
An Efficient Hand Gesture Recognition System
Based on Deep CNN

Hung-Yuan Chung

Department of Electrical
Engineering

National Central University
Taoyuan, Taiwan

Yao-Liang Chung*
Department of Communications,

Navigation and Control Engineering
National Taiwan Ocean University

Keelung, Taiwan

Wei-Feng Tsai
Department of Electrical

Engineering
National Central University

Taoyuan, Taiwan

Abstract— The goal of this paper is to use a webcam to

instantly track the region of interest (ROI), namely, the hand
region, in the image range and identify hand gestures for home
appliance control (in order to create smart homes) or human-
computer interaction fields. Firstly, we use skin color detection
and morphology to remove unnecessary background information
from the image, and then use background subtraction to detect
the ROI. Next, to avoid background influences on objects or noise
affecting the ROI, we use the kernelized correlation filters (KCF)
algorithm to track the detected ROI. The image size of the ROI is
then resized to 100x120 and then entered into the deep
convolutional neural network (CNN), in order to identify
multiple hand gestures. Two deep CNN architectures are
developed in this study that are modified from AlexNet and
VGGNet, respectively. Then, the above process of tracking and
recognition is repeated to achieve an instant effect, and the
system’s execution continues until the hand leaves the camera
range. Finally, the training data set can reach a recognition rate
of 99.90%, and the test data set has a recognition rate of 95.61%,
which represents the feasibility of the practical application.

Keywords— Hand detection; hand tracking; KCF; deep CNN;
hand gesture recognition

I. INTRODUCTION

The process of hand gesture recognition generally has two
parts: detection and recognition, wherein the recognition is
also divided into dynamic hand gestures and static hand
gestures. The static hand gesture means a fixed hand gesture,
and the dynamic hand gesture refers to continuous motion
recognition such as waving and grabbing.

First, for detection, the background and the hand are
generally segmented using the skin segmentation method, and
then the noise processing is performed and the background
subtraction method is used to obtain the desired region of
interest (ROI), namely, the hand region. In recent years,
because of the Kinect [1] depth camera introduced by
Microsoft, many depth information-based methods have
emerged, such as Keskin et al. [2] and Memo et al. [3], which
use the random forest [4], a machine learning method, to train
the model to capture the hand’s skeletal structure. However,
because the price of such a camera is relatively expensive
compared to a typical web camera and tends to be affected by
the light source of the location, there are still many limitations
in terms of application.

As for the identification aspect, its essence is
classification. Classification is performed by setting different

hand gestures into different categories, using manually set
decision criteria (traditionally) or trained classification models
(in recent years). The traditional method is to perform the
recognition by using the convex hull [5, 6] of the hand after
performing skin segmentation. Recognition is determined by
the number of polygon edges generated by a hand gesture, and
only the numbers from 1 to 5 can be recognized. For example
[7], controlling the robot arm with this method can make very
little variations, and it is susceptible to complex background
interference. Moreover, the hand must be completely facing
the lens and this cannot be done on some complicated hand
gestures. In recent years, many research teams have adopted
machine-learning methods to train models for classification,
such as support vector machine [8], hidden markov model [9],
convolutional neural network (CNN) [10], recurrent neural
network [11] and so on. Among them, CNN is more popular in
the field of recognition, and has better results than other
methods, mainly because it can get the required feature values
from the input picture, and can learn the difference between
different samples well by using a large number of samples in
its training. However, in the past, its development has been
limited due to the speed of hardware computing. In recent
years, due to the advancement of semiconductor
manufacturing, the computing speed of graphics processing
units is getting faster, and the bottleneck of hardware
processing speed has been addressed, allowing the CNN
network to develop rapidly to become the deep CNN network.
The most iconic one is AlexNet [12], an object recognition
network, which won the championship at the 2012 ImageNet
[13].

