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Abstract 

Artificial Intelligence (AI) is growing extraordinarily in almost every area of 

technology, and research into self-driving cars is one of them. In the last few years, 

there has been a lot of interest in deep learning and reinforcement learning which has 

led to tremendous growth in this domain, especially in vision-based subsystems. 

Machine learning (ML) moves autonomous driving technology forward, and we have 

already seen several big players in the vehicle and AI industries use this to their 

advantage. In this thesis, we will take the liberty to utilize state-of-the-art methods to 

train an agent to drive autonomously using the Deep Reinforcement Learning (DRL) 

approach. We will use an open-source simulator, CARLA [1], to conduct our 

experiment, providing a hyper-realistic urban simulation environment to train our 

models. We cannot use our raw algorithms in the real world because they come with 

many risks and moral questions, so we use these simulators to help us test them. 

Moreover, road geometry makes it very hard for autonomous driving systems to 

make decisions, and modern autonomous driving systems still need help dealing with 

complexity. The driving policy is mostly hand-crafted in many modern-day solutions, 

which could lead to sub-optimal solutions and are very expensive to develop, 

generalize, and keep up at a large scale. DRL has shown promising results in learning 

complex decision-making tasks, from strategic games to challenging puzzles. Here, we 

will look at how an on-policy DRL algorithm called Proximal Policy Optimization 

(PPO) will be used in a simulated driving environment to learn to navigate on a 

predetermined route. The primary goal of this thesis is to investigate how a DRL model 

can train an agent on a continuous state and action space. Our main contribution is a 

PPO-based agent that can learn to drive reliably in our CARLA-based environment. In 

addition, we also implemented a Variational Autoencoder (VAE) that compresses high-

dimensional observations into a potentially easier-to-learn low-dimensional latent space 

that can help our agent learn faster. This work aims to develop an end-to-end solution 

for autonomous driving that can send commands to the vehicle to help it drive in the 

right direction and avoid crashes as much as possible. In this paper, we have 

summarized some results and analyses and discussed work to simplify this problem 

further. 
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Absztrakt  

A mesterséges intelligencia rendkívüli mértékben fejlődik a technológia szinte 

minden területén, az önvezető autók kutatása is ezek közé tartozik. A közelmúltban 

nagy érdeklődés mutatkozott a mélytanulás és a megerősítéses tanulás iránt, ami óriási 

fejlődést eredményezett a területen, különösen a látásalapú alrendszerek esetében. A 

gépi tanulás az autonóm vezetési technológia motorja, és látható, hogy több jelentős 

szereplő is előnyére fordítja ezt a technológiát. Ebben a szakdolgozatban a 

legkorszerűbb módszereket alkalmazzuk egy autonóm vezetésre alkalmas ágens 

kiképzésére, Deep Reinforcement Learning megközelítéssel. Kísérletünk elvégzéséhez 

egy nyílt forráskódú szimulátort, a CARLA-t [1] fogjuk használni, amely egy 

hiperrealisztikus városi szimulációs környezetet biztosít a modelljeink betanításához.  A 

tesztelésükhöz szimulátorokat használunk, mivel a nyers algoritmusainkat nem 

használhatjuk a való világban. 

Ráadásul az út geometriája nagyon megnehezíti az autonóm vezetési rendszerek 

számára a döntéshozatalt, és a modern autonóm vezetési rendszereknek még mindig 

segítségre van szükségük a komplexitás kezelésében. A vezetési irányelvet többnyire 

manuálisan alakítják ki számos modern megvalósításban, amelyek nem optimális 

megoldásokhoz vezethetnek  és a lépéstartás is költséges. A Deep Reinforcement 

Learning ígéretes eredményeket mutatott az összetett döntéshozatali feladatok 

tanulásában, a stratégiai játékoktól a kihívást jelentő rejtvényekig. Itt azt fogjuk 

megvizsgálni, hogy egy on-policy DRL algoritmus, amit ‘Proximal Policy 

Optimization’-nek neveznek, hogyan lesz használva egy szimulált vezetési 

környezetben, hogy megtanuljon egy előre meghatározott útvonalon navigálni. A 

szakdolgozat elsődleges célja annak vizsgálata, hogy egy DRL modell hogyan képes 

egy ágenst autonóm vezetésre képezni. Fő hozzájárulásunk egy PPO-alapú ágens, amely 

képes megtanulni megbízhatóan vezetni a CARLA-környezetben. A munka célkitűzése 

egy olyan végponttól-végpontig tartó megoldás kifejlesztése az autonóm vezetéshez, 

amely képes parancsokat küldeni a járműnek, hogy az a megfelelő irányba haladjon, és 

a lehető legnagyobb mértékben elkerülje a baleseteket. Ebben a tanulmányban 

összefoglaltunk néhány eredményt és elemzést, valamint megvitattuk a probléma 

további egyszerűsítésére irányuló munkát. 
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1 Introduction 

1.1 Motivation 

In the modern day, there is a growing desire to automate our daily tasks and use 

technology to make the various tasks safer, more efficient, and more convenient. 

Similarly, there is an emphasis on minimizing road accidents and traffic congestion by 

creating intelligent vehicles. Ever since the breakthroughs in vision-based autonomous 

driving techniques back in the 1980s [4], the question of cars run by artificial 

intelligence still needs to be answered. However, there is still no large-scale 

implementation of completely autonomous vehicles. However, with the emergence of 

publicly accessible tools and knowledge, such as autonomous driving simulators, 

machine learning frameworks, and code-sharing platforms, it is now simpler to 

contribute to the aim of full large-scale autonomy, in contrast to the situation back in the 

1980s. 

In the field of autonomous driving, there are two main approaches. First, the 

modular approach is used by most of today's autonomous driving systems because it 

divides the driving system into several independent modules, such as the mapping, 

perception, planning, and control modules. Second, the end-to-end approach uses 

artificial neural networks that learn a driving policy that directly maps observations to 

vehicles' actions. Moreover, there have also been studies on two specific methods of 

learning an end-to-end driving policy: imitation learning (IL) and reinforcement 

learning (RL). 

Imitation learning is now one of the most practical methods for developing 

autonomous vehicles because it requires a substantial amount of expert demonstration 

data [6]. However, there is a caveat to this approach because those autonomous vehicles 

are trained substantially less on managing life-or-death situations. Furthermore, since 

they can never outperform an expert agent, gathering expert demonstrations for all 

possible scenarios is unfeasible. As a result, scaling and generalizing these systems to 

new situations is difficult. On the other hand, using deep learning methods in 

conjunction with reinforcement learning [10], the agent can learn the policy on its own 
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by receiving reward signals from the environment for the actions it has performed at 

each timestep. 

Deep Reinforcement Learning (DRL) in today's time has enabled computers to 

play Atari games [13], Deepmind's AlphaGo [11], and even racing games like TORCS 

[12] without human intervention. They are a good substitute for IL approaches for urban 

autonomous driving because they do not require human guidance, saving both time and 

resources. Now the question is, can reinforcement learning (RL) be used to develop 

autonomous vehicles while being motivated by the superhuman performance of these 

learning paradigms? The use of reinforcement learning in autonomous driving has been 

encouraged in a few recent publications [1][9][15][16]. However, in the actual world, 

applying RL directly for autonomous driving is challenging because of the safety 

concerns and poor sample complexity of the most advanced RL algorithms. As a result, 

a growing amount of research is taking place on simulators that can eventually apply to 

real-world settings, that includes TORCS [12] and CARLA [1]. 

1.2 Autonomy in driving 

Numerous businesses, including Volvo, Tesla, and Google, are already working 

on developing autonomous vehicles [17]. Meanwhile, cars observe the environment 

using sensors like radar or cameras. The movement control system predicts the 

surroundings and decides how to apply movement based on sensor data. However, we 

have not fully reached automation yet; therefore, these solutions can still improve, and 

the term "autonomous" in the context of self-driving cars merely refers to "self-

governing." When we talk about self-driving cars, we frequently mean those that need 

little to no human input in the vehicle's control system to travel from place A to place B. 

For self-driving cars, the Society of Automotive Engineers [2] has created a hierarchy of 

increasing levels of automation. These levels consist of the following: 

• Level 0 - No Automation: In this case, the driver interacts with the vehicle's control 

system. A system with integrated warning signals or intervention mechanisms but 

still considered at level 0. 

• Level 1 - Driver Assistance: A human driver and automated technology share 

control of the vehicle. An automobile with Adaptive Cruise Control, a system in 

which the car sets its speed, but the driver is responsible for steering. 
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• Level 2 - Partial Automation: The system controls the steering and speed of the 

vehicle, but a person must assist promptly if the system malfunctions. 

• Level 3 - Conditional Automation: The driver is not required to be prepared for 

intervention but must respond within a specified timeframe when the system 

requires it. 

• Level 4 - High Autonomy: The vehicle may run in confined geographic areas or 

driving scenarios without driver interaction. If the vehicle is unable to move, it will 

park itself until the driver intervenes. 

• Level 5 - Full Automation: Absolutely no human interaction is necessary. 

A combination of level 0 ("no automation") and level 1 ("hands-on") 

autonomous vehicles makes up most of the cars on the road today. Level 2 ("hands off") 

automation features, including autonomous lane change, have been implemented into 

certain commercially available vehicles by automakers like Tesla and a few more. 

