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A B S T R A C T

The rapid growth of the Internet of Things (IoT) has brought about a global concern for the
security of interconnected devices and networks. This necessitates the use of efficient Intrusion
Detection System (IDS) to mitigate cyber threats. Deep learning (DL) techniques provides a
promising approach to effectively detect irregularities in network traffic, enhancing IoT network
security and reducing cyber threats. In this paper, DL-based IDS is proposed using Feed Forward
Neural Networks (FFNN), Long Short-Term Memory (LSTM), and Random Neural Networks
(RandNN) to protect IoT networks from cyberattacks. Each DL model has its potential benefit as
reported in this paper. For example, the FFNN can handle complex IoT network traffic patterns,
while the LSTM is good in capturing long-term dependencies present in the network traffic.
With its random connections and flexible dynamics, the RandNN model uses its data learning
ability to adapt and learn from network data. These algorithms boost cybersecurity by enabling
defense mechanisms against challenging cyber threats and ensuring the security of sensitive data
as IoT networks expand. The proposed technique exhibits superior performance when compared
with the current state-of-the-art DL-IDS using the CIC-IoT22 dataset. An accuracy of 99.93 %
is achieved for the FFNN model, 99.85 % for the LSTM model, and 96.42 % for the RandNN
model in detecting intrusion. Moreover, the models have the potential to enhance intrusion
detection in IoT networks by generating swift responses to security problems in IoT networks.

. Introduction

The advancements of the Internet of Things (IoT), cloud computing, computer security, and cyber security has undergone
ignificant progress on a broad scope recently. IoT is a potential paradigm for societal innovation concerned with the Internet
nd real things, including smart home automation, business applications, smart cities, and environmental monitoring. IoT presents
nhanced adaptability and productivity, thereby facilitating the establishment of extensively interconnected frameworks that enable
ovel services [1]. The advantages are attractive for both industrial and consumer applications. The emergence of the IoT paradigm
as been noted to coincide with the development of tailored solutions within the past decades, thereby defining the concepts of
ndustrial IoT and Industry 4.0 [2]. According to projections, there will be nearly three times as many IoT devices in the world
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Fig. 1. Security threat and its mitigation in IoT layers [8,9].

in 2030 compared to the 15.14 billion that exist today. There are over 60% of IoT devices used in consumer markets and other
corporate sectors. The percentage is expected to stay the same for the next ten years [3].

IoT networks are open and constantly changing topology by nodes joining and leaving the network in real-time. The lack of
centralized network management tools makes them vulnerable to security threats. IoT devices have special characteristics, including
tiny memory size, restricted data storage, limited power supply, and connection bandwidth [4]. The efficacy of security protocols
for IoT infrastructures, in terms of growth and performance is significantly impacted by these limits. As a result, developing an
effective intrusion detection system for an IoT network is challenging due to the increased overhead that requires computation
power. Cyberattacks are getting more complicated and harder to identify as hackers employ cutting-edge techniques to steal sensitive
data while evading detection by IDS. The communication between internetworks is also subject to cybersecurity risks. Because of
this, innovative methods are crucial for timely intrusion detection and attack prevention measures. Recently, Machine Learning (ML)
and Deep Learning (DL) algorithms have been used for network abnormality detection, intrusion detection, and prevention [5].

Integrating physical objects and sensors enable data exchange through the IoT paradigm. Utilizing technology components in
IoT networks has enhanced efficacy in collecting, analyzing, reporting, and projecting data for future planning [6]. Multiple layers
comprise an IoT architecture, which identifies, examines, and monitors system consistency. Application, network, and perception are
the three levels that make up the basic configuration. The application layer delivers services and programs that are user-specific.
The network layer addresses the issues related to inter devices dependability, capacity building of data, energy utilization, and
most significantly security aspects while connecting IoT devices to other networks, machinery, and services. The perception layer
gathers data from the environment via sensors, actuators, and computing hardware. Considering power conservation, security, and
interoperability issues, the physical layer manages operations like signal processing, encryption, and data transfer [7]. Security
solutions for each layer of the IoT are broken down and categorized in Fig. 1 with the security threats on each tier. Most IoT
architectures includes a wide variety of information, enabling features, and technology expansion across three distinct tiers [8].

For data processing, the Internet connects the IoT network and enables people and organizations to do more with few resources,
including time. Along with the advancement in IoT technology, there is also a proportional increase in attacks targeted on IoT
systems [10]. IoT-based critical infrastructures are more susceptible to cyber vulnerabilities and are targeted by several attacks. The
current state of cyber threats is characterized by growing complexity, persistence and intelligence owing to the rapid evolution of
adversarial tactics. Improving the cybersecurity posture of crucial cyber infrastructures is a serious global concern. It is, therefore,
crucial to identify cyber risks before implementing effective and robust cybersecurity remedies [9]. Fig. 2 depicts an overview of the
2
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Fig. 2. IoT network communicates with authorized and unauthorized users without any protection mechanism.

architecture of the IoT, which interacts openly with authorized and unauthorized users encompassing many components, including
but not limited to devices, sensors, servers, actuators, protocols, cloud services, and applications within a network. Identifying the
inherent characteristics of the content is challenging, whether normal or malicious, when a user engages with an IoT network. In
an IoT network, unauthorized users may carry cyber attacks as no protection mechanisms are enforced.

Expanding network devices increases cyberattacks, making IoT security essential. With the growing use of IoT devices in several
industries, including homes, securing the IoT infrastructure that strengthens devices is crucial [11]. IoT devices frequently exhibit
constrained processing capabilities, limited memory capacity, and inadequate security features, making them vulnerable to malicious
actors. Attackers can penetrate many vulnerable IoT devices, building botnets and interconnected networks of compromised devices
under their command, flooding them with excessive network traffic and resulting in major delays. IoT devices with vulnerabilities
can be manipulated to obtain unauthorized access [12]. Data breaches occur frequently in all IoT devices, which acquire and transfer
sensitive data. It allows attackers to intercept data transfer, manipulate data, and inject malicious commands into the communication
channel. The ability to remain undetected for prolonged durations provides a security risk [13]. The invasion of privacy can occur
by exploiting IoT devices equipped with cameras or microphones, as the unauthorized transmission of sensitive information can
occur. Therefore, strong authentication must be implemented to ensure the security of users and IoT devices in IoT network [14].

IoT intrusion refers to an illicit action or activity that harms the IoT ecosystem that undermines the confidentiality, integrity, or
availability of information in any manner. Secure and encrypted communication channels can be established by employing VPNs,
ensuring the confidentiality and integrity of the transmitted data [15]. An incursion refers to a situation where access to computer
services is impeded by an attack, thereby preventing legitimate users from using such services. An Intrusion Detection System (IDS)
is a technological solution, either using software, hardware or both, designed to oversee computer systems and detect malicious
activity to maintain system security. Implementing Intrusion Detection and Prevention Systems (IDPS) to monitor network traffic
and detect any abnormal activities that signify a security breach is essential [16]. The primary objective of IDS is to identify malicious
network traffic and unauthorized computer usage, a task that a traditional firewall cannot accomplish. The two main subcategories
of IDS are Signature-based Intrusion Detection Systems (SIDS) and Anomaly-based Intrusion Detection Systems (AIDS) [17]. Methods
for intrusion detection are shown in Table 1.

To detect network intrusions, deep learning frameworks have become a popular field. While multiple surveys cover the
developing research area on this topic, the literature requires an unbiased comparison of diverse deep learning models, especially in
light of new datasets for intrusion detection [18]. In today’s environment, cybersecurity is a crucial concern. For example, firewalls
have been employed to protect sensitive data whereas IDS look for indications of malicious activity. Significant improvements in
techniques such as pattern recognition and anomaly detection have been made due to the expansion of Artificial Intelligence (AI)
research rapidly [19]. AI is a promising strategy for addressing cybersecurity threats and ensuring security [20]. It is suggested that
implementing an Anomaly-based IDS will be a suitable measure to ensure the security of IoT networks, including servers, clouds,
sensors, devices, and applications operating within the infrastructure illustrated in Fig. 3.
3
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Table 1
Methods for IoT network intrusion detection techniques [8,9].

Detection method Signature based intrusion detection system Anomaly based intrusion detection system

It uses attack signatures to identify known threats. These
fingerprints may detect known risks in network traffic or
system activity.

It may detect zero-day attacks. It establishes a baseline of
normal activity and flags deviations, revealing unusual attack
patterns.

Attack signatures reduce false positives. It may be used to find new assaults.

It reacts quickly to known threats since it does not require
processing or analysis.

It may detect new threats without signatures. Even if the
attack is unknown, it senses abnormalities.

It involves establishing the IDS with a signature database
and monitoring network traffic or system logs.

IDS may detect insider threats when authorized users abuse
their abilities or conduct crimes.

Benefits

Signature databases provide many signatures for known
attack patterns and vulnerabilities, boosting SIDS.

It can learn and update its baseline to reflect system
behavior or network dynamics, offering accurate detection.

It only works against known threats with database signatures.
It cannot identify zero-day attacks or new attack methods.

It may falsely notify of departures from normal behavior.
False positives may tire security personnel.

It cannot identify encrypted assaults, reducing its efficacy
against such threats.

It may conflate benign and malignant abnormalities.
Anomalies may indicate security or behavioral issues.

If a new attack variation or updated signature is not in the
database, resulting in a false negative limits signature
detection.

Analyzing network traffic or system records for baseline,
deviation may be computationally intensive and require
particular hardware.

It needs frequent signature database upgrades to work. New
attack patterns need signature updates in the database.

It cannot process encrypted packets and the attack might go
unnoticed and pose a threat.

Drawbacks

It has scalability issues as network traffic increases. Creating a standard profile for a highly dynamic computer
system is difficult.

Fig. 3. Protecting the IoT network with an intrusion detection system.

In view of the above discussion, researchers have modified neural network topologies to enhance IDS. Deep Neural Networks
(DNN) use computational resources to evaluate large amounts of data, find patterns and correlations, and classify the data according
to specified criteria. The usage of DNN in IoT security is a potential method for anomaly-based intrusion detection to identify and
classify data in a properly trained DNN. In this research, Intrusion Detection System is proposed for the Internet of Things (IoT),
employing Deep Neural Networks for real-time data anomaly. This research aims to develop an Intrusion Detection System (IDS)
for the Internet of Things (IoT) by utilizing Feed Forward Neural Networks (FFNN), Long Short-Term Memory (LSTM) and Random
Neural Networks (RandNN) models. The research introduces a framework for deploying a Deep Learning technique for an Intrusion
Detection System (DL-IDS) within the Internet of Things (IoT) networks to integrate cyber security measures and achieve effective
intrusion detection performance. The present study involves developing an Intrusion Detection System with a multi-layered Neural
4
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Network to identify distinct categories of attacks commonly observed in the IoT. These include Denial of Service (DoS), Bruteforce,
HTTP Flood, UDP Flood, and TCP Flood. Following are the main contribution of the study:

• This work presents a new approach, namely the FFNN, LSTM and RandNN to detect and classify intrusions in IoT networks.
• The efficacy of the proposed scheme is assessed through extensive experimentation on the CIC IoT 2022 dataset, which belongs

to the latest generation of IoT datasets.
• Design an Intrusion Detection System framework and identifying the dataset characteristics for IoT networks.
• The RandNN, FFNN, and LSTM efficacy is assessed in binary and multiclass using evaluation metrics.
• This work provides a comprehensive evaluation of the proposed approach compared to established Machine Learning (ML)

and Deep Learning (DL) algorithms.

The subsequent sections of this article are structured in the following manner. Section 2 discusses a literature survey to provide an
verview of IoT security challenges and Deep Learning applications in security. Section 3 encompasses the research methodology,
hich provides a framework for intrusion detection in IoT networks using Deep Learning. It also delineates the implementation
latform, dataset description, simulations and discourse of outcomes. Section 4 includes a complete explanation of the proposed
ntrusion detection models and an in-depth analysis of mathematical modeling and architectures. For comparison, the theoretical
oncepts of machine learning are also discussed. Section 5 provides evaluation metrics and experimental setup to analyze binary
nd multiclass classification results for DL-based IDS. Moreover, a comparative analysis of proposed DL models is provided with
raditional ML models and state-of-the-art IDS, emphasizing its applicability and usefulness for IoT systems to identify cyber threats.
he paper concludes in Section 6.

. Literature survey

This section presents an in-depth review of the importance of cyber security in IoT infrastructure by reviewing previous studies
nd exploring the progress made by applying ML and DL techniques. This highlight the importance of IoT security and its challenges
aced due to absence of IDS and emphasis on the need of IDS in IoT networks. The section examines existing research on deep
earning-based IDS for IoT applications, focusing on identifying research gap in this area. Many research challenges must be updated
o stop cyber attacks and make security solutions for light weight IoT networks. Applications like automobile, health monitoring,
utonomous machinery, and smart homes generate a lot of data that requires new security measures. There needs to be more work
one on intrusion detection for IoT, even though several academic and industrial researchers have utilized ML and DL techniques
o build and deploy Intrusion Detection Systems (IDS) for IoTs during the past years.