However, we found that in the typical hand gesture
recognition process (detection plus recognition), if there is an
object or noise similar to the skin color in the background,
interference can easily occur, resulting in the detection of the
wrong ROI, so the background selection has to be restricted to
a specific block to avoid disturbance. For example, the
background of [14] is limited to a small desktop area (using a
webcam facing down to the desktop). Therefore, the study
aims to loosen this restriction by focusing on the recognition
of static hand gestures, and the ROI of the moving object can
be tracked during the system execution and the recognition
can be performed immediately. By achieving this goal, the
recognition process will no longer be limited to a narrow
region. Thus, this study adds a tracking mechanism between
the two steps of detection and recognition to avoid problems

* denotes the corresponding author (e-mail: ylchung@email.ntou.edu.tw).

978-1-5386-6376-9/19/$31.00 ©2019 IEEE 853

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on March 01,2024 at 23:16:09 UTC from IEEE Xplore. Restrictions apply.

caused by objects in other backgrounds with similar skin color
and track hands that may be moving at the same time.

Fig. 1 is a schematic diagram of the proposed overall hand
gesture recognition concept, which effectively combines three
key components, namely, hand detection, hand tracking, and
hand recognition. For the hand detection section, we first
perform skin segmentation on input image to remove the extra
background information, and then process the noise to reduce
the small damage in some images. Finally, we use the
background subtraction method [15, 16] to get the ROI of the
hand position. In terms of the hand tracking section, we adopt
the kernelized correlation filters (KCF) [17] algorithm as the
basis for calculation, which has been a widely used algorithm
for image tracking in recent years. The core concept is to
extract the ROI features of the target position of the first frame
and train a model. Then, after the next frame comes in, the
trained model will do the calculation to get a new predicted
position. As for the hand recognition aspect, we use the deep
CNN network to extract and recognize the hand features of the
ROI. This study uses two deep CNN architectures for
comparison that are modified from AlexNet [12] and VGGNet
[18], respectively. After the model training is completed, the
recognition rate of the test set can reach more than 95%.

Fig. 1. The schematic diagram of the overall hand gesture recognition
concept. The webcam initializes the tracking algorithm after detecting
the ROI of the first frame entering the lens, and the ROI block is
resized to enter into the deep CNN network for recognition, as shown
by the blue arrow-guided path. After that, the tracking algorithm
continues to track new incoming frames (i.e., skip hand detection)
and recognize them, as shown by the orange arrow-guided path.

The contributions of this study can be summarized as

follows.
 We proposed a new hand recognition system that

effectively combines the three key components, which
are hand detection, hand tracking, and hand recognition.

 With respect to recognition, we designed two deep CNN
networks (which were modified from the two classic
networks, AlexNet [12] and VGGNet [18]). They are
able to achieve sufficient recognition accuracy while
reducing the computation load (because we effectively
reduce the size of the network) to achieve instant
tracking recognition. In particular, the modified version
of VGGNet can achieve a recognition rate of 99.9% for
the training set and 95.61% for the test set,
demonstrating the feasibility of the practical application.

 The proposed hand gesture recognition system has
considerable potential to be used in related fields such as
controlling home appliances (in order to create smart
homes) or human-computer interaction.

The following sections can be organized as follows.
Section II describes the hand detection method. Section III

describes the hand tracking method. Section IV designs two
network architectures for deep CNN-based hand gesture
recognition. Section V demonstrates experimental results.
Finally, Section VI concludes and points out the potential
direction for future research.

II. HAND DETECTION METHOD

The hand detection process is shown in Fig. 2. To capture
the position of the hand, the first step is to use the skin
segmentation method and segment the unwanted background
information by using YCbCr [19] (as shown in Fig. 3(b)).
Due to its high separation of brightness and chroma, and its
simple formula conversion, the execution speed is improved,
making it suitable for use in a real-time system. The second
step is to process the noise to remove some small noises (as
shown in Fig. 3(c)). This includes erosion, expansion
processing, and smoothing of morphological image processing.
The third step is to use the background subtraction method to
obtain the ROI (as shown in Fig. 3(d)). The tracking algorithm
is then used to continuously track the ROI (introduced in
Section III).

Fig. 2. Hand detection process.

Fig. 3. (a) indicates the input image, (b) indicates that skin
segmentation has been performed, (c) indicates the image obtained
after the morphological noise reduction method is used, and the ROI
(inside the green frame) received after the background subtraction
method is used as shown in (d).

