
Intro to Reinforcement Learning

Dr. Dongchul Kim
Department of Computer Science

UTRGV



1. Introduction to RL



Reinforcement Learning

Reinforcement Learning is an area of Machine Learning in AI

Artificial Intelligence

Machine Learning

Reinforcement Learning



What is AI?

Artificial Intelligence refers to systems or machines that mimic human 
intelligence to perform tasks and can iteratively improve themselves based on 
the information they collect.



What is Intelligence?

Intelligence is described as the ability of a system to effectively operate in uncertain and 
diverse environments, striving to achieve goals and adapt behavior accordingly. This 
adaptability is a key characteristic of intelligence, allowing systems to succeed even when 
complete knowledge is lacking. 

Intelligence involves the efficient use of limited resources, including time, to attain objectives. It 
entails the capacity to solve complex problems, process information effectively, and improve 
performance over time through learning. 

Intelligence also involves appropriate decision-making based on changing circumstances and 
goals, and the ability to learn from experiences. 

Ultimately, intelligence is linked to achieving success in a variety of tasks and environments, 
showcasing flexibility, adaptability, and the capacity to learn and improve.



What is ML?

Machine Learning is a field of artificial intelligence that involves training 
algorithms to learn patterns from data and make predictions or decisions 
without being explicitly programmed.



Machine Learning



Machine Learning

Machine learning is progressing swiftly due to theoretical advancements in 
neural networks, as well as rapid strides in hardware such as GPUs, data storage, 
and the Internet.

 



https://digitalwellbeing.org/artificial-intelligence-timeline-infographic-from-eliza-to-tay-and-beyond/



Machine Learning

Three categories of Machine Learning exist: supervised learning, unsupervised 
learning, and reinforcement learning.

Supervised learning
• you are given examples 

with correct labels and 
are asked to label new 
examples

01
Unsupervised 
learning
• you are given only 

unlabeled examples

02
Reinforcement 
learning
• you are given the overall 

performance (as 
opposed to labels to 
particular examples)

03



https://blog.westerndigital.com/machine-learning-pipeline-object-storage/



Reinforcement Learning

Think about how a little baby starts learning to walk. Imagine being so young that 
you can't really grasp what your parents are saying. Babies take on the task of 
learning to walk as a personal challenge. There are those days when you take a 
step but end up falling right back down. Yet, little by little, you keep at it and 
eventually learn to walk through your persistent efforts.

Reinforcement learning is a way of learning by trying things out and learning 
from mistakes, all without someone directly telling you what to do.



Examples



Examples



Examples

http://www.youtube.com/watch?v=V1eYniJ0Rnk


Reinforcement Learning

Action a

Reward r and State s
Agent Environment



Example of Env

Environment: Game

Agent: Player

State - Location of player and obstacles

Action - Jump

Reward - Score



Example of Env

Environment: 3D physics engine

Agent: Humanoid

State - States of body

Action - Actuators (joint motors)

Reward - Distance between body and 
destination



Example of Env

Environment: Game

Agent: Game player

State - States of bricks and location of 
player and ball

Action - Move left and right

Reward - Score



Reinforcement Learning

Basically, it’s a trial and error/evaluation approach. 

Data is sequential and non i.i.d.

Reward delayed

Action may cause a change in next states



Goal of RL

“Learning how to act to achieve a target task through trial-and-error”

A goal in reinforcement learning represents the desired objective or outcome that an 
agent aims to achieve within a given environment. 

“Learning how to take actions that maximize rewards”

The agent learns to make decisions that help it get the best total rewards or 
outcomes as it takes actions over time.



Sequential Decision Making Problem

The concept of Reinforcement Learning (RL) can be understood as a method or 
approach used to address situations where decisions need to be made in a 
sequence over time.

In reality, we encounter sequential decision-making problems everywhere in our 
surroundings. For example,

Stock trading

Car driving

Game



Sequential Decision Making Problem

When we talk about reinforcement learning, we're really talking about solving a problem that's 

all around us: the sequential decision making problem. Basically, that just means making a 

series of choices that build on each other over time.

And we encounter sequential decision making problems all the time in our daily lives. 