.1. IoT security challenges

IoT aims to improve the quality of life by providing a scope of smart, interconnected devices and applications across multiple
omains. The critical challenges faced by IoT devices related to security threats lead to exploring advanced techniques such as DL
o increase IoT security. A study in [21] introduced a Convolutional Neural Network (CNN) to enhance the efficiency and security
f IoT networks by implementing an anomaly-based IDS. The model can identify intrusion and detect anomalies in traffic using the
ID and BoT-IoT datasets, resulting in an accuracy of 99.51% and 92.85%, respectively. Even with the current progress in the IoT

ndustry, a critical requirement exists for extensive research to enhance the threat detection rate of IoT systems. Thus, identifying
nomalies in IoT devices is crucial in mitigating attacks and improving security measures.

Researchers faced challenges in detecting malicious attacks against IoT devices due to insufficient feature extraction accuracy
rom raw network traffic data. To tackle this issue, [22] employed a CNN for automated feature extraction and introduced the
oTFECNN (IoT Features Extraction Convolutional Neural Network). An optimized version of the Capuchin Search Algorithm (CSA)
as devised to perform binary multi-objective feature selection with enhanced efficiency. The hybrid methodology known as CNN-
MECapSA-RF was evaluated on TON-IoT and NSL-KDD datasets. The evaluated approach has demonstrated an accuracy of 99.99%
nd 99.85% detecting 27% and 44% of the features characteristics. Furthermore, it was compared with newer methods and proved
o perform better due to its robust classification, effective feature selection, and feature extraction. It evaluates various metrics,
ncluding energy consumption, computing overhead costs, and detection delays, within a semi-realistic scenario but does not include
nomaly and attack-type detection in IoT.

In recent times, there has been a significant increase in the amount of data transmitted through communication infrastructures
ue to advancements in technology. Attackers have increased efforts to make networks vulnerable. In [23], an IDS framework is
mplemented with several Recurrent Neural Networks (RNNs) approaches as LSTM, Simple RNN, and GRU RNNs with an XGBoost
eature selection for NSL KDD and UNSW NB15 datasets. The findings indicate that the XGBoost LSTM model shows higher
erformance, achieving a (Traffic Acquisition Costs) TAC of 88.13%, and XGBoost GRU has a TAC of 86.93% when applied to
he NSL KDD dataset for binary and multiclass classification. Moreover, the study showed that the XGBoost Simple RNN achieved
shorter training time. Therefore, the Simple-RNN proved to be the best option with minimal resources.

The optimization of IoT network security requires a focus on lightweight, efficient, and flexible solutions. In [24] a lightweight
andom Neural Network is proposed to detect intrusions in the IoT. This methodology is suitable for IoT networks with limited
esources due to its improved flexibility and distributed framework. The framework’s performance was analyzed on individual
lasses within the datasets however the enhancement of model performance on minority classes was not addressed. The efficacy
5

f the proposed DnRaNN was evaluated through various metrics, which resulted in attack detection with an accuracy of 99.14%
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for binary and an accuracy of 99.05% for multiclass. This model was tested on the ToN_IoT dataset only for IoT security. A field
programmable gate array (FPGA)-based accelerator with DnRaNN was used to optimize the effectiveness of the cyberattack detection
algorithm in hardware.

2.2. Intrusion detection systems in IoT

The IoT has a lot of potential across multiple sectors. However, techniques for detecting and avoiding security incidents must be
eveloped to implement IoT in various businesses effectively. Several researchers use datasets produced by different organizations to
upport the development of ML models to predict intrusions. Due to this, not all classes of datasets have the same sample sizes, which
s a common issue with datasets. Techniques like random undersampling and oversampling could be more effective in producing
eliable results. Researchers in [25] tackle the problem of data imbalance in intrusion detection within the IoT by implementing
specialized loss function. The purpose of this function is to automatically focus on more complex negative cases over simple

nes to lower the assigned weights. The effective training of ML models is facilitated by enabling changes in dynamically scaled
radients. This research demonstrates the effectiveness of a DL-based intrusion detection approach utilizing focal loss to analyze
hree datasets derived from three distinct IoT domains. The FNN Focal technique performed better than the baseline model across
he Bot-IoT dataset, achieving 91.55% accuracy. Whereas CNN Focal approach achieved a 24% increase in accuracy compared to
he cross-entropy loss function. The scope is however limited to the Focal loss, thereby highlighting the necessity for developing
fficient intrusion detection systems.

Using imbalance datasets in intrusion detection poses a significant challenge in developing effective and reliable intrusion
etection and classification systems. An ensemble learning methodology has been suggested as a potential solution to solve the
lass imbalance problem in intrusion detection datasets that employ a Deep Neural Network (DNN)-based IDS [26]. The objective
as to address the problem of imbalanced class distribution in intrusion detection datasets while simultaneously obtaining high
daptability. A bagging classifier with a DNN base estimator used class weights to equalize the Deep Neural Network training
ubsets. This technique is evaluated using four distinct intrusion detection datasets NSL-KDD, UNSW-NB-15, CIC-IDS-2017, and
oT-IoT. This process is statistically analyzed using the Wilcoxon signed-rank test and achieved an accuracy of 98.99% with the
oT-IoT dataset. This research did not use bagging-based ensemble learning to derive an ideal value for the base estimator for

mproving the efficiency of IDS.
The vulnerability of IoT networks to unauthorized access and manipulation has increased. Hence, establishing IDS is essential

n safeguarding IIoT networks. In [27], three deep learning models, namely CNN, LSTM, and a combination of CNN and LSTM,
ere introduced to detect security vulnerabilities in Industrial Internet of Things (IIoT) networks. The hybrid CNN+LSTM model
emonstrated high performance on UNSW-NB15 and X-IIoTID datasets for intrusion detection. The CNN + LSTM architecture
chieved an accuracy of 93.21% for binary and 92.91% for multiclass on the UNSW-NB15 dataset. In contrast, the accuracy was
9.84% for binary and 99.80% for multiclass classification on the X-IIoTID dataset. The efficacy of the proposed framework may be
ugmented through synthetic data production to retrain networks, thereby increasing the accuracy of relevant models for diverse
orms of attacks present within the datasets. Researchers have proposed integrating smart frameworks and innovative IDS with AI
o address privacy and security issues. The study in [20] analyzed the efficacy of ML and DL methods for protecting the IoT. SVM
nd RF have been used due to their accuracy in detecting patterns. The techniques, including RNN and extreme gradient boosting
XGBoost), also performed better. The authors in [10] aims to develop an intrusion detection framework for machine learning
IDFML) for IoT networks. This framework utilizes supervised learning techniques. The IDFML has successfully attained a 98.68%
ccuracy in detecting attacks using a Random Forest classifier.

.3. Deep learning applications in security

The IoT network comprises several IoT nodes that transmit and receive large amounts of data, thus facilitating advanced intrusion
etection techniques. The Attacks in IoTs go undetected for a long, resulting in service disruptions, financial loss, and identity theft.
or IoT-enabled services to be reliable, secure, and profitable, IoT devices must be equipped with real-time intrusion detection. A
ully connected four-layer network architecture (FCFFN) is presented in [18] to identify malicious traffic that targets connected
oT devices. In the FCFFN architecture, a deep neural network consisting of six layers are fine-tuned to detect intrusion accurately.
he proposed deep learning-based IDS quickly identifies attacks on IoT networks like Blackhole, Distributed Denial of Service,
pportunistic Service, Sinkhole, and Workhole. The results show that the system is robust and can automatically identify attacks,
ith a detection rate of 93.21%, thus improving the safety of IoT networks. This IDS was however been trained using the dataset
enerated by the experimental system and includes only five types of intrusion.

Many traffic analyses utilize deep learning techniques to classify single flows, which can lead to misclassifying irrelevant flows.
herefore, the utilization of flow sequences is essential for the purpose to carry out traffic analysis. A novel flow-based traffic
lassifier is presented using the flow transformer technique for anonymity, encrypted and attack traffic for IIoT [28]. The model
mploys the multi-head attention mechanism to discuss the importance of the flow sequence and uses a feature extraction layer
o fully capture the flow sequence’s characteristics, achieving an accuracy of 98.5% using the CIC-IoT2022 dataset. The RF-based
eature selection method is developed to identify the ideal combination of features, preventing irrelevant features. It aims to select
ptimal features to mitigate any potential negative impact on classifier performance.

IoT networks enable massive data flows between many devices. Attackers can now compromise the CIA traits of IoT devices and
6

etworks. IoT devices generates vast amounts of data that are difficult to analyze in real time, thus making IDS a challenge to build.
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A Deep Ensemble-based IDS was presented in [29] using a multi-classifier system known as Lambda architecture that identifies
cyber-attacks using LSTM, CNN, and ANN classifiers to maximize batch layer training. The batch layer trains the model, whereas
the speed layer of the Lambda architecture makes decisions to improves the ability to make real-time evaluations. LSTM exceeds
ANN and CNN-based classifiers in accuracy for Binary Classification. Hybrid Ensemble achieves 99.93% accuracy outperforming
individual classifiers in multiclass by reducing processing time. The results indicate that the ensemble methodology shows higher
detection accuracy than the direct approach.

Data collection from diverse IoT sensors and the delays faced within the IoT system pose a more complex challenge in identifying
bnormal behavior and compromised nodes than in conventional Information Technology (IT) networks. In [30] an approach for
etecting anomalies by deep learning by employing a denoising autoencoder to obtain characteristics suitable for the large IoT
nvironment using the DS2OS traffic traces dataset proposed. The classifier utilized the features to differentiate between vulnerable
nd authentic IoT data. Using denoising autoencoders enables the efficient extraction of features that exhibit strength against noisy
haracteristics in IoT systems. The study demonstrated that integrating deep learning-based anomaly detection in IoT effectively
dentifies and mitigates fake data. IoT growth has increased cyber-attack risk, making intrusion detection on IoT networks more
lausible due to the potential for unwanted access to many interconnected services. An approach [31] has introduced MFO-
ELM, which combines the Mayfly optimization (MFO) with regularized extreme learning machine (RELM) to address the issue of
ybersecurity threat identification and categorization in IoT environment. The MFO-RELM methodology demonstrates high efficacy
n detecting and assessing cybersecurity vulnerabilities. The MFO-RELM model was applied to the N-BaIoT dataset for testing
urposes can identify cybersecurity threats within the Internet of Things (IoT) ecosystem.

.4. Related work on deep learning-based IDS for IoT

The growing of IoT devices and malicious software, as well as the wide use of encryption technology in IoT communication, has
ncreased the amount of encrypted suspicious traffic between devices, posing a significant threat to IoT cybersecurity. Currently,
any traffic detection techniques employed in the IoT need more dataset processing, suboptimal feature extraction, imbalanced
ata, and limited accuracy in multiclass classification. The vulnerability of IoT networks to threats was addressed by developing a
idirectional CNN-BiLSTM DDoS detection model, as proposed in [32]. The model was evaluated using the CICIDS2017 dataset and
ncluded three deep learning algorithms: RNN, LSTM-RNN, and CNN. This research builds a model responsive to different DDoS
ttacks and can distinguish between malicious and normal traffic to prevent false alarms. The CNN-BiLSTM model has an accuracy
f 99.76%. This model examined the architecture of IoT networks and provided possible causes for their security flaws. The model
emonstrated its compatibility with the existing IoT network infrastructure. The lack of a genuine testing platform was the primary
imitation of this study, which limited the testing’s reliability.

The interconnected nature of devices and sensors in the IIoT leads to massive amounts of dynamic and unreliable data. Analyzing
nd protecting Big data volumes is challenging. The IIoT will increase the vulnerability of industrial systems to cyber attacks, making
yber threat detection more difficult. Anomaly detection has decreased due to cyberattack diversity. According to [33], an ensemble
eep LSTM-AE anomaly detection model is utilized to detect irregularities in the IIoT to detect cyber threat. The model is trained
n balanced data obtained from unbalanced datasets on two real IIoT datasets. This model outperformed existing ML classifiers and
chieved 99.7% accuracy. To safeguard IoT networks from diverse attacks, a study in [34] introduced an innovative IDS that utilizes
filter-based Deep Neural Network (DNN) model. Using Generative Adversarial Networks (GAN), they addressed the issue of class

mbalance in the dataset by increasing the number of packets in minority class attack categories in IoT networks. The classifier
chieved an accuracy of 85.0% in multiclass for the UNSW-NB15 dataset. However, when using GANs, the classifier achieved a
igher accuracy rate of 91.0%. The attained outcomes hold considerable importance within the field of cybersecurity. It can improve
ccuracy further and minimize errors in false negatives and false positives.

