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Abstract— The goal of this paper is to use a webcam to 

instantly track the region of interest (ROI), namely, the hand 
region, in the image range and identify hand gestures for home 
appliance control (in order to create smart homes) or human-
computer interaction fields. Firstly, we use skin color detection 
and morphology to remove unnecessary background information 
from the image, and then use background subtraction to detect 
the ROI. Next, to avoid background influences on objects or noise 
affecting the ROI, we use the kernelized correlation filters (KCF) 
algorithm to track the detected ROI. The image size of the ROI is 
then resized to 100x120 and then entered into the deep 
convolutional neural network (CNN), in order to identify 
multiple hand gestures. Two deep CNN architectures are 
developed in this study that are modified from AlexNet and 
VGGNet, respectively. Then, the above process of tracking and 
recognition is repeated to achieve an instant effect, and the 
system’s execution continues until the hand leaves the camera 
range. Finally, the training data set can reach a recognition rate 
of 99.90%, and the test data set has a recognition rate of 95.61%, 
which represents the feasibility of the practical application. 

Keywords— Hand detection; hand tracking; KCF; deep CNN; 
hand gesture recognition 

I. INTRODUCTION 

The process of hand gesture recognition generally has two 
parts: detection and recognition, wherein the recognition is 
also divided into dynamic hand gestures and static hand 
gestures. The static hand gesture means a fixed hand gesture, 
and the dynamic hand gesture refers to continuous motion 
recognition such as waving and grabbing. 

First, for detection, the background and the hand are 
generally segmented using the skin segmentation method, and 
then the noise processing is performed and the background 
subtraction method is used to obtain the desired region of 
interest (ROI), namely, the hand region. In recent years, 
because of the Kinect [1] depth camera introduced by 
Microsoft, many depth information-based methods have 
emerged, such as Keskin et al. [2] and Memo et al. [3], which 
use the random forest [4], a machine learning method, to train 
the model to capture the hand’s skeletal structure. However, 
because the price of such a camera is relatively expensive 
compared to a typical web camera and tends to be affected by 
the light source of the location, there are still many limitations 
in terms of application. 

As for the identification aspect, its essence is 
classification.  Classification is performed by setting different 

hand gestures into different categories, using manually set 
decision criteria (traditionally) or trained classification models 
(in recent years).  The traditional method is to perform the 
recognition by using the convex hull [5, 6] of the hand after 
performing skin segmentation. Recognition is determined by 
the number of polygon edges generated by a hand gesture, and 
only the numbers from 1 to 5 can be recognized. For example 
[7], controlling the robot arm with this method can make very 
little variations, and it is susceptible to complex background 
interference. Moreover, the hand must be completely facing 
the lens and this cannot be done on some complicated hand 
gestures. In recent years, many research teams have adopted 
machine-learning methods to train models for classification, 
such as support vector machine [8], hidden markov model [9], 
convolutional neural network (CNN) [10], recurrent neural 
network [11] and so on. Among them, CNN is more popular in 
the field of recognition, and has better results than other 
methods, mainly because it can get the required feature values 
from the input picture, and can learn the difference between 
different samples well by using a large number of samples in 
its training. However, in the past, its development has been 
limited due to the speed of hardware computing. In recent 
years, due to the advancement of semiconductor 
manufacturing, the computing speed of graphics processing 
units is getting faster, and the bottleneck of hardware 
processing speed has been addressed, allowing the CNN 
network to develop rapidly to become the deep CNN network. 
The most iconic one is AlexNet [12], an object recognition 
network, which won the championship at the 2012 ImageNet 
[13]. 

However, we found that in the typical hand gesture 
recognition process (detection plus recognition), if there is an 
object or noise similar to the skin color in the background, 
interference can easily occur, resulting in the detection of the 
wrong ROI, so the background selection has to be restricted to 
a specific block to avoid disturbance. For example, the 
background of [14] is limited to a small desktop area (using a 
webcam facing down to the desktop). Therefore, the study 
aims to loosen this restriction by focusing on the recognition 
of static hand gestures, and the ROI of the moving object can 
be tracked during the system execution and the recognition 
can be performed immediately. By achieving this goal, the 
recognition process will no longer be limited to a narrow 
region. Thus, this study adds a tracking mechanism between 
the two steps of detection and recognition to avoid problems 
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caused by objects in other backgrounds with similar skin color 
and track hands that may be moving at the same time. 

