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Abstract

In this article we introduce the Arcade Learning Environment (ALE): both a chal-
lenge problem and a platform and methodology for evaluating the development of general,
domain-independent AI technology. ALE provides an interface to hundreds of Atari 2600
game environments, each one dierent, interesting, and designed to be a challenge for
human players. ALE presents signicant research challenges for reinforcement learning,
model learning, model-based planning, imitation learning, transfer learning, and intrinsic
motivation. Most importantly, it provides a rigorous testbed for evaluating and compar-
ing approaches to these problems. We illustrate the promise of ALE by developing and
benchmarking domain-independent agents designed using well-established AI techniques
for both reinforcement learning and planning. In doing so, we also propose an evaluation
methodology made possible by ALE, reporting empirical results on over 55 dierent games.
All of the software, including the benchmark agents, is publicly available.

1. Introduction

A longstanding goal of articial intelligence is the development of algorithms capable of
general competency in a variety of tasks and domains without the need for domain-specic
tailoring. To this end, dierent theoretical frameworks have been proposed to formalize the
notion of big articial intelligence (e.g., Russell, 1997; Hutter, 2005; Legg, 2008). Similar
ideas have been developed around the theme of lifelong learning : learning a reusable, high-
level understanding of the world from raw sensory data (Thrun & Mitchell, 1995; Pierce &
Kuipers, 1997; Stober & Kuipers, 2008; Sutton et al., 2011). The growing interest in com-
petitions such as the General Game Playing competition (Genesereth, Love, & Pell, 2005),
Reinforcement Learning competition (Whiteson, Tanner, & White, 2010), and the Inter-
national Planning competition (Coles et al., 2012) also suggests the articial intelligence
communitys desire for the emergence of algorithms that provide general competency.

Designing generally competent agents raises the question of how to best evaluate them.
Empirically evaluating general competency on a handful of parametrized benchmark prob-
lems is, by denition, awed. Such an evaluation is prone to method overtting (Whiteson,
Tanner, Taylor, & Stone, 2011) and discounts the amount of expert eort necessary to
transfer the algorithm to new domains. Ideally, the algorithm should be compared across
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domains that are (i) varied enough to claim generality, (ii) each interesting enough to be
representative of settings that might be faced in practice, and (iii) each created by an
independent party to be free of experimenters bias.

In this article, we introduce the Arcade Learning Environment (ALE): a new challenge
problem, platform, and experimental methodology for empirically assessing agents designed
for general competency. ALE is a software framework for interfacing with emulated Atari
2600 game environments. The Atari 2600, a second generation game console, was originally
released in 1977 and remained massively popular for over a decade. Over 500 games were
developed for the Atari 2600, spanning a diverse range of genres such as shooters, beatem
ups, puzzle, sports, and action-adventure games; many game genres were pioneered on the
console. While modern game consoles involve visuals, controls, and a general complexity
that rivals the real world, Atari 2600 games are far simpler. In spite of this, they still pose
a variety of challenging and interesting situations for human players.

ALE is both an experimental methodology and a challenge problem for general AI com-
petency. In machine learning, it is considered poor experimental practice to both train and
evaluate an algorithm on the same data set, as it can grossly over-estimate the algorithms
performance. The typical practice is instead to train on a training set then evaluate on a
disjoint test set. With the large number of available games in ALE, we propose that a sim-
ilar methodology can be used to the same eect: an approachs domain representation and
parametrization should be rst tuned on a small number of training games, before testing
the approach on unseen testing games. Ideally, agents designed in this fashion are evalu-
ated on the testing games only once, with no possibility for subsequent modications to the
algorithm. While general competency remains the long-term goal for articial intelligence,
ALE proposes an achievable stepping stone: techniques for general competency across the
gamut of Atari 2600 games. We believe this represents a goal that is attainable in a short
time-frame yet formidable enough to require new technological breakthroughs.

2. Arcade Learning Environment

We begin by describing our main contribution, the Arcade Learning Environment (ALE).
ALE is a software framework designed to make it easy to develop agents that play arbitrary
Atari 2600 games.

2.1 The Atari 2600

The Atari 2600 is a home video game console developed in 1977 and sold for over a decade
(Montfort & Bogost, 2009). It popularized the use of general purpose CPUs in game console
hardware, with game code distributed through cartridges. Over 500 original games were
released for the console; homebrew games continue to be developed today, over thirty years
later. The consoles joystick, as well as some of the original games such as Adventure and
Pitfall!, are iconic symbols of early video games. Nearly all arcade games of the time –
Pac-Man and Space Invaders are two well-known examples – were ported to the console.

Despite the number and variety of games developed for the Atari 2600, the hardware is
relatively simple. It has a 1.19Mhz CPU and can be emulated much faster than real-time
on modern hardware. The cartridge ROM (typically 2–4kB) holds the game code, while the
console RAM itself only holds 128 bytes (1024 bits). A single game screen is 160 pixels wide
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Figure 1: Screenshots of Pitfall! and Space Invaders.

and 210 pixels high, with a 128-colour palette; 18 actions can be input to the game via a
digital joystick: three positions of the joystick for each axis, plus a single button. The Atari
2600 hardware limits the possible complexity of games, which we believe strikes the perfect
balance: a challenging platform oering conceivable near-term advancements in learning,
modelling, and planning.

2.2 Interface

ALE is built on top of Stella1, an open-source Atari 2600 emulator. It allows the user to
interface with the Atari 2600 by receiving joystick motions, sending screen and/or RAM
information, and emulating the platform. ALE also provides a game-handling layer which
transforms each game into a standard reinforcement learning problem by identifying the
accumulated score and whether the game has ended. By default, each observation consists
of a single game screen (frame): a 2D array of 7-bit pixels, 160 pixels wide by 210 pixels
high. The action space consists of the 18 discrete actions dened by the joystick controller.
The game-handling layer also species the minimal set of actions needed to play a particular
game, although none of the results in this paper make use of this information. When running
in real-time, the simulator generates 60 frames per second, and at full speed emulates up to
6000 frames per second. The reward at each time-step is dened on a game by game basis,
typically by taking the dierence in score or points between frames. An episode begins on
the rst frame after a reset command is issued, and terminates when the game ends. The
game-handling layer also oers the ability to end the episode after a predened number of
frames2. The user therefore has access to several dozen games through a single common
interface, and adding support for new games is relatively straightforward.

ALE further provides the functionality to save and restore the state of the emulator.
When issued a save-state command, ALE saves all the relevant data about the current
game, including the contents of the RAM, registers, and address counters. The restore-
state command similarly resets the game to a previously saved state. This allows the use of
ALE as a generative model to study topics such as planning and model-based reinforcement
learning.