Additionally, there are a few examples of both commercial and non-commercial 

vehicles with level 3 ("eyes off") automation, such as the Audi A8's "Traffic Jam Pilot." 

Although level 4 ("mind off") and level 5 ("steering wheel optional") cars are not yet 

commercially accessible, research on such vehicles is ongoing. Waymo's self-driving 

car is one example of a self-driving vehicle without a steering wheel. So naturally, level 

5 automation is the goal of research into driverless vehicles. For reference, the paper 

cited [2] explores more in-depth. 

1.3 Components of an Autonomous Car  

A self-driving car requires several systems or components to perform their 

distinct functions. Such systems are divided as follows: 

Sensors and Control  

What components are necessary for autonomous driving? When making an 

autonomous car, we should look at the components and sensors needed for optimal 

driving. We should also ensure that our car and its processes are energy-efficient for 

long-distance travel. We must also build software and interfaces the vehicle uses to 

connect with its onboard sensors. 
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Planning and Control  

Planning is about controlling the vehicle's acceleration, brakes, and steering to 

get from place A to place B. The vehicle should use the information from its sensors or 

perception modules to figure out a set of control signals that will drive it where it needs 

to go. The car should be able to drive without hitting other cars, bikes, people, or other 

dynamic or static objects. 

Mapping and Localization  

Mapping and localization involve locating a vehicle on a high-definition map 

and assessing its topography. High-definition map localization may use GPS and 

environmental data. The car can pinpoint its exact location by a rough estimate of its 

location on a map and comparing its observations with its projections of where 

adjoining structures are on its internal map. In addition, it needs to interpret sensor input 

data and predict static and dynamic objects around it. For example, a perception module 

like RGB cameras, infrared sensors, and LiDAR should locate static things like lane 

lines and signage and understand their meaning.  

Simulators  

Before implementing our control and perception algorithms on an actual vehicle, 

it is crucial that we have methods for testing and validating them in a simulated 

environment; this is the primary function of the simulators. Furthermore, since we 

utilize simulators to validate our algorithms before deployment, it is vital that the 

simulator accurately replicates the physics and look of the actual world. There are 

several high-fidelity, open-source simulators for autonomous driving research. CARLA 

[1] is our simulator of choice for this thesis project. 

1.4 Objective 

In this thesis, we will try to seek answers to the following research questions: 

• What are the ideas and methods behind deep reinforcement learning, and can 

modern reinforcement learning methods teach a car to drive in a regulated and 

dependable manner? 

• How can we construct reward functions that motivate reinforcement learning to 

exhibit the desired driving behavior? 
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• What effect does environment design have on an agent's training pace and overall 

performance based on its reinforcement? 

• How can we produce state representations that are rich in information? 

• Can we utilize deep reinforcement learning to teach agents how to drive in 

surroundings that demand them to execute various maneuvers? 

1.5 Structure of the work 

This dissertation is structured into five chapters. These chapters are organized in the 

following order: 

1. Introduction: This chapter introduces the thesis, its purpose, and its motivation 

to set the stage and clarify the problem statement. 

2. Background and Related Work: This chapter will cover some of the theoretical 

background of this thesis, including machine learning, deep learning, and 

reinforcement learning. This chapter will also cover some works relevant to this 

thesis. 

3. Methodology - This chapter describes the architecture, techniques, and 

experiments implemented. In addition, it presents the proposed solution to our 

problem statement. 

4. Results - This chapter describes the experiment's findings and the discussion 

surrounding it. 

5. Conclusion - This chapter wraps up the results and discussion of this thesis. It 

also gives ideas for further research. 
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2 Background and Related Work 

In this chapter, we lay out some of the theoretical foundations and related works 

in the autonomous driving domain.  

2.1 Machine Learning 

2.1.1 Introduction 

Machine learning (ML) is an artificial intelligence subfield that focuses on 

creating problem-solving algorithms. ML has received much interest recently because 

of its simplicity and the empirical success of its techniques. ML often beats hand-

crafted solutions in situations with some degree of non-triviality. Furthermore, given 

that the theory underlying machine learning algorithms are typically general-purpose, 

the same theory may be reused for any domain if the required data for the job is 

available. For example, given observed data, a computer-based agent can construct a 

model that fits the observed data, which can then be utilized as a hypothesis about the 

agent's reality to assist in solving problems [19]. 

This dissertation will explore a machine-learning approach called Reinforcement 

Learning (RL). RL provides an intuitive learning framework in which an agent observes 

an environment where it does some actions to achieve its goal. RL aims to educate the 

agent to maximize its utility, which is some quantity that specifies how successfully it 

managed to do its job. 

2.1.2 Artificial Neural Networks 

An artificial neural network is a mathematical model that solves problems 

resembling a biological brain network. Modern neural networks are non-linear statistical 

tools that construct models based on mathematical and statistical learning methods. 

Therefore, the first step is to derive analysis and practical application from a large 

amount of statistical data. 

However, this is different in artificial intelligence for artificial perception. 

Artificial perception makes decisions using statistics, which allows artificial neural 
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networks to make simple decisions and judgments like humans. This method is more 

useful than calculus inference. Like other learning methods, neural networks solve 

many problems, including autonomous driving, speech recognition, stock prediction, 

and other complex problems because the simulated artificial neural networks find the 

rules underlying the problem to solve it. 

2.1.3 Deep Learning 

Deep learning refers to a class of machine learning methods that use deep neural 

networks. Deep neural networks are networks of multiple layers of simple, adjustable 

computing elements such as weights and biases [19]. 

The structure and flow of the human brain and its brain cells inspired the 

development of deep neural networks. The neural net mimics the brain's neurons in the 

form of a perceptron, which is a crucial component. Figure 2.1 depicts how a neural 

network combines nodes in a connected and layered structure. The network can learn a 

mapping between an input X and an output Y using these nodes, and their activation 

functions, weights between layers, and biases. Deep learning, one of the most common 

approaches to machine learning, is a versatile and widely applicable method. It can 

handle complex data and plays an essential role in this thesis due to its application in 

reinforcement learning [19]. 

 

Figure 2.1 A two-layered neural network with three input and two output nodes. 
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2.1.4 Imitation Learning 

Imitation learning technique attempt to mimic human behavior while performing 

a task by learning a mapping between observations and actions; an agent (a learning 

machine) is training to perform a task from demonstrations. The learning-by-imitation 

paradigm is gaining popularity because it allows teaching complex tasks with little 

expert knowledge. Generic imitation learning methods can potentially reduce the 

problem of teaching a task to that of provided demonstrations without the need for 

explicit programming. In addition, imitation learning provides a paradigm for 

developing a policy that, given corresponding input, will mimic the expert's actions 

[21]. These demonstrations are obtained offline (either in the real world or through 

simulation) and comprise a series of state observations and expert actions. 

Moreover, in a study concerning our autonomous driving domain called 

“Conditional Affordance Learning” [23], the authors suggested an architecture that 

generalizes a direct perception method to the urban environment. They provide 

intermediate representations in the form of affordances suited for urban navigation 

based on the image's convolution properties. These affordance models have been taught 

to respond to directional commands at the highest level. 

2.2 Reinforcement Learning 

2.2.1 Introduction 

In contrast to imitation learning [21], which teaches an agent how to respond 

based on a labeled dataset, reinforcement learning allows an agent to interact with its 

environment and receive regular incentives based on its behavior. The agent can use this 

reward to consider whether it behaved appropriately and whether its policy needs to be 

altered. In the case of imitation learning, an agent is not expected to outperform the 

thing it is copying, which in the case of autonomous cars is frequently a human being. 

However, in theory, an agent can explore and eventually outperform a person through 

reinforcement learning [19].  

The main purpose of a reinforcement learning algorithm is to maximize the 

expected total of rewards. Typically, the environment takes the form of a Markov 

decision process (MDP), in which the agent must choose a course of action based on the 
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current state of the environment, with certain states yielding "better" or "worse" 

rewards. Depending on whether the training is off-policy or on-policy, the agent's policy 

(denoted as π) determines which action the agent takes both outside and during training. 

To maximize its predicted reward sum, the agent must maximize this strategy 

throughout training [19].  

2.2.2 Markov Decision Process 

A Markov decision process is a stochastic sequential decision problem with a 

transition model that specifies the probabilistic outcomes of any action and a reward 

function that specifies the reward from each state [19]. For example, given an agent in a 

current state 𝑠𝑡 (in a state space S) with its reward rt, the agent can choose to perform an 

action at (from an action space A) and based on a transition probability function p and 

at, the agent next timestep 𝑡 + 1 end up in a new state 𝑠𝑡+1 with its reward 𝑟𝑡 ∗  𝑝 

which is defined in equation 2.1, cited [3]. 