Fig. 1 is a schematic diagram of the proposed overall hand 
gesture recognition concept, which effectively combines three 
key components, namely, hand detection, hand tracking, and 
hand recognition. For the hand detection section, we first 
perform skin segmentation on input image to remove the extra 
background information, and then process the noise to reduce 
the small damage in some images. Finally, we use the 
background subtraction method [15, 16] to get the ROI of the 
hand position.  In terms of the hand tracking section, we adopt 
the kernelized correlation filters (KCF) [17] algorithm as the 
basis for calculation, which has been a widely used algorithm 
for image tracking in recent years. The core concept is to 
extract the ROI features of the target position of the first frame 
and train a model. Then, after the next frame comes in, the 
trained model will do the calculation to get a new predicted 
position. As for the hand recognition aspect, we use the deep 
CNN network to extract and recognize the hand features of the 
ROI. This study uses two deep CNN architectures for 
comparison that are modified from AlexNet [12] and VGGNet 
[18], respectively. After the model training is completed, the 
recognition rate of the test set can reach more than 95%. 
 

 

Fig. 1. The schematic diagram of the overall hand gesture recognition 
concept. The webcam initializes the tracking algorithm after detecting 
the ROI of the first frame entering the lens, and the ROI block is 
resized to enter into the deep CNN network for recognition, as shown 
by the blue arrow-guided path. After that, the tracking algorithm 
continues to track new incoming frames (i.e., skip hand detection) 
and recognize them, as shown by the orange arrow-guided path. 

 
The contributions of this study can be summarized as 

follows. 
 We proposed a new hand recognition system that 

effectively combines the three key components, which 
are hand detection, hand tracking, and hand recognition. 

 With respect to recognition, we designed two deep CNN 
networks (which were modified from the two classic 
networks, AlexNet [12] and VGGNet [18]). They are 
able to achieve sufficient recognition accuracy while 
reducing the computation load (because we effectively 
reduce the size of the network) to achieve instant 
tracking recognition. In particular, the modified version 
of VGGNet can achieve a recognition rate of 99.9% for 
the training set and 95.61% for the test set, 
demonstrating the feasibility of the practical application. 

 The proposed hand gesture recognition system has 
considerable potential to be used in related fields such as 
controlling home appliances (in order to create smart 
homes) or human-computer interaction. 

 

The following sections can be organized as follows. 
Section II describes the hand detection method. Section III 

describes the hand tracking method. Section IV designs two 
network architectures for deep CNN-based hand gesture 
recognition. Section V demonstrates experimental results.  
Finally, Section VI concludes and points out the potential 
direction for future research. 

II. HAND DETECTION METHOD 

The hand detection process is shown in Fig. 2. To capture 
the position of the hand, the first step is to use the skin 
segmentation method and segment the unwanted background 
information by using YCbCr [19] (as shown in Fig. 3(b)).  
Due to its high separation of brightness and chroma, and its 
simple formula conversion, the execution speed is improved, 
making it suitable for use in a real-time system. The second 
step is to process the noise to remove some small noises (as 
shown in Fig. 3(c)). This includes erosion, expansion 
processing, and smoothing of morphological image processing.  
The third step is to use the background subtraction method to 
obtain the ROI (as shown in Fig. 3(d)). The tracking algorithm 
is then used to continuously track the ROI (introduced in 
Section III). 

 

 

Fig. 2. Hand detection process. 
 

 

Fig. 3. (a) indicates the input image, (b) indicates that skin 
segmentation has been performed, (c) indicates the image obtained 
after the morphological noise reduction method is used, and the ROI 
(inside the green frame) received after the background subtraction 
method is used as shown in (d). 