III. HAND TRACKING

After obtaining the ROI, we use the KCF algorithm [17] to
track the detected ROI in order to avoid the noise of a skin
color similar to the background or the interference of moving
objects with similar skin color. The target to be tracked (i.e.,
ROI) is used as the positive sample, and the circulant matrix
displacement is used to generate multiple samples of the same
size as negative samples. They are together used for training
the model. After that, the new frame comes in, a correction
calculation is performed on the trained model to find the

854

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on March 01,2024 at 23:16:09 UTC from IEEE Xplore. Restrictions apply.

(possibly moving) position of the ROI and achieve the
tracking effect.

The KCF algorithm is divided into two stages: training and
detection (tracking), as shown in Fig. 4. The first stage is the
training stage (as shown in Fig. 4(a)): when the first frame of
the ROI detected by the background subtraction method comes
in, the ROI is used as the tracking target (positive sample) for
training. First, it is used to generate multiple training samples
(negative samples); each sample (positive sample plus
negative sample) is then used as input for training, after which
a Gaussian probability density function (PDF) model can be
obtained. The sample obtains higher PDF when it is closer to
the tracking target and the PDF is lower when the sample is
farther from the tracking target. The second stage is the
tracking phase (as shown in Fig. 4(b)): when the new frame
comes in, we capture image by the position of the ROI of the
previous frame, and the displacement is generated to produce
different samples. The new frame and the samples are entered
the trained model of Fig. 4(a) and a correction calculation is
performed. Next, the position of the maximum value is
designated as the updated ROI. After obtaining the new target
position, the tracking target image will be taken again and the
step shown in Fig. 4(a) will be repeated to train and update the
model; the system then wait for the next frame to come and
continue to track (repeating the above process). The system
stops executing when the hand leaves the camera range

Fig. 4. KCF tracking flow chart, where (a) is the training stage
process and (b) is the tracking stage process.

IV. DEEP CNN ARCHITECTURE FOR HAND GESTURE

RECOGNITION

We then adjust the size of the ROI to 100x120 and enter it
into the deep CNN for hand gesture recognition. This study
designed two deep CNN architectures. Architecture 1 is
modified based on AlexNet [12], and Architecture 2 is
modified based on VGGNet [18]. Both modifications mainly
allow for network size reduction and sufficient recognition
accuracy to be achieved in an efficient manner.

A. Architecture 1 (version modified from AlexNet)

The modified AlexNet architecture is shown in Fig. 5. Fig.
6 shows its detailed internal parameters.

Fig. 5. Architecture 1 (version modified from AlexNet).

Fig. 6. Detailed parameters of Architecture 1 (version modified from
AlexNet).

1. Convolutional Layer

This architecture uses four convolutional layers. The
number and sizes of convolution kernels for each layer are not
the same. Deeper layers use more kernels, allowing the system
to capture more features. Specifically, the four layers
sequentially use 32-64-64-128 convolution kernels and their
sizes are 5x5-3x3-3x3-3x3, respectively. In order to make the
output feature map size stay the same, the zero-padding
method is adopted, that is, the addition of zeros around the
original image, so as to maintain the size of the original image
and reduce the impact of the image edge. In addition, each
layer of the convolutional layer is immediately followed by a
rectified linear unit (ReLU) activation function.

2. Pooling Layer

Down sampling is conducted after the feature map is
obtained by the convolution layer to make the size of the
sampled image becomes 1/4 of the original one and; that is,
the edge length of the image will all become 1/2. To be
specific, this study uses max-pooling for sampling, by using
2x2 kernel to take the maximum value of the internal elements
of the image, and the stride is 2. Four times of max-pooling
are used in total, so the final input to the fully connected layer
has a picture size of 7x8. In addition, a layer of local response
normalization (LRN) is added on each pooling layer.

3. Fully Connected Layer

We use two fully connected layers. The input parameters
are set as 1024 neurons, and finally output has six categories

855

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on March 01,2024 at 23:16:09 UTC from IEEE Xplore. Restrictions apply.

(six common hand gestures), as shown in Fig. 7. To reduce the
problem of system over-fitting, we add the dropout method
[20, 21] before inputting the fully connected layer. That is,
during the training process, the value in the node becomes
zero with a certain probability according to demand; the node
is then unconditionally discarded and shall not be updated for
the training; finally, when the network test is performed, all
parameters are aggregated. This method is very helpful in
training networks with less training data.