For example, let's say you're trying to study for a final exam. You've got a bunch of options to 

choose every hour from: (1) you could hit up the library, (2) watch some YouTube videos, (3) 

catch some Z's, (4) go out for some chicken at Chick-fil-a, or (5) just head back home.

So, how do you go about making those decisions in a sequence?



Example

1. Study (start state)
2. Watch YouTube
3. Go to Chick-fil-a
4. Sleep
5. Go back home (terminal state)

Your sequential decisions could be like

1-5,

1-2-1-2-1-2-5,

1-2-3-4-5, or

1-1-1-5



Sequential Decision Making Problem

Even in a seemingly simple scenario like 
studying for an exam, you're actually faced 
with a series of decisions that build on each 
other to help you achieve your goal. 

Each decision you make puts you in a 
different situation with new choices to 
consider, and each of those choices can then 
affect the outcome of future decisions.



Sequential Decision Making Problem

Let's look at another example of this kind 
of decision making. Imagine you're driving 
from Mcallen to Austin. 

Every choice you make along the way - 
which route to take, which lane to drive in, 
how fast to go - can have an impact on the 
decisions you'll need to make later on in 
the journey.



Reward

Our goal is to maximize the cumulative 
reward.

Reward is scalar.

Reward could be sparse and delayed.



Action

Discrete values

Continuous values



Agent

An agent functions as an actor, engaging in actions within its environment. 

It embodies the role of the brain in a reinforcement learning algorithm. 

Guided by the state and reward information from the environment, the agent 
makes decisions. 

The agent sends its chosen actions to the environment that sends a new state 
and reward to the agent back again.



Environment

All components excluding the agent are referred to as the "environment." 

The environment plays a crucial role in shaping the agent's state following its 
actions, and these shifts in state are labeled as "state transitions." 

While time could theoretically flow continuously, in the context of problems 
involving sequential decision-making, we conceptually divide time into discrete 
timesteps. Within each of these timesteps, both the agent and the environment 
engage in actions, consequently altering the current state.



Pros and Cons of RL

Pros:

Versatility: Can be applied to various domains, from games to robotics.

Autonomous Learning: Can learn from interaction without explicit supervision.

Adaptability: Can adapt to dynamic and changing environments.

Complex Strategies: Can discover intricate strategies beyond human intuition.

Continuous Improvement: Can continue learning to refine performance.



Pros and Cons of RL

Cons:

Sample Inefficiency: too large space of states to explore.

Exploration Challenges: Balancing exploration with exploitation 

Reward Design: Designing appropriate reward functions can be difficult.

Stability and Convergence: Learning instability and convergence to suboptimal solutions can occur.

High Computational Demands: Training can be computationally intensive (High CPU bound envs) 



RL Applications in Robotics



RL Applications in Robotics



RL Applications in Robotics

In the near future, we could expect something like this!



RL Applications

Robotics

Game, Animation, and VR

Recommender Systems

Cybersecurity

Trading

And the list goes on (far beyond your imagination - Nearly every field)



http://www.youtube.com/watch?v=ZZVKrNs7_mk


Markov Decision Process



Markov Decision Process

Markov Decision Process (MDP) is a mathematical 
framework to model a decision making problem. 

The concept of MDP might appear intricate if 
approached immediately. 

Hence, let's commence with a gradual introduction 
using a basic model. 

Initially, we will elaborate on the Markov Process, 
followed by the Markov Reward Process. Lastly, 
we will delve into the Markov Decision Process.

Markov Process

Markov Reward Process

Markov Decision Process



MP



Markov Process

S0

Study

S1

YouTube

S2

chick-fil-a

S3

Sleep

S4

Go home

30%

100%70%60%

40% 40%

60%



Markov Process

The diagram represents a model of the final exam preparation scenario we 
discussed earlier using a Markov process. In this process, there are a total of five 
possible states a student can be in: studying, watching YouTube, sleeping, 
eating, and going home. 

The process always starts in the studying state, and after a certain period of time 
(e.g. 30 min), it transitions to the next state. Going home is the exit state, after 
which the Markov process terminates.



Markov Process

A Markov process is defined as a stochastic process in which the next state 
depends solely on the current state and not on any previous states. 