III. HAND TRACKING 

After obtaining the ROI, we use the KCF algorithm [17] to 
track the detected ROI in order to avoid the noise of a skin 
color similar to the background or the interference of moving 
objects with similar skin color. The target to be tracked (i.e., 
ROI) is used as the positive sample, and the circulant matrix 
displacement is used to generate multiple samples of the same 
size as negative samples. They are together used for training 
the model. After that, the new frame comes in, a correction 
calculation is performed on the trained model to find the 
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(possibly moving) position of the ROI and achieve the 
tracking effect. 

The KCF algorithm is divided into two stages: training and 
detection (tracking), as shown in Fig. 4. The first stage is the 
training stage (as shown in Fig. 4(a)): when the first frame of 
the ROI detected by the background subtraction method comes 
in, the ROI is used as the tracking target (positive sample) for 
training. First, it is used to generate multiple training samples 
(negative samples); each sample (positive sample plus 
negative sample) is then used as input for training, after which 
a Gaussian probability density function (PDF) model can be 
obtained.  The sample obtains higher PDF when it is closer to 
the tracking target and the PDF is lower when the sample is 
farther from the tracking target. The second stage is the 
tracking phase (as shown in Fig. 4(b)): when the new frame 
comes in, we capture image by the position of the ROI of the 
previous frame, and the displacement is generated to produce 
different samples. The new frame and the samples are entered 
the trained model of Fig. 4(a) and a correction calculation is 
performed. Next, the position of the maximum value is 
designated as the updated ROI. After obtaining the new target 
position, the tracking target image will be taken again and the 
step shown in Fig. 4(a) will be repeated to train and update the 
model; the system then wait for the next frame to come and 
continue to track (repeating the above process). The system 
stops executing when the hand leaves the camera range 
 

 

Fig. 4. KCF tracking flow chart, where (a) is the training stage 
process and (b) is the tracking stage process. 
 

IV. DEEP CNN ARCHITECTURE FOR HAND GESTURE 

RECOGNITION 

We then adjust the size of the ROI to 100x120 and enter it 
into the deep CNN for hand gesture recognition. This study 
designed two deep CNN architectures. Architecture 1 is 
modified based on AlexNet [12], and Architecture 2 is 
modified based on VGGNet [18]. Both modifications mainly 
allow for  network size reduction and sufficient recognition 
accuracy to be achieved in an efficient manner. 

A. Architecture 1 (version modified from AlexNet) 

The modified AlexNet architecture is shown in Fig. 5. Fig. 
6 shows its detailed internal parameters. 
 

 

Fig. 5. Architecture 1 (version modified from AlexNet). 
 

 

Fig. 6. Detailed parameters of Architecture 1 (version modified from 
AlexNet). 
 

1. Convolutional Layer 

This architecture uses four convolutional layers. The 
number and sizes of convolution kernels for each layer are not 
the same. Deeper layers use more kernels, allowing the system 
to capture more features. Specifically, the four layers 
sequentially use 32-64-64-128 convolution kernels and their 
sizes are 5x5-3x3-3x3-3x3, respectively. In order to make the 
output feature map size stay the same, the zero-padding 
method is adopted, that is, the addition of zeros around the 
original image, so as to maintain the size of the original image 
and reduce the impact of the image edge. In addition, each 
layer of the convolutional layer is immediately followed by a 
rectified linear unit (ReLU) activation function. 

2. Pooling Layer 

Down sampling is conducted after the feature map is 
obtained by the convolution layer to make the size of the 
sampled image becomes 1/4 of the original one and; that is, 
the edge length of the image will all become 1/2. To be 
specific, this study uses max-pooling for sampling, by using 
2x2 kernel to take the maximum value of the internal elements 
of the image, and the stride is 2. Four times of max-pooling 
are used in total, so the final input to the fully connected layer 
has a picture size of 7x8. In addition, a layer of local response 
normalization (LRN) is added on each pooling layer. 

3. Fully Connected Layer 

We use two fully connected layers. The input parameters 
are set as 1024 neurons, and finally output has six categories 
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(six common hand gestures), as shown in Fig. 7. To reduce the 
problem of system over-fitting, we add the dropout method 
[20, 21] before inputting the fully connected layer. That is, 
during the training process, the value in the node becomes 
zero with a certain probability according to demand; the node 
is then unconditionally discarded and shall not be updated for 
the training; finally, when the network test is performed, all 
parameters are aggregated. This method is very helpful in 
training networks with less training data. 

