Deep Reinforcement Learning

Part 3

Outlines

1. Value-based Agent

a. Learning Value Network
b. Deep Q-Learning

2. Policy-based Agent
3. Actor-Critic

Function Approximation in Deep RL

Function approximation in Deep RL can be broadly divided into two main approaches:

Value Function Approximation: In this approach, the value function, either v _(s) or q_(s, a), is
represented using neural networks. These networks aim to approximate the values associated
with states or state-action pairs. This approach is commonly used in algorithms like Deep
Q-Networks (DQN), where the goal is to learn the optimal action-value function.

Policy Function Approximation: This approach focuses on directly representing the policy
function, z(als), using a neural network. The policy network learns to output the probability
distribution over actions for a given state. Methods like Trust Region Policy Optimization
(TRPO) and Proximal Policy Optimization (PPO) are examples of algorithms that fall into this
category, as they aim to find an optimal policy directly.

Reinforcement Learning

Indeed, in the realm of reinforcement learning, we can categorize agents into three main types:

Value-Based Agent: This type of agent operates with a value function. It assesses the value of different
states or state-action pairs and makes decisions based on these value estimates. Common algorithms
include Q-learning and Deep Q-Networks (DQN).

Policy-Based Agent: Policy-based agents make decisions directly based on a policy function. These
agents learn a policy that defines the probability of taking different actions in various states. Methods
like REINFORCE and Proximal Policy Optimization (PPO) fall under this category.

Actor-Critic Agent: Actor-critic agents combine aspects of both value-based and policy-based
methods. They employ an actor (policy) network to decide actions and a critic (value) network to
evaluate the expected rewards. The actor tries to maximize expected rewards, guided by the critic's
feedback. Examples include Advantage Actor-Critic (A2C) and Advantage Actor-Critic with Generalized
Advantage Estimation (A3C with GAE).

Reinforcement Learning

Value Fungtion F‘qllcy

| Value-Based Actor | policy-Based |

\ Critic

Reinforcement Learning

Policy

<+——Policy + Model-free

Actor-critic + Model-free

Dyna-DDPG MBPG
it Dvna-
Value:+ Model-free— gy Deenbioa MBAC METRPO Policy + Model-based
Value + Model-based Ry MAAC SLBO

Actor-critic + Model-based VAML

Value-based Agent

Value-based Agent

1. Learning Value Network
2. Deep Q-Learning

Value-based Agent

1. Learning Value Network

Value Network

When the policy mis fixed, let's explore
how to use a neural network to learn
the value function v, _(s).

Here, we have a value network, which
is a neural network represented as
shown in the figure. In this neural
network, 8 represents the parameters.
This network is designed to return the
state value for a given input state s.

Output Layer
[‘ ‘ e ‘ ‘} Hidden Layer 2

[‘ ‘ e ‘ ‘} Hidden Layer 1

[.oss function

We may not know the actual state values, but let's define them as v,__(s). Then,
we can define the loss function as follows:

L(8)=E [(V,,e(8)-V(s))’]

Next, we calculate the gradient of this loss function with respect to the
parameters 6.

V oL(8)=-E [(Vye (8)-V4(S)) V oV (S)]
This is induced using the equation,
{e— f(@)} = -2{c~ f()} + £ f(z)

Parameter update

Once the gradient has been computed, the next step is to update the parameters.
6=0-aV,L()
0=0+a(v,(5)Vvy(s))Vyvy(s)

Since we cannot obtain the actual value function v, (s), we will approximate it
using methods like Monte Carlo (MC) or Temporal Difference (TD) methods.

Parameter update

MC:
L(0) = Ex[(G: — vo(s¢))’]
0 =0+ a(G; —vy(st))Veve(st)

TD:

L(0) = Er[(rer1 + yva(se+1) — vo(st))?]
0 =0+ a(rii1 + yve(str1) — ve(st))Vave(st)

Value-based Agent

2. Deep Q-Learning

Deep Q-Learning

A value-based agent operates without explicit policies. There is no Tt.
Instead, it employs q(s, a) as if it were a policy—a implicit policy.
In Q-learning, tables were used, but Deep Q-learning utilizes neural networks.