The probability of transitioning from one state to another is predefined and 
follows a certain probability distribution. 

We call it transition probability matrix P that describes the probability of 
transitioning from one state to another. 



Markov Process

We can represent the Markov Process for this scenario as MP = (S, P), where  
S={s0,s1,s2,s3,s4} , and P is a matrix where Pss' represents the probability of 
transitioning from state s to state s'. 

Pss' is a conditional probability and can be expressed as  P[St+1=s′|St=s] .

The sum of probabilities for all possible transitions from a given state must 
always equal 1.



Transition Probability Matrix

study youtube chick-fil-a sleep home

study 0.6 0.4

youtube 0.4 0.6

chick-fil-a 0.6 0.4

sleep 1.0

home 1.0



Implementation

import numpy as np

# Define the transition probability matrix P

P = np.array([[0.6, 0.4, 0.0, 0.0, 0.0],

              [0.4, 0.0, 0.6, 0.0, 0.0],

              [0.0, 0.0, 0.0, 0.6, 0.4],

              [0.0, 0.0, 0.0, 0.0, 1.0],

              [0.0, 0.0, 0.0, 0.0, 1.0]])

# Define the initial state distribution

state = 0

# Simulate a state change sequence

sequence = [state]

while True:

    state = np.random.choice(5, p=P[state])

    sequence.append(state)

    if state == 4:

        break

print("State change sequence:", sequence)



Outputs



Markov Property

What's the origin of the term "Markov process"? Well, the name Markov carries 
significant meaning. This stems from the fact that every state within a Markov 
process adheres to the Markov property defined as 

This property can be summed up as follows: "The future is solely influenced by 
the present." In essence, this signifies that when calculating the probability of the 
next state, the outcome is contingent on the current state. Any prior states 
experienced do not impact the probability of the next state.



MRP



Markov Reward Process

The Markov Reward Process (MRP) is a variation of the Markov process where 
rewards are added to the states. 

The MRP is represented by the tuple  (S,P,R,γ) .

The reward R represents the amount of payoff received when transitioning to a 
certain state s. 



Markov Reward Process

S0

Study

S1

YouTube

S2

chick-fil-a

S3

Sleep

S4

Go home

30%

100%70%60%

40% 40%

60%

R=+1

R=-1 R=0 R=-1 R=0



Markov Reward Process

Reward

The reward, denoted as R, signifies the reward granted upon reaching a specific 
state, s. Mathematically, it can be represented as: 

R = E[Rt|St=s] 

This calculation of the expected reward value is necessary due to potential minor 
variations in the reward even when in the same state. 

In the context of our illustration, we previously considered a scenario where the 
reward was constant.



Markov Reward Process

The discount factor γ is a value between 0 and 1. It helps to distinguish the value 
of immediate rewards from those obtained in the distant future by multiplying 
the value of the expected future reward by γ several times. This makes future 
rewards less valuable compared to immediate rewards.

For a clearer comprehension of the discount factor, it's important to grasp the 
concept of "Return," which signifies the accumulation of future rewards.



Markov Reward Process

In the context of MRP, each change in the state results in the acquisition of a 
corresponding reward. Specifically, when transitioning from initial state S0 to 
subsequent states S1, S2, ..., and eventually reaching end state T, the associated 
rewards are denoted as R0, R1, ..., RT respectively. 



Markov Reward Process

In the realm of reinforcement learning, such a sequence of states and rewards 
constitutes an "episode." 

Within this framework, we can compute the "return" denoted as Gt, which 
signifies the cumulative sum of anticipated rewards to be obtained from time t 
onwards. This notion can be mathematically represented as follows:



Markov Reward Process

where Rt+1 is the immediate reward received after taking an action at time t , γ is 
the discount factor between 0 and 1 that determines the relative importance of 
immediate and future rewards, and  γk  is the kth power of  γ .



Discount Factor γ (gamma)

● γ is set to a value between 0 and 1.
● Mathematical convenience
● Reflecting uncertainty about the future
● Reflecting people's preferences



Value of state (State Value Function)

In MRP, what states are valuable and how can we define their value? The value of 
a state is determined by how much reward it is expected to receive in the future, 
regardless of the rewards received prior to reaching that state. 