4. Training Method 

Before the training, the weight parameters in each layer of 
the network are randomly set to initialize the network. After 
the training image is input, the initialized network is used to 
perform estimations, and the output result is obtained. After 
the result goes through the softmax function, the error between 
the predicted result and the value of the real label is calculated 
using the Cross Entropy loss function. Here, we use one-hot 
encoded labels to label the output values (set the correct 
category value to 1, all others to 0), as shown in Fig. 7. For 
example, if the input sample is in the first category, the actual 
value of the sample output of the label will be [1,0,0,0,0,0]. 

 

 

Fig. 7. Labels of six common hand gestures and corresponding hand 
gestures. 

After obtaining the calculated loss function value, we use 
the adaptive moment estimation (Adam) [22] algorithm as the 
method for performing the weight value update, which can 
train the model relatively efficiently. 

B. Architecture 2 (version modified from VGGNet) 

The modified VGGNet architecture is shown in Fig. 8. Fig. 
9 shows its detailed internal parameters. 
 

 

Fig. 8. Architecture 2 (version modified from VGGNet). 
 

 

Fig. 9. Detailed parameters of Architecture 2 (version modified from 
VGGNet). 
 

1. Convolutional Layer 

Architecture 2 uses eight convolutional layers in total. 
Similar to Architecture 1, deeper layers use more kernels, 
allowing the system to capture more different features. 
Specifically, the eight layers sequentially use 32-64-64-64-
128-128-256-256 convolution kernels and their sizes are 5x5-
3x3-3x3-3x3-3x3-3x3-3x3-3x3, respectively. In order to 
ensure that the output feature map size stays the same, the 
design is similar to Sec. IV.A.1, in the sense that it adds zero-
padding and ReLU layers. 

2. Pooling Layer 

The max-pooling mechanism is used in the same way as it 
is used in the case of Sec. IV.A.2, and max-pooling is used 
five times here, so the image size of the input to the fully 
connected layer is 4x4. However, there is no LRN layer after 
each pooling layer. 

3. Fully Connected Layer 

As with Sec. IV.A.3, a total of two fully connected layers 
are used here and the input parameters are set as 1024 neurons, 
and finally output has six categories. However, unlike Sec. 
IV.A.3, the dropout mechanism here is not placed before the 
two fully connected layers, but is instead placed on the output 
of each fully connected layer. 

4. Training Method 

The training method of Architecture 2 is the same as that 
of Architecture 1, as described in Sec. IV.A.4. 

V. EXPERIMENTAL RESULTS 

This section will compare and analyze the results of the 
two proposed deep CNN architectures. Since the internal 
parameters and depths of the two architectures are somewhat 
different, the recognition rate will vary. 

In order to fix the size of input images (such that the 
number of neurons in the fully connected layer can be fixed), 
we select the detected ROI by a ratio of 4 to 5 (width to 
height), resize it to 100x120, and then enter it into the CNN 
for instant tracking and recognition. 
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A. Training Data 

If unnecessary information  in the training data can be 
reduced in advance (preprocessing) when training the network, 
then the network can be trained faster, which will enable it to 
achieve better results with a lower level of complexity. 
Therefore, we use the skin color detection and fuzzifier 
method to process the original data, and remove most of the 
background to obtain the training data (as shown in Fig. 7) to 
train the model. 

800 images were collected for each hand gesture (so a total 
of 4800 training images were used for the training model 
because there were six hand gestures in total), each of which 
had different backgrounds and angles (as shown in Fig. 10). In 
addition, after the skin segmentation process, there may still 
be some background information that cannot be removed. 
Thus, this study also used these different backgrounds as 
training images, so that the model can learn the required 
features more completely and correctly, and ignore 
unnecessary information. Finally, we used 300 test images to 
verify the model. 
 

 

Fig. 10. Examples of original data before preprocessing, including 
original data from different backgrounds and angles. 
 

B. Network Recognition Results 

For Architecture 1, its network parameters and their 
training results are listed in Table 1 and Table 2, respectively. 
It is noted that after each image is pre-processed, we 
normalize the original pixel value 0~255 to -0.5~0.5. 
 