In Q-learning, the Bellman Optimality Equation was used. Review the equations!

gs(s,a) = Ey[r+vymazyq.(s,a’)]

Q(S,A) +— Q(S,A) + a(R+ymaz 4 Q(S',A") — Q(S,A))

Loss function & Parameter update

Loss function

E.[(r +ymax, Qy(s',a’') — Qy(s,a))?]

Parameter update

0 =0+ a(ry 1 +ymax, Qg(s',a’) — Qy(s,a))VeQs(s,a)

Mini-batch

When using the update equation to update parameters in reinforcement learning,
a mini-batch is a collection of data. A mini-batch can consist of just one
transition (s, a, r, s') sample, or it can include thousands or even tens of
thousands of samples. The size of this mini-batch is defined by the user.

The mini-batch size is a user-defined parameter. It can have an impact on the
performance and efficiency of the learning algorithm. A small mini-batch updates
parameters more frequently but can introduce noise, while a larger mini-batch
provides smoother updates but may slow down learning.

Replay Memory

sample batch
and learn

environment

take an action

save result
(s,a,r,s)

experience replay buffer

Target Network

| ey | ey

[J [J ®
[] ® [] ®

[J o [] [J o [] [J
® ® ® ®

[J [J ®
[] Q [J Q

Target Network (Target Policy) Q Network (Behavior Policy)

Deep Q-learning pseudo code

initialize replay memory D
initialize action-value function Q with random weights
observe initial state s
repeat
select an action a
with probability & select a random action
otherwise select a = argmaxa’Q(s,a’)
carry out action a
observe reward r and new state s’

store experience <s, a, r, s’> in replay memory D

sample random transitions <ss, aa, rr, ss’> from replay memory D

calculate target for each minibatch transition

if ss’ is terminal state then tt = rr
otherwise tt = rr + ymaxa’Q(ss’, aa’')

train the Q network using (tt - Q(ss, aa))”"2 as loss

until terminated

Implementation of DQN

The problem we want to solve is CartPole. CartPole is
one of the environments included in the OpenAl Gym
library, provided by the company OpenAl. Among these
environments, it is one of the simplest.

In CartPole, the objective is to balance a pole on a
moving cart by moving the cart left or right. There are
only two possible actions: move the cart left or move
the cart right. A reward of +1 is given at each time step
as long as the pole remains upright. The state is
represented as a vector of length 4:

s = (cart position, cart velocity, pole angle, pole angular
velocity)

Library import and Hyper-parameters

import gym
import collections
import random

import torch

import torch.nn as nn

import torch.nn.functional as F
import torch.optim as optim

learning rate = 0.0005
gamma = 0.98
buffer limit = 50000
batch size = 32

class ReplayBuffer():

def

def

def

def

__init (self):
self.buffer = collections.deque (maxlen=buffer limit)

put (self, transition):
self.buffer.append(transition)

sample (self, n):
mini batch = random.sample (self.buffer, n) # random sample
s 1st, a 1st, r 1st, s prime 1lst, done mask 1lst = [], []1, [1, [], []

for transition in mini batch:
s, a, r, s _prime, done mask = transition
s_1lst.append (s)
a lst.append([a])
r 1st.append([r])
s_prime lst.append(s prime)
done mask lst.append([done mask])

return torch.tensor(s lst, dtype=torch.float), torch.tensor(a lst), \
torch.tensor (r 1lst), torch.tensor(s prime lst, dtype=torch.float),
torch.tensor (done mask 1lst)

size(self) :
return len(self.buffer)