To obtain the value of a specific state, we need to calculate its return. However, 
since the state transitions in MRP are stochastic, the return will be different for 
each episode. So how do we evaluate the value of a state? 

The answer is through expected values. But before diving into that, let's first 
understand how we sample episodes.



Sampling

In reinforcement learning, sampling is a crucial technique used to obtain certain 
values, and this method is known as the Monte Carlo approach. To demonstrate 
this approach, let's consider the MRP example for the final exam preparation that 
we discussed earlier and sample several episodes from it. 

For instance, let's assume that the current state is watching YouTube, and then 
we can obtain the following results through sampling.



Sampling



S1

S1

S1

S1

S1

S0 S0 S1 S2 S3 S4

S2 S3 S4

S2 S4

S2 S4

S0 S1 S2 S3 S4

Episode 1

Episode 2

Episode 3

Episode 4

Episode 5



State Value Function

To determine the value of a particular state, we need to define a state value 
function. This function takes the state as input and gives the output as the 
expected value of the return. As mentioned earlier, since the return varies for 
each episode, we use the expected value to calculate the state value.

The formula for state value function is  v(s)=E(Gt|St=s) , where  v(s)  is the 
value of state  s ,  Gt  is the return obtained after time  t , and St=s means that the 
current state is s.

For example, let's find the value of state s1 (YouTube).



S1

S1

S1

S1

S1

S0 S0 S1 S2 S3 S4

S2 S3 S4

S2 S4

S2 S4

S0 S1 S2 S3 S4

Episode 1

Episode 2

Episode 3

Episode 4

Episode 5

-1 +0 * γ -1 * γ2 +0 * γ3

-1 +1 * γ +1 * γ2 -1 * γ3 +0 * γ4 -1 * γ5 +0 * γ6

-1 +0 * γ +0 * γ2

-1 +0 * γ +0 * γ2

-1 +1 * γ +0 * γ2 -1 * γ3 0 * γ4 +0 * γ5



S1

S1

S1

S1

S1

S0 S0 S1 S2 S3 S4

S2 S3 S4

S2 S4

S2 S4

S0 S1 S2 S3 S4

Episode 1

Episode 2

Episode 3

Episode 4

Episode 5

-1 +0 * 0.9 -1 * 0.92 +0 * 0.93

-1 +1 * 0.9 +1 * 0.92 -1 * 0.93 +0 * 0.94 -1 * 0.95 +0 * 0.96

-1 +0 * 0.9 +0 * 0.92

-1 +0 * 0.9 +0 * 0.92

-1 +1 * 0.9 -1 * 0.92 +0 * 0.93 -1 * 0.94 +0 * 0.95

= -1.81

= -0.6095

= -1

= -1

= -1.5661



MDP



Markov Decision Process

MDP stands for Markov Decision Process, which builds on Markov Processes 
(MP) and Markov Reward Processes (MRP) by adding the element of action. 

While in MP and MRP the next state is determined by the transition probability, 
MDP involves an agent that selects an action.



MDP

The MDP is defined by the tuple (S, A, P, R, gamma), where A is a set of possible 
actions. 

P is the transition probability matrix, which differs from that of MP and MRP in 
that it incorporates the action component. 

Specifically, Pa
ss' represents the probability that the next state will be s' given the 

current state s and the action a chosen by the agent.



MDP

S1

S2

S3

a1



MDP

In MDP, the reward associated with taking a specific action in a given state is 
defined as Ras, which represents the expected reward received at time  t+1 , 
given that the agent is in state s and chooses action a. 

The use of expected value is important because the reward can vary even if the 
same action is taken in the same state.



MDP

S1

S2

S3



Policy Function

A policy, or policy function, is a function that determines which action the agent 
should select in each state. 

 π(a|s)=P[At=a|St=s] 

For instance, suppose that in state  s3 , the possible actions are  a0 ,  a1 , and  a2 . 
The policy function determines the probabilities assigned to each of these 
actions. As an example,  π(a0|s3)=0.2 ,  π(a1|s3)=0.5 , and  π(a2|s3)=0.3 , and the 
sum of the probabilities must always be 1



State Value Function

The state value function in MDP is very similar to the value function in MRP, with 
the main difference being the incorporation of the policy. 