1. http://stella.sourceforge.net/
2. This functionality is needed for a small number of games to ensure that they always terminate. This

prevents situations such as in Tennis, where a degenerate agent could choose to play indenitely by
refusing to serve.
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2.3 Source Code

ALE is released as free, open-source software under the terms of the GNU General Public
License. The latest version of the source code is publicly available at:

http://arcadelearningenvironment.org

The source code for the agents used in the benchmark experiments below is also available
on the publication page for this article on the same website. While ALE itself is written
in C++, a variety of interfaces are available that allow users to interact with ALE in
the programming language of their choice. Support for new games is easily added by
implementing a derived class representing the games particular reward and termination
functions.

3. Benchmark Results

Planning and reinforcement learning are two dierent AI problem formulations that can
naturally be investigated within the ALE framework. Our purpose in presenting benchmark
results for both of these formulations is two-fold. First, these results provide a baseline
performance for traditional techniques, establishing a point of comparison with future,
more advanced, approaches. Second, in describing these results we illustrate our proposed
methodology for doing empirical validation with ALE.

3.1 Reinforcement Learning

We begin by providing benchmark results using SARSA(λ), a traditional technique for
model-free reinforcement learning. Note that in the reinforcement learning setting, the
agent does not have access to a model of the game dynamics. At each time step, the
agent selects an action and receives a reward and an observation, and the agents aim is
to maximize its accumulated reward. In these experiments, we augmented the SARSA(λ)
algorithm with linear function approximation, replacing traces, and -greedy exploration.
A detailed explanation of SARSA(λ) and its extensions can be found in the work of Sutton
and Barto (1998).

3.1.1 Feature Construction

In our approach to the reinforcement learning setting, the most important design issue is
the choice of features to use with linear function approximation. We ran experiments using
ve dierent sets of features, which we now briey explain; a complete description of these
feature sets is given in Appendix A. Of these sets of features, BASS, DISCO and RAM
were originally introduced by Naddaf (2010), while the rest are novel.

Basic. The Basic method, derived from Naddafs BASS (2010), encodes the presence of
colours on the Atari 2600 screen. The Basic method rst removes the image background
by storing the frequency of colours at each pixel location within a histogram. Each game
background is precomputed oine, using 18,000 observations collected from sample trajec-
tories. The sample trajectories are generated by following a human-provided trajectory for
a random number of steps and subsequently selecting actions uniformly at random. The
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screen is then divided into 16× 14 tiles. Basic generates one binary feature for each of the
128 colours and each of the tiles, giving a total of 28,672 features.

BASS. The BASS method behaves identically to the Basic method save in two respects.
First, BASS augments the Basic feature set with pairwise combinations of its features.
Second, BASS uses a smaller, 8-colour encoding to ensure that the number of pairwise
combinations remains tractable.

DISCO. The DISCO method aims to detect objects within the Atari 2600 screen. To
do so, it rst preprocesses 36,000 observations from sample trajectories generated as in the
Basic method. DISCO also performs the background subtraction steps as in Basic and
BASS. Extracted objects are then labelled into classes. During the actual training, DISCO
infers the class label of detected objects and encodes their position and velocity using tile
coding (Sutton & Barto, 1998).

LSH. The LSH method maps raw Atari 2600 screens into a small set of binary features
using Locally Sensitive Hashing (Gionis, Indyk, & Motwani, 1999). The screens are mapped
using random projections, such that visually similar screens are more likely to generate the
same features.

RAM. The RAM method works on an entirely dierent observation space than the other
four methods. Rather than receiving in Atari 2600 screen as an observation, it directly
observes the Atari 2600s 1024 bits of memory. Each bit of RAM is provided as a binary
feature together with the pairwise logical-AND of every pair of bits.

3.1.2 Evaluation Methodology

We rst constructed two sets of games, one for training and the other for testing. We used
the training games for parameter tuning as well as design renements, and the testing games
for the nal evaluation of our methods. Our training set consisted of ve games: Asterix,
Beam Rider, Freeway, Seaquest and Space Invaders. The parameter search involved
nding suitable values for the parameters to the SARSA(λ) algorithm, i.e. the learning rate,
exploration rate, discount factor, and the decay rate λ. We also searched the space of feature
generation parameters, for example the abstraction level for the BASS agent. The results
of our parameter search are summarized in Appendix C. Our testing set was constructed
by choosing semi-randomly from the 381 games listed on Wikipedia3 at the time of writing.
Of these games, 123 games have their own Wikipedia page, have a single player mode, are
not adult-themed or prototypes, and can be emulated in ALE. From this list, 50 games
were chosen at random to form the test set.

Evaluation of each method on each game was performed as follows. An episode starts on
the frame that follows the reset command, and terminates when the end-of-game condition
is detected or after 5 minutes of real-time play (18,000 frames), whichever comes rst.
During an episode, the agent acts every 5 frames, or equivalently 12 times per second of
gameplay. A reinforcement learning trial consists of 5,000 training episodes, followed by
500 evaluation episodes during which no learning takes place. The agents performance is

3. http://en.wikipedia.org/wiki/List of Atari 2600 games (July 12, 2012)
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Game Basic BASS DISCO LSH RAM Random Const Perturb Human

Asterix 862 860 755 987 943 288 650 338 620
Seaquest 579 665 422 509 594 108 160 451 156

Boxing -3 16 12 10 44 -1 -25 -10 -2
H.E.R.O. 6053 6459 2720 3836 3281 712 0 148 6087
Zaxxon 1392 2069 70 3365 304 0 0 2 820

Table 1: Reinforcement Learning results for selected games. Asterix and Seaquest are
part of the training set.

measured as the average score achieved during the evaluation episodes. For each game, we
report our methods average performance across 30 trials.

For purposes of comparison, we also provide performance measures for three simple
baseline agents – Random, Const and Perturb – as well as the performance of a non-expert
human player. The Random agent picks a random action on every frame. The Const agent
selects a single xed action throughout an episode; our results reect the highest score
achieved by any single action within each game. The Perturb agent selects a xed action
with probability 0.95 and otherwise acts uniformly randomly; for each game, we report the
performance of the best policy of this type. Additionally, we provide human player results
that report the ve-episode average score obtained by a beginner (who had never previously
played Atari 2600 games) playing selected games. Our aim is not to provide exhaustive or
accurate human-level benchmarks, which would be beyond the scope of this paper, but
rather to oer insight into the performance level achieved by our agents.

3.1.3 Results

A complete report of our reinforcement learning results is given in Appendix D. Table 1
shows a small subset of results from two training games and three test games. In 40 games
out of 55, learning agents perform better than the baseline agents. In some games, e.g.,
Double Dunk, Journey Escape and Tennis, the no-action baseline policy performs
the best by essentially refusing to play and thus incurring no negative reward. Within the
40 games for which learning occurs, the BASS method generally performs best. DISCO
performed particularly poorly compared to the other learning methods. The RAM-based
agent, surprisingly, did not outperform image-based methods, despite building its represen-
tation from raw game state. It appears the screen image carries structural information that
is not easily extracted from the RAM bits.