 

𝑝(𝑠′|𝑠, 𝑎) = 𝑃𝑟(𝑠𝑡+1 = 𝑠
′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) 

(Equation 2.1) 

where 𝑝(𝑠′|𝑠, 𝑎) is the probability that action 𝑎 in state 𝑠 at time t will put the agent in 

the next state 𝑠′ at time 𝑡 +  1. The Markov property is satisfied by the transition 

probability function because it only depends on the current state 𝑠 and the action 𝑎 of 

the agent and is independent of all earlier states and actions. From a given first state 

𝑠0 and to some final state 𝑠𝑛, and the actions chosen in between, we can define an 

agent’s trajectory 𝜏, 𝑤ℎ𝑒𝑟𝑒 𝜏 =  {(𝑠0𝑎0𝑟0),… , (𝑠𝑛𝑎𝑛𝑟𝑛)}. We think of this framework 

as a close connected loop, illustrated in Figure 2.1. 
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Figure 2.2 MDP: reinforcement learning loop. Starting at timestep t, the agent observes the state 𝑠𝑡 and 

reward 𝑟𝑡. Then, when an agent performs an action, at, the environment returns a new state, st+1, and a 

scalar reward value, rt+1, which reflects state and reward at timestep t+1. 

Reinforcement learning concerns a subset of MDP problems in which the agent 

is unaware of the state-transition probabilities 𝑃 (𝑠′|𝑠, 𝑎) and the reward function 

𝑟(𝑠, 𝑎). This means that the agent must explore its surroundings in order to discover a 

link between state-action pairs and reward. 

2.2.3 Bellman equation 

A common task in reinforcement learning is to estimate an action-value function 

𝑄(𝑠, 𝑎) for each state 𝑠 in the environment. The Bellman equation can be used to 

retroactively update an action-value function based on an agent's trajectory. In a 

deterministic environment, the Bellman equation: 

𝑉(𝑠) = 𝑚𝑎𝑥
𝑎∈𝐴(𝑠)

∑[𝑅(𝑠, 𝑎) + 𝛾𝑉(𝑠′)]

𝑠′

, 

(Equation 2.2), cited [3] 

where V is the value function that gives the value of a given state 𝑠, and 𝛾 is a discount 

factor. The Bellman equation computes the value of a state 𝑠 by taking the reward of the 

next step and multiplying it by the expected value from the following states [9]. The 

action-value function 𝑄(𝑠, 𝑎) is also directly related to the value function as follows, 

cited [3]: 

𝑉(𝑠) = 𝑚𝑎𝑥
𝑎∈𝐴(𝑠)

𝑄(𝑠, 𝑎), 

(Equation 2.3) 
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2.2.4 Reward Function 

One of the fundamental components of reinforcement learning is when an agent 

maximizes its expected reward; the use and design of a suitable reward function are 

critical for the RL algorithm's success. As reinforcement learning usually implies that an 

agent starts with a policy that gives random actions, a good reward function is expected 

to give the agent an indication whether which actions are good and which are bad. In 

scenarios where the rewards are too low or too difficult to obtain, more than random 

actions may be required for the agent to converge toward a good policy.  

A reward at a given time step 𝑡 is usually defined as 𝑟𝑡  =  𝑅(𝑠𝑡+1, 𝑠𝑡 , 𝑎𝑡 , ) , 

where 𝑅 is a reward function. However, a reward can also be defined over a trajectory 

𝜏, where we can sum all rewards over a finite and sequential amount of steps T in the 

environment, which can be written as: 

𝑅(𝜏) =  ∑𝑟𝑡

𝑇

𝑡=0

 

(Equation 2.4), cited [3] 

Using trajectories, we can put rewards from states and actions in relation to each 

other w.r.t time and not just evaluate the agent’s policy at given isolated states and 

actions. Additionally, we can add a discount factor 𝛾𝑡  to value actions closer in time. 

2.2.5 Reinforcement Learning Concepts 

Exploration vs. Exploitation  

In order to develop an ideal strategy, an agent must explore and exploit. 

Exploration requires the agent to perform either random or non-optimal actions to 

observe and better generalize as per the environment. Exploitation requires the agent to 

take the best possible action under the current policy. It is because state transitions and 

rewards are unknown during training; therefore, exploration is essential. After 

observing multiple state transitions and rewards, the agent can use the environment to 

get closer to an optimal policy. Of course, there is a trade-off between exploring the 

environment and exploiting learned knowledge. In general, we want to explore more at 
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the beginning of the training process and gradually start exploiting more towards the 

end to arrive at an optimal policy [5].  

Fully observable vs. Partially observable environment 

The environment in an MDP so it can either be fully or partially observable. 

When an environment is fully observable, an agent can see its entire state at any time. 

Chess is one example of this type of environment. At any point in the game, a chess-

playing agent can observe the location and type of all the chess pieces, so we say the 

environment is fully observable. On the other hand, only a subset of the state is known 

when the environment is partially observable, e.g., self-driving cars. It is because the car 

may only be able to observe its surroundings via a front-facing camera, which means it 

cannot know or observe the states of objects behind it. In other words, this environment 

can be seen in parts. A partially observable Markov Decision Process is another name 

for a partially observable MDP (POMDP) [5].  

Discrete vs. Continuous state and action spaces  

The state and action spaces may be discrete or continuous depending on the 

environment. Chess is an example of a game with discrete state and action spaces; there 

are a countable number of possible states and actions at any given time. Autonomous 

driving with a proximity sensor is an example of an environment with continuous state 

and action spaces; the state and actions are real-numbered values, such as the proximity 

values in meters and the vehicle's steering angle in degrees [5].  

Model-based vs. Model-free  

Model-based methods attempt to build a model of how the environment works. 

For example, if an agent is in state s and performs action a, it will enter state s' and 

receive reward r. Intuitively, we could use these observations to approximate 𝑃(𝑠′|𝑠, 𝑎) 

and 𝑟(𝑠, 𝑎); that is, we could approximate a model of the environment. After 

approximating a model, we could use an MDP-solving algorithm, such as Bellman's 

value iteration algorithm, to determine the best policy given our current model of the 

environment[5].  

Model-free methods are those that optimize policies without first modeling the 

environment. For example, many reinforcement learning problems have continuous 
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state and action spaces, resulting in an infinite number of possible values, making it 

impossible to efficiently create MDP models without approximations. Direct policy 

optimization also allows us to find good policies using function optimization techniques 

such as gradient descent [5].  

Deterministic vs. Stochastic policy  

The policy of an agent can be deterministic or stochastic. When we have a 

deterministic policy, the agent will always choose the same action when presented with 

the same state, assuming that the policy stays the same. The agent can also follow a 

stochastic policy, in which it randomly chooses an action when presented with the same 

state. Deterministic policies make sense in fully observable and deterministic 

environments. It is where doing something always results in the same outcome (e.g., 

chess). Stochastic policies are helpful in both partially observable and stochastic 

environments. In a partially observable environment, using a stochastic policy allows 

the agent to model some of the hidden states of the environment as part of its 

stochasticity, making it more robust to hidden information. When an agent acts in a 

stochastic environment, the outcome of an action may vary from one time to another 

[5]. 

On-policy vs. Off-policy  

In on-policy methods, the same policy is used to determine the value of the 

policy and control the agent. Proximal Policy Optimization is an example of an on-

policy method. Meanwhile, Off-policy methods use different policies to evaluate the 

policy and control the agent. Q-learning is an example of an off-policy method [5]. 

Monte-Carlo vs. Temporal difference  

In methods that use Monte-Carlo rollouts, we compute the entire trajectory 

before optimizing, whereas methods that use n-step temporal difference use n steps 

along a trajectory before taking an optimization step. Temporal difference (TD) 

methods have the advantage of being able to predict things in non-episodic 

environments. However, TD-learning methods are more vulnerable to bias caused by 

the initialization of the agents' parameters, whereas Monte-Carlo methods are less 

biased but have a higher overall variance during training [5]. 
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2.2.6 Deep Reinforcement Learning 

Deep reinforcement learning is a reinforcement learning method that uses deep 

neural networks. The name is a blend of reinforcement and deep learning. Deep neural 

networks are typically used in reinforcement learning algorithms to serve as an agent's 

policy, mapping states to actions. It allows agents to handle more complicated and 

changeable inputs, such as images or other continuous state spaces, and to output into a 

more complex action space. 

Policy Representation: A Policy is a mapping of states and actions. After receiving a 

state from its environment, an agent decides on an action depending on that state and its 

policy. The states of an environment can be represented in a variety of ways, some in 

tabular form, discrete, as illustrated in Figure 2.3 cited [3], and others can be 

represented with continuous values. Action spaces can also have both discrete and 

continuous values. 

Table policy: A good policy mapping can also be expressed as a table, given the 

problem of finding an optimal path from start to finish in a discretized environment, 

such as the checkered board illustrated in Figure 2.3. The positional coordinates of the 

agent on the board are the input to the mapping in the table, and the output is an action 

in either of the four directions. In this scenario, the state and action spaces are discrete. 

 

Figure 2.3 On the left is an optimal path issue setting, while on the right is a possible optimal table policy, 

illustration is taken from [3]. 

Policy networks: In scenarios where an agent is learning to drive in urban 

surroundings, inputs from the environment come in the form of continuous, high-

dimensional data such as speeds, steering values, locations, accelerations, and images. 
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Unfortunately, most continuous, and high-dimensional spaces will be too complex for a 

table policy to manage efficiently and update correctly. As a result, neural networks or 

policy networks can be used to map between states and actions. 