Table 1. Network parameter settings of Architecture 1 

Learning rate 10-5 

Dropout probability 0.2 

Optimizer Adam optimizer 

Batch size 64 

Total number of training 975 epochs 

Training set 800 x 6 = 4800 images 

Test set 300 images 

Image preprocessing Pixel value/255 − 0.5 

 
Table 2. Training results of Architecture 1 

Training set recognition rate 99.68% 

Test set recognition rate 84.99% 

     
For Architecture 2, its network parameter settings and 

training results are listed in Table 3 and Table 4, respectively.  
Referring to [12], in the preprocessing of each image, we 
subtract the three channels (i.e., RGB) of the image by 

103.939, 116.779, and 123.68, respectively, which are the 
mean values of the RGB channels of each pixel for all the 
training images in ImageNet database. 
 

Table 3. Network parameter settings for Architecture 2 

Learning rate 10-3 

Dropout probability 0.5 

Optimizer Adam optimizer 

Batch size 64 

Total number of training 43 epochs 

Training set 800 x 6 = 4800 images 

Test set 300 images 

Image preprocessing 
103.939, 116.779, and 123.68 are 
subtracted from the three channels 

(i.e., RGB) of the image, respectively

 
Table 4. Training results of Architecture 2 

Training set recognition rate 99.90% 

Test set recognition rate 95.61% 

      
The comparison between Table 2 and Table 4 highlights 

that the multiple convolutions and deeper networks of 
Architecture 2 can raise the model’s recognition accuracy rate, 
and allow for the recognition rate of the test set to reach 
95.61%.  In addition, Table 5 clearly shows that Architecture 2 
does not have a large number of parameters in the input of 
fully connected layer. Instead, its deeper network can get 
better features without being a computational burden. In 
conclusion, the proposed hand gesture recognition system 
should be sufficient to achieve the effect of instant tracking 
and recognizing hand gestures. 
 

Table 5. Comparison of parameter sizes between the two 
Architectures 

 Architecture 1 Architecture 2 

Storage space taken up by  
network parameters 

163975KB 75618KB 

Parameter quantity of the last 
convolutional layer 

7168 4096 

 

VI. CONCLUSIONS AND FUTURE RESEARCH 

This study successfully combines the traditional image 
processing method with the tracking method and the deep 
CNN that has been popular in recent years in hand gesture 
recognition research, achieving good recognition results given 
a reasonable computational load. The proposed overall hand 
gesture recognition system effectively combines three key 
components, namely, hand detection, hand tracking, and hand 
recognition. For hand detection, we use skin segmentation, 
noise processing, and background subtraction to detect the 
ROI of the first frame entering the webcam. For hand tracking, 
we use this ROI as the initial position of the tracking, and train 
the initial model by using the KCF algorithm. After the next 
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frame comes in, the correlation value is calculated to find the 
position of the maximum value and update the model to 
achieve a tracking effect. As for hand gesture recognition, we 
use the two proposed deep CNNs (i.e., modified version of 
AlexNet and VGGNet, respectively) to extract and recognize 
the hand features of the ROI. The experimental data show that 
the training set can achieve a recognition rate of 99.9%, and 
the test set has a recognition rate of 95.61%. Based on the 
above observations and reasons, it is believed that the 
proposed hand gesture recognition system is quite feasible in 
practical applications, especially in controlling appliances (in 
order to create smart homes) in the house or human-computer 
interaction. 

In the future, we hope to be able to change the method of 
capturing ROI from the detection and tracking of images to the 
use of depth detection networks. However, this will require a 
considerable large labeling database of the hand region, as 
well as levels of speed and recognition accuracy that are able 
to cope with the implementation of instant applications.  
Another research direction is to examine the use depth 
detection networks to detect the skeletal structure of the hand 
and find its position after first inputting the original image, so 
as to achieve more accurately recognize hand movements.  
However, the cost and time of implementing training data 
labeling for the hand’s skeletal structure will also pose 
challenges. We believe these are the areas worth studying, as 
well as the trends for the future. 
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