Our reinforcement learning results show that while some learning progress is already pos-
sible in Atari 2600 games, much more work remains to be done. Dierent methods perform
well on dierent games, and no single method performs well on all games. Some games are
particularly challenging. For example, platformers such as Montezuma’s Revenge seem
to require high-level planning far beyond what our current, domain-independent methods
provide. Tennis requires fairly elaborate behaviour before observing any positive reward,
but simple behaviour can avoid negative rewards. Our results also highlight the value of
ALE as an experimental methodology. For example, the DISCO approach performs rea-
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sonably well on the training set, but suers a dramatic reduction in performance when
applied to unseen games. This suggests the method is less robust than the other methods
we studied. After a quick glance at the full table of results in Appendix D, it is clear that
summarizing results across such varied domains needs further attention; we explore this
issue further in Section 4.

3.2 Planning

The Arcade Learning Environment can naturally be used to study planning techniques by
using the emulator itself as a generative model. Initially it may seem that allowing the
agent to plan into the future with a perfect model trivializes the problem. However, this
is not the case: the size of state space in Atari 2600 games prohibits exhaustive search.
Eighteen dierent actions are available at every frame; at 60 frames per second, looking
ahead one second requires 1860 ≈ 1075 simulation steps. Furthermore, rewards are often
sparsely distributed, which causes signicant horizon eects in many search algorithms.

3.2.1 Search Methods

We now provide benchmark ALE results for two traditional search methods. Each method
was applied online to select an action at every time step (every ve frames) until the game
was over.

Breadth-rst Search. Our rst approach builds a search tree in a breadth-rst fashion
until a node limit is reached. Once the tree is expanded, node values are updated recursively
from the bottom of the tree to the root. The agent then selects the action corresponding
to the branch with the highest discounted sum of rewards. Expanding the full search tree
requires a large number of simulation steps. For instance, selecting an action every 5 frames
and allowing a maximum of 100,000 simulation steps per frame, the agent can only look
ahead about a third of a second. In many games, this allows the agent to collect immediate
rewards and avoid death but little else. For example, in Seaquest the agent must collect
a swimmer and return to the surface before running out of air, which involves planning far
beyond one second.

UCT: Upper Condence Bounds Applied to Trees. A preferable alternative to
exhaustively expanding the tree is to simulate deeper into the more promising branches.
To do this, we need to nd a balance between expanding the higher-valued branches and
spending simulation steps on the lower-valued branches to get a better estimate of their
values. The UCT algorithm, developed by Kocsis and Szepesvári (2006), deals with the
exploration-exploitation dilemma by treating each node of a search tree as a multi-armed
bandit problem. UCT uses a variation of UCB1, a bandit algorithm, to choose which child
node to visit next. A common practice is to apply a t-step random simulation at the end
of each leaf node to obtain an estimate from a longer trajectory. By expanding the more
valuable branches of the tree and carrying out a random simulation at the leaf nodes, UCT
is known to perform well in many dierent settings (Browne et al., 2012).

Our UCT implementation was entirely standard, except for one optimization. Few Atari
games actually distinguish between all 18 actions at every time step. In Beam Rider, for
example, the down action does nothing, and pressing the button when a bullet has already
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Game Full Tree UCT Best Learner Best Baseline

Asterix 2136 290700 987 650
Seaquest 288 5132 665 451

Boxing 100 100 44 -1
H.E.R.O. 1324 12860 6459 712
Zaxxon 0 22610 3365 2

Table 2: Results for selected games. Asterix and Seaquest are part of the training set.

been shot has no eect. We exploit this fact as follows: after expanding the children of a
node in the search tree, we compare the resulting emulator states. Actions that result in
the same state are treated as duplicates and only one of the actions is considered in the
search tree. This reduces the branching factor, thus allowing deeper search. At every step,
we also reuse the part of our search tree corresponding to the selected action. Pseudocode
for our implementation of the UCT algorithm is given in Appendix B.

3.2.2 Experimental Setup

We designed and tuned our algorithms based on the same ve training games used in
Section 3.1, and subsequently evaluated the methods on the fty games of the testing set.
The training games were used to determine the length of the search horizon as well as the
constant controlling the amount of exploration at internal nodes of the tree. Each episode
was set to last up to 5 minutes of real-time play (18,000 frames), with actions selected every
5 frames, matching our settings in Section 3.1.2. On average, each action selection step
took on the order of 15 seconds. We also used the same discount factor as in Section 3.1.
We ran our algorithms for 10 episodes per game. Details of the algorithmic parameters can
be found in Appendix C.

3.2.3 Results

A complete report of our search results is given in Appendix D. Table 2 shows results on
a selected subset of games. For reference purposes, we also include the performance of the
best learning agent and the best baseline policy from Table 1. Together, our two search
methods performed better than both learning agents and the baseline policies on 49 of 55
games. In most cases, UCT performs signicantly better than breadth-rst search. Four of
the six games for which search methods do not perform best are games where rewards are
sparse and require long-term planning. These are Freeway, Private Eye, Montezuma’s
Revenge and Venture.

4. Evaluation Metrics for General Atari 2600 Agents

Applying algorithms to a large set of games as we did in Sections 3.1 and 3.2 presents
diculties when interpreting the results. While the agents goal in all games is to maximize
its score, scores for two dierent games cannot be easily compared. Each game uses its own
scale for scores, and dierent game mechanics make some games harder to learn than others.
The challenges associated with comparing general agents has been previously highlighted
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Figure 2: Left to right: random-normalized, baseline and inter-algorithm scores.

by Whiteson et al. (2011). Although we can always report full performance tables, as we
did in Appendix D, some more compact summary statistics are also desirable. We now
introduce some simple metrics that help compare agents across a diverse set of domains,
such as our test set of Atari 2600 games.

4.1 Normalized Scores

Consider the scores sg,1 and sg,2 achieved by two algorithms in game g. Our goal here is
to explore methods that allow us to compare two sets of scores S1 = {sg1,1,    , sgn,1} and
S2 = {sg1,2,    , sgn,2}. The approach we take is to transform sg,i into a normalized score
zg,i with the aim of comparing normalized scores across games; in the ideal case, zg,i = zg′,i
implies that algorithm i performs as well on game g as on game g′. In order to compare
algorithms over a set of games, we aggregate normalized scores for each game and each
algorithm.

The most natural way to compare games with dierent scoring scales is to normalize
scores so that the numerical values become comparable. All of our normalization methods
are dened using the notion of a score range [rg,min, rg,max] computed for each game. Given
such a score range, score sg,i is normalized by computing zg,i := (sg,i − rg,min)  (rg,max −
rg,min).