IoT has extensively been employed in automated network systems, significantly influencing various industries recently. IoT
omprises many nodes that acquire, retain, and analyze personal data, making them highly vulnerable to attacks from malicious
ntities. IoT requires assistance to enhance operational efficiency and distinguish subcategories of cyber attacks. The research
n [35] proposes a Deep Convolutional Neural Network (DCNN) model that comprises of a convolutional layer, pooling layer,
nd a fully connected layer designed to detect malicious attacks in IoT networks. The model aims to enhance performance and
inimize computational requirements, which can benefit low-power IoT devices. Using the IoTID20 dataset to conduct performance

nalysis for multiclass subcategories, an accuracy of 77.55% was achieved. Adam, AdaMax, and Nadam optimization techniques were
pplied in which Nadam optimizer performance was best with all batch sizes. Experiment results show that the proposed method
utperformed among existing DL-based algorithms and is more stable.

Any data storage or processing model faces the same problem of fog and cloud security. Once an attack has occurred, it will have
estructive impacts on the expansion of the IoT, the Fog, and the cloud. As a result, numerous Fog data protection models have
een developed. An intrusion detection system for Fog computing security is presented in [36], which is fully automated using AI to
itigate cyber-attacks. The model was examined using multi-layered Recurrent Neural Networks (RNN) designed to implement Fog

omputing security near end-users and IoT devices. The tested model has a 98.27% accuracy in detecting Denial-of-Service (DoS)
ttacks while maintaining a processing overhead of the NSL-KDD dataset.

The increasing number of novel cyber-attacks poses a continual threat to modern IoT networks, requiring the development of
dvanced defense mechanisms to mitigate zero-day attacks effectively. The limitations of IoT devices are computing power and
ack of endurance. Moreover, the diverse cyber-attacks poses a detection challenge that requires continuous defense mechanisms.
7

esearchers has proposed dynamic and distributed frameworks based on DL to detect cyberattacks [37]. The NSL-KDD and BoT-IoT
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datasets evaluate the performance of the LSTM and FFNN models within the framework. The framework was devised to safeguard
IoT networks by utilizing fog layers to detect cyber-attacks. In order to boost detection and classification accuracy while reducing
latency, fog layers evaluate data near the edge layer. The proposed distributed system detects cyberattacks by achieving an accuracy
of 99.95%. The results indicate that FFNN exhibits a higher performance for the distributed NSL-KDD dataset. The proposed
methodology has improved cyber-attack detection in IoT networks that utilize constrained end devices. This research is limited
to sufficient data when the number of fog nodes in the framework grows.

2.5. Problem formulation

In future, advancements in anomaly detection within the system will enhance data processing and analyze security, thereby
itigating the risk of major failures in IoT networks. From the above review, it is clear that numerous methods have been proposed

or enhancing the security of IoT devices. Multiple research has investigated IoT security and privacy concerns in cybersecurity.
omplex models require tremendous resources, whereas lighter models are better suited for deployment on edge devices [20].
urrent research has shown that DL needs to be enhanced because it produces misleading results that lead to inefficient procedures
nd overfits. Based on the above discussion, implementing advanced learning strategies can improve the performance of IDS [38].
mplementing security protocols for both the internal and external components of IoT devices is essential due to the importance
f IoT networks. Attackers may launch destructive impacts on IoT-based critical applications. Implementing deep learning models
or a better understanding of the decision-making process increases trust in the IDS and assists researchers in understanding and
valuating detections.

In recent years, academic and industrial researchers have used ML and DL techniques to develop and implement IDS for IoT
evices. Despite a lot of work done, it is critical to continue developing new and efficient DL algorithms. Therefore, improving
ecurity by creating adaptable intrusion detection systems is a challenge. Deep learning-based IDS is a potential solution for detecting
atterns of cyber attacks in large volumes of data in IoT networks. This research gap will help build robust DL-based IDS for IoT
o detect intrusions. The research aims to develop three DL neural networks capable of detecting intrusion in IoT networks and
roviding better protection against cyber threats with reduced complexity and classification time in order to enhance accuracy and
ffectiveness. Therefore, improving IDS in the IoT will improve reliability, efficiency, and credibility. However, additional research
s needed to improve intrusion detection efficiently. The motivation for performing this research is to counter cyber threats and
vercome IDS limitations by implementing robust security measures within IoT networks.

. Proposed intrusion detection systems

This section presents a framework for deep learning-based intrusion detection to identify and classify potential vulnerabilities
nd attacks within IoT networks. The proposed framework is presented for three DL models, followed by a comprehensive evaluation
f the tasks performed at each stage and a thorough analysis of the significant contributions of each step. The subsequent discussion
omprehensively explains the intrusion detection dataset, hardware, software and libraries employed in this research.

.1. Proposed framework

The proposed system has been designed to retrieve packets from the data produced by the underlying IoT infrastructure and
dentify intrusions following sufficient training. The proposed framework entails employing a traffic capture mechanism from an
oT Network, as proposed in [39], to collect the traffic flow of IoT devices. This data is then utilized to emulate the operations of
n IoT-enabled Smart Home. The proposed framework involves utilizing a deep neural network trained on a dataset, CIC IoT 2022,
onsisting of network packets. The CICFlowMeter 4.0 is utilized as a feature extractor to extract relevant features from the packets
ransmitted through IoT networks [40]. The proposed framework illustrated in Figs. 4 and 5 is a newly developed Intrusion Detection
ystem that employs deep learning techniques to identify anomalies in the IoT networks. The training workflow of the proposed
ramework depicted in Fig. 4 comprises of five stages: feature extraction, data preprocessing, data balancing, feature selection, and
ata splitting. The application of a model for training follows these stages. Fig. 5 illustrates integrating Intrusion Detection Systems
IDS) with IoT Networks to identify and predict intrusions before the IoT network. After assessing the effectiveness of various models,
he optimal model will be selected for deployment to detect anomalies within IoT network.

Anomaly detection encompasses a range of techniques, such as packet dropping, vulnerability scanning, IP address blocking,
hysical inspections, and user notification. The model under consideration streamlines the process of choosing algorithms for limited
esources of IoT devices by considering actual performance and cost metrics, including accuracy and time cost. Tailored solutions
ddress the distinct requirements of individual users are of paramount importance within the framework of anomaly detection
ystems for the IoT security. The dataset is subjected to training through various DL models to identify anomalies. Thus, it can
e deduced from the results of the model that has been trained. The system can run an algorithm to identify the existence of
ny malicious packets and conduct a thorough examination of the IoT devices. Hence, the proposed model aims to provide an
est solution catering diverse user types, including large firms with abundant resources seeking maximum accuracy and startups
rioritizing cost efficiency.
8
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Fig. 4. Workflow of the proposed intrusion detection system for IoT network using DL.

3.2. Workflow description of the proposed framework

The process consists of the following stages including data preprocessing which have importance in data analysis, as it involves
cleaning, encoding, feature scaling and extracting the dataset. Data augmentation techniques is used to achieve class balancing and
feature selection to identify the most appropriate features. The feature preprocessing encompasses the initial step of dividing the
dataset, which is proceeded by the training, validation and testing of DL models.

Data Preprocessing: Initially, the network analyzer tool is employed to gather raw network traffic of IoT devices and extract
packet features [39]. Features extraction can be done using CIC Flow Meter 4.0 [40] and convert PCAP (Packet Capture) files into
CSV (comma-separated values) files. The dataset comprises 84 features, including 78 numerical values, five categorical values, and
one label. The dataset features are subject to cleaning, feature scaling and encoding techniques before given to the DL models.
9
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Fig. 5. Workflow of the proposed intrusion detection system for inference in IoT network using DL.

3.2.1. Data cleaning
Data cleaning involves the process of identifying and addressing errors, inadequate structure, duplication, or missing values

within the dataset. There are various ways through which data duplication or incorrect classification might occur during the
integration of different data sources [41]. The lack of a widely accepted methodology for defining each stage of the data cleaning
process may lead to anomalies in datasets. The reliability of results and algorithms can be compromised by the presence of inaccurate
data, despite achieving accuracy. Establishing a standardized framework for data cleaning process is imperative to ensure accuracy
and consistency across all iterations. The CIC IOT 2022 dataset used in this research is cleaned by dropping redundant packets and
removing missing and infinite values.

3.2.2. Categorical encoding
Converting categorical data into numerical data is commonly called label encoding, a widely used technique in DL. It involves

assigning a numerical value to each distinct categorical variable for efficient data processing by algorithms. For example, a dataset
absolute features values derived from the set are ‘HTTPFlood’, ‘UDPFlood’, ‘TCPFlood’. This step utilize label encoding to assign
numerical values to the features correspondingly. Another method for transforming categorical data into numerical data is One-Hot
encoding that is used to represent categorical variables as binary vectors [42]. As mentioned above, this approach generates a binary
vector for every category within the variable. The vector comprises zeros for all values except for the index value assigned as one
for corresponding class. It allows categorical variables to be used in mathematical algorithms that require numerical input.

• Consider a discrete categorical random variable, denoted as 𝑥, with 𝑛 distinct values 𝑥1, 𝑥2,… , 𝑥𝑛. The One-Hot encoding
process involves a specific value 𝑥𝑖 as a vector 𝑣, where each element of 𝑣 is zero except for the 𝑖th element, which is assigned
a value of 1.

𝑣𝑖𝑗 =

{

1 if 𝑥𝑖 = 𝑥𝑗 ,
0 otherwise.

(1)

• Let 𝑥 be a random variable defined over a set 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ}. We can denote the variables 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7,
and 𝑥 as 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, and ℎ, respectively. The One-Hot encoding representation for 𝑥 comprises of eight binary vectors:
10
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(1, 0, 0, 0, 0, 0, 0, 0),
(0, 1, 0, 0, 0, 0, 0, 0),
(0, 0, 1, 0, 0, 0, 0, 0),
(0, 0, 0, 1, 0, 0, 0, 0),
(0, 0, 0, 0, 1, 0, 0, 0),
(0, 0, 0, 0, 0, 1, 0, 0),
(0, 0, 0, 0, 0, 0, 1, 0),
(0, 0, 0, 0, 0, 0, 0, 1).
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⎭

(2)

Label encoding and One-Hot encoding techniques are used to convert categorical attributes into numeric values. The features
amely ‘Flow ID’, ‘Src IP’, ‘Dst IP’, ‘Time Stamp’, and ‘FIN Flag Cnt’ are subjected to label encoding which result into integer values of
02163, 876, 2138, 85714 and 8, respectively. The One-Hot encoding approach is employed in neural networks to handle categorical
ariables efficiently. This implementation is determined by the number of unique levels observed in the variables. In this work, the
olumn ‘Label’ is transformed into eight columns of normal and attack categories and eliminate label column from the dataset, as
hown in Eq. (2).

.2.3. Feature scaling
Feature scaling is a technique that involves modifying the range of values within a set of features according to a specified range.

his method must be used when a feature has a big value but does not affect any other features [41]. This includes standardization
nd normalization [43]. Normalization is a necessary step to mitigate the issue of significant variances during the merging process.
t is achieved by scaling all features to a standard range, thereby enabling optimization. Min-Max normalization is used with a
elected range of [0,1] to normalize the values of columns, thereby enabling them to be represented on a uniform scale.

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
× (𝑏 − 𝑎) + 𝑎, (3)

where,

𝑥 is the original value to be normalized.
𝑚𝑖𝑛(𝑥) is the smallest column feature value.
𝑚𝑎𝑥(𝑥) is the largest column feature value.
𝑥𝑛𝑜𝑟𝑚 is the normalized value.
𝑎 is the lower bound of desired normalization.
𝑏 is the upper bound of desired normalization.

Data Augmentation and Balancing: The problem of imbalanced data occurs when the distribution of samples across different
classes is uneven. It leads to a skewed dataset, where one class is imbalanced and may result in a biased model. The training
data generally undergoes re-sampling before classification, which augments the number of samples belonging to the minority class,
and under-sampling, which reduces the number of samples from the majority class. Imbalanced classification issues are frequently
encountered in various datasets because the minority class usually has insufficient data. One approach to rectify class imbalance is
the synthesis of additional data from the minority class, thus mitigating the issue of limited data availability.

Synthetic Minority Oversampling Technique (SMOTE) is a widely used approach for generating additional samples in the dataset.
The methodology relies on developing data packets that connect a given point with its K-nearest neighboring points [44]. The SMOTE
technique generates new samples from the existing dataset to attain a balanced dataset. It is employed to increase the number of
instances of the minority categories. Furthermore, an analysis is conducted to evaluate the impact of various factors, including
dimensionality reduction, size of the training set, and the number of neighbors (K) on the accuracy of the system. Additionally, a
qualitative analysis assesses the variables that affect the results. Following are the steps used to perform SMOTE analysis in this
research.