4. Training Method

Before the training, the weight parameters in each layer of
the network are randomly set to initialize the network. After
the training image is input, the initialized network is used to
perform estimations, and the output result is obtained. After
the result goes through the softmax function, the error between
the predicted result and the value of the real label is calculated
using the Cross Entropy loss function. Here, we use one-hot
encoded labels to label the output values (set the correct
category value to 1, all others to 0), as shown in Fig. 7. For
example, if the input sample is in the first category, the actual
value of the sample output of the label will be [1,0,0,0,0,0].

Fig. 7. Labels of six common hand gestures and corresponding hand
gestures.

After obtaining the calculated loss function value, we use
the adaptive moment estimation (Adam) [22] algorithm as the
method for performing the weight value update, which can
train the model relatively efficiently.

B. Architecture 2 (version modified from VGGNet)

The modified VGGNet architecture is shown in Fig. 8. Fig.
9 shows its detailed internal parameters.

Fig. 8. Architecture 2 (version modified from VGGNet).

Fig. 9. Detailed parameters of Architecture 2 (version modified from
VGGNet).

1. Convolutional Layer

Architecture 2 uses eight convolutional layers in total.
Similar to Architecture 1, deeper layers use more kernels,
allowing the system to capture more different features.
Specifically, the eight layers sequentially use 32-64-64-64-
128-128-256-256 convolution kernels and their sizes are 5x5-
3x3-3x3-3x3-3x3-3x3-3x3-3x3, respectively. In order to
ensure that the output feature map size stays the same, the
design is similar to Sec. IV.A.1, in the sense that it adds zero-
padding and ReLU layers.

2. Pooling Layer

The max-pooling mechanism is used in the same way as it
is used in the case of Sec. IV.A.2, and max-pooling is used
five times here, so the image size of the input to the fully
connected layer is 4x4. However, there is no LRN layer after
each pooling layer.

3. Fully Connected Layer

As with Sec. IV.A.3, a total of two fully connected layers
are used here and the input parameters are set as 1024 neurons,
and finally output has six categories. However, unlike Sec.
IV.A.3, the dropout mechanism here is not placed before the
two fully connected layers, but is instead placed on the output
of each fully connected layer.

4. Training Method

The training method of Architecture 2 is the same as that
of Architecture 1, as described in Sec. IV.A.4.

V. EXPERIMENTAL RESULTS

This section will compare and analyze the results of the
two proposed deep CNN architectures. Since the internal
parameters and depths of the two architectures are somewhat
different, the recognition rate will vary.

In order to fix the size of input images (such that the
number of neurons in the fully connected layer can be fixed),
we select the detected ROI by a ratio of 4 to 5 (width to
height), resize it to 100x120, and then enter it into the CNN
for instant tracking and recognition.

856

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on March 01,2024 at 23:16:09 UTC from IEEE Xplore. Restrictions apply.

A. Training Data

If unnecessary information in the training data can be
reduced in advance (preprocessing) when training the network,
then the network can be trained faster, which will enable it to
achieve better results with a lower level of complexity.
Therefore, we use the skin color detection and fuzzifier
method to process the original data, and remove most of the
background to obtain the training data (as shown in Fig. 7) to
train the model.

800 images were collected for each hand gesture (so a total
of 4800 training images were used for the training model
because there were six hand gestures in total), each of which
had different backgrounds and angles (as shown in Fig. 10). In
addition, after the skin segmentation process, there may still
be some background information that cannot be removed.
Thus, this study also used these different backgrounds as
training images, so that the model can learn the required
features more completely and correctly, and ignore
unnecessary information. Finally, we used 300 test images to
verify the model.

Fig. 10. Examples of original data before preprocessing, including
original data from different backgrounds and angles.

B. Network Recognition Results

For Architecture 1, its network parameters and their
training results are listed in Table 1 and Table 2, respectively.
It is noted that after each image is pre-processed, we
normalize the original pixel value 0~255 to -0.5~0.5.

