
Intro to Reinforcement Learning
Part II

Dr. Dongchul Kim
Department of Computer Science

UTRGV

Prediction Problem

How to estimate value functions when MDP is unknown

Outlines

1. Model-free
2. Monte Carlo
3. Temporal Difference

Outlines

1. Model-free
2. Monte Carlo
3. Temporal Difference

Model free

Currently, we lack knowledge of the underlying MDP. This means that critical
components such as the reward function (Ra

s) and the transition probability
(Pa

ss’) remain unknown to us.

Consequently, we face uncertainty regarding the expected compensation for
taking specific actions and the likelihood of transitioning to different states
before those actions are executed.

“small” environment

We are going to use a “small” environment still.

Our approach involves employing a table lookup method.

This method entails the creation of a table wherein we can record and
continually update the values associated with various states and actions.

Outlines

1. Model-free
2. Monte Carlo
3. Temporal Difference

Monte Carlo Method

The Monte Carlo method for estimating the state value function in an unknown
Markov Decision Process (MDP) relies on generating random episodes of
interactions with the environment, observing the rewards obtained, and then
averaging these returns over multiple episodes to estimate the expected value
of each state.

Step 1 - Initialization

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

(0, 0) (0, 0) (0, 0) (0, 0)

(0, 0) (0, 0) (0, 0) (0, 0)

(0, 0) (0, 0) (0, 0) (0, 0)

(0, 0) (0, 0) (0, 0) (0, 0)

(N(s), V(s))

Step 2 - Experiencing Episodes

The agent is now at the beginning, and the episode has started. Agents using a
random policy go to different states and get rewards randomly. When they reach
the final end state, the episode ends, and this is how their path looks.

Step 2 - Experiencing Episodes

You can find Return, Gt like this:

Step 3 - Table Update

s1 s2 s3

s7

s8 s9 s11

s12 s13

(1, -6) (0, 0) (0, 0) (0, 0)

(1, -5) (1, -4) (1, -3) (0, 0)

(0, 0) (0, 0) (1, -2) (0, 0)

(0, 0) (0, 0) (1, -1) End

(N(s), V(s))

Step 4 - Estimate State Value

Update with Learning rate

Implementation!

class GridWorld():
 def __init__(self):
 self.x=0
 self.y=0

 def step(self, a):
 if a==0:
 self.move_left()
 elif a==1:
 self.move_up()
 elif a==2:
 self.move_right()
 elif a==3:
 self.move_down()

 reward = -1
 done = self.is_done()
 return (self.x, self.y), reward, done

 def move_right(self):
 self.y += 1
 if self.y > 3:
 self.y = 3

 def move_left(self):
 self.y -= 1
 if self.y < 0:
 self.y = 0

 def move_up(self):
 self.x -= 1
 if self.x < 0:
 self.x = 0

 def move_down(self):
 self.x += 1
 if self.x > 3:
 self.x = 3

 def is_done(self):
 if self.x == 3 and self.y == 3:
 return True
 else :
 return False

 def get_state(self):
 return (self.x, self.y)

 def reset(self):
 self.x = 0
 self.y = 0
 return (self.x, self.y)

class Agent():
 def __init__(self):
 pass

 def select_action(self):
 coin = random.random()
 if coin < 0.25:
 action = 0
 elif coin < 0.5:
 action = 1
 elif coin < 0.75:
 action = 2
 else:
 action = 3
 return action

 def main():
 env = GridWorld()
 agent = Agent()
 data = [[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]
 gamma = 1.0
 reward = -1
 alpha = 0.001

 for k in range(50000):
 done = False
 history = []

 while not done:
 action = agent.select_action()
 (x,y), reward, done = env.step(action)
 history.append((x,y,reward))
 env.reset()

 cum_reward = 0
 for transition in history[::-1]:
 x, y, reward = transition
 data[x][y] = data[x][y] + alpha*(cum_reward-data[x][y])
 cum_reward = reward + gamma*cum_reward

 for row in data:
 print(row)

Results

Outlines

1. Model-free
2. Monte Carlo
3. Temporal Difference

Temporal Difference

The MC method needs the episode to finish before updating the table, which
could be a drawback. In certain situations, the episode might not even finish. On
the other hand, the Temporal Difference method can update the table even if the
episode is ongoing.

Temporal Difference

Do you remember Ver. 1 of Bellman Expectation Equation?