• The techniques involve identifying the samples that pertain to the minority class within the imbalanced dataset. The term
‘‘minority class’’ denotes the category with fewer instances than the ‘‘majority class’’.

• The SMOTE algorithm selects a sample from the minority class within the dataset. The chosen sample is denoted as 𝑋.
• Upon obtaining the designated sample 𝑋, it is imperative to identify its 𝑘 nearest neighbors originating from the minority

class. The parameter 𝑘 holds a significant value in determining the count of neighbors to be considered. The set of 𝑘 nearest
neighbors is denoted as 𝑁𝑁 .

• Synthetic samples 𝑁𝑁 are produced for each neighbor 𝑛 by interpolating between the minority sample 𝑋, and its neighbor
𝑛. A point is randomly selected on the line segment that links 𝑋 and 𝑛 to create an artificial specimen. The 𝛼 parameter,
known as the synthetic sample ratio, governs a numerical parameter that takes values within the interval [0, 1]. The value of
0 corresponds to the variable 𝑋, while 1 corresponds to the variable 𝑛.

• The generation of synthetic sample is given by Eq. (4).

𝑠 = 𝑋 + 𝛼(𝑛 −𝑋) (4)
11
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• The oversampling of a minority sample involves iteratively selecting a model, identifying its closest neighbors, and generating
synthetic illustrations. This process is repeated until the dataset is balanced.

Given the imbalanced nature of the dataset, a resampling technique is employed before classification to mitigate the potential
ssues arising from class imbalance. The dataset is balanced by using the undersampling of the majority class and oversampling of
he minority class. The dataset underwent SMOTE analysis, producing resampled data for the X and y variables. The experiment
as limited to eight categories, including three Normal classes (Power, Idle, and Interaction) and five Benign classes (HTTP Flood,
DP Flood, TCP Flood, RSTP, and Brute Force). The dataset yielded 476111 packets that underwent SMOTE analysis, encompassing
inary and multiclass categories.
Feature Selection: Feature selection is a technique that is used to retain features from data by reducing its dimensionality.

It helps to enhance storage efficiency and decrease computational complexity. Due to power limitation of IoT devices, process of
designing Intrusion Detection Systems (IDS) classifiers require low-dimensional features in both binary and multiclass classification.
Empirical data has demonstrated that this approach has yielded exceptional outcomes. In this research, Principal Component Analysis
(PCA) is used to convert the initial dataset into a lower-dimensional subspace while preserving the fundamental characteristics of
the original data by selecting and extracting relevant features.

Principal Component Analysis (PCA) is a statistical technique that aims to reduce the number of features in a dataset by using
orthogonal combinations of the original parameters that shows high variance [45]. The principal components are independent of
one another, eliminating correlated features that contribute insignificantly to decision-making process. The main steps in PCA are
computing the mean, standard deviation, covariance, cumulative proportion, eigen-vectors, and eigen-values [46]. The selection of
these combinations is based on the significance of the dataset. The principal components is obtained as a linear combinations of the
original variables which can capture the highest degree of variance in the dataset. Following are the main steps of PCA:

• Consider the matrix X, which has dimensions 𝑚 × 𝑛 and represents our dataset. Each row of 𝑋 corresponds to a distinct data
point, while each column corresponds to a unique feature. The computation of the mean vector, represented by 𝜇, is shown
by Eq. (5).

𝜇 = 1
𝑚

𝑚
∑

𝑖=1
𝑋𝑖. (5)

• For obtaining the mean-centered data matrix, denoted by 𝑋𝑖, the mean vector from each data point is subtracted.

𝑋𝑐 = 𝑋𝑖 − 𝜇. (6)

• The covariance matrix C is calculated by determining the covariance among the characteristics of the data centered around
the mean.

𝐶 = 1
𝑚

(

𝑋𝑇
𝑐 ⋅𝑋𝑐

)

. (7)

• An eigenvalue decomposition of the covariance matrix is performed to derive the eigenvectors and eigenvalues. The matrix
containing the eigenvectors is referred to as 𝑉 , while the eigenvalue matrix is denoted as 𝜆.

𝐶 = 𝑉 𝜆𝑉 𝑇 . (8)

• The matrix 𝑣 is of size 𝑛 × 𝑛 and comprises eigenvectors, representing each column. Additionally, 𝜆 is a diagonal matrix with
eigenvalues on the diagonal. To construct the matrix, choose the k eigenvectors corresponding to the 𝑣𝑘 largest eigenvalues.
The vector 𝑃 contains 𝑘 elements, denoted as 𝑣1 through 𝑣𝑘.

𝑃 = [𝑣1, 𝑣2,… , 𝑣𝑘]. (9)

• It can be observed that each column denoted by 𝑣𝑖 signifies a principal component. A procedure is carried out wherein the
mean-centered data is projected into the 𝑘 principal components to decrease the dimensionality of the data.

𝑋𝑝𝑐𝑎 = 𝑋𝑐𝑃 . (10)

The dependency among the variables in the dataset can be determined through correlation analysis. A correlation map is
generated to identify highly correlated features, and those with values greater than the threshold are removed. When creating
a model, features with a high degree of correlation that exceeds a threshold value of 0.95 are selected. The 𝑋𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑑 data is
transformed into 𝑋𝑝𝑐𝑎 by dimensionality reduction derived from Eq. (10), where each row represents a data point, and each column
represents the principal component. There are 83 features in the original dataset, however PCA retained only 65 binary and 67
multiclass components.

Feature Pre-processing: During the feature pre-processing stage, the processed data is divided into three categories which are
training, validation, and testing. The processed data for binary classification has 65 dimensions and the multiclass classification data
has 67 dimensions. Both normal and attack types are represented by the labels included in these sets.

Training Validation and Testing: Evaluating the performance of a model is done by dividing the dataset into training,
validation, and testing sets, with proportions of 60%, 20%, and 20%, respectively. The processed data is used to train three DL
models, including FFNN, LSTM and RandNN. These models are then evaluated using the validation datasets. The accuracy attained
through each model is assessed using the test set. The model is designed to categorize a ‘Normal’ and ‘Attack’ class for both binary
and multiclass classification problems.
12
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Fig. 6. Dataset’s statistical analysis shows packet distribution across various categories.

3.3. Description of the dataset

In this work, the CIC IOT 2022 dataset has been used for intrusion detection. The dataset and testbed arrangement as discussed
in [47] can be used for profiling, behavioral analysis, and vulnerability assessment of IoT devices using various protocols. The dataset
was captured using network traffic of IoT devices across distinct domains. Audio, Camera, and Home automation devices were used
by Canadian Institute for Cybersecurity (CIC) laboratory. Generation of the dataset involved profiling 60 IoT devices connected to
the IoT network. The dataset consist of packet headers that were collected from each device during various states, including when
it was powered on, idle, active, and during interactions through number of experiments of IoT traffic capture recording in 30 days.
Low Orbit Ion Cannon (LOIC) tool was used to launch a denial-of-service (DoS) attack using HTTP, UDP, and TCP Flooding on
IoT devices. Hydra and Nmap tools were used for bruteforce and Camera Real Time Streaming Protocol (RTSP) URL attacks for
evaluating IoT devices behaviors.

Conversion of Dataset: The CIC IOT 2022 dataset was stored in pcap files. In this research, all collected data of pcap files are
converted into csv files to extract features using the CICFlowMeter 4.0 on the Windows 10 operating system. The CICFlowMeter is
an open-source software that produces bidirectional flows by analyzing pcap files and extracting relevant characteristics from these
flows [48]. It converts network traffic flow into statistical features of the dataset. The CICFlowmeter 4.0 has the ability to select
features from a wireshark packets and includes a number of important features and flow timeout [40,49]. This method assigns an
arbitrary flow timeout value, such as 60 s for both TCP and UDP packets. Therefore, UDP flows end when a flow timeout occurs
while TCP flows end when a connection is broken.

The dataset consists of camera, audio and home automation devices categorized into four distinct normal classes; Power, Idle,
Active, and Interaction and five attack classes; HTTP Flood, TCP Flood, UDP Flood, RSTP, and Brute Force. The dataset comprises
84 distinct features and a label that denotes a normal or an attack class. The active class is excluded from this research due to
overlap with the idle class. The Idle class is subject to under-sampling by randomly selecting packets for a duration of three days.
The dataset comprises 476 111 records, of which 243 746 classify under the Normal label, and 232 365 belong to various attack
classes. Figs. 6 presents the distribution of the dataset of each class.

3.4. Hardware, software, and libraries

This work was conducted on Jupyter Notebook application which is an interactive Python-based IDE within the Anaconda distri-
bution for executing and evaluating the proposed methodology [50]. The study utilized Keras, a Python-based deep learning [51].
The hardware used is a Core i7-9700 CPU @3.00 GHz (8 CPUs) processor with a 32 GB RAM. Python 3.10.4 programming language
is used along with the open-source module pandas-profiling 3.6.6 for data analysis [52]. Several other factors affect the results of
the Deep Learning (DL) algorithm such as batch size, learning rate, and the type of optimizer employed for minimizing the loss
function. Optimization helps to minimize the cost function while reducing the resources and effort. After thoroughly evaluating the
available alternatives, the ADAM optimizer was selected due to its ability to maximize the categorical cross-entropy loss for multiple
classes [53].
13
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4. Experimental configuration of intrusion detection models

This section describes three proposed Deep Learning (DL) models for detecting intrusion and furnishes comprehensive spec-
fications. The following section delineates the mathematics of these models and architectural design of binary and multiclass
lassification for intrusion detection. The theoretical concepts of the traditional Machine Learning (ML) models will be discussed
or comparison with proposed models.

.1. Proposed model 1 : Feed Forward Neural Network

The first model used in this work to detect intrusion is the Feed Forward Neural Network (FFNN). FFNN has been successfully
odel used in the number of applications encompasses classification and recognition [54]. FFNN architecture presents the
yperparameter optimization by implementing Scikit learns, RandomizedSearchCV, and KerasClassifier wrapper for the Keras
ibrary. Hyperparameter optimization is used to identify the best set of hyperparameters for the given dataset. Four hyperparameters
re selected for specifying the neural network’s design, which includes the number of hidden layers in the neural network, the
umber of neurons in each hidden layer, the dropout rate to prevent overfitting and the L2 regularization coefficient. The model
s fine-tuned using a suitable set of hyperparameters to enhance classification accuracy and mitigate the risk of overfitting [34].
ropout regularization technique is used after every hidden layer to mitigate overfitting. The choices for selecting hyperparameter

ncludes a variety of configurations as mentioned below:

Number of hidden layers: [1, 2, 3]

Number of neurons: [64, 128, 256, 512]

Dropout regularization rate: [0.1, 0.2, 0.3, 0.4, 0.5]

L2 regularization rate: [0.001, 0.01, 0.1, 1]

Mathematical Modeling: The mathematical representation of proposed FFNN is derived in the following steps:

• For a given dataset, Let 𝐱 be the input vector, the output of the initial hidden layer is represented as:

ℎ1 = ReLU(𝑊1 ⋅ 𝑥 + 𝑏1), (11)

where 𝐖1 denotes the weight matrix that connects the input layer to the first hidden layer, 𝐛1 is the bias vector, and ReLU is
the activation function that implements the rectified linear unit. The output 𝐡1 computes the output of the first hidden layer.

• The output of the subsequent hidden layers of the neural network is represented by Eq. (12):

ℎ𝑖 = ReLU(𝑊𝑖 ⋅ ℎ𝑖−1 + 𝑏𝑖), (12)

where 𝑖 denotes the index of the layer.
• The output layer can be mathematically expressed as:

𝑦 = softmax(𝑊𝑜 ⋅ ℎnum_hidden_layers + 𝑏𝑜), (13)

where 𝐖𝑜 and 𝐛𝑜 denote the weight matrix and bias vector that connects the final hidden layer and the output layer,
respectively.

• The dropout technique involves a process of masking in which a portion of input units is set to zero during the training phase.
The masking process for each layer can be represented as 𝐌𝑖, a binary mask that has the same shape as the output of the
corresponding layer. Each output layer is obtained through element-wise multiplication with the corresponding mask in the
training phase as expressed by Eq. (14):

ℎ𝑖 =𝑀𝑖 ⋅ ReLU(𝑊𝑖 ⋅ ℎ𝑖−1 + 𝑏𝑖). (14)

• L2 regularization loss function is used to enhance weight minimization. Each layer’s weight matrices are modified according
to the loss function. In Eq. (15), the L2 regularization is determined as 0.5 multiplied by the L2 regularization coefficient.

𝐿2𝑟𝑒𝑔 = 0.5 ⋅ 𝑙2𝑟𝑒𝑔 ⋅
(

‖𝑊1‖
2 + ‖𝑊2‖

2 +⋯ + ‖𝑊𝑜‖
2) . (15)

where the coefficient 𝑙2𝑟𝑒𝑔 is used as the L2 regularization term, and |𝐖𝑖| denotes the sum of the Frobenius norms of the
weight matrices 𝐖𝑖.