In MDP, the action is determined based on the policy instead of the transition 
probability matrix. 



Action Value Function

The action value function, which is a critical concept in MDP, assesses the value 
of a specific action that is taken in a particular state. 

This equation expresses the expected value of the return you can expect to 
receive when you choose action a from state s and then follow the policy  π .



Prediction and Control



Prediction and Control

Given MDP, there are two tasks.

1. Prediction: Problem to evaluate state values given policy
2. Control: Problem to find optimal policy, π*



Grid World

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

Start: s0

End: s15

Reward: -1 per step

Policy: Uniform random



Prediction

s11->s15      return = -1

s11->s10->s14->s15     return = -3

s11->s7->s6->s10->s11->s15     return = -5

s11->s7->s3->s2->s3->s2->s6->s10->s9->s13->s14->s10->s14->s15     return = -13



Control

Optimal policy: π*  is the policy which return is 
largest.

The optimal value function, denoted as v*, is the 
value function that emerges when adhering to the 
optimal policy.



Bellman Equations



Bellman equation

Given MDP, there are two tasks.

1. Prediction: Problem to evaluate state values given policy
2. Control: Problem to find optimal policy, π*

To solve the prediction and control problems, we are going to use the Bellman equation.

We're going to explore how to compute value in the value functions we learned previously. 
At the center of this process lies the Bellman equation - a super useful formula that allows 
us to calculate the value of a state or a state-action pair. So, let's dive in and take a closer 
look at this equation!



Bellman equation

● The Bellman equation is a formula that helps us understand the connection 
between the value at one time ( t ) and the value at the next time ( t+1 ). 

● It also tells us how the value function and the policy function are related. 
● It's a recursive function. 

○ If you're familiar with those topics, this equation might feel easier to grasp. But don't worry if 
you're not - just take it one step at a time and you'll get the hang of it!



Bellman expectation equation



Bellman expectation equation

The Bellman equation is also known as the Bellman expectation equation.

It can be a bit daunting at first, but it's actually broken down into three versions 
that make it easier to understand. 

And as you go through each step, it gets more and more intuitive. 

So let's take a closer look at the three versions!



Please recall the previous slide



Ver. 1



Memory Test

Now, memorize the Ver. 1 equations and try to write them on a blank paper!



Expected value

It's worth noting that we use expected 
value in the equations. The reason 
behind it is because there is a 
stochastic element involved. 

When we look at the state value 
function, we notice that it includes  st+1  
in the formula, but we don't know what  
st+1  will be at time  t . This is because  
st+1  depends on two probabilities.



Ver. 2

In the second version, we have two different expressions - one that represents state 
values using action values, and the other that represents action values using state 
values. Let's take a closer look at each of them.



Ver. 2 - State value function

This equation tells us that the state-value function for a particular state can be 
obtained by taking the weighted sum of the action-values for each possible 
action in that state, with the weights given by the policy function  π(a|s) . 

In other words, the state-value is the expected value of the action-values under 
the policy  π .



Ver. 2 - State value function



Ver. 2 - State value function



Ver. 2 - Action value function



Ver. 2 - Action value function



Memory Test

Now, memorize the Ver. 2 equations and try to write them on a blank paper!



Final



Final - State value function

Substitution

Ver. 2



Final - Action value function

Substitution

Ver. 2



Memory Test

Now, memorize the Bellman expectation equation (Final version) and try to write 
them on a blank paper!



Reward Function and Transition Probability

When computing the state value function and action value function, there are two 
key pieces of information that are essential:

This represents the reward associated with taking a specific action within a given 
state.

This describes the likelihood of transitioning to the next state when a particular 
action is taken in the current state.



Model Free vs Model-based

These elements are integral components of the environment. When we possess 
knowledge about these aspects, we refer to it as having a "known Markov 
Decision Process (MDP)." 

However, in many cases, this information is not readily available. In simpler 
terms, when we need to learn and make decisions without prior knowledge of the 
MDP, we employ the "model-free" approach. 

Conversely, if we have a clear understanding of the MDP, we use the 
"model-based" or "planning" method.