Temporal Difference

For example,

TD target

Implementation!

def main():
 #TD
 env = GridWorld()
 agent = Agent()
 data = [[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]
 gamma = 1.0
 reward = -1
 alpha = 0.01

 for k in range(50000):
 done = False
 while not done:
 x, y = env.get_state()
 action = agent.select_action()
 (x_prime, y_prime), reward, done = env.step(action)
 x_prime, y_prime = env.get_state()
 data[x][y] = data[x][y] + alpha*(reward+gamma*data[x_prime][y_prime]-data[x][y])
 env.reset()

 for row in data:
 print(row)

Results

MC vs TD

● Episodic MDP vs Non-episodic MDP
● Biased vs Unbiased
● High variance vs Low variance

N-step TD

1-step TD 2-step TD 3-step TD MC

Bias: ↑
Variance: ↓

Bias: ↓
Variance: ↑

٠ ٠ ٠ ٠

Control Problem

How to find optimal policy when MDP is unknown

Outlines

1. MC Control
2. TD Control - SARSA
3. TD Control - Q Learning

a. On-policy vs Off-policy

Outlines

1. MC Control
2. TD Control - SARSA
3. TD Control - Q Learning

a. On-policy vs Off-policy

Policy Iteration in known MDP

Let's revisit the control techniques we previously studied.

Could you recall the approach for determining the policy function when MDP
known? Policy Iteration is an approach involving the iteration of steps, starting
with an initial random policy, followed by policy evaluation (computing state
values), and ultimately devising a new (greedy) policy based on the obtained
value estimates.

Is it possible to apply the policy iteration method in model-free?

Policy Iteration in known MDP

In summary,

1. Initialize a random policy.
2. Evaluate the policy using iterative policy

evaluation.
3. Improve the policy by selecting the

greedy action based on the value
function obtained in step 2.

4. Repeat steps 2-3 until convergence.
http://incompleteideas.net/book/ebook/the-book.html

Two reasons we can’t use Policy Iteration in model-free

Problem 1 we can’t use Bellman Expectation Equation for Policy Evaluation.

Policy Iteration in Model-Free

reward function (Ra
s) and transition probability (Pa

ss’) are unknown in model-free!!

Even if we are able to estimate state values (v(s)), updating the policy
using a greedy approach is not viable because it's impossible to predict
the next state when choosing an action in the current state.

Policy Iteration in Model-Free

s0

s1

s2

a1

a2

v(s1)=1

v(s2)=2

When MDP is known

Pigreedy(s0) = a2
s0

s?

s?

a1

a2

v(s?)=?

v(s?)=?

When MDP is unknown

Pigreedy(s0) = ?

Problem 2

Solutions

1. (For Problem 1) For policy evaluation, you can employ Monte Carlo (MC) instead
of the Bellman equation.

2. (For Problem 2) When addressing the policy improvement problem, consider
utilizing the action value function (Q function) instead of the state value function.

3. Using the action value function introduces an exploration challenge, which can be
tackled by ɛ-greedy rather than a purely greedy approach.

Policy Iteration in model-free

Policy Evaluation

MC to estimate q(s, a)

Policy Improvement

Greedy policy with q(s, a)

Exploration

ɛ-greedy

Greedy policy with q(s, a)

There was an issue with the state value function v(s) during policy improvement in model-free.

By employing the action value function q(s, a), you gain the ability to make action selections.

In essence, while we may not precisely know which state will be reached when choosing an
action in state s, we can make informed decisions by selecting the action with the highest q(s,
a) value, as we have knowledge of the expected returns for each action.

s0

s?

s?

a1

a2

q(s0, a1) = 1

Pigreedy(s0) = a2

q(s0, a2) = 2

q(s, a) causes a problem

In the context of policy iteration, the action-value function q(s, a) starts with an
initialization of 0 and is subsequently updated using Monte Carlo (MC) methods.

During this process, for example, q(s3, a1) might be updated to 0.1, while the values for
the other actions like (s3, a2), (s3, a3), and so on, remain at 0. Consequently, when we
determine the next policy by opting for a greedy approach, only a1 gets selected in
state s3, potentially overlooking better-performing actions.

To address this issue, we introduce an element of randomness by taking actions based
on certain probabilities. This strategy is known as ε-greedy, allowing us to explore
alternatives beyond the purely greedy selection and potentially discover better actions.