Model Architecture: The input layer consist of 65 features for binary class and 67 features for multiclass classification.
he algorithm performs a randomized search over the hyperparameters to determine the best combination to detect intrusions

n the dataset. A cross-validation approach using three folds and ten number of iterations was conducted to evaluate the model
erformance. The model systematically iterates through various configuration of hyperparameters and identify the best combination
hat maximizes the performance using the RandomizedSearchCV in less processing time using training and validation sets. The
utomated optimization of the model’s architecture and regularization parameters eliminates the need of manual tuning, thereby
aving time and effort. Different hyperparameter combinations were tried out during the search process for each layer. After
ompleting the search process, the best configuration of the model hyperparameter is selected.
14
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Fig. 7. Architecture of FFNN for binary classification.

Fig. 8. Architecture of FFNN for multiclass classification.

Figs. 7 and 8 shows the proposed FFNN architecture for binary and multiclass classification. The model comprises three densely
connected hidden layers of 512 neurons for multiclass. The model output layer comprises of eight neurons, reflecting various number
of categories within the dataset. The model has two hidden layers for binary class, consist of 64 densely connected neurons to
the output layer of 2 neurons for each category. The ReLU activation function is used for hidden layers. The Softmax activation
function is used in the final layer, which is a widely adopted approach for addressing multiclass problems. The FFNN model uses
the Adam optimizer and the categorical cross-entropy loss function to facilitate weight update for training. The model is fine-
tuned by implementing the L2 regularization technique, a weight loss of 0.001 and a dropout rate of 0.1 for both binary and
multiclass classification. The model’s training process involved 100 epochs with 32, 64, and 128 batch sizes. Additionally, various
configurations of hidden layers and neurons within each layer were explored.
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4.2. Proposed model 2 : Long Short-Term Memory

The Long Short Term Memory (LSTM) algorithm tackles the data preprocessing requirements for tasks including time series,
rediction and classification. The proposed LSTM model analyzes complex and large datasets to detect cyber attacks. The model uses
STMs and dense layers in a sequential structure. LSTM layers collect input data on temporal relationships and long-term trends. The
roposed model consists of three LSTM layers, each with different combinations of LSTM units which consist of 16-16-16, 32-32-32,
4-64-64, 128-128-128 for binary class and 128-128-128, 256-128-128, 256-256-128, 256-256-256 for multiclass classification. The
STM layers are presented with a random normal distribution having a mean of 0.0 and a standard deviation of 1.0 through an
nitializer. This kind of randomization enhances parameter diversity, which boosts the model’s ability to learn complex patterns. A
oise initializer has been introduced to improve the learning capabilities of the model and manage data uncertainties efficiently.
hen LSTM layers are set up, patterns are built up so that sequential data can be sent from one layer to the next. The recurrence

nd bias initializers have been configured to use the initializer technique to make sure that weight initialization is identical.
Mathematical Modeling: For representing mathematical modeling of the proposed LSTM model, consider an example of the

STM layer having 256 units at time step 𝑡 which includes:

• The forget gate at time step t is given by Eq. (16):

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ), (16)

where,

𝑊𝑓 ∈ R256×256,

𝑏𝑓 ∈ R256.

• The input gate at time step t is computed as follows:

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), (17)

where,

𝑊𝑖 ∈ R256×256,

𝑏𝑖 ∈ R256.

• The candidate hidden state at time step t is computed as:

𝐶𝑡 ∼ tanh(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐 ), (18)

where,

𝑊𝑐 ∈ R256×256,

𝑏𝑐 ∈ R256.

• The cell state at time step t is given as:

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ �̃�𝑡. (19)

• The output gate at time step t is expressed as:

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜), (20)

where,

𝑊𝑜 ∈ R256×256,

𝑏𝑜 ∈ R256.

• The hidden state at time step t is calculated using Eq. (21):

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡), (21)

where,

𝜎 represents sigmoid activation function.
⊙ represents multiplication.

𝑊𝑓 ,𝑊𝑖,𝑊𝑐 ,𝑊𝑜 are weight matrices of each gate.
𝑏𝑓 , 𝑏𝑖, 𝑏𝑐 , 𝑏𝑜 are bias vectors of each state.

ℎ𝑡−1 represents the previous hidden state.
𝑥 represents the current input.
16
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Fig. 9. Architecture of LSTM for binary classification.

• For consideration, the first Dense Layer will take 256 units. The weighted sum at time step t of the first dense layer 𝑧𝑡 is
expressed as:

𝑧𝑡 = 𝑊𝑧 ⋅ ℎ𝑡−1 + 𝑏𝑧, (22)

where,

𝑊𝑧 ∈ R128×256,

𝑏𝑧 ∈ R128.

𝑊𝑧 are weight matrices.
𝑏𝑧 are bias vector.

• The 𝑅𝑒𝐿𝑈 activation function 𝑎𝑡 is applied to the weighted sum as follows:

𝑎𝑡 = max(0, 𝑧𝑡). (23)

• A dropout layer 𝑑𝑡 is used after every dense layer with a rate of 0.2 by applying the regularization technique to the activation
values 𝑎𝑡.

𝑑𝑡 = dropout(𝑎𝑡, 0.2). (24)

Model Architecture: The model architecture comprises of three LSTM layers and three dense layers. The number of units in
each layer is mentioned in the architecture of LSTM model, illustrated in Figs. 9 and 10 for binary and multiclass classification. The
model has the ability to capture complex non-linear relationships within the data by activating the dense layers using the Rectified
Linear Unit (ReLU) function. Moreover, the dense layer is subject to kernel regularization with a coefficient of 0.001 and a dropout
rate of 0.2 to address overfitting. The ADAM optimization algorithm is utilized for hyperparameter optimization, while categorical
cross-entropy function is employed to calculate the loss [55]. During the training phase, the model is provided with input sequences
and their corresponding labels. The best architecture consist of 128 units of three LSTM and fully connected dense layers for binary
classification and 256 units of three LSTM layers and 128 units of three fully connected dense layers for multiclass classification.

The model input, denoted as 𝑥𝑡, exhibits a dimensionality of 65 for binary and 67 for multiclass, whereas the previous hidden state,
represented by ℎ𝑡−1, possesses a dimension of 256 units. The dimensions of the 𝑊𝑓 ,𝑊𝑖,𝑊𝑐 ,𝑊𝑜 weight matrices can be determined
from the number of units in the LSTM layers which is 256. The sum of the dimensions of ℎ𝑡−1 and 𝑥𝑡 are 321 for binary and 323 for
multiclass. Moreover, the dimensions of these matrices would be (256, 321) and (256, 323). The bias vectors 𝑏 , 𝑏 , 𝑏 , 𝑏 must have
17
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Fig. 10. Architecture of LSTM for multiclass classification.

the same dimensions 256 as the number of units to maintain consistency. The weight matrices 𝑊𝑧 of the dense layers would possess
dimensions of (128, 256) to establish a connection between the current layer and the previous hidden state. Additionally, the bias
vectors 𝑏𝑧 has a dimension of 128 corresponding to the number of units. The dropout layer is used after every dense layer, with a
dropout rate of 0.2. The training procedure is executed for 100 epochs, utilizing batch sizes of 32, 64, and 128.

4.3. Proposed model 3 : Random Neural Network

The Random Neural Network (RandNN) is an Artificial Neural Network (ANN) that employs the random allocation of connection
weights among the neurons. Unlike conventional neural networks with fixed configurations, RandNN has a randomly generated
architecture, which provides a unique feature that allows for exploring a large range of network structures. The RandNN comprises
interconnected neurons organized into input, hidden, and output layers. The neurons in the RandNN are interconnected via random
connections, allowing for data transfer across the network efficiently. RandNN aims to understand the complexities of neuron
connections and activation function within a network. The random initialization of weights in RandNN enables applications such
as generating random patterns, investigating neural network characteristics, and examining network performance under complex
situations. Although random neural networks do not possess the capacity to acquire knowledge from data in the same manner as
conventional neural networks, they can still demonstrate exciting behaviors and interactions. A neuron’s signal count can be changed
using RandNN with positive or negative signals and zero signs. A neuron ‘‘fires’’ when its potential is positive, delivering random
positive or negative signals to other neurons. Negative signals establish limitations, while positive signals promote activation [56].
The model has abilities to boost its learning due to the implementation of probability constraints and simplify complex calculations.
Because the algorithm is fully distributed, it is perfect for deployment in hardware and IoT devices with minimal resources.

Mathematical Modeling: The mathematical representation of the proposed model makes it easier to understand the intricate
random patterns displayed by neurons. The model assumes that there is a system consisting of 𝑁 neurons, where each individual
neuron is exposed to both excitatory and inhibitory signals that originate from external sources. At a given time, a neuron’s excitation
level is represented by its internal state, denoted as 𝑠𝑛(𝑡). A mathematical model for a RandNN is explained in the following section.

4.3.1. Network description
Let us consider a RandNN model comprising 𝑁 neurons, where each individual neuron is exposed to both excitatory and

inhibitory signals that originate from external sources which may include sensors or other cells. The rate at which excitatory and
inhibitory signal received for a given neuron 𝑛 represented by the symbols 𝜓+𝑛 and 𝜓−𝑛, respectively where 𝑛 is an element of the
set 1,… , 𝑁 .
18
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The representation of the internal state of neuron 𝑛 at time 𝑡 ≥ 0 is denoted by 𝑠𝑛(𝑡). When the value of 𝑠𝑛(𝑡) is greater than
ero, the occurrence of an inhibitory signal directed toward neuron 𝑛 during time 𝑡 results in a decrease of one unit in its internal
tate, expressed as 𝑠𝑛(𝑡+) = 𝑠𝑛(𝑡) − 1. In cases where 𝑠𝑛(𝑡) = 0, the occurrence of an inhibitory signal does not exert any effect. The
ncrement of 𝑠𝑛(𝑡) by +1 is a consequence of an excitatory signal. A neuron 𝑛 is said to be in an excited state if its internal state,
epresented by 𝑠𝑛(𝑡), is greater than zero. The device is capable of releasing a signal with a probability of 𝑅𝑛𝛥𝑡 within the time
nterval [𝑡, 𝑡 + 𝛥𝑡]. 𝑅𝑛 > 0 denotes the firing rate of a given neuron, while 𝑅−1

𝑛 represents the average firing delay of the excited 𝑛th
euron.

.3.2. Neuronal interactions
Neuronal interactions can occur through various mechanisms that include:

• When neuron 𝛼 is excited, as shown by 𝑠𝑎(𝑡) > 0, its internal state decreases by one.

𝑠𝛼(𝑡+) = 𝑠𝛼(𝑡) − 1. (25)

• Neuron 𝛼 can send an excitatory signal to neuron 𝛽 with probability 𝜙+(𝛼, 𝛽), resulting in:

𝑠𝛼(𝑡+) =

{

𝑠𝛼(𝑡) − 1
𝑠𝛼(𝑡) + 1

(26)

• Neuron 𝛼 can transmit an inhibitory signal to neuron 𝛽, which occurs with a probability of 𝜙−(𝛼, 𝛽), which is leads to:

𝑠𝛼(𝑡+) =

{

𝑠𝛼(𝑡) − 1, if 𝑠𝛼(𝑡) > 0
0, if 𝑠𝛼(𝑡) = 0

(27)

• Neuron 𝛼 can activate neuron 𝛽 with a probability of 𝜙(𝛼, 𝛽). This activation function decreases the value of 𝑠𝛼(𝑡) by 1, given
that 𝑠𝛼(𝑡) is greater than 0. Therefore,

𝑠𝛼(𝑡+) =

{

𝑠𝛼(𝑡) − 1, if 𝑠𝛼(𝑡) > 0
𝑠𝛼(𝑡) − 1, otherwise,

(28)

If the trigger is activated, there are two possible outcomes:

• Neurons 𝛼 and 𝛽 have potential to increase the state of neuron 𝑛 by +1 while decreasing their own states by −1 with a
probability of 𝛿(𝛽, 𝑛), simultaneously.

• The transition to neuron 𝑛 is triggered with a probability of 𝜎(𝛽,n) and the above process is repeated.