4.1.1 Normalization to a Reference Score

One straightforward method is to normalize to a score range dened by repeated runs of
a random agent across each game. Here, rg,max is the absolute value of the average score
achieved by the random agent, and rg,min = 0. Figure 2a depicts the random-normalized
scores achieved by BASS and RAM on three games. Two issues arise with this approach:
the scale of normalized scores may be excessively large and normalized scores are generally
not translation invariant. The issue of scale is best seen in a game such as Freeway, for
which the random agent achieves a score close to 0: scores achieved by learning agents, in
the 10-20 range, are normalized into thousands. By contrast, no learning agent achieves a
random-normalized score greater than 1 in Asteroids.
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4.1.2 Normalizing to a Baseline Set

Rather than normalizing to a single reference we may normalize to the score range implied
by a set of references. Let bg,1,    , bg,k be a set of reference scores. A methods baseline
score is computed using the score range [mini∈{1,...,k} bg,i,maxi∈{1,...,k} bg,i].

Given a suciently rich set of reference scores, baseline normalization allows us to reduce
the scores for most games to comparable quantities, and lets us know whether meaningful
performance was obtained. Figure 2b shows example baseline scores. The score range
for these scores corresponds to the scores achieved by 37 baseline agents (Section 3.1.2):
Random, Const (one policy per action), and Perturb (one policy per action).

A natural idea is to also include scores achieved by human players into the baseline set.
For example, one may include the score achieved by an expert as well as the score achieved
by a beginner. However, using human scores raises its own set of issues. For example,
humans often play games without seeking to maximize score; humans also benet from
prior knowledge that is dicult to incorporate into domain-independent agents.

4.1.3 Inter-Algorithm Normalization

A third alternative is to normalize using the scores achieved by the algorithms themselves.
Given n algorithms, each achieving score sg,i on game g, we dene the inter-algorithm
score using the score range [mini∈{1,...,n} sg,i,maxi∈{1,...,n} sg,i]. By denition, zg,i ∈ [0, 1].
A special case of this is when n=2, where zg,i ∈ {0, 1} indicates which algorithm is better
than the other. Figure 2c shows example inter-algorithm scores; the relevant score ranges
are constructed from the performance of all ve learning agents.

Because inter-algorithm scores are bounded, this type of normalization is an appealing
solution to compare the relative performance of dierent methods. Its main drawback is
that it gives no indication of the objective performance of the best algorithm. A good
example of this is Venture: the inter-algorithm score of 1.0 achieved by BASS does not
reect the fact that none of our agents achieved a score remotely comparable to a humans
performance. The lack of objective reference in inter-algorithm normalization suggests that
it should be used to complement other scoring metrics.

4.2 Aggregating Scores

Once normalized scores are obtained for each game, the next step is to produce a measure
that reects how well each agent performs across the set of games. As illustrated by Table
4, a large table of numbers does not easily permit comparison between algorithms. We now
describe three methods to aggregate normalized scores.

4.2.1 Average Score

The most straightforward method of aggregating normalized scores is to compute their
average. Without perfect score normalization, however, score averages tend to be heavily
inuenced by games such as Zaxxon for which baseline scores are high. Averaging inter-
algorithm scores obviates this issue as all scores are bounded between 0 and 1. Figure 3
displays average baseline and inter-algorithm scores for our learning agents.
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Figure 3: Aggregate normalized scores for the ve reinforcement learning agents.

4.2.2 Median Score

Median scores are generally more robust to outliers than average scores. The median is
obtained by sorting all normalized scores and selecting the middle element (the average of
the two middle elements is used if the number of scores is even). Figure 3 shows median
baseline and inter-algorithm scores for our learning agents. Comparing medians and aver-
ages in the baseline score (upper two graphs) illustrates exactly the outlier sensitivity of
the average score, where the LSH method appears dramatically superior due entirely to its
performance in Zaxxon.

4.2.3 Score Distribution

The score distribution aggregate is a natural generalization of the median score: it shows
the fraction of games on which an algorithm achieves a certain normalized score or better.
It is essentially a quantile plot or inverse empirical CDF. Unlike the average and median
scores, the score distribution accurately represents the performance of an agent irrespective
of how individual scores are distributed. Figure 4 shows baseline and inter-algorithm score
distributions. Score distributions allow us to compare dierent algorithms at a glance – if
one curve is above another, the corresponding method generally obtains higher scores.

Using the baseline score distribution, we can easily determine the proportion of games
for which methods perform better than the baseline policies (scores above 1). The inter-
algorithm score distribution, on the other hand, eectively conveys the relative performance
of each method. In particular, it allows us to conclude that BASS performs slightly better
than Basic and RAM, and that DISCO performs signicantly worse than the other methods.
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Figure 4: Score distribution over all games.

Basic BASS DISCO LSH RAM

Basic — 18–32 39–13 34–18 22–25
BASS 32–18 — 48–5 36–17 29–20
DISCO 13–39 5–48 — 17–33 9–41
LSH 18–34 17–36 33–17 — 15–36
RAM 25–22 20–29 41–9 36–15 —

Table 3: Paired tests over all games. Each entry shows the number of games for which
the performance of the rst algorithm (left) is better (–worse) than the second
algorithms.

4.3 Paired Tests

An alternate evaluation metric, especially useful when comparing only a few algorithms,
is to perform paired tests over the raw scores. For each game, we performed a two-tailed
Welshs t-test with 99% condence intervals to determine whether one algorithms score was
statistically dierent than the others. Table 3 provides, for each pair of algorithms, the
number of games for which one algorithm performs statistically better or worse than the
other. Because of their ternary nature, paired tests tend to magnify small but signicant
dierences in scores.

5. Related Work

We now briey survey recent research related to Atari 2600 games and some prior work on
the construction of empirical benchmarks for measuring general competency.

5.1 Atari Games

There has been some attention devoted to Atari 2600 game playing within the reinforce-
ment learning community. For the most part, prior work has focused on the challenge of
nding good state features for this domain. Diuk, Cohen, and Littman (2008) applied their
DOORMAX algorithm to a restricted version of the game of Pitfall!. Their method ex-
tracts objects from the displayed image with game-specic object detection. These objects
are then converted into a rst-order logic representation of the world, the Object-Oriented
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Markov Decision Process (OO-MDP). Their results show that DOORMAX can discover the
optimal behaviour for this OO-MDP within one episode. Wintermute (2010) proposed a
method that also extracts objects from the displayed image and embeds them into a logic-
based architecture, SOAR. Their method uses a forward model of the scene to improve the
performance of the Q-Learning algorithm (Watkins & Dayan, 1992). They showed that by
using such a model, a reinforcement learning agent could learn to play a restricted version
of the game of Frogger. Cobo, Zang, Isbell, and Thomaz (2011) investigated automatic
feature discovery in the games of Pong and Frogger, using their own simulator. Their
proposed method takes advantage of human trajectories to identify state features that are
important for playing console games. Recently, Hausknecht, Khandelwal, Miikkulainen,
and Stone (2012) proposed HyperNEAT-GGP, an evolutionary approach for nding poli-
cies to play Atari 2600 games. Although HyperNEAT-GGP is presented as a general game
playing approach, it is currently dicult to assess its general performance as the reported
results were limited to only two games. Finally, some of the authors of this paper (Belle-
mare, Veness, & Bowling, 2012) recently presented a domain-independent feature generation
technique that attempts to focus its eort around the location of the player avatar. This
work used the evaluation methodology advocated here and is the only one to demonstrate
the technique across a large set of testing games.