ɛ-greedy

Ɛ-greedy policy

Exploitation (selects the greedy action)

Exploration (selects a random action)
Ɛ

1-Ɛ

MC Control

π qπ

Policy Evaluation
MC

Policy Improvement
esp-greedy

Implementation

Environment

Grid World

Actions

Left: 0

Up: 1

Right: 2

Down: 3

Reward

-1 per move

Start

End

class GridWorld():
 def __init__(self):
 self.x=0
 self.y=0

 def step(self, a):
 if a==0:
 self.move_left()
 elif a==1:
 self.move_up()
 elif a==2:
 self.move_right()
 elif a==3:
 self.move_down()

 reward = -1
 done = self.is_done()
 return (self.x, self.y), reward, done

 def move_left(self):
 if self.y==0:
 pass
 elif self.y==3 and self.x in [0,1,2]:
 pass
 elif self.y==5 and self.x in [2,3,4]:
 pass
 else:
 self.y -= 1

 def move_right(self):
 if self.y==1 and self.x in [0,1,2]:
 pass
 elif self.y==3 and self.x in [2,3,4]:
 pass
 elif self.y==6:
 pass
 else:
 self.y += 1

 def move_up(self):
 if self.x==0:
 pass
 elif self.x==3 and self.y==2:
 pass
 else:
 self.x -= 1

 def move_down(self):
 if self.x==4:
 pass
 elif self.x==1 and self.y==4:
 pass
 else:
 self.x+=1

 def is_done(self):
 if self.x==4 and self.y==6:
 return True
 else:
 return False

 def reset(self):
 self.x = 0
 self.y = 0
 return (self.x, self.y)

class QAgent():
 def __init__(self):
 self.q_table = np.zeros((5, 7, 4))
 self.eps = 0.9
 self.alpha = 0.01

 def select_action(self, s): # eps-greedy
 x, y = s
 coin = random.random()
 if coin < self.eps: # random action
 action = random.randint(0,3)
 else:
 action_val = self.q_table[x,y,:]
 action = np.argmax(action_val)
 return action

 def update_table(self, history):
 # Given a single episode, the q-table's values are updated accordingly.
 cum_reward = 0
 for transition in history[::-1]: # from the last transition
 s, a, r, s_prime = transition
 x,y = s
 self.q_table[x,y,a] = self.q_table[x,y,a] + self.alpha * (cum_reward - self.q_table[x,y,a])
 cum_reward = cum_reward + r

 def anneal_eps(self):
 self.eps -= 0.03
 self.eps = max(self.eps, 0.1)

 def show_table(self):
 q_lst = self.q_table.tolist()
 data = np.zeros((5,7))
 for row_idx in range(len(q_lst)):
 row = q_lst[row_idx]
 for col_idx in range(len(row)):
 col = row[col_idx]
 action = np.argmax(col)
 data[row_idx, col_idx] = action
 print(data)

def main():
 env = GridWorld()
 agent = QAgent()

 for n_epi in range(1000): # 1000 episodes
 done = False
 history = []

 s = env.reset()
 while not done: # single episode
 a = agent.select_action(s)
 s_prime, r, done = env.step(a)
 history.append((s, a, r, s_prime))
 s = s_prime
 agent.update_table(history) # update table
 agent.anneal_eps()

 agent.show_table()

Results

Outlines

1. MC Control
2. TD Control - SARSA
3. TD Control - Q Learning

a. On-policy vs Off-policy

TD Control - SARSA

Similar to MC, TD can be employed to
compute q(s, a) (policy evaluation),
followed by policy improvement through
ε-greedy methods.

TD offers the benefit of lower variance
and enables learning to occur even
before an episode concludes.

π qπ

Policy Evaluation
TD

Policy Improvement
esp-greedy

TD Control - SARSA

Bellman Expectation Equations for v and q

Do you remember Ver. 1?

TD Control - SARSA

Let’s see the TD targets for learning V and Q.

TD target

TD target

TD Control - SARSA

This TD control method has a specific designation: SARSA. When you select
action "a" in state "s," resulting in a reward "r" and a transition to state "s'" with the
subsequent choice of action "a'," these transition events, namely "s," "a," "r," "s',"
and "a'," are termed SARSA.

S S’
A A’

+R

*Note that an actual transition (single step) we use in each update does not include a’ but only s, a, r, s’. We use a simulated a’. Please see the
following implementation.