Policy Gradient Methods  

Policy gradient methods are reinforcement learning techniques that use gradient 

descent to optimize policies with respect to expected rewards. In terms of how the 

policy changes, the methods use an estimate of the gradient of the expected rewards to 

determine if the policy changes would be advantageous or not. An estimated gradient 

for one of the basic gradient methods, vanilla gradient method, is defined by: 

𝑔̂  =  𝐸̂𝑡[𝛻𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐴̂𝑡]  

(Equation 2.5), cited [3] 

where 𝐴̂𝑡 is the advantage function estimator at timestep 𝑡, and 𝐸̂𝑡 is the empirical 

average along a finite batch of sampled trajectory, 𝜏. The advantage function measures 

how much a specific action in each state is either good or bad. It can be defined as 

follows: 

𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) − 𝑉(𝑠) 

(Equation 2.6), cited [3][24] 

where 𝑄(𝑠, 𝑎) is the expected reward of an action 𝑎 from a state 𝑠, and V(s) is the 

expected reward from state 𝑠 prior to the action. With equation 2.5, we can compute a 

loss function for a policy network in terms of its parameters, represented as 𝜃: 

𝐿𝑃𝐺(𝜃) =  𝐸̂𝑡[𝛻𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐴̂𝑡] 

(Equation 2.7), cited [3] 

Proximal Policy Optimization (or PPO) [20][25] is a policy gradient method that 

builds upon the works of the Trust Region Policy Optimization (TRPO). PPO offers 

some of the same advantages as TRPO, but it is considerably easier to implement, can 

be used to a bigger range of problems, and has better sampling complexity [13]. 

Researchers in the PPO paper [13] introduces a set of PPO methods, but for this thesis, 

we will only look at the method that uses a clipped surrogate objective. This clipped 

surrogate objective function is defined in equation 2.8. 
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𝐿𝐶𝐿𝐼𝑃(𝜃) =  𝐸̂𝑡[min(𝑟𝑡(𝜃)𝐴̂𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀)𝐴̂𝑡)]  

(Equation 2.8), cited [3][5] 

Where 𝑟𝑡(𝜃) denotes the probability ratio 
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
, which means that 𝑟𝑡 (θ𝑜𝑙𝑑) = 1. 

Meanwhile, ε is our clipping parameter; refer to the end of this document in Table 2 to 

see the choice of hyperparameters used in our experiments. Moreover, 𝑟𝑡(𝜃), is used in 

conjunction with the clipping function to discourage and prevent large deviations from 

the original θ𝑜𝑙𝑑. 

As mentioned before, formulating the optimization problem in terms of a 

differentiable loss function allows us to use gradient descent. This means that, unlike 

TRPO, we can now parameterize a critic in terms of 𝜃. PPO optimizes the critic the 

same way A3C, another DRL algorithm, does, by introducing a value function loss 

𝐿𝑉𝐹
 
=  (𝑉(𝑠𝑡; 𝜃𝑣) − 𝑅𝑡(𝜏))

2. We also add the entropy term, −
1

2
(𝑙𝑜𝑔 (2𝜋𝜎2) +  1), 

like in A3C. The final loss function is defined as: 

𝐿𝐶𝐿𝐼𝑃+𝑉𝑆+𝐹(𝜃) = −𝛦𝑡̂ [𝐿
𝐶𝐿𝐼𝑃(𝜃) − 𝛼𝐿𝑉𝐹(𝜃) − 𝛽

1

2
(𝑙𝑜𝑔(2𝜋𝜎2) + 1)] 

(Equation 2.9), cited [5] 

2.3 Approaches to autonomous driving  

This section will discuss the two main approaches to autonomous driving, 

modular and end-to-end, as well as their benefits and drawbacks. Paper cited [26] 

provides a more detailed description of techniques to autonomous driving. 

Modular  

The modular approach means that the autonomous system that drives a car is 

made up of separate modules, and each performs separate tasks required for the car to 

act properly in its environment. Modules can be created by humans or ML-based as 

there is no constraint over that, but these modules are typically organized in a pipeline. 

For example, these modules may handle navigation, lane orientation, perception, vehicle 

control, object detection, and other tasks. The modular approach is the industry standard 

in autonomous driving [26]. 
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The pipeline extracts human-interpretable intermediate representations from 

modules, allowing people to gain insights into probable causes of system failure [26]. 

The modular approach demands more domain expertise compared to an end-to-end 

approach. However, in a commercial context, the system's modular architecture allows 

several teams to work on and specialize in different areas of the driving system 

simultaneously. 

End-to-end  

The end-to-end approach, as opposed to a modular approach, focuses on 

learning a driving policy that maps directly from environmental observations to vehicle 

actions. Typically, this driving policy is implemented as a deep neural network that 

generates either discrete or continuous vehicle control values. The neural network can 

be trained using either imitation learning or reinforcement learning. However, some 

approaches combine reinforcement learning and imitation learning, by combining 

exploration and expert data benefits.   

A big problem with the end-to-end approach is that the neural network functions 

as a "black box," making it difficult for humans to comprehend the reasoning behind the 

network's inferences. In situations where the system's actions are flawed, it is 

consequently more difficult to comprehend why these actions were chosen. The training 

of RL-based end-to-end systems is expected to take place in a simulated environment 

because RL actions can be dangerous in real-world situations. The end-to-end approach 

requires a different domain knowledge level than the modular approach. 

Reinforcement Learning for Self-Driving Vehicles  

Most of the reinforcement learning research we have looked at so far has been 

focused on tackling locomotion difficulties in video games and robotics. So far, there 

have been very few studies on deep reinforcement learning for autonomous driving 

since an agent needs to explore the environment to learn. It is challenging to train a 

reinforcement agent in the real world safely. However, there is recent important work in 

the paper cited [9]. 
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Figure 2.4 cited from paper [9], an actor-critic-based reinforcement learning model that learns to output 

steering and speed from a single input image and the vehicle's current steering and speed information. 

Reinforcement learning solves Markov decision processes, proving that the task 

can be described as a process in which an agent makes actions in its environment and 

receives rewards for those actions. In practice, this means that we need to design a 

dense reward signal to teach the agent to solve the problem. 

Figure 2.4 shows the model used in the research paper [9]. The model's action 

space, or output, is a continuous two-dimensional vector representing the steering angle 

and speed in km/h. It is interesting to observe that directly outputting the steer and 

speed and having the controller handle turning and throttle will likely reduce network 

noise. In their experiments, they attempted to encode visual data using both 

convolutional layers and a pre-trained variational autoencoder. They discovered that 

encoding the images with a variational autoencoder greatly improved the model's 

performance compared to training the convolutional layers alongside the remaining 

actor-critic parameters. Recent developments in DRL approaches and the fact that RL 

techniques depend on trial and error have piqued the interest of many researchers in 

testing these techniques in the domain of autonomous driving. 

Reinforcement Learning with Variational Autoencoders  

An variational autoencoder is a type of generative neural network model that 

consists of an encoder network followed by a decoder network. The idea is to use 

backpropagation to train the network to reconstruct a high-dimensional input signal 

after it has been compressed into some low-dimensional vector.  
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Variational autoencoders (VAEs) are used as a type of feature extractor in 

reinforcement learning. We can help a reinforcement learning agent learn by 

compressing high-dimensional observations into a low-dimensional latent space that is 

likely easier to learn. Understanding the state representations created by a VAE is 

referred to as state representation learning. [14] State representation learning improves 

the quality of an agent's learning by providing the agent with a state space detached 

from its feature representations and disregards distractors. The concept of 

disentanglement states that each latent space variable stores some essential, uncorrelated 

variable in the system, such as the agent's x or y position. The more disentangled the 

state representations are, the easier it should be for the agent to solve the environment. 

In addition, we have observed numerous instances of variational autoencoders used in 

reinforcement learning, which suggests that VAEs will play a central role in deep 

reinforcement learning. 
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3 Methodology 

3.1 Introduction  

In this chapter, we will look at how to set up a reinforcement learning problem 

to accelerate the learning of an autonomous vehicle. The main goal of this chapter is to 

demonstrate how deep reinforcement learning agents can drive in visually complex and 

realistic environments by analyzing the design decisions we make for our environment, 

agent, and network models. 

3.2 Implementation Details  

3.2.1 Setup  

The implementation is in Python 3.7 with the package and dependency manager 

Poetry and PyTorch "1.12.0+cu113." Simulations and training were run on a system 

with a single Nvidia Quadro P5000 with 6 GB of video memory, a 4-core CPU, and 12 

GB of RAM. A PPO implementation and complete source code for our performed 

experiments and CARLA environment setup are available at 

github.com/idreesshaikh/Autonomous-Driving-in-Carla-using-Deep-Reinforcement-Learning . 

3.2.2 Algorithm 

We chose Proximal Policy Optimization (PPO) as the deep reinforcement 

learning algorithm for continuous control problems [25] that worked best in our tests. 

PPO is a model-free reinforcement learning algorithm based on policy gradients that 

stops divergence with a first-order trust region criterion. In this part, we will outline the 

specifics of our PPO implementation. 