4.3.3. Activation probability
The probability of activation for neuron 𝑛, indicated by 𝛾𝑛, can be calculated as follows:

𝛾𝑛 = 𝜀+𝑛𝑅𝑛 + 𝜀
−
𝑛 , (29)

where,

𝜀+𝑛 = 𝜓+
𝑛 +

𝑁
∑

𝛽=1,𝛽≠𝑛
𝑅𝛽𝛾𝛽𝜙

+(𝛽, 𝑛) +
∑

𝑚
𝜇𝑛𝑅

𝛽=1,𝑚−1
𝛼1

𝛾𝛼𝛽𝜙(𝛼𝛽 , 𝛼𝛽+1)𝛾𝑛𝛿(𝛼𝛽+1, 𝑛)

𝜀−𝑛 = 𝜓−
𝑛 +

𝑁
∑

𝛽=1,𝛽≠𝑛
𝑅𝛽𝛾𝛽𝜙

−(𝛽, 𝑛) +
∑

𝑚
𝜇𝑛𝑅

𝛽=1,𝑚−1
𝛼1

𝛾𝛼𝛽𝜙(𝛼𝛽 , 𝛼𝛽+1)𝛾𝑛𝜎(𝛼𝛽+1, 𝑛)

The activation threshold 𝜀+𝑛 and 𝜀−𝑛 for neuron 𝑛 is calculated, including their firing rates and probability with various interactions.
he thresholds affect neuron excitation and RandNN dynamics.

.3.4. Activation function
The activation function 𝜉(𝜂) is a important component in RandNN, where 𝜂 represent the input. This is the summation of the

roduct of the input values 𝜂𝑛, and their weights 𝛾𝑛.

𝛯(𝜂) =
∑

𝑛
𝛾𝑛𝜂𝑛. (30)

The activation function integrates the activation probabilities and external input to compute the overall activation of the network.
Model Architecture: The architecture consists of input and output neurons and the positive and negative weight associated

ith each neuron. The model integrates clusters, which represent extremely connected cells. Each cluster possesses a unique group
f neurons and can receive inhibitory input from cell units outside the cluster. Fig. 11 shows the RandNN architecture which
onsist of input, hidden and output layers. The proposed model determine the activation probability for a single cell inside a
luster considering excitatory and inhibitory inputs. It depend on firing rates, connection weights, and input values. Backpropagation
19
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Fig. 11. Architecture of Random Neural Network.

using the input neurons, connection matrices, learning rate and number of epochs. The algorithm helps in storing and retrieving
weights, the computation of neuron firing rates and determine loss or accuracy.

The SequentialRNN model is used with a modification in rnnsim library for training a RandNN to detect intrusion [56]. The
architecture comprises of a dual-layered structure with 4 and 6 hidden layers for binary and multiclass classification. The model
ses a learning rate of 1.0, 0.1, and 0.01 with 100 epochs. The input 𝑋, represent the dimension of 65 for binary and 67 for multiclass.
he predictive output is determined through recurrent updates of the firing rates of neurons, which is determine by the connectivity
nd weight matrices. The model considers the neurons interaction, firing rates, internal states, excitatory and inhibitory signal and
ctivation probabilities.

.4. Theoretical concepts of ML models

For comparison with the proposed Neural Networks, the theoretical concepts of the Naive Bayes, Decision Tree, K Nearest
eighbor, and Random Forest models are presented. The models also explore its architecture with mathematical equations.
Naive Bayes: Naive text classification uses Bayes due to its simplicity. Naive Bayes (NB) assumes that the features are

ndependent and normally distributed and calculates the probability of a data point belonging to a particular class on the Bayes
heorem [57]. Using NB for IDS may be challenging due to the feature independence assumption. It evaluates each attribute
ndependently, which may result in inaccurate classifications. Despite its simplicity, the NB analyzes attribute patterns to identify
otential threats. This model yields significant data but may fail to capture complex attack patterns. It may overlook characteristic
orrelations. NB simplify the likelihood by assuming feature independence as:
20
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where,

• 𝑥1 − 𝑥𝑛 are instance’s properties.
• Observing feature 𝑋𝑖 for class 𝑐 is 𝑃 (𝑋𝑖|𝐶 = 𝑐).
• A new instance is classified by the class with the highest posterior likelihood.

NB assumes feature independence, which may not be true in real life. When characteristics are interact, this assumption may
lead to inaccurate predictions. Since, it calculates probabilities using training data, NB is vulnerable to lack of data and imbalanced
class distributions.

Decision Tree: The Decision Tree (DT) model employs a hierarchical approach to partition the data and enable accurate
predictions of dataset [58]. This supervised learning technique can solve classification and regression problems. The DT model
creates a hierarchical structure with nodes and class labels representing leaf node properties. The decision tree’s main purpose is:

• Identify the optimal property and allocate it to the root node of the tree.
• Create subsets of the training data consisting of data with identical attribute values for each subset.
• Repeat the above steps until a final node is reached.

In dataset analysis, selecting the best attribute to serve as the root node of a decision tree is a crucial task. Information gain
is used for categorical categories, while the Gini index is better for continuous attributes. Entropy or Gini impurity can be used to
calculate information gain define by Eq. (31):

Information Gain = Entropy(p) − 1
𝑁

𝑁
∑

𝑖=1
𝑝𝑖 ⋅ Entropy(c𝑖) (31)

where,

• 𝑁 is the number of children.
• 𝑝𝑖 is the percentage of occurrences in child 𝑖.
• Entropy(p) and Entropy(c𝑖) are the entropies of the parent and child nodes.

The decision rule is essential for determining each node’s attribute and threshold used for data partitioning. The equation for
the decision rule that compares the attribute value of a given instance to a certain threshold and assigns the sample to the left or
right child node is as follows:

if, attribute_value ≤ threshold
If the condition is met, go to the left child node; otherwise, go to the right. In binary classification, the determination of the

lass label can be achieved by assigning the majority class. So, the class label is chosen by selecting the majority class present in
he leaf node. The diversity of decision trees is dependent on the implementation criteria used for evaluating and dividing nodes.
Random Forest: Random Forest (RF) is a supervised learning algorithm for classification tasks. The ensemble model uses a

ariety of trees to predict a certain target variable [59]. The algorithm receives a set of 𝑛 samples as input and generates many
decision trees using a subset of the available input features. Following that, a majority voting technique is performed on the results
of each tree to generate the forecast for the target variable. The RF operating mechanism is as follows:

• Choose 𝑘 features at random from a list of 𝑚 features in the data, where 𝑘 is significantly less than 𝑚.
• This algorithm finds the best division for a given collection of k attributes.
• Divide the node into its child nodes using the most effective split.
• Continue iterating the above process until an end node is reached.
• A forest of trees can be made by repeating the above steps.

To derive the mathematical representation, consider a dataset 𝐷 with 𝑛 instances of 𝑚 features using Eq. (32), where 𝑋 represents
the feature and 𝑦 represents class labels.

𝐷 = (𝑋1, 𝑦1), (𝑋2, 𝑦2),… , (𝑋𝑛, 𝑦𝑛). (32)

The RF approach employs bootstrapping to construct several decision trees by randomly picking subsets from the dataset.
Construction of decision trees includes selecting a random subset of features, 𝑏, from 𝐵 decision trees (where 𝑏 = 1, 2,… , 𝐵). The
act of voting consists of each decision tree 𝑏 contributing a prediction for the class label of a new instance 𝑋𝑡𝑒𝑠𝑡. The predicted class
label for tree 𝑏 can be denoted as:

�̂�𝑏(𝑋𝑡𝑒𝑠𝑡). (33)

The RF method combines the predictions of multiple decision trees to reduce overfitting. The ensemble of decision trees is
andomized by training each tree on a different bootstrap dataset and a subset of features. The RF predict class label via majority
oting, in which the individual decision tree predictions are evaluated collectively. The final prediction is determined by selecting
he class label with the most votes, formulated as:

�̂�rf(𝑋test) = argmax
∑

[�̂�𝑏(𝑋test) = 𝑖] (34)
21
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where 𝑖 = 1, 2,… , 𝐾 denotes the number of class labels in the dataset.
K-Nearest Neighbor: The K-Nearest Neighbor (KNN) algorithm is an ML technique that is based on the principles of supervised

learning [60]. The KNN algorithm classifies a new data point based on its similarity to the existing data points. The algorithm
optimizes the new data points by choosing the most similar category efficiently. This algorithm is considered non-parametric because
it makes no assumptions about the analyzed data. The ‘‘lazy learner’’ algorithm delays training set learning until classification is
achieved. The KNN algorithm holds the dataset during training. After that, the algorithm classifies new data into the closest category.

Consider a scenario involving the detection of credit card fraud. The KNN algorithm compared the attributes of a novel transaction
to those of previously classified malicious and normal transactions. The model determines whether a transaction is illegitimate or
legitimate by calculating the similarity between it and its nearest neighbors. If the majority of the transaction’s nearest neighbors
are identified as illegitimate the KNN algorithm labels the transaction as malicious. This approach enables the KNN algorithm to
recognize patterns in credit card transactions, resulting in the detection of fraud. KNN uses 𝑑 to discover 𝑋𝑡𝑒𝑠𝑡 for 𝑘 closest neighbors
n the dataset 𝐷. 𝑋𝑡𝑒𝑠𝑡 is projected class label shown by Eq. (35) where 𝑖 = 1, 2,… , 𝐾 is the dataset’s class label count.

𝐶(𝑋test) = argmax
𝑖

∑

𝑟
[𝐶(𝑋𝑟) = 𝑖]. (35)

This algorithm involves the computation of distances between the new instance and all instances in the dataset, resulting in
computationally intensive process. Inaccurate values of 𝑘 can result in either overfitting or underfitting. Specific attributes have

reater significance than others in practical scenarios like intrusion detection. However, the KNN algorithm assumes that all features
ossess equal importance. The KNN algorithm generates distances based on feature magnitude, making it dependent on feature size.
ignificant features may impact the computation of distance. When using this algorithm, the challenge is handling datasets with
mbalanced class distributions. If the percentage of the majority class is too high, it can compromise the accuracy of predictions.

. Experimental setup and results

In this section, a number of experimental results are presented to evaluate the three proposed DL models discussed in Section 4 to
ssess their capacity for generalization. The efficacy of the proposed DL models is determined by extracting the metrics to evaluate
he classification performance. Furthermore, a comparison with ML and other proven approaches described in the existing literature
s also presented.

.1. Evaluation metrics

The proposed models are evaluated through assessment metrics, such as accuracy, precision, recall, and F1 score, commonly
mployed in various domains, including threat detection. The following sections describes each metric, followed by formulas and
athematical justifications.
Accuracy: The term ‘‘accuracy’’ refers to the degree of correctness displayed by a model’s predictions. The accuracy rate is the

roportion of correctly classified instances (including true positives and negatives) to the total number of instances. It is calculated
sing Eq. (36):

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

, (36)

where,

• True Positive (TP): The count of correctly identified instances as positive (i.e., threats).
• True Negative (TN): The count of correctly identified instances as negative (i.e., non-threats).
• False Positive (FP): The count of instances incorrectly classified as positive (i.e., non-threats misclassified as threats).
• False Negative (FN): The count of instances that are incorrectly classified as negative (i.e., threats misclassified as non-threats).

Precision: The concept of precision refers to the degree of accuracy of positive predictions. The true positive rate is the
proportion of accurately predicted positive instances relative to the total number of positive instances predicted, including both
true and false positives. The formula for precision is given as:

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

. (37)

Recall: Recall, also known as sensitivity or true positive rate, measures the number of accurately predicted positive instances
true positives) relative to all true positive instances (true positives and false negatives). The mathematical expression is given
y Eq. (38):

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

. (38)

F1 Score: The F1 score is a metric that combines precision and recall. As a result, achieving an equilibrium between the two
easurements. The average of precision and recall helps when precision and recall have uneven choices. It is frequently used in ML

nd statistical analysis to evaluate the performance of a classification model. The mathematical expression is shown by Eq. (39):

F1 Score =
2 ⋅ (Precision ⋅ Recall)

Precision + Recall . (39)

The F1 score provides an unique value that highlights the combined performance of precision and recall.
22
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Table 2
Specifications of Feed Forward Neural Network model layers.

Model Binary class Multi class Input layer Hidden layer Dropout layer Output layer

Size Neuron Size Activation function Size Activation function

FFNN ✓ 65 2 64 0.1 ReLU 2 Softmax
FFNN ✓ 67 3 512 0.1 ReLU 8 Softmax

Table 3
Evaluation metrics of Feed Forward Neural Network model for binary classification.

Model Batch size Training accuracy Testing accuracy Training time Testing time Precision Recall F1 score

FFNN 128 0.9984 0.9993 530.89 2.8 0.9993 0.9993 0.9993
FFNN 64 0.9981 0.9989 850.78 2.89 0.9989 0.9989 0.9989
FFNN 32 0.9976 0.9990 1500.21 2.95 0.9990 0.9990 0.9990

Table 4
Evaluation metrics of Feed Forward Neural Network model for multiclass classification.