5.2 Evaluation Frameworks for General Agents

Although the idea of using games to evaluate the performance of agents has a long history
in articial intelligence, it is only more recently that an emphasis on generality has assumed
a more prominent role. Pell (1993) advocated the design of agents that, given an abstract
description of a game, could automatically play them. His work strongly inuenced the
design of the now annual General Game Playing competition (Genesereth et al., 2005). Our
framework diers in that we do not assume to have access to a compact logical description
of the game semantics. Schaul, Togelius, and Schmidhuber (2011) also recently presented
an interesting proposal for using games to measure the general capabilities of an agent.
Whiteson et al. (2011) discuss a number of challenges in designing empirical tests to measure
general reinforcement learning performance; this work can be seen as attempting to address
their important concerns.

Starting in 2004 as a conference workshop, the Reinforcement Learning competition
(Whiteson et al., 2010) was held until 2009 (a new iteration of the competition has been
announced for 20134). Each year new domains are proposed, including standard RL bench-
marks, Tetris, and Innite Mario (Mohan & Laird, 2009). In a typical competition domain,
the agents state information is summarized through a series of high-level state variables
rather than direct sensory information. Innite Mario, for example, provides the agent
with an object-oriented observation space. In the past, organizers have provided a spe-
cial Polyathlon track in which agents must behave in a medley of continuous-observation,
discrete-action domains.

Another longstanding competition, the International Planning Competition (IPC)5, has
been organized since 1998, and aims to produce new benchmarks, and to gather and dis-

4. http://www.rl-competition.org
5. http://ipc.icaps-conference.org
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seminate data about the current state-of-the-art (Coles et al., 2012). The IPC is composed
of dierent tracks corresponding to dierent types of planning problems, including factory
optimization, elevator control and agent coordination. For example, one of the problems
in the 2011 competition consists in coordinating a set of robots around a two-dimensional
gridworld so that every tile is painted with a specic colour. Domains are described using
either relational reinforcement learning, yielding parametrized Markov Decision Processes
(MDPs) and Partially Observable MDPs, or using logic predicates, e.g. in STRIPS notation.

One indication of how much these competitions value domain variety can be seen in the
time spent on nding a good specication language. The 2008-2009 RL competitions, for
example, used RL-Glue6 specically for this purpose; the 2011 planning under uncertainty
track of the IPC similar employed the Relation Dynamic Inuence Diagram Language.
While competitions seek to spur new research and evaluate existing algorithms through a
standardized set of benchmarks, they are not independently developed, in the sense that
the vast majority of domains are provided by the research community. Thus a typical
competition domain reects existing research directions: Mountain Car and Acrobot re-
main staples of the RL competition. These competitions also focus their research eort on
domains that provide high-level state variables, for example the location of robots in the
oor-painting domain described above. By contrast, the Arcade Learning Environment and
the domain-independent setting force us to consider the question of perceptual grounding:
how to extract meaningful state information from raw game screens (or RAM information).
In turn, this emphasizes the design of algorithms that can be applied to sensor-rich domains
without signicant expert knowledge.

There have also been a number of attempts to dene formal agent performance metrics
based on algorithmic information theory. The rst such attempts were due to Hernández-
Orallo and Minaya-Collado (1998) and to Dowe and Hajek (1998). More recently, the
approaches of Hernández-Orallo and Dowe (2010) and of Legg and Veness (2011) appear
to have some potential. Although these frameworks are general and conceptually clean,
the key challenge remains how to specify suciently interesting classes of environments.
In our opinion, much more work is required before these approaches can claim to rival
the practicality of using a large set of existing human-designed environments for agent
evaluation.

6. Final Remarks

The Atari 2600 games were developed for humans and as such exhibit many idiosyncrasies
that make them both challenging and exciting. Consider, for example, the game Pong.
Pong has been studied in a variety of contexts as an interesting reinforcement learning
domain (Cobo et al., 2011; Stober & Kuipers, 2008; Monroy, Stanley, & Miikkulainen,
2006). The Atari 2600 Pong, however, is signicantly more complex than Pong domains
developed for research. Games can easily last 10,000 time steps (compared to 200–1000 in
other domains); observations are composed of 7-bit 160×210 images (compared to 300×200
black and white images in the work of Stober and Kuipers (2008), or 5-6 input features
elsewhere); observations are also more complex, containing the two players score and side
walls. In sheer size, the Atari 2600 Pong is thus a larger domain. Its dynamics are also

6. http://glue.rl-community.org
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more complicated. In research implementations of Pong object motion is implemented
using rst-order mechanics. However, in Atari 2600 Pong paddle control is nonlinear:
simple experimentation shows that fully predicting the players paddle requires knowledge
of the last 18 actions. As with many other Atari games, the player paddle also moves every
other frame, adding a degree of temporal aliasing to the domain.

While Atari 2600 Pong may appear unnecessarily contrived, it in fact reects the un-
expected complexity of the problems with which humans are faced. Most, if not all Atari
2600 games are subject to similar programming artifacts: in Space Invaders, for example,
the invaders velocity increases nonlinearly with the number of remaining invaders. In this
way the Atari 2600 platform provides AI researchers with something unique: clean, easily-
emulated domains which nevertheless provide many of the challenges typically associated
with real-world applications.

Should technology advance so as to render general Atari 2600 game playing achievable,
our challenge problem can always be extended to use more recent video game platforms.
A natural progression, for example, would be to move on to the Commodore 64, then to
the Nintendo, and so forth towards current generation consoles. All of these consoles have
hundreds of released games, and older platforms have readily available emulators. With
the ultra-realism of current generation consoles, each console represents a natural stepping
stone toward general real-world competency. Our hope is that by using the methodology
advocated in this paper, we can work in a bottom-up fashion towards developing more
sophisticated AI technology while still maintaining empirical rigor.

7. Conclusion

This article has introduced the Arcade Learning Environment, a platform for evaluating
the development of general, domain-independent agents. ALE provides an interface to
hundreds of Atari 2600 game environments, each one dierent, interesting, and designed to
be a challenge for human players. We illustrate the promise of ALE as a challenge problem
by benchmarking several domain-independent agents that use well-established reinforcement
learning and planning techniques. Our results suggest that general Atari game playing is a
challenging but not intractable problem domain with the potential to aid the development
and evaluation of general agents.
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Appendix A. Feature Set Construction

This section gives a detailed description of the ve feature generation techniques from
Section 3.1.