Table 1. Network parameter settings of Architecture 1

Learning rate 10-5

Dropout probability 0.2

Optimizer Adam optimizer

Batch size 64

Total number of training 975 epochs

Training set 800 x 6 = 4800 images

Test set 300 images

Image preprocessing Pixel value/255 − 0.5

Table 2. Training results of Architecture 1

Training set recognition rate 99.68%

Test set recognition rate 84.99%

For Architecture 2, its network parameter settings and

training results are listed in Table 3 and Table 4, respectively.
Referring to [12], in the preprocessing of each image, we
subtract the three channels (i.e., RGB) of the image by

103.939, 116.779, and 123.68, respectively, which are the
mean values of the RGB channels of each pixel for all the
training images in ImageNet database.

Table 3. Network parameter settings for Architecture 2

Learning rate 10-3

Dropout probability 0.5

Optimizer Adam optimizer

Batch size 64

Total number of training 43 epochs

Training set 800 x 6 = 4800 images

Test set 300 images

Image preprocessing
103.939, 116.779, and 123.68 are
subtracted from the three channels

(i.e., RGB) of the image, respectively

Table 4. Training results of Architecture 2

Training set recognition rate 99.90%

Test set recognition rate 95.61%

The comparison between Table 2 and Table 4 highlights

that the multiple convolutions and deeper networks of
Architecture 2 can raise the model’s recognition accuracy rate,
and allow for the recognition rate of the test set to reach
95.61%. In addition, Table 5 clearly shows that Architecture 2
does not have a large number of parameters in the input of
fully connected layer. Instead, its deeper network can get
better features without being a computational burden. In
conclusion, the proposed hand gesture recognition system
should be sufficient to achieve the effect of instant tracking
and recognizing hand gestures.

Table 5. Comparison of parameter sizes between the two
Architectures

 Architecture 1 Architecture 2

Storage space taken up by
network parameters

163975KB 75618KB

Parameter quantity of the last
convolutional layer

7168 4096

VI. CONCLUSIONS AND FUTURE RESEARCH

This study successfully combines the traditional image
processing method with the tracking method and the deep
CNN that has been popular in recent years in hand gesture
recognition research, achieving good recognition results given
a reasonable computational load. The proposed overall hand
gesture recognition system effectively combines three key
components, namely, hand detection, hand tracking, and hand
recognition. For hand detection, we use skin segmentation,
noise processing, and background subtraction to detect the
ROI of the first frame entering the webcam. For hand tracking,
we use this ROI as the initial position of the tracking, and train
the initial model by using the KCF algorithm. After the next

857

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on March 01,2024 at 23:16:09 UTC from IEEE Xplore. Restrictions apply.

frame comes in, the correlation value is calculated to find the
position of the maximum value and update the model to
achieve a tracking effect. As for hand gesture recognition, we
use the two proposed deep CNNs (i.e., modified version of
AlexNet and VGGNet, respectively) to extract and recognize
the hand features of the ROI. The experimental data show that
the training set can achieve a recognition rate of 99.9%, and
the test set has a recognition rate of 95.61%. Based on the
above observations and reasons, it is believed that the
proposed hand gesture recognition system is quite feasible in
practical applications, especially in controlling appliances (in
order to create smart homes) in the house or human-computer
interaction.

In the future, we hope to be able to change the method of
capturing ROI from the detection and tracking of images to the
use of depth detection networks. However, this will require a
considerable large labeling database of the hand region, as
well as levels of speed and recognition accuracy that are able
to cope with the implementation of instant applications.
Another research direction is to examine the use depth
detection networks to detect the skeletal structure of the hand
and find its position after first inputting the original image, so
as to achieve more accurately recognize hand movements.
However, the cost and time of implementing training data
labeling for the hand’s skeletal structure will also pose
challenges. We believe these are the areas worth studying, as
well as the trends for the future.

ACKNOWLEDGEMENT

The authors wish to thank the financial support of the
Ministry of Science and Technology (MOST), R.O.C., under
Contract MOST 106-2221-E-019-011-MY2.