Model Batch size Training accuracy Testing accuracy Training time Testing accuracy Precision Recall F1 score

FFNN 128 0.9797 0.9872 10708.47 30.32 0.9873 0.9872 0.9872
FFNN 64 0.9748 0.9810 18 045.39 30.96 0.9814 0.9810 0.9809
FFNN 32 0.9733 0.9697 35 280.79 30.21 0.9708 0.9697 0.9698

5.2. Result analysis of Feed Forward Neural Network

Results of FFNN for binary and multiclass classification problems framework demonstrate the impact of various parameters
n its performance. The best binary classification configuration is achieved using 64 neurons in the two hidden layers, a dropout
ate of 0.1 and a regularization rate of 0.001. With a batch size of 128, the FFNN achieved the maximum accuracy of 99.93%,
recision of 99.93%, recall of 99.93%, and F1-score of 99.93%. The best configuration for multiclass is achieved using 512 neurons
n three hidden layers, a dropout rate of 0.1 and a regularization rate of 0.001. With a batch size of 128, the FFNN achieved the
aximum accuracy of 98.72%, precision of 98.73%, recall of 98.72%, and F1-score of 98.72%. The results highlight the importance

f modifying these parameters to enhance the FFNN’s efficiency in binary and multiclass, increasing its potential for adaptation and
redictions. The specifications of the FFNN are summarized in Table 2, and the metrics outcomes are evaluated in Tables 3 and 4.
igs. 12(a) and 12(b) depict the accuracy and loss plots for various batch sizes for binary and multiclass, respectively.

.3. Result analysis of Long Short-Term Memory

This research shows that different configurations have a significant impact when using LSTM layers for binary and multiclass
lassification tasks. Table 5 displays the LSTM model’s specifications. Various configurations for the binary class were evaluated on
6-16-16, 32-32-32, 64-64-64, and 128-128-128 with 32, 64 and 128 batch sizes. LSTM 16-16-16 achieved an accuracy of 99.78%
ith a 32 batch size, LSTM 128-128-128 attained an accuracy of 99.89% with a 64 batch size, and LSTM 16-16-16 achieved an
ccuracy of 99.85% with a 128 batch size, respectively. Among all tested configurations, the LSTM 128-128-128 with 64 batch
ize configuration demonstrated the highest accuracy. Increasing the number of LSTM layers allows for a more comprehensive
escription of temporal inter dependencies in data. Adding additional layers to the LSTM model facilitates the detection of more
omplex patterns and prolonged dependencies, resulting in enhanced efficiency and accuracy. The LSTM model results for all four
onfigurations with 32, 64, and 128 batch sizes for binary classification are shown in Table 6. Furthermore, the accuracy and loss
lots of the four LSTM models are shown in Figs. 13(a), 13(b), 14(a) and 14(b). The proposed LSTM model demonstrates an increased
bility to handle various data uncertainty patterns.

The LSTM configurations used in the multiclass are 128-128-128, 256-128-128, 256-256-128, and 256-256-256. The results
howed that the 256-256-256 LSTM model achieved 98.19% accuracy with a batch size of 32, while the 256-128-128 LSTM models
ttained 98.19% accuracy with a batch size of 64. Furthermore, the 256-256-256 LSTM models achieved an accuracy of 98.60%
ith batch sizes of 128. As a result, the configuration of 256-256-256 showed maximum accuracy. The results of the LSTM model in
arious configurations for multiclass are presented in Table 7. Furthermore, Figs. 15(a), 15(b), 16(a) and 16(b) show the accuracy
nd loss plots for the four LSTM models for various batch sizes. The analysis predicts that different LSTM layer configurations has
mproved model efficiency.

.4. Result analysis of Random Neural Network

Random connections in RandNN have hidden potential to capture complex dependencies. Experiment were conducted to examine
he effect of changing the number of hidden layers and learning rates in the RandNN architecture. The sizes of the hidden layers
etermine the connectivity between neurons, which facilitates the smooth access of data throughout the network. The framework
23

rovides techniques for incorporating additional layers into the model and integrating layer-to-layer connections. It also has the
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Fig. 12. Feed Forward Neural Network plots of different batch sizes for binary and multiclass classification.
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Fig. 13. Long Short-Term Memory plots of different batch sizes for binary classification.
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Fig. 14. Long Short-Term Memory plots of different batch sizes for binary classification.
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Table 5
Specifications of Long Short-Term Memory model layers.

Model Binary class Multi class Input layer LSTM layer Dense layer Dropout layer Output layer

Size Units Size Units Size Activation function Size Activation function

LSTM ✓ 65 3 16-16-16 3 16 0.2 ReLU 2 Softmax
LSTM ✓ 65 3 32-32-32 3 32 0.2 ReLU 2 Softmax
LSTM ✓ 65 3 64-64-64 3 64 0.2 ReLU 2 Softmax
LSTM ✓ 65 3 128-128-128 3 128 0.2 ReLU 2 Softmax
LSTM ✓ 67 3 128-128-128 3 128 0.2 ReLU 8 Softmax
LSTM ✓ 67 3 256-128-128 3 128 0.2 ReLU 8 Softmax
LSTM ✓ 67 3 256-256-128 3 128 0.2 ReLU 8 Softmax
LSTM ✓ 67 3 256-256-256 3 128 0.2 ReLU 8 Softmax

Table 6
Evaluation metrics of Long Short-Term Memory model for binary classification.

Model Batch size Training accuracy Testing accuracy Training time Testing time Precision Recall F1 score

LSTM 16-16-16 32 0.9965 0.9978 3944.10 4.74 0.9978 0.9978 0.9978
LSTM 32-32-32 32 0.9965 0.9967 3521.66 4.61 0.9967 0.9967 0.9967
LSTM 64-64-64 32 0.9961 0.9976 3960.71 5.18 0.9976 0.9976 0.9976
LSTM 128-128-128 32 0.9962 0.9968 21 337.72 27.43 0.9968 0.9968 0.9968
LSTM 16-16-16 64 0.9969 0.9949 1767.96 4.28 0.9949 0.9949 0.9949
LSTM 32-32-32 64 0.9967 0.9963 1915.67 4.63 0.9963 0.9963 0.9963
LSTM 64-64-64 64 0.9970 0.9979 2750.24 5.26 0.9979 0.9979 0.9979
LSTM 128-128-128 64 0.9978 0.9989 8714.29 12.72 0.9989 0.9989 0.9989
LSTM 16-16-16 128 0.9971 0.9985 1212.13 4.49 0.9985 0.9985 0.9985
LSTM 32-32-32 128 0.9969 0.9981 1140.05 4.90 0.9981 0.9981 0.9981
LSTM 64-64-64 128 0.9972 0.9975 1781.01 5.94 0.9976 0.9975 0.9975
LSTM 128-128-128 128 0.9975 0.9974 5287.01 12.43 0.9974 0.9974 0.9974

Table 7
Evaluation metrics of Long Short-Term Memory model for multiclass classification.

Model Batch size Training accuracy Testing accuracy Training time Testing time Precision Recall F1 score

LSTM 128-128-128 32 0.9746 0.9808 20 269.04 20.57 0.9808 0.9807 0.9808
LSTM 256-128-128 32 0.9750 0.9814 26 422.93 26.94 0.9813 0.9814 0.9813
LSTM 256-256-128 32 0.9737 0.9711 41 768.47 35.68 0.9813 0.9811 0.9809
LSTM 256-256-256 32 0.9749 0.9819 55 464.11 40.05 0.9819 0.9819 0.9818
LSTM 128-128-128 64 0.9771 0.9779 16 800.93 27.04 0.9783 0.9779 0.9776
LSTM 256-128-128 64 0.9776 0.9819 15 124.16 27.85 0.9822 0.9819 0.9818
LSTM 256-256-128 64 0.9776 0.9817 26 894.90 40.65 0.9819 0.9817 0.9818
LSTM 256-256-256 64 0.9765 0.9814 30 606.32 43.20 0.9815 0.9814 0.9813
LSTM 128-128-128 128 0.9798 0.9765 5775.76 20.74 0.9769 0.9765 0.9764
LSTM 256-128-128 128 0.9801 0.9835 8341.94 28.32 0.9837 0.9835 0.9834
LSTM 256-256-128 128 0.9795 0.9825 12 584.59 34.44 0.9828 0.9825 0.9824
LSTM 256-256-256 128 0.9812 0.9860 18724.71 45.14 0.9860 0.9860 0.9859

ability for added functionality to save and load weights. The specifications of the RandNN model are presented in Table 8. Four and
six hidden layers were used to evaluate the model’s performance for binary and multiclass classification. Table 9 shows the results
of the RandNN model for binary classification with 1.0, 0.1, and 0.01 learning rates (LR). The model attained the highest accuracy
of 96.42%, precision of 96.42%, recall of 96.42%, and F1-score of 96.42% for binary classification with 0.1 LR after 100 epochs.
Using four hidden layers and a LR of 0.1 improved the model’s performance by capturing more complex patterns. Table 10 displays
the multiclass classification evaluation metrics of the RandNN model under various LR. For multiclass, the model has achieved an
accuracy of 92.89%, precision of 89.07%, recall of 92.89%, and F1-score of 90.82% with a 1.0 LR. Figs. 17(a) and 17(b) show
accuracy and loss plots for binary and multiclass problems with varying LR. These findings demonstrate the effect of LR on the
performance of RandNN.

5.5. Comparison of proposed models with ML algorithms and DL based state-of-the-art IDS

In this section, results of the proposed DL models are compared with traditional ML models and a number of state-of-the-art
IDS models. Tables 12 and 13 show classification results of the proposed DL models and their comparison with traditional ML
techniques; such as Naive Bayes (NB), Decision Tree (DT), Random Forest (RF), and K Nearest Neighbor (KNN) algorithms. For binary
and multiclass cases, the proposed FFNN model outperformed the ML models and the two proposed LSTM and RandNN models.
As compared to LSTM and RandNN models, FFNN model boosts performance and learns complex non-linear correlations between
the input features and output classes by adjusting hyperparameters. All ML models are evaluated using 5-fold cross-validation for
training and assessing the model yield evaluation metrics presented in Tables 14 and 15, respectively. Although the accuracy of
27
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Fig. 15. Long Short-Term Memory plots of different batch sizes for multiclass classification.
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Fig. 16. Long Short-Term Memory plots of different batch sizes for multiclass classification.
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Fig. 17. Random Neural Network plots of different learning rates for binary and multiclass classification.
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Table 8
Specifications of Random Neural Network model layers.

Model Binary class Multi class Input neuron Hidden layer Weight initialization Output layer

Size Learning rate Size Firing rate

RandNN ✓ 65 4 1.0 0.2 2 0.1
RandNN ✓ 65 4 0.1 0.2 2 0.1
RandNN ✓ 65 4 0.01 0.2 2 0.1
RandNN ✓ 67 6 1.0 0.2 8 0.1
RandNN ✓ 67 6 0.1 0.2 8 0.1
RandNN ✓ 67 6 0.01 0.2 8 0.1

Table 9
Evaluation metrics of Random Neural Network model for binary classification.

Model LR Training accuracy Testing accuracy Training time Testing time Precision Recall F1 score

RandNN 1.0 0.9548 0.9588 459 092.01 509.16 0.9588 0.9588 0.9588
RandNN 0.1 0.9631 0.9642 461375.44 509.04 0.9642 0.9642 0.9642
RandNN 0.01 0.9538 0.9566 514 495.55 591.12 0.9567 0.9566 0.9566

Table 10
Evaluation metrics of Random Neural Network model for multiclass classification.

Model LR Training accuracy Testing accuracy Training time Testing time Precision Recall F1 score

RandNN 1.0 0.9306 0.9289 922337.77 628.72 0.8907 0.9289 0.9082
RandNN 0.1 0.9262 0.9261 938 497.95 634.95 0.9167 0.9261 0.9054
RandNN 0.01 0.9301 0.9280 925 653.00 624.96 0.8899 0.9280 0.9073

NB is only 69.67% for binary class and 58.26% for multiclass, it is known for its ease of use, speed, and effectiveness with high-
dimensional data. However, it makes the simplified assumption of features becoming independent, which may require improvement
with interdependent features. The NB model has the lowest accuracy. The DT technique achieved 99.76% accuracy for binary
classification and 98.33% for multiclass classification. However, it is subject to overfitting and needs assistance interpreting complex
interconnections.

RF improved prediction and accuracy to 99.87% for binary and 98.52% for multiclass by combining several DT but at the
ost of increased computation complexity and reduce ability to interpreted. Despite its simplicity and high accuracy of 99.75% for
inary and 97.51% for multiclass, KNN is highly sensitive to computation costs, neighbor selection, and dimensionality. The NB
pproach is a scalable and computationally effective solution for high-dimensional datasets, whereas DT algorithms have overfitting
ssues. The RF approach reduced overfitting and enhanced model adaptability. The KNN technique performs exceptionally well in
lustering-based classification applications. The issues of overfitting, dimensionality, and hyperparameter sensitivity can potentially
ead to challenges. Although the RF achieves greater accuracy, execution takes a long time. As mentioned above, the limitations
f the ML algorithms include the need for high quality training data, the risk of overfitting, the lack of interoperability and the
ynamic adjustment of hyperparameters. Considering data privacy, algorithm reliability, and potential biases is critical while using
hese models.