A.1 Basic Abstraction of the ScreenShots (BASS)

The idea behind BASS is to directly encode colours present on the screen. This method is
motivated by three observations on the Atari 2600 hardware and games:

1. While the Atari 2600 hardware supports a screen resolution of 160×210, game objects
are usually larger than a few pixels. Overall, important game events happen at a much
lower resolution.

2. Many Atari 2600 games have a static background, with a few important objects mov-
ing on the screen. While the screen matrix is densely populated, the actual interesting
features on the screen are often sparse.

3. While the hardware can show up to 128 colours in the NTSC mode, it is limited to
only 8 colours in the SECAM mode. Consequently, most games use a few number of
colours to distinguish important objects on the screen.

The game screen is rst preprocessed by subtracting its background, detected using a simple
histogram method. BASS then encodes the presence of each of the eight SECAM palette
colours at a low resolution, as depicted in Figure 5. Intuitively, BASS seeks to capture
the presence of objects of certain colours at dierent screen locations. BASS also encodes
relations between objects by constructing all pairwise combinations of its encoded colour
features. In Asterix, for example, it is important to know if there is a green object (player
character) and a red object (collectable object) in its vicinity. Pairwise features allow us to
capture such object relations.

Figure 5: Left: Freeway in SECAM colours. Right: BASS colour encoding for the same
screen.

A.2 Basic

The Basic method generates the same set of features as BASS, but omits the pairwise
combinations. This allows us to study whether the additional features are benecial or
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harmful to learning. Because the Basic method has fewer features than BASS, it encodes
the presence of each of the 128 colours. In comparison to BASS, Basic therefore represents
colour more accurately, but cannot represent object interactions.

A.3 Detecting Instances of Classes of Objects (DISCO)

This feature generation method is based on detecting a set of classes representing game
entities and locating instances of these classes on the screen. DISCO is motivated by the
following additional observations on Atari 2600 games:

1. The game entities are often instances of a few classes of objects. For instance, as
Figure 6 shows, while there are many objects in a sample screen of the game Freeway,
all of these objects are instances of only two classes: Chicken and Car. Similarly, all
the objects on a sample screen of the game Seaquest are instances of one of these
six classes: Fish, Swimmer, Player Submarine, Enemy Submarine, Player Bullet, and
Enemy Bullet.

2. The interaction between two objects can often be generalized to all instances of their
respective classes. As an example, consider Car -Chicken object interactions in Free-
way: learning that there is lower value associated with one Chicken instance hitting
a Car instance can be generalized to all instances of those two classes.

Figure 6: Left: Screenshot of the game Freeway. Although there are ten dierent cars,
they can all be considered as instances of a single class. Right: Screenshot of
the game Seaquest depicting four dierent object classes.

DISCO rst performs a series of preprocessing steps to discover classes, during which
no value function learning is performed. When the agent subsequently learns to play the
game, DISCO generates features by detecting objects on the screen and classifying them.
The DISCO process is summarized by the following steps:

• Preprocessing:

– Background detection: The static background matrix is extracted using a
histogram method, as with BASS.
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Algorithm 1 Locally Sensitive Hashing (LSH) Feature Generation

Constants. M (hash table size), n (screen bit vector size)
l (number of random bit vectors), k (number of non-zero entries)

Initialization (once).
{v1    vl} ← generateRandomVectors(l, k, n)
{hash1    hashl} ← generateHashFunctions(l,M, n)

Input. A screen matrix I with elements Ixy ∈ {0,    , 127}

LSH(I)
s ← binarizeScreen(I) (s has length n)
Initialize φ ∈ RlM = 0
for i = 1    l do

h = 0
for j = 1   n do

h ← h+ I[sj=vij ]hashi[j] mod M (hash the projection of s onto vi)
end for
φ[M(i− 1) + h] = 1 (one binary feature per random bit vector)

end for

binarizeScreen(I)
Initialize s ∈ Rn = 0
for y = 1   h, x = 1   w (h = 210, w = 160) do

s[x+ y ∗ h+ Ixy] = 1
end for
return s

generateRandomVectors(l, k, n)
Initialize v1    vl ∈ Rn = 0
for i = 1    l do

Select x1, x2,    , xk distinct coordinates between 1 and n uniformly at random
vi[x1] = 1; vi[x2] = 1; . . . ; vi[xk] = 1

end for
return {v1,    vl}

generateHashFunctions(l,M, n) (hash functions are vectors of random coordinates)
Initialize hash1    hashl ∈ Rn = 0
for i = 1    l, j = 1   n do

hashi[j] ← random(1,M) (uniformly random coordinate between 1 and M)
end for
return {hash1,    hashl}

Remark. With sparse vector operations, LSH has a O(lk + n) cost per step.
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Figure 7: Left: Screenshot of the game Seaquest. Right: Objects detected by DISCO
in the game Seaquest. Each colour represents a dierent class.

– Blob extraction: A list of moving blob (foreground) objects is detected in each
game screen.

– Class discovery: A set of classes is detected from the extracted blob objects.

– Class ltering: Classes that appear infrequently or are restricted to small region
of the screen are removed from the set.

– Class merging: Classes that have similar shapes are merged together.

• Feature generation:

– Class instance detection: At each time step, class instances are detected from
the current screen matrix.

– Feature vector generation: A feature vector is generated from the detected
instances by tile-coding their absolute position as well as the relative position
and velocity of every pair of instances from dierent classes. Multiple instances
of the same objects are combined additively.

Figure 7 shows discovered objects in a Seaquest frame. This image illustrates the dif-
culties in detecting objects: although DISCO correctly classies the dierent sh as part
of the same class, it also detects a life icon and the oxygen bar as part of that class.

A.4 Locality Sensitive Hashing (LSH)

An alternative approach to BASS and DISCO is to use well-established feature generation
methods that are agnostic about the type of input they receive. Such methods include
polynomial bases (Schweitzer & Seidmann, 1985), sparse distributed memories (Kanerva,
1988) and locality sensitive hashing (LSH) (Gionis et al., 1999). In this paper we consider
the latter as a simple mean of reducing the large image space to a smaller, more manageable
set of features. The input – here, a game screen – is rst mapped to a bit vector of size
7 × 210 × 160. The resulting vector is then hashed down into a smaller set of features.
LSH performs an additional random projection step to ensure that similar screens are more
likely to be binned together. The LSH generation method is detailed in Algorithm 1.
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A.5 RAM-based Feature Generation

Unlike the previous three methods, which generate feature vectors based on the game screen,
the RAM-based feature generation method relies on the contents of the console memory.
The Atari 2600 has only 128× 8 = 1024 bits of random access memory7, which must hold
the complete internal state of a game: location of game entities, timers, health indicators,
etc. The RAM is therefore a relatively compact representation of the game state, and in
contrast to the game screen, it is also Markovian. The purpose of our RAM-based agent
is to investigate whether features generated from the RAM aect performance dierently
from features generated from game screens.