PPO works by optimizing current policy 𝜋𝜃 with respect to its deviation from the 

previous policy 𝜋𝜃𝑜𝑙𝑑 . Here, we will run our optimization step in a single environment to 

make implementation easier. We simulate a T-step trajectory for each optimization step 

and store (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑑𝑡, 𝑉 (𝑠𝑡;  𝜃𝑣)) −tuples for each state-transition to create a small 

training buffer. In our implementation, the length of the training buffer was ten 

https://github.com/idreesshaikh/Autonomous-Driving-in-Carla-using-Deep-Reinforcement-Learning
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episodes, which means that the value of T is not constant but instead changes. It also 

means that our training buffer grows bigger with time since our episodes get longer due 

to the agent’s improving performance. Note that 𝑠𝑡 corresponds to the latent space 

vector 𝑧 produced by the encoder of a variational autoencoder plus some external 

features. Once 𝑇 steps have been computed, we end up with 𝑇 samples, which we 

stochastically sample minibatches of size 𝑀 ≤  𝑇 from, for 𝐾 number of epochs. These 

mini-batches of (𝑠𝑛, 𝑡, 𝑎𝑛, 𝑡, 𝑅𝑛, 𝑡, 𝐴
ˆ
𝑛, 𝑡
) − tuples are fed through an actor-critic network 

which will optimize the parameters 𝜃 and 𝜃𝑣 with the Adam optimizer according to the 

LCLIP +V F +S loss function in equation 2.9. Recall that the LCLIP +V F +S introduces a 

clipping parameter 𝜀 for the 𝐿𝐶𝐿𝐼𝑃
 
loss – which ensures that our new policy after 

optimization is not too far from our current policy – and that we apply a value loss 

scaling factor 𝛼 and entropy loss scaling factor 𝛽 to the final loss. 

3.2.3 Actor and Critic Architecture 

 

 

Figure 3.1 An actor-critic layout of PPO, the diagram is taken from “Federated Reinforcement Learning 

for Training Control Policies on Multiple IoT Devices” paper, cited [33]. 

 

PPO needs an actor 𝜋(𝑎𝑡|𝑠𝑡; 𝜃) network and a critic 𝑉(𝑠𝑡; 𝜃𝑣) network. We 

implement these as two distinct Multi-Layer Perceptrons (MLP) — a better 

representation of actor-critic architecture shown in Figure 3.1. We use MLPs here since 

https://www.researchgate.net/publication/339651408_Federated_Reinforcement_Learning_for_Training_Control_Policies_on_Multiple_IoT_Devices
https://www.researchgate.net/publication/339651408_Federated_Reinforcement_Learning_for_Training_Control_Policies_on_Multiple_IoT_Devices
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the input, 𝑠𝑡, is a vector. The actor MLP consists of four fully-connected layers of sizes 

500, 300, 100, and 𝑎𝑑𝑖𝑚, where 𝑎𝑑𝑖𝑚 is the size of the action space. The activation 

function is used for 𝑡𝑎𝑛ℎ for all of the layers. The output of the last layer in this MLP 

represents the unscaled means of the Gaussian distributions which we sample actions 

from, and we will denote the unscaled mean as 𝑜𝑖 and the scaled mean as 𝜇𝑖 for the 

𝑖𝑡ℎ
 
action. To get the scaled means, we must first point out that each agent’s actions are 

limited to a predetermined range of valid values. As a result, it is reasonable to scale the 

output of the MLP to the range of each action's respective range. We do this with the 

following transformation:  

𝜇𝑖 = (max(𝑚𝑖𝑛(𝑜𝑖 , 1),−1) + 1)/2 

(Equation 3.1) 

By passing the raw outputs of the last fully connected layer through our clipping 

function (Equation 3.1), we get a value in the range of [−1, 1]. Adding one and dividing 

by 2 outputs our values in the [0, 1] range. Meanwhile, to define the multivariate 

Gaussian distribution that we sample actions from, we also provide a trainable 

parameter 𝜎𝑖. Each 𝜎𝑖  is initialized to a value of our choice, which we will call 𝜎𝑖𝑛𝑖𝑡. The 

weights in the 𝜇𝑖  layer are also initialized with variance scaling with a scaling factor of 

0.2, see Table 2. This is done to reduce the possibility of the initial weights influencing 

the policy too much. Our environments use continuous action spaces, so to pick actions, 

we sample the multivariate Gaussian distribution given by 𝑎𝑖 ∼  𝑁 (𝜇𝑖 , 𝜎𝑖 ), and in 

evaluation mode, we pick 𝑎𝑖 =  𝜇𝑖.  

The critic is a simple MLP with four fully-connected layers of sizes 500, 300, 

100, and 1, where the output will represent 𝑉(𝑠𝑡; 𝜃𝑣) ≈ 𝑅(𝑠𝑡). We use tanh for the first 

three layers and no activation for the final layer. Having no activation in the last layer 

makes it so that the critic can represent any possible value of 𝑅(𝑠𝑡).  
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Figure 3.2 This diagram depicts the PPO+VAE training pipeline. Note: all the variable names are missing 

the subscript 𝑡. Diagram inspired by the works of [5]. 

In order to optimize the network, we use the action means and standard deviations from 

the network, we then calculate the log probability 𝑙𝑜𝑔𝜋𝜃(𝑎|𝑠) of any action 𝑎 under 

policy 𝜋 given state 𝑠. Remember we need to calculate 𝑟𝑡(𝜃)  =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

  in order to 

compute the clipped loss, LCLIP . We can do this with the help of the logarithm quotient 

rule:  

𝑙𝑜𝑔 𝜋𝜃(𝑎𝑡|𝑠𝑡) −  𝑙𝑜𝑔 𝜋𝜃𝑜𝑙𝑑 
(𝑎𝑡|𝑠𝑡)  =

𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
 =  𝑟𝑡(𝜃)   

As a result, we compute the combined loss, 𝐿𝐶𝐿𝐼𝑃+𝑉𝐹+𝑆, and use the Adam optimizer to 

optimize it. 

3.2.4 Variational Autoencoder  

The VAE will serve as a feature extractor, making the state space we train our 

agents on more disentangled and eventually easier to predict. We created and integrated 

a VAE into our agent's learning process. Figure 3.2 illustrates the PPO+VAE training 

pipeline that we use in our setup. 

Architecture 

The encoder-decoder model architecture is better illustrated in Figure 3.3. We 

use a four-layered CNN as an encoder with channels ranging from 32, 64, 128, and 256. 

The kernel is configured with a size of 4x4, 3x3 alternatively, with a stride of 2. After 

the second and fourth layers, batch normalization overcomes the overfitting problem 

and improves regularization. The output of the last convolution is flattened and fed into 

a fully connected layer of 1024 units and then to two parallel fully connected layers of 
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size 𝑧𝑑𝑖𝑚. After which, there are two parallel layers of 𝑧𝑑𝑖𝑚  units, where 𝑧𝑑𝑖𝑚  is a 

constant denoting the size of the latent space of the VAE’s bottleneck. The layers use a 

LeakyReLU activation inspired by the paper cited [8][30]. We sample the latent space – 

interpreting the output of one of the parallel heads as the mean of a Gaussian 

distribution, while the other head interprets it as a standard deviation. We use the output 

of the parallel heads to sample vector 𝑧 from a Gaussian distribution, which we then 

pass to the decoder. The decoder starts with a fully-connected layer that resizes 𝑧 to the 

same size as the output of the final convolution of the encoder. We do this so that it will 

be easier to restore the image to its original size through transposed convolutions. We 

apply four transposed convolutions of 256, 128, 64, and 32 filters, strides of 2 and 3 x 3, 

and 4x4 kernels alternatively plus LeakyReLU activations. The kernel sizes were 

selected this way to make the size of the output of the final convolution a 𝑤 ×  ℎ image. 

With a sigmoid activation function, we squash the output values to ensure that the range 

of the output pixels is the same as the input ([0, 1] range.) The VAE optimizes by 

minimizing the loss using a mean squared error loss (MSE) between the input and 

output. With a learning rate of 1e-4, the model is trained using the Adam optimizer. 

Figure 4.3 shows the results with regular and reconstructed images. Our VAE 

implementation is inspired by the works of [25][7][8]. 

 

Figure 3.3 Architectural diagram of Variational Autoencoder. 
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Dataset: We gathered the datasets used to train the VAEs by driving around in the 

environment automatically and manually, gathering segmented images from the front-

facing camera as we drove. We chose towns 1, 2, and 7, collected over 12,000 images 

and divided the dataset into 80 percent training images and 20 percent validation 

images. 

Training: To train the VAE, we use the sampled Gaussian latent vector to reconstruct 

the input image and minimize the reconstruction loss. We use the Adam optimizer with 

a learning rate of 1𝑒 − 4, and a batch size of 32. 

3.3 CARLA Environment 

We are curious to test if this form of learning would work in a setting more like 

real-world driving. The agent needs to learn when to pay attention and when to 

disregard items based on distance, as misinterpreting these distances can have fatal 

repercussions for the agent. Furthermore, roads vary in width and length, as do their 

road markings and lane lines. Some roads may even be devoid of markings and lane 

lines entirely. 

CARLA [1] (version 0.9.8), an urban driving simulator, will test our algorithm 

in a more challenging, realistic driving scenario. CARLA is an open-source simulator 

built in Unreal Engine 4 for autonomous driving research. The simulator focuses on 

reproducing a realistic driving environment with frequent urban driving scenarios. It 

comes with seven different maps out of the box, with three more offered separately and 

bringing the total to ten. As a server-client system, the server renders the simulation 

depending on commands from the client and the physics engine. 