Various architectures of Deep Neural Networks (DNN) are constructed with varying dense hidden layers, and neuron counts in
ach layer to enhance accuracy. The FFNN model is capable of estimating a wide variety of complex functions and nonlinear rela-
ionship between inputs and outputs features. Integrating FFNN improves performance and allows it to learn complex relationships
sing hyperparameter configurations. The optimization of the FFNN was achieved through the selection of neurons, hidden layers,
nd regularization strength. As compared to FFNN, LSTM layers performs better in handling sequential data due to the ability to
imulate long-term dependencies and accurately capture complex temporal dynamics in IoTs. The weights initialization allow LSTM
or a more adaptive and exploratory approach to model such relationships. Random connections in RandNN allow for a creative
pproach, revealing the network’s hidden potential to capture complex dependencies that other network topologies might miss. The
andNN architecture achieves the best outcome, incorporating the number of hidden layers with different learning rates. Random
eight initialization enables a more flexible approach to analyzing complex relationships. The results showed that the accuracy
cquired from the CIC IoT 2022 dataset for detecting intrusions in the IoT network, are greater than those obtained from other
atasets. Therefore, the CIC IoT 2022 dataset possesses a clearly defined architecture suited for complex IoT networks.

The comparative analysis of proposed models with state-of-the-art DL-based IDS models is shown in Table 11. To demonstrate
he effectiveness of our proposed approach, we examined state-of-the-art DL models from recent years of literature. In [25], a
rained neural network intrusion detection system with main focus on the loss function uses three datasets. Although the accuracy
as 98.95%, but the F1 score was 68.48% using WUSTL-IIoT-2021 dataset. After training, the model did well in one class but not
ith other. In [28], a multi-head attention mechanism and feature extraction layer help Flow Transformer to evaluate complex

raffic. The authors experimental results show that CNN, LSTM, or Autoencoder to Flow Transformer do not improve classifier
erformance. Traditional ML algorithms have limited performance with Flow Transformer when used for complicated network
ata. Using ensemble learning, [26] addresses the class imbalance problem in ML. The bagging classifier utilizes a DNN as its
31



Internet of Things 24 (2023) 100936S. Allah Bakhsh et al.

C
n
a
d
o
n
o
f

Table 11
Comparison of the proposed deep learning models with state-of-the-art IDS.

Reference Classifier Dataset Accuracy Precision Recall F1 score

FNN-Focal 0.9326 0.9524 0.737 0.8011
CNN-Focal WUSTL-IIoT-2021 0.9308 0.9423 0.734 0.7963

FNN-Focal 0.9895 0.7722 0.641 0.6848
CNN-Focal WUSTL-EHMS-2020 0.9821 0.8854 0.665 0.705

FNN-Focal 0.9155 0.5559 0.638 0.5784

[25]

CNN-Focal Bot-IoT 0.8677 0.6165 0.633 0.5853

[27] CNN + LSTM UNSW-NB15 0.929 – – –

[24] RaNN ToN_IoT 0.9905 – – –

DNN 0.84 0.83 0.834 0.83[34] GAN-DNN UNSW-NB15 0.91 0.918 0.91 0.912

NSL-KDD 0.989 0.999 0.987 0.9931
UNSW-NB15 0.967 0.989 0.987 0.9878
CIC -IDS-2017 0.9874 0.9977 1.0 0.9986[26] DNN

BOT-IOT 0.9899 0.989 0.913 0.9495

RNN 0.9958 0.987 0.983 0.985
CNN-BiLSTM 0.9976 0.989 0.992 0.991
LSTM 0.9973 0.911 0.935 0.991[32]

CNN

CICIDS2017

0.9882 0.977 0.983 0.98

[30] DNN DS2OS Traffic 0.949 – – –

FFNN 0.9867 0.983 0.992 –
LSTM NSL-KDD 0.9644 0.9574 0.977 –

FFNN 0.9997 0.9995 1.0 –[37]

LSTM BoT-IoT 0.9995 0.999 1.0 –

[36] RNN NSL-KDD 0.9218 0.9023 – 0.9029

RF 0.9868 – – –
XGB 0.9867 – – –[10]
ET

IoTID20
0.9845 – – –

0.9812 0.9713 0.978 0.9746[35] DCNN IoTID20 0.7755 0.7876 0.734 0.76

[18] FCFFN IoT 0.9374 0.9371 0.938 0.9347

Ensemble 0.996 – – –
ANN 0.969 – – –
CNN 0.97 – – –[29]

LSTM

IoT-23

0.982 – – –

DT XGBOOST 0.9085 – – –
ANN XGBOOST 0.8439 – – –
LR XGBOOST 0.7764 – – –
KNN XGBOOST 0.8446 – – –

[41]

SVM XGBOOST

UNSW-NB15

0.6089 – – –

DAE + DNN NSL-KDD 0.8333 0.8602 0.833 0.8333
[43] DAE-DNN CSE-CIC-ID2018 0.9579 0.9538 0.958 0.9511

SJTU-AN21 0.86 0.868 – 0.855
ISCXVPN2016 0.952 0.953 – 0.952[28] Flow Transformer
CIC-IoT2022 0.985 0.985 – 0.984

FFNN 0.9993 0.9993 0.9993 0.9993
LSTM 0.9989 0.9989 0.9989 0.9989Proposed
RandNN

CIC-IoT2022
0.9642 0.9642 0.9642 0.9642

base estimator. The proposed IDS performs better with ensemble bagging learning and balanced distribution with class weights.
The proposed strategy outperforms class imbalance strategies in four historical intrusion detection datasets.

The widespread adoption of deep learning models can be attributed to their capacity to acquire complex patterns. In [27],
NN+LSTM based IDS is trained on the UNSW-NB15 dataset and obtained an accuracy of 93.21%. The author shows that an IIoT
etwork achieved high detection accuracy but significant loss during training, validation, and testing. The author in [18] proposed
system performed by keeping RNNs in the right position in the network, thus reducing loss and training time. A DL-IDS for IoT

evices covered five types of intrusion only and achieved an accuracy of only 93.74%. For the model to be network-adaptive, training
f deep IDS is required before deployment. Therefore, each IoT network must be trained using a large dataset from existing IoT
etworks and adopt feature engineering to employ the model properly. The comparative analysis shows that the proposed FFNN
utperformed well in terms of Accuracy, Precision, Recall and F1 score. In contrast to FFNN, LSTM architectures are recognized
or their efficacy in sequential data processing. Moreover, RandNN possesses a randomized architecture because of the ability to
32
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Table 12
Comparison of the proposed DL models with ML algorithms for binary classification.

Model NB DT RF KNN FFNN LSTM RandNN

Accuracy 0.6967 0.9976 0.9987 0.9975 0.9993 0.9989 0.9642
Precision 0.7574 0.9976 0.9987 0.9975 0.9993 0.9989 0.9642
Recall 0.6967 0.9975 0.9987 0.9975 0.9993 0.9989 0.9642
F1 score 0.6778 0.9975 0.9987 0.9975 0.9993 0.9989 0.9642

Table 13
Comparison of the proposed DL models with ML algorithms for multiclass classification.

Model NB DT RF KNN FFNN LSTM RandNN

Accuracy 0.5826 0.9833 0.9852 0.9751 0.9872 0.9860 0.9289
Precision 0.6362 0.9833 0.9851 0.9751 0.9873 0.9860 0.8907
Recall 0.5826 0.9833 0.9851 0.9751 0.9872 0.9860 0.9289
F1 score 0.5763 0.9832 0.9850 0.9751 0.9872 0.9860 0.9082

Table 14
Cross validation of machine learning algorithms for binary classification.

Cross validation Evaluation metrics Naive Bayes Decision Tree Random Forest K Nearest Neighbor

Accuracy 0.6881 0.9970 0.9985 0.9972
Precision 0.7454 0.9971 0.9984 0.9972
Recall 0.6881 0.9970 0.9985 0.9972Fold 1

F1 score 0.6687 0.9970 0.9984 0.9972

Accuracy 0.6876 0.9978 0.9989 0.9975
Precision 0.7450 0.9979 0.9989 0.9975
Recall 0.6876 0.9980 0.9989 0.9975Fold 2

F1 score 0.6681 0.9979 0.9989 0.9974

Accuracy 0.6888 0.9972 0.9985 0.9976
Precision 0.7514 0.9972 0.9985 0.9976
Recall 0.6888 0.9972 0.9985 0.9976Fold 3

F1 score 0.6680 0.9972 0.9985 0.9976

Accuracy 0.6988 0.9971 0.9982 0.9978
Precision 0.7514 0.9972 0.9981 0.9978
Recall 0.6888 0.9972 0.9982 0.9978Fold 4

F1 score 0.6680 0.9972 0.9981 0.9978

Accuracy 0.6990 0.9875 0.9987 0.9975
Precision 0.7630 0.9975 0.9987 0.9975
Recall 0.6890 0.9975 0.9987 0.9975Fold 5

F1 score 0.6679 0.9974 0.9987 0.9975

handle nonlinear relationships and interactions between features effectively. However, acquiring large amounts of labeled data and
computational resources is sometimes necessary. Conventional ML models are efficient, scalable, and easy to interpret, but only in
certain circumstances. Researchers can benefit from an extensive review of DL and traditional ML tradeoffs. Researchers can use the
study findings to understand better which framework will work best for their specific needs, data and available computing power.

6. Conclusion and future work

This paper demonstrates the efficacy of deep learning-based IDS employing FFNN, LSTM, and RandNN models in countering
yber threats in IoT environments. The RandNN model exhibits its potential due to random connections, thus facilitating a
ore exploratory approach, enabling the model to capture intricate dependencies and uncovering insights that might not be

pparent in other architectures. The LSTM model shows strong suitability in addressing prolonged dependencies and effectively
apturing temporal dynamics within the IoT data. Finally, the FFNN model has demonstrated superior results when compared
ith the proposed RandNN and LSTM models, and other state-of-the-art IDS techniques. Moreover, it has the ability to enhance

he overall performance of an IDS by learning complex associations between input characteristics and output classifications. The
roposed IDS framework enables the extraction and classification of features in a versatile manner, thereby facilitating the efficient
dentification of diverse cyber threats in IoT environments. The models can adjust to an IoT network’s ever-changing and dynamic
haracteristics, thereby contributing to proactive mitigation of cyber threats. The results in this paper reflects compelling insights
nto the performance of various classifiers in effectively identifying a wide range of cyberattacks. The challenges associated with
esearch in this field encompass several key aspects. These include the need for extensive and diverse datasets to ensure the optimal
raining of models and the requirement for computational resources capable of effectively managing the complexity of IoT data.

With the increase in security challenges encountered by IoT, there could be numerous areas for future research that can
33
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Table 15
Cross validation of machine learning algorithms for multiclass classification.

Cross validation Evaluation metrics Naive Byes Decision Tree Random Forest K Nearest Neighbors

Accuracy 0.5813 0.9833 0.9848 0.9749
Precision 0.6347 0.9830 0.9847 0.9748
Recall 0.5813 0.9833 0.9847 0.9749Fold 1

F1 score 0.5754 0.9832 0.9847 0.9748

Accuracy 0.5824 0.9835 0.9850 0.9754
Precision 0.6355 0.9834 0.9850 0.9753
Recall 0.5824 0.9834 0.9849 0.9754Fold 2

F1 score 0.5757 0.9833 0.9850 0.9753

Accuracy 0.5803 0.9832 0.9852 0.9751
Precision 0.5745 0.9833 0.9852 0.9751
Recall 0.5826 0.9833 0.9851 0.9751Fold 3

F1 score 0.6360 0.9833 0.9852 0.9750

Accuracy 0.5826 0.9833 0.9852 0.9753
Precision 0.6360 0.9834 0.9851 0.9753
Recall 0.5826 0.9835 0.9852 0.9753Fold 4

F1 score 0.5763 0.9832 0.9850 0.9753

Accuracy 0.5866 0.9833 0.9854 0.9750
Precision 0.6394 0.9834 0.9854 0.9750
Recall 0.5866 0.9833 0.9854 0.9750Fold 5

F1 score 0.5798 0.9833 0.9854 0.9750

methodologies in the development of more resilient and sophisticated IDS for IoT. This can help to detect and prevent advanced
intrusion attempts with increased precision and effectiveness through the utilization of DL algorithms, such as Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs), and Transformers. Moreover, incorporating federated learning techniques,
which enable collaborative and privacy-preserving training of models on IoT devices can enhance intrusion detection capabilities by
incorporating scalability and diversity. Ensemble techniques and hybrid architectures can be studied for better intrusion detection
and advanced cyber threats. In addition, it is imperative to investigate adversarial defense mechanisms to safeguard DL-based IDS
against emerging attack vectors. Exploring these areas could lead to a substantial contribution to achieve IoT security and enhancing
the overall reliability of IoT implementations in the foreseeable future.
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