Bellman optimality equation



Bellman optimality equation

These functions represent the maximum expected return achievable from a 
given state or state-action pair, under the optimal policy.

Once we have these functions, we can use them to determine the optimal policy, 
which is simply to take the action with the highest expected value from each 
state.



Ver. 1

Pi?

Expected value?



Ver. 2



Final - Bellman Optimality Equation



Final - State value function

Substitution

Ver. 2



Final - Action value function

Substitution

Ver. 2



Memory Test

Now, memorize the Bellman optimality equation (Final version) and try to write 
them on a blank paper!



How to estimate value and policy 
functions when MDP is known



Planning

● We will learn how to evaluate the value of each state given a fixed policy  π , 
and how to find the optimal policy function assuming MDP is known.

○ Value function (state value function and action value function)
○ Policy function

● Our goal is to find the optimal policy function that maximizes the expected 
cumulative reward over time.

● Planning
○ In reinforcement learning, "planning" refers to the process of using an assumed model of the 

environment (MDP) to explore sequences of states and actions and optimize a policy.



Simple environments

To begin with, we will start with simple problems and gradually increase the 
complexity. 

A small problem refers to an MDP where the size of state and action sets is 
small, and where we know the reward function and the transition probability 
matrix.



Grid World

Consider a grid world environment with 
16 states and 4 possible actions. The 
agent starts in the start state (s0) and 
the episode ends when the end state 
(s15) is reached. 

The reward is -1 for each step, and the 
given policy is a uniform random move, 
with each action having an equal 
probability of 25%.

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15



Iterative Policy Evaluation

Iterative Policy Evaluation (IPE) is a method of estimating the value function for 
a given policy in a MDP. 

The basic idea is to initialize the value function to some arbitrary values and then 
repeatedly update the values using the Bellman Expectation Equation (BEE) until 
they converge.

To simplify the problem, we assume that all transition probabilities are fixed to 1, 
meaning that the direction of the action chosen determines the next state 
immediately. We also set  γ (gamma)  to 1. 



Step 1 -  Initialization

To start with iterative policy evaluation, the first step is to initialize the value 
table to 0. 

Although the initial values don't represent any meaningful value, they will be 
gradually updated through an iterative process to converge to the actual value 
of each state.



s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Step 1 -  Initialization



Step 2 - Update state values

To start, we use the Bellman equation to calculate the expected value of being in 
state s5. This involves summing up the expected rewards and discounted future 
values for all possible next states, weighted by their transition probabilities.



0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 -1.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

Step 2 - Update state values



Step 3 - Update other states

Update all the 15 states except for the last one in the same way.

0.0 0.0 0.0 0.0

0.0 -1.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 0.0



Step 4 - Interations

Repeat step 2 and 3 until the values in the table converge to their actual values. 

The number of iterations is denoted by k , and as this process continues, the 
value of each state converges to a certain value, which is the actual value of that 
state. 

It's magical how the iterative process can progressively enhance 
the accuracy of the values in the table!



0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

k=0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 0.0

k=1

-2.0 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.75

-2.0 -2.0 -1.75 0.0

k=2

-3.0 -3.0 -3.0 -3.0

-3.0 -3.0 -3.0 -2.94

-3.0 -3.0 -2.88 -2.4

0.-3.0 -2.94 -2.4 0.0

k=3

-59.4 -57.4 -54.3 -51.7

-57.4 -54.6 -49.7 -45.1

-54.3 -49.7 -40.9 -30

-51.7 -45.1 -30 0.0

k=∞

·  ·  ·  ·  ·



Iterative Policy Evaluation

So far we have learned how to calculate the value of each state given a policy. 

If information about the MDP is known and its size is small enough, the value of 
each state can be obtained when the corresponding policy function is followed 
for any policy function. 

Now, let's look at how to find a better policy function by modifying the policy, 
rather than in a situation where the policy is fixed.



Greedy Policy

Take a look at the results of iterative policy evaluation. 

Let's say we are currently in the blue state,  s5 , which has a 
value of -54.6. What direction should we move in now to get 
to a state with a higher value? Moving east or south would 
increase the value to -49.7, making it a good choice. Based 
on this observation, we can create a new policy,  π , as 
follows:  π(aRight|s5)=1.0  or  π(aDown|s5)=1.0 . 

