech
and signal processing . IEEE , 6645–6649 .

Hall, T. , Beecham, S. , Bowes, D. , Gray, D. , & Counsell, S. (2011). A systematic lit-
erature review on fault prediction performance in software engineering. IEEE

Transactions on Software Engineering, 38 (6), 1276–1304 .

all, T. , Bowes, D. , Liebchen, G. , & Wernick, P. (2010). Evaluating three approaches
to extracting fault data from software change repositories. in international confer-

ence on product focused software process improvement (pp. 107–115). Berlin,
Heidelberg: Springer .

Han, J. , Pei, J. , & Kamber, M. (2011). Data mining: Concepts and techniques . Elsevier .
Hosseini, S. , Turhan, B. , & Gunarathna, D. (2017). A systematic literature review and

meta-analysis on cross project defect prediction. IEEE Transactions on Software

Engineering .
amei, Y. , Fukushima, T. , McIntosh, S. , Yamashita, K. , Ubayashi, N. , & Has-

san, A. E. (2016). Studying just-in-time defect prediction using cross-project
models. Empirical Software Engineering, 21 (5), 2072–2106 .

ampenes, V. B. , Dybå, T. , Hannay, J. E. , & Sjøberg, D. I. (2007). A systematic re-
view of effect size in software engineering experiments. Information and Soft-

ware Technology, 49 (11–12), 1073–1086 .

Kitchenham, B. A. , Mendes, E. , & Travassos, G. H. (2007). Cross versus within-com-
pany cost estimation studies: A systematic review. IEEE Transactions on Software

Engineering, 33 (5), 316–329 .
Lanza, M. , Mocci, A. , & Ponzanelli, L. (2016). The tragedy of defect prediction, prince

of empirical software engineering research. IEEE Software, 33 (6), 102–105 .
Lee, T. , Nam, J. , Han, D. , Kim, S. , & In, H. P. (2016). Developer micro interaction

metrics for software defect prediction. IEEE Transactions on Software Engineer-

ing, 42 (11), 1015–1035 .
ajd, A. , Vahidi-Asl, M. , Khalilian, A. , Baraani-Dastjerdi, A. , & Zamani, B. (2019).

Code4Bench: A multidimensional benchmark of codeforces data for different
program analysis techniques. Journal of Computer Languages .

alhotra, R. (2015). A systematic review of machine learning techniques for soft-
ware fault prediction. Applied Soft Computing, 27 , 504–518 .

anjula, C. , & Florence, L. (2018). Deep neural network based hybrid approach for

software defect prediction using software metrics. Cluster Computing , 1–17 .
enzies, T. , Greenwald, J. , & Frank, A. (2006). Data mining static code attributes to

learn defect predictors. IEEE Transactions on Software Engineering, 33 (1), 2–13 .
uñez-Varela, A. S. , Pérez-Gonzalez, H. G. , Martínez-Perez, F. E. , & Soubervielle–

Montalvo, C. (2017). Source code metrics: A systematic mapping study. Journal
of Systems and Software, 128 , 164–197 .

Özakıncı, R. , & Tarhan, A. (2018). Early software defect prediction: A systematic map
and review. Journal of Systems and Software, 144 , 216–239 .

Palomba, F. , Zanoni, M. , Fontana, F. A. , De Lucia, A. , & Oliveto, R. (2017). Toward a

smell-aware bug prediction model. IEEE Transactions on Software Engineering .
an, C. , Lu, M. , Xu, B. , & Gao, H. (2019). An improved CNN model for within-project

software defect prediction. Applied Sciences, 9 (10), 2138 .
iao, L. , & Wang, Y. (2019). Effort-aware and just-in-time defect prediction with

neural network. PloS one, 14 (2), e0211359 .
adjenovi ́c, D. , Heri ̌cko, M. , Torkar, R. , & Živkovi ̌c, A. (2013). Software fault predic-

tion metrics: A systematic literature review. Information and Software Technol-

ogy, 55 (8), 1397–1418 .
athore, S. S. , & Kumar, S. (2017). Towards an ensemble based system for predicting

the number of software faults. Expert Systems with Applications, 82 , 357–382 .
Sebesta, R. W. (2016). Concepts of programming languages (11 th Ed.). Pearson .

Shippey, T. , Bowes, D. , & Hall, T. (2019). Automatically identifying code features for
software defect prediction: Using AST N-grams. Information and Software Tech-

nology, 106 , 142–160 .

utskever, I. , Vinyals, O. , & Le, Q. V. (2014). Sequence to sequence learning
with neural networks. In Advances in neural information processing systems

(pp. 3104–3112) .
antithamthavorn, C. , McIntosh, S. , Hassan, A. E. , & Matsumoto, K. (2016). Auto-

mated parameter optimization of classification techniques for defect prediction
models. in 2016 IEEE/ACM 38th international conference on software engineering

(ICSE) . IEEE , 321–332 .

Turhan, B. , Menzies, T. , Bener, A. B. , & Di Stefano, J. (2009). On the relative value of
cross-company and within-company data for defect prediction. Empirical Soft-

ware Engineering, 14 (5), 540–578 .
ang, X. , Lo, D. , Xia, X. , Zhang, Y. , & Sun, J. (2015). Deep learning for just-in-time

defect prediction. in 2015 ieee international conference on software quality, re-
liability and security. IEEE , 17–26 .

immermann, T. , Nagappan, N. , Gall, H. , Giger, E. , & Murphy, B. (2009). Cross-project

defect prediction: A large scale experiment on data vs. domain vs. process. in
proceedings of the the 7th joint meeting of the European software engineering con-

ference and the ACM sigsoft symposium on the foundations of software engineering .
ACM , 91–100 .

http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0005
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0010
http://arxiv.org/abs/arXiv:1802.00921
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0027
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0036
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0036
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0036
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0036
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0036
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0036
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0038
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0038
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0042
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0042
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0042
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0042
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0042
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0042
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0044
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0044
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0044
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0044
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0044
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0044
http://refhub.elsevier.com/S0957-4174(19)30873-5/sbref0044

	SLDeep: Statement-level software defect prediction using deep-learning model on static code features
	1 Introduction
	2 Background and related work
	2.1 Foundations
	2.2 Literature review
	2.2.1 Defect prediction in general
	2.2.2 Deep learning for defect prediction
	2.2.3 Statement-Level software code metrics

	2.3 Conclusions

	3 Methodology
	3.1 Metric suite
	3.2 Learning model: long short-term memory
	3.3 SLDeep

	4 Empirical studies
	4.1 Experimental setup
	4.2 Performance measures
	4.3 The results

	5 Discussion
	6 Conclusions and future work
	Contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