Meanwhile, the python-API-based client delivers steering, throttle, and braking 

commands to the server and receives sensor information. For example, the steering 

control has a range of [-1.0, 1.0], while the throttle and brake instructions have a range 

of [0.0, 1.0]. Furthermore, it provides a general-purpose API that allows us to spawn 

vehicles, cameras, and other sensors to use as we see fit.   

We develop a CARLA-RL environment on top of the CARLA’s API with reset 

and step methods to create an OpenAI gym-like RL environment in CARLA, which is 

not natively supported. Importantly, we run the simulator in asynchronous mode, which 
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means the simulator does not wait for the control message, which is more representative 

of the actual implementation of these algorithms. Moreover, we decided to write our 

Open AI gym-like environment for CALRA to easily leverage many different DRL 

algorithms. We have made this code publicly available at 

github.com/idreesshaikh/Autonomous-Driving-in-Carla-using-Deep-Reinforcement-Learning . 

3.3.1 Environment Design  

Map  

The first step in designing our environment was to decide what map we would 

use. We decided to go for Town 7 (Figure 3.4) and Town 2 (Figure 3.5). Town07 more 

closely resembles a country-side road; it features long and short stretches of curved and 

straight roads, with a handful of intersections in the more densely interconnected roads 

in the center of the map. In this iteration of our environment, we will be ignoring traffic 

lights and other signage to make the scope of our agent smaller and more focused. The 

map has curved up and downhill roads and several structures of different shapes and 

sizes, and it additionally features a pond and diverse vegetation. Differences in 

vegetation help us know if our agent has generalized to small perturbations in the 

scenery. Whereas, Town02 is more urban, with less vegetation and more concrete 

buildings changing the scenario. The real intention behind these world-apart maps is 

that they will be using the same variational autoencoder. Therefore, we intend to make a 

generic VAE that works everywhere in every town. 

 

Figure 3.4 Shows a top-down view of the map of Town 7 with the lap highlighted in blue. The orange dot 

marks the starting location, and the green dot marks the end location. 

https://github.com/idreesshaikh/Autonomous-Driving-in-Carla-using-Deep-Reinforcement-Learning
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Figure 3.5 Shows a top-down view of the map of Town 2 with the lap highlighted in blue. The orange dot 

marks the starting location, and the green dot marks the end location. 

Vehicle and Sensor Setup  

Here, we will describe the vehicle and sensor setup used in our environment. 

The vehicle equips with a front-facing camera attached to the front of the car and a 

environment camera for spectating purposes. The front-facing camera outputs 160x80 

semantically segmented images. Figure 3.6 show an example output of a spectating 

camera. CARLA provides a wide selection of sensors that may be mounted to the 

driving agent and receive data at each timestep.  

 

Figure 3.6 Image from the environment spectating camera. 
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We use a camera sensor that produces Semantically Segmentation (SS) images, 

giving us 12 different classifications, e.g., lane marker, sidewalk, road, pedestrian, etc. 

In addition, we also use the Collision sensor to detect whether the driving agent collides 

with any static or dynamic objects in the environment. It records an event if a triggering 

condition is met, and that event may then be handled correctly. 

Waypoints  

Waypoints in CARLA are described as 3D-directed points representing the 

map's location and the lane's orientation, as shown in Figure 3.7. We calculate 

intermediate waypoints at a distance of one meter from each other between the start and 

the destination.  

 

Figure 3.7 Waypoints (shown in red) are intermediate 3D-directed points that contains information of 

location and orientation between our start and an end position. 

3.4 Reinforcement Learning setup 

We will now present the reinforcement learning formulation for our problem of 

predetermined path navigation after laying out the necessary information for our 

environment design. It includes the state space, action space, and reward function 

definitions. 
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3.4.1 State Space  

We use the front camera's semantically segmented image encoding and external 

features as the state inputs for the RL agent. These are described below: 

Semantic Segmented Image  

One of our state inputs is encoding a front Semantically Segmented (SS) image. 

The SS image can be simply retrieved using the Semantic Segmentation Camera Sensor, 

discussed in the previous section. Given the current state-of-the-art perception 

architectures, we think the segmentation encoding job can be learned in isolation; hence, 

we focus on learning control agents directly from SS images using DRL. We use a 

CNN-based variational autoencoder (VAE) for dimensionality reduction and its 

bottleneck embeddings as input to our agent policy network (Figure 3.2).  

External Features 

 

Figure 3.8 External features representation. 

Figure 3.8 illustrates the external features we would use as our state input alongside the 

encoder front camera image, e.g., current speed, last steer value, throttle, distance from 

the trajectory, and the vehicle's orientation from the forward vector of the lane. These 

are described in detail below:  

1. Throttle: It is the acceleration of our agent. It does not have to be normalized 

since it is already in the interval of [-1.0, 1.0]. 
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2. Current Speed: The current speed of our agent is in km/h. However, it is 

preferred to be in the interval [0, 1], so we normalize it by dividing it by the 

target velocity: 20 km/h. 

3. Previous Steer: The previous steer value is determined by the agent's steering 

action in the preceding timestep. We use the last steer action as a proxy to offer 

current state information related to steering because the CARLA simulator does 

not disclose the agent's current steer value. It ranges from [-1.0, 1.0].  

4. Distance from Waypoint: The driving agent's signed perpendicular distance 

from the waypoints offers information on the agent's location relative to the best 

waypoint trajectory. Moreover, suppose the agent goes away from the trajectory, 

the value increases; therefore, It also serves as a termination criterion since we 

can detect whether or not the agent has deviated from the trajectory. 

5. Waypoint orientation: It is the angle between the agent's forward vector and 

the forward vector of the waypoint, θ. 

The encoded SS and external features make us our state 𝑠. 

3.4.2 Action Space  

In CARLA simulator, the actions for controlling our agent are usually defined as 

a tuple of three values (𝑠, 𝑡, 𝑏). In that tuple 𝑠 is our steer, 𝑡 is the throttle and 𝑏 is the 

brake. The 𝑠 action value ranges between [-1.0, 1.0], and the 𝑡 and 𝑏 actions values 

range between [0.0, 1.0]. Our (Equation 3.1) is helpful here since it clips those values in 

those ranges. 

The input representation is then fed into our policy network, which consists of a 

multi-layer perceptron and outputs (𝑠̂, 𝑡̂), where 𝑠̂ is the predicted steer action and 𝑡̂ is 

the predicted throttle for that timestep, as shown in Figure 3.9. We decided to omit to 

brake, as we will be driving at low speeds with no other cars present or any dynamic 

actors, therefore not worrying about traffic rules – eliminating the need for braking. 
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Figure 3.9 Proposed Architecture: Semantically segmented (SS) images and external features obtained 

from the CARLA simulator serve as inputs for the architecture. The SS pictures are encoded by a 

pretrained auto-encoder whose bottleneck encoding and external attributes are input to the policy 

network. The policy network generates the control actions (𝑠̂, 𝑡̂), where 𝑠̂ is the projected steering angle 

and 𝑡̂ is the predicted throttle angle. 

3.4.3 Extra Environment Techniques 

Termination Criteria 

 

We have listed the termination criteria for our environment underneath: 

1. Have we deviated more than 3m from the center of the lane? 

2. Are we driving slower than 1.0 km/h after the first 10 seconds of the episode has 

passed? 

3. Have we incurred any other infractions like collision? 

4. Are we driving at a speed that is more than our maximum speed? 

5. Was our designed lap completed – success?  

 

The above criteria are imposed on the agent to ensure that it follows the road and 

terminates the agent early so it can resume in a good state.  
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Early Termination 

Early termination is a term we use to describe an environment that terminates the 

environment once the agent has reached a bad or unrecoverable state. From a training 

efficiency standpoint, the idea here is that we may learn faster by sampling more “good” 

states from a distribution smaller than the original distribution. For example, in our 

environment, we terminate the episode once the car drives off the road.  

Checkpoints 

We set periodic checkpoints along the track to make the concept of making an 

agent "fail quicker" easier. Every 100m, we save a new checkpoint, and the agent is 

reset to the previous checkpoint when it reaches a terminal state. The concept behind 

forcing the agent to fail quicker is that we will be able to learn faster by jumping right to 

the areas of the track where the agent is currently struggling. However, making the 

agent drive to the challenging stretch of the track takes a substantial amount of time. 

The data we acquire on this excursion may need to be more beneficial to the agent in 

completing the current problem. 

Asynchronous 

In an asynchronous environment, the environment does not wait for the step 

called before changing its state; instead, it updates autonomously and at varying rates. 

In terms of autonomous driving, this may offer certain advantages. Because there is no 

way to pause the environment to do calculations in real-life, training an agent in an 

asynchronous environment is similar to training an agent in the real world. As a result, it 

may be acceptable to conclude that if we can teach an agent to solve the asynchronous 

version of the environment, we may be able to train the same agent in a real-world 

scenario. 