Implementation

Environment

Grid World

Actions

Left: 0

Up: 1

Right: 2

Down: 3

Reward

-1 per move

Start

End

class QAgent():
 def __init__(self):
 self.q_table = np.zeros((5, 7, 4))
 self.eps = 0.9

 def select_action(self, s):
 x, y = s
 coin = random.random()
 if coin < self.eps:
 action = random.randint(0,3)
 else:
 action_val = self.q_table[x,y,:]
 action = np.argmax(action_val)
 return action

 def update_table(self, transition):
 s, a, r, s_prime = transition
 x,y = s
 next_x, next_y = s_prime
 a_prime = self.select_action(s_prime)
 self.q_table[x,y,a] = self.q_table[x,y,a] + 0.1 * (r + self.q_table[next_x,next_y,a_prime] - self.q_table[x,y,a])

 def anneal_eps(self):
 self.eps -= 0.03
 self.eps = max(self.eps, 0.1)

 def show_table(self):
 q_lst = self.q_table.tolist()
 data = np.zeros((5,7))
 for row_idx in range(len(q_lst)):
 row = q_lst[row_idx]
 for col_idx in range(len(row)):
 col = row[col_idx]
 action = np.argmax(col)
 data[row_idx, col_idx] = action
 print(data)

def main():
 env = GridWorld()
 agent = QAgent()

 for n_epi in range(1000):
 done = False

 s = env.reset()
 while not done:
 a = agent.select_action(s)
 s_prime, r, done = env.step(a)
 agent.update_table((s,a,r,s_prime))
 s = s_prime
 agent.anneal_eps()

 agent.show_table()

Results

Outlines

1. MC Control
2. TD Control - SARSA
3. TD Control - Q Learning

a. On-policy vs Off-policy

TD Control - Q-learning

The second TD control approach is Q-learning.

Q-learning is quite popular, so much so that even people who aren't very familiar with
Reinforcement Learning might have come across it casually.

In 2015, the convergence of deep learning and Q-learning gave rise to Deep Q Network (DQN), a
groundbreaking paper published in Nature, and this development ultimately paved the way for
AlphaGo.

Both Q-learning and SARSA fall under the category of TD control methods. So, what sets them
apart? To grasp this distinction, it's essential to first know the concepts of off-policy and
on-policy.

Examples

Let's consider that you're learning League of Legends. If you've never played it before, there
are two approaches you can think about for learning the game:

1. Learning by playing the game yourself: You learn by playing the game on your own.
2. Observing a skilled friend play: You watch a skilled friend play the game and learn from

their actions.

You can label the first approach as "on-policy," and the second as "off-policy."

Target Policy and Behavior Policy

The target policy is the policy that you aim to reinforce or improve. It's the policy under
consideration, and as it continuously gets updated, it becomes stronger over time.

On the other hand, the behavior policy is the policy used when interacting with the
environment in practical terms.

On-policy: When the target policy and the behavior policy are the same (e.g., when you
personally play the game).

Off-policy: When the target policy and the behavior policy are different (e.g., learning
from a friend's experience).

Target Policy and Behavior Policy

On-Policy:

In on-policy learning, the behavioral policy you use when playing the game is the
same as the target policy you have in mind for learning.

Off-Policy:

In off-policy learning, the behavioral policy your friend uses when playing the
game is different from the target policy you have in mind for learning.

Is Off-policy a Supervised Learning?

Advantages of Off-policy

1. Reusability of Past Experiences: Off-policy learning allows for the reuse of past
experiences, enabling more efficient learning from historical data.

2. Utilizing Human Expertise: It provides the opportunity to incorporate human expertise and
experiences into the learning process, which can enhance the quality of the learned
policies.

3. Supports One-to-Many and Many-to-One Learning: Off-policy learning can handle
scenarios where one policy can be learned from multiple different behavior policies
(one-to-many) or where multiple different target policies can be learned from a single
behavior policy (many-to-one). This flexibility is valuable in various applications.

TD Control - Q-learning

Just as SARSA relies on Bellman's expected equation (version 1) to utilize the Q
function, Q-learning employs Bellman's optimality equation (version 1) to determine the
TD target.

Bellman's optimality equation (Ver. 1)

SARSA

Q-learning

TD target

TD target

TD Control - Q-learning

In SARSA, the behavior policy and target policy coincide, whereas in Q-learning,
they diverge. The behavior policy employs ε-greedy for exploration, while the
target policy adopts a greedy policy, selecting the action with the highest
Q-value.

SARSA Q-learning

Behavior Policy ε-greedy ε-greedy

Target Policy ε-greedy greedy

Implementation

Same as SARSA except update_table function and anneal_eps function.

 def update_table(self, transition):
 s, a, r, s_prime = transition
 x,y = s
 next_x, next_y = s_prime
 a_prime = self.select_action(s_prime)
 self.q_table[x,y,a] = self.q_table[x,y,a] + 0.1 * (r + np.amax(self.q_table[next_x,next_y,:]) - self.q_table[x,y,a])