The rst part of the generated feature vector simply includes the 1024 bits of RAM.
Atari 2600 game programmers often used these bits not as individual values, but as part
of 4-bit or 8-bit words. Linear function approximation on the individual bits can capture
the value of these multi-bit words. We are also interested in the relation between pairs of
values in memory. To capture these relations, the logical-AND of all possible bit pairs is
appended to the feature vector. Note that a linear function on the pairwise ANDs can
capture products of both 4-bit and 8-bit words. This is because the product of two n-bit
words can be expressed as a weighted sum of the pairwise products of their bits.

7. Some games provided more RAM on the game cartridge: the Atari Super Chip, for example, oered an
additional 128 bytes of memory. The current approach only considers the main memory included in the
Atari 2600 console.
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Appendix B. UCT Pseudocode

Algorithm 2 UCT

Constants. m (search horizon), k (simulations per step)
Variables. Ψ (search tree)
Input. s (current state)

UCT(s)
if Ψ is empty or root(Ψ) 6= s then

Ψ ← empty search tree
root(Ψ) ← s

end if
repeat

sample(Ψ,m)
until visits(root(Ψ)) = k
a ← bestAction(Ψ)
prune(Ψ, a) (optional)
return a

sample(Ψ,m)
n ← root(Ψ)
while n is not a leaf, m > depth(n) do

if some action a was never taken in n then
(c, reward) ← emulate(n, a) (run model for one step)
immediate-return(c) ← reward
child(n, a) ← c
n ← c (c is necessarily a leaf)

else
a ← selectAction(n)
n ← child(n, a)

end if
end while
R = rollout(n,m− depth(n))
update-value(n, R) (propagate values back up)

bestAction(Ψ)
return argmaxa [visits(child(root(Ψ), a))] (action most frequently taken at root)

prune(Ψ, a)
root(Ψ) ← child(root(Ψ), a)
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Algorithm 3 UCT Routines

Constants. γ : discount factor

selectAction(n)
for all c children of n do

V (c) ← average-return(c) +
√

log[visits(c)]
visits(n)

end for
return argmaxa V (child(n, a))

rollout(n,m)
R = 0 (Initialize Monte-Carlo return to 0)
g = 1
while m > 0 do

Select a according to some rollout policy (e.g. uniformly randomly)
(n, reward) ← emulate(n, a)
R ← R+ g × reward
m ← m− 1
g ← g × γ

end while
return R

update-value(n,R)
R ← R+ immediate-reward(n)

average-return(n) ← average-return(n) visits(n)
visits(n)+1 + R

visits(n)+1

visits(n) ← visits(n) + 1
if n is not the root of Ψ, i.e. parent(n) 6= null then

update-value(parent(n), γ ×R)
end if
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Appendix C. Experimental Parameters

General All experiments Maximum frames per episode 18,000
Frames per action 5

Reinforcement learning Training episodes per trial 5,000
Evaluation episodes per trial 500
Number of trials per result 30

Preprocessing Background detection Sample screens per game 18,000
Class discovery Sample screens per game 36,000

Maximum number of classes 10
Maximum object velocity (pixels) 8

Minimum frequency of class appearance 20%

Reinforcement All agents Discount factor γ 0.999
learning Exploration rate  0.05

BASS and Learning rate α 0.5
Basic Eligibility traces decay rate λ 0.9

Grid width 16
Grid height 14

BASS only Number of dierent colours 8
Basic only Number of dierent colours 128

DISCO Learning rate α 0.1
Eligibility traces decay rate λ 0.9
Tile coding, number of tilings 8

Tile coding, grid size 8
RAM-based Learning rate α 0.2

Eligibility traces decay rate λ 0.5
LSH Learning rate α 0.5

Eligibility traces decay rate λ 0.5
Number of random vectors l 2000

Number of non-zero vector entries k 1000
Per-vector hash table size M 50

Planning UCT Simulations per action 500
Maximum search depth (frames) 300

Exploration constant 0.1
Full-tree search Maximum frames emulated per action 133,000
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Appendix D. Detailed Results

D.1 Reinforcement Learning

Game Basic BASS DISCO LSH RAM Random Const Perturb

Asterix 862.3 859.8 754.6 987.3 943.0 288.1 650.0 337.8
Beam Rider 929.4 872.7 563.0 793.6 729.8 434.7 996.0 754.8

Freeway 11.3 16.4 12.8 15.4 19.1 0.0 21.0 22.5
Seaquest 579.0 664.8 421.9 508.5 593.7 107.9 160.0 451.1

Space Invaders 203.6 250.1 239.1 222.2 226.5 156.1 245.0 270.5

Alien 939.2 893.4 623.6 510.2 726.4 102.0 140.0 313.9
Amidar 64.9 103.4 67.9 45.1 71.4 0.8 31.0 37.8
Assault 465.8 378.4 371.7 628.0 383.6 334.3 357.0 497.8

Asteroids 829.7 800.3 744.5 590.7 907.3 1526.7 140.0 539.9
Atlantis 62687.0 25375.0 20857.3 17593.9 19932.7 33058.4 1500.0 12089.1

Bank Heist 98.8 71.1 51.4 64.6 190.8 15.0 0.0 13.5
Battle Zone 15534.3 12750.8 0.0 14548.1 15819.7 2920.0 13000.0 5772.0

Berzerk 329.2 491.3 329.0 441.0 501.3 233.8 670.0 552.9
Bowling 28.5 43.9 35.2 26.1 29.3 24.6 30.0 30.0
Boxing -2.8 15.5 12.4 10.5 44.0 -1.5 -25.0 -10.1

Breakout 3.3 5.2 3.9 2.5 4.0 1.5 3.0 2.9
Carnival 2323.9 1574.2 1646.3 1147.2 765.4 869.2 0.0 485.4

Centipede 7725.5 8803.8 6210.6 6161.6 7555.4 2805.1 16527.0 8937.2
Chopper Command 1191.4 1581.5 1349.0 943.0 1397.8 698.2 1000.0 973.7

Crazy Climber 6303.1 7455.6 4552.9 20453.7 23410.6 2335.4 0.0 2235.0
Demon Attack 520.5 318.5 208.8 355.8 324.8 289.3 130.0 776.2
Double Dunk -15.8 -13.1 -23.2 -21.6 -20.3 -15.6 0.0 -20.3

Elevator Action 3025.2 2377.6 4.6 3220.6 507.9 1040.9 0.0 562.9
Enduro 111.8 129.1 0.0 95.8 112.3 0.0 9.0 25.9