 



 39 

 

3.4.4 Reward Function  

We formulate a dense reward function, R,  but we want it to be a simple function 

that incentivizes our agent, enhances its behavior, and speeds up its training. In order to 

design an intuitive reward, we need to understand the things that improve the agent's 

performance. We came about the following 1) termination criteria, 2) the agent's speed, 

3) the agent's distance from the waypoint, and finally, 4) the agent's orientation plays an 

important role. Let us look at the following list:  

1. The current speed 𝑣 of the vehicle is in km/h, and we want our agent to drive at 

a target speed 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 of 20km/h, and if our agent drives at the target speed, then 

it will get the highest reward. In order to achieve the maximum reward, our 

throttle value must be precise, and mostly this is not the case. Therefore, we 

must designate a range where our agent gets the maximum reward. After the 

target speed 𝑣𝑡𝑎𝑟𝑔𝑒𝑡, we introduce two new terms, min speed 𝑣𝑚𝑖𝑛 , and max 

speed 𝑣𝑚𝑎𝑥 . 

2. Distance between the center of the vehicle and the center of the lane also plays a 

huge part. The closer our agent is to the center of the lane, the better it performs. 

The max agent can be far from the center 𝑑𝑚𝑎𝑥  which is 3m as per our 

termination criteria, and 𝑑𝑛𝑜𝑟𝑚 =
1

𝑑𝑚𝑎𝑥
. 

3. Since we care how far our agent is from the center of the lane, we must also care 

how aligned our agent is to the lane’s orientation. It will eventually improve the 

agent’s steering behavior. Therefore, we introduce another term 𝛼𝑑𝑖𝑓𝑓, calculated 

as the angle difference between the vehicle’s forward vector and the current 

waypoint’s forward vector. However, we should also define 𝑎𝑚𝑎𝑥 which is the 

threshold maximum beyond which the reward value is just zero, and  𝑎𝑚𝑎𝑥 

is 20 degrees in our case. Here is 𝑎𝑟𝑒𝑤  , cited [5], that combines these terms 

as one: 

𝑎𝑟𝑒𝑤 = {
1 − |

𝑎𝑑𝑖𝑓𝑓
𝑎𝑚𝑎𝑥

| , 𝑎𝑑𝑖𝑓𝑓 <   𝑎𝑚𝑎𝑥

0,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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4. The first 3 points talk about the positive; however, we also need a negative 

reward when the agent performs poorly. Therefore, we put forth a reward of -10 

for any infraction or accident defined in the previous section. 

This eventually led us to this formulation, cited [5]: 

𝑅 =

{
  
 

  
 
−10,                                                                           𝑜𝑛 𝑖𝑛𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛
𝑣

𝑣𝑚𝑖𝑛
∗ (1 − 𝑑𝑛𝑜𝑟𝑚) ∗ 𝑎𝑟𝑒𝑤 ,                                             𝑣 < 𝑣𝑚𝑖𝑛

1 ∗ (1 − 𝑑𝑛𝑜𝑟𝑚) ∗ 𝑎𝑟𝑒𝑤 ,                                𝑣𝑚𝑖𝑛  ≤ 𝑣 < 𝑣𝑡𝑎𝑟𝑔𝑒𝑡

(1−
𝑣 − 𝑣𝑡𝑎𝑟𝑔𝑒𝑡

𝑣𝑚𝑎𝑥 − 𝑣𝑡𝑎𝑟𝑔𝑒𝑡
) ∗ (1 − 𝑑𝑛𝑜𝑟𝑚) ∗ 𝑎𝑟𝑒𝑤 ,         𝑣 ≥ 𝑣𝑡𝑎𝑟𝑔𝑒𝑡

 

(Equation 3.2, cited [5]) 

3.5 Methodology  

To start this sub-section, we will put every piece of the puzzle we have 

discussed so far together as a simple layout architecture. It outlines our novel approach 

of learning an end-to-end autonomous driving policy using our PPO agent. Figure 3.10 

presents our overall architecture consisting of 3 important parts – 3.5.1. CARLA, 

simulation environment, 3.5.2. Variational Autoencoder to encode SS front camera 

images into latent space, 3.5.3. PPO agent to learn the driving policy and provide 

control values to our simulation. 

 

Figure 3.10 Architectural layout encapsulating all the three essential components: 1) CARLA Simulation, 

2) VAE and 3) PPO Agent. 
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3.5.1 CARLA Environment 

The goal of our agent is to navigate a predetermined route in Town 7 and Town 

2 without deviating too far from the center of the lane. The laps for Town 7 and Town 2 

are illustrated in Figure 3.4 and Figure 3.5 respectively, and it passes through multiple 

intersections. The laps for Town 7 and Town 2 are illustrated in Figure 3.4 and 3.5, 

respectively, and it passes through multiple intersections. For every intersection, the 

agent should drive straight (or left if there is no road straight ahead.) So there is no 

ambiguity in the agent's end goal whenever it encounters intersections. The lap length is 

750m in Town 7 and 780m in Town 2, and the environment will consider the 

completion of three laps as a successful run and terminate. The orange dot marks the 

starting position of the agent. 

3.5.2 Variational Autoencoder 

The Variational Autoencoder (VAE) training process starts by driving around 

automatically and manually, collecting 12,000 160x80 semantically segmented images 

we will be using for training. Then, we will use the SS image as the input to the 

variational autoencoder (ℎ ∗  𝑤 ∗  𝑐 = 38400 input units). VAE’s weights are frozen 

while our DRL networks. See section 3.2.4 for the architecture of VAE, and for the 

results check out section 4.1. 

3.5.3 Proximal Policy Optimization 

To train our RL agent, we use a cutting-edge on-policy reinforcement learning 

technique called Proximal policy optimization (PPO) [25]. Each training episode is on a 

predetermined route for each defined driving task in Towns 2 and 7, illustrated in Figure 

4.8 and Figure 4.9. If the agent arrives at the destination, the episode is considered a 

success. On the other hand, it ends as a failure if the agent crashes into something or 

does not reach the target within the maximum number of timesteps (𝑡𝑚𝑎𝑥 =7500). 
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4 Results  

4.1 Variational Autoencoder 

Training Parameters  

Table 1 details the training parameters utilized during the training of our 

variational autoencoder network (VAE): 

Hyperparameter Value 

Learning rate 𝛼 

Batch size N 

Loss Function 

Architecture 

𝑧𝑑𝑖𝑚 

epochs 

1e-4 

32 

MSE 

CNN 

95 

50 

Table 1 VAE parameters. 

Figure 4.1 shows the training loss per epoch of our VAE model, and Figure 4.2 

shows the validation loss per epoch of our VAE model. We ran both the training and 

validation for 50 epochs with the above-mentioned parameters. The details of the VAE 

architecture are mentioned in the previous chapter. 

 

Figure 4.1 Training Loss/Epoch of VAE. 
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Figure 4.2 Validation Loss/Epoch of VAE. 

Meanwhile, Figure 4.3 shows the image transformation that takes place after it 

has been fed into the VAE. Our reconstructed image is not as clear, but we do not really 

care about the output of the decoder since the latent space vector 𝑧𝑑𝑖𝑚 is what we need, 

and that is what will be used in our reinforcement pipeline. 

 

Figure 4.3 Image reconstruction from our VAE model. 
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4.2 Carla Environment 

In this section, we shall be focusing on the factors that vary from training to 

training or within the training of our agent. Following the setup and methodology 

discussed in the previous section here, we will be focusing on the outcome and its 

variability in our training. 

Throughout our training, we have focused on some very important variable 

factors/metrics that we shall be focusing on in this section: 

• An average distance from the road's center during our training cycle 

• Comparison between Town02 and Town07 (Urban and Semi-Urban), each of 

which has a distinctive landscape 

• Episodic length as the training goes by 

• 𝜎𝑖𝑛𝑖𝑡  (exploration noise) change within the training 

• Asynchronicity in our environment setup 

Let us start by looking at the bare-bone diagram of these two towns and our 

predetermined navigation route. In the map diagrams shown below in Figure 4.4 and 

Figure 4.5 cited [1], our agent is driving in the anti-clockwise direction onto the blue 

navigation route; It starts from the orange dot position and finishes at the green dot 

position. 
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Our PPO agent must learn to follow the road even when there is no clear 

indication of which direction is the correct one; the agent can get stuck at intersections 

and junctions while navigating through the map. We hope that by introducing additional 

Figure 4.4 Town 2 top-view and path followed by our agent highlighted in blue. It is 780m long. 

Illustration cited CARLA Simulator documentation [1]. 

Figure 4.5 Town 7 top-view and path followed by our agent highlighted in blue. It is 750m long. 

Illustration cited CARLA Simulator Documention [1]. 
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policies, we will remove some ambiguity from these situations, resulting in an agent 

that learns more reliably and faster. 

As it can be seen, our navigation path in Town 7 is trickier due to its topology 

and curvatures. It is also semi-urban and therefore lacks a lot of modern urban features; 

however, looking at Figure 4.6 we can deduce that in the first half of the training (before 

1 million timesteps), our agent in Town 7 is performing. We deduce that setting 𝜎𝑖𝑛𝑖𝑡  

(Gaussian exploration noise) to 0.2 gives our agent enough exploration range to 

converge toward a better policy due to the town’s topology. Meanwhile, Town 2 is 

straighter and less curvy and is therefore not a fan of this exploration noise. However, 

after 1 million timesteps, we squeeze the exploration noise to 0.1, and it constricts its 

exploration range, therefore, giving the agent in Town 2 a fair bit of edge now as it 

starts to converge faster than the one in Town 7. 