This new policy is referred to as a greedy policy since it 
involves making choices that maximize immediate rewards 
without considering the future.

-59.4 -57.4 -54.3 -51.7

-57.4 -54.6 -49.7 -45.1

-54.3 -49.7 -40.9 -30

-51.7 -45.1 -30 0.0



Greedy Policy

It is possible to find a better policy for all states in a similar way to finding the 
greedy policy at  s5 .

-59.4 -57.4 -54.3 -51.7

-57.4 -54.6 -49.7 -45.1

-54.3 -49.7 -40.9 -30

-51.7 -45.1 -30 0.0

k=∞

End

Greedy Policy



Policy improved!

As we saw in the previous example, by using iterative policy evaluation to find the value 
of each state with a random policy, we were able to determine the optimal policy for a 
single state. 

This led us to the idea of using this approach to find a better policy for all states. By 
taking the greedy action in each state based on the values obtained from iterative 
policy evaluation, we obtained a slightly improved policy. 

It's worth noting that in more complex problems, the new policy may not match the 
optimal policy, but the important point is that it's an improvement over the previous 
policy. This is the key idea behind the policy iteration algorithm that we will discuss 
next.



Policy Iteration

● Policy iteration is a two-stage process that involves policy evaluation and policy 
improvement. 

○ It all starts with a random policy. 
○ In the policy evaluation stage, the policy is kept fixed, and the iterative policy evaluation method we 

learned earlier can be used to evaluate the state value. 
○ Once policy evaluation is complete, we move to the policy improvement stage, where we update the 

policy to a new one using the greedy policy for  v(s) . 
○ We then go back to policy evaluation with the new policy. 

● This cycle of evaluation and improvement is repeated until the state values 
converge and stop changing. The converged values and policies become the 
optimal values and policies.



Policy Iteration

In summary, 

1. Initialize a random policy.
2. Evaluate the policy using iterative policy 

evaluation.
3. Improve the policy by selecting the 

greedy action based on the value 
function obtained in step 2.

4. Repeat steps 2-3 until convergence.
http://incompleteideas.net/book/ebook/the-book.html



Early stopping

In policy iteration, the policy evaluation stage involves updating the value 
function for each state using the Bellman equation until the values converge to a 
stable state. However, in some cases, it may take many iterations for the values 
to converge, which can be computationally expensive and time-consuming.

To address this issue, early stopping can be used during policy evaluation. This 
means that the value updates are stopped before convergence is reached, and 
the partially updated value function is used to update the policy. This can save 
computational resources while still achieving good results.



Early stopping

One way to implement early stopping is to set a maximum number of iterations 
for the value updates. 

Another approach is to set a convergence threshold, where the value updates are 
stopped once the difference between the current and previous value estimates 
falls below a certain threshold. 

By using early stopping, policy iteration can be made more efficient without 
sacrificing too much accuracy.



Early stopping



Value Iteration

In value iteration, the goal is to directly find the optimal value function and the 
optimal policy without the need for separate policy improvement steps. 

This is achieved by repeatedly applying the Bellman Optimization Equation, 
which expresses the optimal value function in terms of the maximum expected 
reward achievable from the current state.



Value Iteration

The algorithm starts by initializing the value of each state to an arbitrary value, 
typically 0. 

Then, in each iteration, the algorithm updates the value of each state by taking 
the maximum expected reward achievable from that state according to the 
current value function and the transition probabilities of the MDP. 

This process continues until the value function converges to the optimal value 
function.



0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 -1.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0



0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

k=0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 0.0

k=1

-2.0 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.0

-2.0 -2.0 -1.0 0.0

k=2

-3.0 -3.0 -3.0 -3.0

-3.0 -3.0 -3.0 -2.0

-3.0 -3.0 -2.0 -1.0

0.-3.0 -2.0 -1.0 0.0

k=3

-6.0 -5.0 -4.0 -3.0

-5.0 -4.0 -3.0 -2.0

-4.0 -3.0 -2.0 -1.0

-3.0 -2.0 -1.0 0.0

k=∞

·  ·  ·  ·  ·