REFERENCES

[1] Microsoft: Kinect for Windows. Available online.
https://developer.microsoft.com/zh-tw/windows/kinect

[2] C. Keskin, F. Kıraç, Y. E. Kara, and L. Akarun, “Real time
hand pose estimation using depth sensors,” In Proc. The 13th
IEEE International Conference on Computer Vision Workshops,
Barcelona, Spain, November 6–13, 2011.

[3] A. Memo, L. Minto and P. Zanuttigh, “Exploiting silhouette
descriptors and synthetic data for hand gesture recognition,” In
Proc. Smart Tools and Apps in Computer Graphics, Verona,
October 15–16, 2015.

[4] L. Breiman, “Random forests,” Machine Learning, vol. 45, no.
1, pp. 5–32, October 2001.

[5] S. Suzuki and K. Abe, “Topological structural analysis of
digitized binary images by border following,” Computer Vision,
Graphics, and Image Processing, vol. 30, no. 1, pp. 32–46,
April 1985.

[6] J. Sklansky, “Finding the convex hull of a simple polygon,”
Pattern Recognition Letters, vol. 1, no. 2, pp. 79-83, December
1982.

[7] S. Ganapathyraju, “Hand gesture recognition using convexity
hull defects to control an industrial robot,” in Proc. The 3rd
International Conference on Instrumentation Control and
Automation, Ungasan, Indonesia, August 28–30, 2013.

[8] T.-N. Nguyen, D.-H. Vo, H.-H. Huynh, and J. Meunier,
“Geometry-based static hand gesture recognition using support
vector machine,” In Proc. The 13th International Conference
on Control Automation Robotics & Vision, Singapore,
December 10–12, 2014.

[9] T. Starner and A. Pentland, “Real-time american sign language
recognition from video using hidden markov models,” In Proc.
International Symposium on Computer Vision, FL, USA,
November 21–23, 1995.

[10] B. Zhang, C. Quan, and F. Ren, “Study on CNN in the
recognition of emotion in audio and images,” in Proc. The
IEEE/ACIS 15th International Conference on Computer and
Information Science, Okayama, Japan, June 26–29, 2016.

[11] T. Koizumi, M. Mori, S. Taniguchi, and M. Maruya,
“Recurrent neural networks for phoneme recognition,” In Proc.
The Fourth International Conference on Spoken Language
Processing, PA, USA, October 3–6, 1996.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” In
Proc. The 25th International Conference on Neural
Information Processing Systems, Nevada, USA, December 3–6,
2012.

[13] ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). Available online. http://www.image-
net.org/challenges/LSVRC/”, 2010–2017.

[14] M. Han, J. Chen, L. Li, and Y. Chang, “Visual hand gesture
recognition with convolution neural network,” in Proc. The
17th IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, Shanghai, China, May 30–
June 1, 2016.

[15] P. KaewTraKulPong and R. Bowden, “An improved adaptive
background mixture model for realtime tracking with shadow
detection,” In Proc. The 2nd European Workshop on Advanced
Video Based Surveillance Systems, 2001.

[16] Z. Zivkovic and F. van der Heijdenb, “Efficient adaptive
density estimation per image pixel for the task of background
subtraction,” Pattern Recognition Letters, vol. 27, no. 7, pp.
773–780, May 2006.

[17] J. F. Henriques, R. Caseiro, P. Martins and J. Batista, “High-
speed tracking with kernelized correlation filters,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 37, no. 3, pp. 583–596, 2015.

[18] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” In Proc. The 3rd
International Conference on Learning Representations, San
Diego, CA, USA, May 7–9, 2015.

[19] Y. Zhu, C. Huang, and J. Chen, “Face detection method based
on multi-feature fusion in YCbCr color space,” in Proc. The
5th International Congress on Image and Signal Processing,
Chongqing, China, October 16–18, 2012.

[20] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning
Research, vol. 15, pp. 1929–1958, 2014.

[21] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by
preventing co-adaptation of feature detectors,”
arXiv:1207.0580, 2012.

[22] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic
optimization,” in Proc. The 3rd International Conference on
Learning Representations, San Diego, USA, May 7–9, 2015.

858

Powered by TCPDF (www.tcpdf.org)

Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on March 01,2024 at 23:16:09 UTC from IEEE Xplore. Restrictions apply.