 

Figure 4.6 Average reward achieved in Town 2 and Town 2 over timestep 𝑡. 

Moreover, we also recorded the average distance from the center of the lane, 

averaging over all timesteps of the environment (Figure 4.7). Here our relationship is 

reciprocal because the lesser the deviation from the lane center, the better the 

performance of the agent. We should point out again that in Town 7, the topology is not 

flat and straight at all but somehow has a deviation from the road center lesser than in 

Town 2. Our Gaussian noise parameter plays a huge part here as well, and since it 

works as an exploratory noise measure, it deviates our agent from straighter roads to 

explore more scenes making it more noticeable.  
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Figure 4.7 Average deviation from the center in Town 2 and Town 7 over timestep t. 

In our experiments, we realized that when 𝜎𝑖𝑛𝑖𝑡  is low (e.g., 𝜎𝑖𝑛𝑖𝑡 = 0.1,) the 

resulting agent will drive more smoothly - the steering angle will be more stable - but 

the trade-off is that there is a greater chance that our agent will be stuck in local minima, 

and training will become slower because the sampled values are generally close to the 

mean. When 𝜎𝑖𝑛𝑖𝑡 is high, the steering of the agent is jerkier, but there is less chance of 

hitting a local minima, and the agent will learn more quickly. However, there is a trade-

off to both situations; therefore, we decided to set 𝜎𝑖𝑛𝑖𝑡  to 0.2 at the start of the training 

and constrict it to 0.1 after a million timesteps. The choice to pick those numbers was 

motivated by the maps and predetermined navigational routes.  

We also found that it is challenging to get the agent to "commit" to a control 

signal for long enough for the agent to observe its effects when using the standard 

Gaussian exploration noise. Regular Gaussian noise, for instance, will cause our agent 

to repeat bad actions most likely and gradually be pushed to move in the right direction 

over time due to minor perturbations in the actions if the agent is stuck on a sharp turn. 

As the agent would generalize better when an action's outcome is non-deterministic, 

giving the agent more variety in its data, we suspect that the temporal noise in the 

asynchronous environment may have been to the agent's advantage. Asynchronous 

training has some advantages for developing agents that could, in theory, learn to drive 

in real time. 

Furthermore, in Figure 4.8 we are given the episodic reward of Town 7, which 

has a healthier incline even when the navigation route on the map is very complex. It 

can also be said that in Town 7, our agent learned to drive the entire navigation route in 

roughly around 900 episodes. 
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Figure 4.8 Town 7 average reward per episode. 

Meanwhile, in Figure 4.9 we see the episodic reward of Town 2. We notice a 

sudden bump after roughly 1100 episodes because the navigation route is mostly going 

straight and taking a left turn. It can be deduced that by the 1100th episode, the agent has 

learned both driving features; therefore, it has achieved the maximum reward. Even if it 

looks like our agent is stuck in local minima before episode 1200, it is not hard for it to 

recover. In addition, Town 2 is simpler compared to Town 7, but it takes more episodes 

to learn an optimal policy, and the reason is that in Town 2, our agent fails faster, which 

is favorable for better policy convergence. Our agent recovers from a better state which 

eventually pushes it for a better policy, as can be seen by the episodic reward. 

 

Figure 4.9 Town 2 average reward per episode. 

Moreover, as soon as the agent reaches the first intersection, we observed that 

the agent repeatedly fails for perhaps hours before finally succeeding in making the 

turn. In order to encourage our agent fail more frequently in training mode, we added 

checkpoints in our environment. A 160x80 segmented image plus some external 

features might not contain all the necessary information for our agent to drive safely in 



 49 

 

CARLA. In general, we believe that improving the state representation can significantly 

boost the performance of our baseline agent. For instance, adding memory to the agent 

using recurrent networks or combining input from various types of sensors, such as 

LiDAR and RGB cameras, are just a few examples.  

We think that the VAE's representations are more beneficial to the agent when 

addressing the issue of autonomous driving, and we believe that it would be interesting 

to investigate comparable strategies for enforcing information-rich state representations 

that can be applied with deep reinforcement learning. Additionally, we could investigate 

training models that are tailored for semantic segmentation and attempt to train the 

agent using their compressed state representations. 

Training parameters of our PPO-based agent are mentioned in Table 2 placed in 

Appendix A at the end of this paper for quick reference. 
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5 Conclusion 

In this thesis, we have looked at a variety of ways in which deep reinforcement 

learning can be applied to the development of autonomous driving agents. We have 

confirmed in our findings that variational autoencoders can be used to speed up the 

learning process for DRL agents. Not only that we have also provided a thorough 

analysis of how different state representations impact the performance of agents. 

Despite some difficulties in establishing the final environment in CARLA, we have 

successfully developed a self-contained DRL system that can be used in conjunction 

with CARLA. 

We present an approach of using waypoints as external input features alongside 

the control values and front camera images. We also designed an architecture to learn 

planning and control directly from semantically segmented images and external features 

using an on-policy DRL algorithm (Proximal Policy Optimization). Bear in mind that it 

was carried out without the presence of any dynamic actors, and the agent learned to 

navigate successfully. We propose using low-dimensional features to focus on policy 

learning in order to analyze further and decouple the issue of representation in policy 

learning.  

Reinforcement learning is a self-learning algorithm that uses changes in 

environmental conditions and continuous action adjustment. This self-learning 

algorithm yields numerous methods, including value-based and policy-based 

algorithms, each of which is said to solve a different problem. To cite our ideas, we 

used various techniques in the CARLA environment to solve the problem of 

autonomous driving and created an autonomous driving agent. We confirm previous 

research by demonstrating that the policy-based algorithm is superior in assisting deep 

reinforcement learning in solving continuous state and action space problems such as 

autonomous driving. 
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5.1 Contribution 

In the following list, we have outlined a summary of the contributions we made 

in this dissertation: 

1. We have created a gym-like environment for CARLA that focuses on navigating 

a predetermined route both in Town 2 and Town 7, and it can also be expanded 

to different towns too with even more complex scenery. 

2. We analyzed various environment design decisions in order to determine the 

best setup for training reinforcement learning-based autonomous driving agents. 

We have provided an example of how variational autoencoders (VAE) can be 

used in conjunction with CARLA. 

3. We demonstrated how we train and use a VAE that can have an impact on the 

performance of a deep RL agent. 

4. We discovered that training the VAE on semantically segmented (SS) images 

rather than the RGB input itself can result in significant improvements. This 

method of training the VAE ensures that the VAE is more focused on encoding 

the semantics of the environment. 

5.2 Discussion and Future Work  

This section will examine and summarize our findings, as well as offer 

suggestions for how to make our work better and what areas of autonomous driving 

research we should concentrate on in the future. 

This work could be expanded in a variety of ways in the future. Experiment with 

other cutting-edge off-policy algorithms, such as TD3, SAC, and DDPG, that work in 

continuous domains and are more resistant to hyperparameters perturbations. The 

continuous action domain can also be discretized and formulated for Dueling Deep Q 

networks, Double Deep Q networks, etc. 

To get the best results possible, it is also essential to solve some open problems, 

like formulating the optimization problem with reinforcement learning or imitation 

learning goals. This can be elevated even further by combining both these learning 

paradigms together. 
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5.3 Closing Remark 

Together, our results demonstrate that deep RL agents can master driving in 

challenging scenarios with only limited training data. Our agent was able to finish a 

750-meter track outside of Town 7 and a 780-meter track in the Town 2 using only a 

160x80 image and some knowledge of external features. We conclude that small 

changes to reward formulations can significantly affect our agent's behavior. We 

suggest constructing reward functions to ensure good driving behavior in deep RL-

based autonomous driving agents. While we appreciate the advantages of deep 

reinforcement learning over imitation learning, we feel that much more effort is 

required before we can construct deep reinforcement learning agents capable of 

handling all road conditions. We believe that we have helped the reinforcement learning 

for the autonomous driving research community by implementing a CARLA-based gym 

environment with a working PPO-based agent that can be used right away. 
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Appendix A 

PPO Training Parameters 

This appendix presents the training parameters used in our Proximal Policy 

Optimization (PPO) agent in this dissertation: 

 

Hyperparameter Value 

Discount factor 𝛾  

Clipping parameter 𝜀  

Learning rate  

Value loss scale 𝛼  

Entropy loss scale 𝛽  

Number of epochs 𝐾 

Initial noise 𝜎𝑖𝑛𝑖𝑡 

Horizon 𝑇/ Batch size 𝑀 

0.99 

0.2 

1e-4 

0.5 

0.01 

7 

0.2 (squeezed to 0.1 after a million timesteps) 

∑ 𝑥𝑛
𝑖=0  ; n=10, x = episodic length in timestep 

Table 2 Hyperparameters of PPO-based agent. 

 

Thesis Project 

The project code is available at https://github.com/idreesshaikh/Autonomous-

Driving-in-Carla-using-Deep-Reinforcement-Learning . 

All the sources used in this work have been cited in Bibliography. In addition, the 

Project uses sources mentioned in the Bibliography for both theoretical and practical 

implementation. 

https://github.com/idreesshaikh/Autonomous-Driving-in-Carla-using-Deep-Reinforcement-Learning
https://github.com/idreesshaikh/Autonomous-Driving-in-Carla-using-Deep-Reinforcement-Learning
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