Fishing Derby -92.6 -92.1 -89.5 -93.2 -91.6 -93.8 -99.0 -97.2
Frostbite 161.0 161.1 176.6 216.9 147.9 70.3 160.0 175.2

Gopher 545.8 1288.3 295.7 941.8 722.5 243.7 0.0 286.8
Gravitar 185.3 251.1 197.4 105.9 387.7 205.4 0.0 106.0
H.E.R.O. 6053.1 6458.8 2719.8 3835.8 3281.1 712.0 0.0 147.5

Ice Hockey -13.9 -14.8 -18.9 -15.1 -9.5 -14.8 -1.0 -6.5
James Bond 197.3 202.8 17.3 77.1 133.8 23.3 0.0 82.0

Journey Escape -8441.0 -14730.7 -9392.2 -13898.9 -8713.5 -18201.7 0.0 -10693.9
Kangaroo 962.4 1622.1 457.9 256.4 481.7 44.4 200.0 498.4

Krull 2823.3 3371.5 2350.9 2798.1 2901.3 1880.1 0.0 1690.1
Kung-Fu Master 16416.2 19544.0 3207.0 8715.6 10361.1 488.2 0.0 578.4

Montezuma’s Revenge 10.7 0.1 0.0 0.1 0.3 0.3 0.0 0.0
Ms. Pac-Man 1537.2 1691.8 999.6 1070.8 1021.1 163.3 210.0 505.5

Name This Game 1818.9 2386.8 1951.0 2029.8 2500.1 2012.3 3080.0 1854.3
Pooyan 800.3 1018.9 402.7 1225.3 1210.9 501.1 30.0 540.8

Pong -19.2 -19.0 -19.6 -19.9 -19.9 -20.9 -21.0 -20.8
Private Eye 81.9 100.7 -23.0 684.3 111.9 -754.0 0.0 1947.3

Q*Bert 613.5 497.2 326.3 529.1 565.8 169.0 150.0 157.4
River Raid 1708.9 1438.0 0.0 1904.3 1309.9 1608.6 1070.0 1455.5

Road Runner 67.7 65.2 21.4 42.0 41.0 36.2 900.0 857.9
Robotank 12.8 10.1 9.3 10.8 28.7 1.6 17.0 11.3

Skiing -1.1 -0.7 -0.1 -0.0 0.0 0.0 0.0 0.0
Star Gunner 850.2 1069.5 1002.2 722.9 769.3 638.1 600.0 509.8

Tennis -0.2 -0.1 -0.1 -0.1 -0.1 -24.0 0.0 -0.3
Time Pilot 1728.2 2299.5 0.0 2429.2 3741.2 3458.8 500.0 718.7
Tutankham 40.7 52.6 0.0 85.2 114.3 23.1 0.0 17.3

Up and Down 3532.7 3351.0 2473.4 2475.1 3412.6 131.6 550.0 2962.9
Venture 0.0 66.0 0.0 0.0 0.0 0.0 0.0 0.0

Video Pinball 15046.8 12574.2 10779.5 9813.9 16871.3 20021.1 705.0 9527.9
Wizard of Wor 1768.8 1981.3 935.6 945.5 1096.2 772.4 300.0 470.3

Zaxxon 1392.0 2069.1 69.8 3365.1 304.3 0.0 0.0 2.0

Times Best 6 17 1 8 8 2 9 4

Table 4: Reinforcement Learning results. The rst ve games constitute our training set.
See Section 3.1 for details.

.
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D.2 Planning

Game Full Tree UCT Best Learner Best Baseline

Asterix 2135.7 290700.0 987.3 650.0
Beam Rider 693.5 6624.6 929.4 996.0

Freeway 0.0 0.4 19.1 22.5
Seaquest 288.0 5132.4 664.8 451.1

Space Invaders 112.2 2718.0 250.1 270.5

Alien 784.0 7785.0 939.2 313.9
Amidar 5.2 180.3 103.4 37.8
Assault 413.7 1512.2 628.0 497.8

Asteroids 3127.4 4660.6 907.3 1526.7
Atlantis 30460.0 193858.0 62687.0 33058.4

Bank Heist 21.5 497.8 190.8 15.0
Battle Zone 6312.5 70333.3 15819.7 13000.0

Berzerk 195.0 553.5 501.3 670.0
Bowling 25.5 25.1 43.9 30.0
Boxing 100.0 100.0 44.0 -1.5

Breakout 1.1 364.4 5.2 3.0
Carnival 950.0 5132.0 2323.9 869.2

Centipede 125123.0 110422.0 8803.8 16527.0
Chopper Command 1827.3 34018.8 1581.5 1000.0

Crazy Climber 37110.0 98172.2 23410.6 2335.4
Demon Attack 442.6 28158.8 520.5 776.2
Double Dunk -18.5 24.0 -13.1 0.0

Elevator Action 730.0 18100.0 3220.6 1040.9
Enduro 0.6 286.3 129.1 25.9

Fishing Derby -91.6 37.8 -89.5 -93.8
Frostbite 137.2 270.5 216.9 175.2

Gopher 1019.0 20560.0 1288.3 286.8
Gravitar 395.0 2850.0 387.7 205.4
H.E.R.O. 1323.8 12859.5 6458.8 712.0

Ice Hockey -9.2 39.4 -9.5 -1.0
James Bond 25.0 330.0 202.8 82.0

Journey Escape 1327.3 7683.3 -8441.0 0.0
Kangaroo 90.0 1990.0 1622.1 498.4

Krull 3089.2 5037.0 3371.5 1880.1
Kung-Fu Master 12127.3 48854.5 19544.0 578.4

Montezuma’s Revenge 0.0 0.0 10.7 0.3
Ms. Pacman 1708.5 22336.0 1691.8 505.5

Name This Game 5699.0 15410.0 2500.1 3080.0
Pooyan 909.7 17763.4 1225.3 540.8

Pong -20.7 21.0 -19.0 -20.8
Private Eye 57.9 100.0 684.3 1947.3

Q*Bert 132.8 17343.4 613.5 169.0
River Raid 2178.5 4449.0 1904.3 1608.6

Road Runner 245.0 38725.0 67.7 900.0
Robotank 1.5 50.4 28.7 17.0

Skiing 0.0 -0.8 0.0 0.0
Star Gunner 1345.0 1207.1 1069.5 638.1

Tennis -23.8 2.8 -0.1 0.0
Time Pilot 4063.6 63854.5 3741.2 3458.8
Tutankham 64.1 225.5 114.3 23.1

Up and Down 746.0 74473.6 3532.7 2962.9
Venture 0.0 0.0 66.0 0.0

Video Pinball 55567.3 254748.0 16871.3 20021.1
Wizard of Wor 3309.1 105500.0 1981.3 772.4

Zaxxon 0.0 22610.0 3365.1 2.0

Times Best 4 45 3 3

Table 5: Search results. The rst ve games constitute our training set. See Section 3.2 for
details.
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