\

class Onet (nn.Module) :

def

def

def

__init (self):

super (Qnet, self). init ()
self.fcl = nn.Linear (4, 128)
self.fc2 = nn.Linear (128, 128)
self.fc3 nn.Linear (128, 2)

forward (self, x):

x = F.relu(self.fcl (x))
x = F.relu(self.fc2(x))
x = self.fc3(x)

return x

sample action(self, obs, epsilon):

out = self.forward (obs)
coln = random.random ()
if coin < epsilon:
return random.randint (0,1)
else
return out.argmax () .item()

: T
1

128 Fully Connected, Relu

1
1
» EET

Train function

def train(g, g target, memory, optimizer):
for i in range(10):
s,a,r,s prime,done mask = memory.sample (batch size)

g out = g(s)

g a = g out.gather(1l,a)

max g prime = g target(s prime).max(l) [0].unsqueeze (1)
target = r + gamma * max g prime * done mask

loss = F.smooth 11 loss(g a, target)

optimizer.zero grad()
loss.backward ()
optimizer.step ()

def main() :
env = gym.make ('CartPole-vl"')
q = Qnet()
q_target = Qnet()
g_target.load state dict(g.state dict())
memory = ReplayBuffer ()

print interval = 20
score = 0.0
optimizer = optim.Adam(g.parameters(), lr=learning rate)

for n_epi in range(10000) :
epsilon = max(0.01, 0.08 - 0.01*(n _epi/200)) #Linear annealing from 8% to 1%
s = env.reset ()
done = False

while not done:
a = g.sample action (torch.from numpy(s).float(), epsilon)

s _prime, r, done, info = env.step(a)

done mask = 0.0 if done else 1.0

memory.put ((s,a,r/100.0,s prime, done mask))
s = s_prime

score += r
if done:
break

if memory.size()>2000:
train(q, g_target, memory, optimizer)

if n _epi%print interval==0 and n_epi!=0:
q_target.load state dict(g.state dict())
print ("n_episode :{}, score : {:.1f}, n buffer : {}, \
eps : {:.1f}%".format (n _epi, score/print interval, memory.size(), epsilon*100))
score = 0.0
env.close ()

Results

n_episode :
n_episode :
n_episode :
n_episode :
n _episode :
n_episode :
n_episode :
n_episode :
n _episode :
n_episode :
n_episode :
n_episode :
n_episode :
n_episode :
n_episode :

: 28.6
: 10.3
¢ 10.3
¥ 116
: 16.6
¥ 52.2

18.6, n_buffer :
17.2, n_buffer :
17.9, n_buffer :
: 17.9, n buffer :
: 18.9, n_buffer :
, h_buffer :
, n_buffer :
, h_buffer :
, n_buffer :

n buffer :
.2, n_buffer :
: 149.3, n buffer :
: 138.2, n buffer :
: 133.9, n buffer :
: 168.9, n buffer :

313, €ps =
718, eps :
1075, eps :
1432, eps :
1809, eps :
2382, eps :
2589, eps :
2795, eps :
3027, eps :
3358, eps :
4402, eps :
7389, eps :

10152, eps :
12831, eps :
16209, eps :

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver ~ Alex Graves Ioannis Antonoglou
Daan Wierstra Martin Riedmiller
DeepMind Technologies

{vlad, koray,david, alex.graves, ioannis,daan,martin.riedmiller) @ deepmind.com

Abstract

‘We present the first deep learning model to successfully learn control policies di-
rectly from high-dimensional sensory input using reinforcement learning. The
model is a convolutional neural network, trained with a variant of Q-learning,
whose input is raw pixels and whose output is a value function estimating future
rewards. We apply our method to seven Atari 2600 games from the Arcade Learn-
ing Environment, with no adjustment of the architecture or learning algorithm. We
find that it outperforms all previous approaches on six of the games and surpasses
a human expert on three of them.

1 Introduction

Learning to control agents directly from high-dimensional sensory inputs like vision and speech is
one of the long-standing challenges of reinforcement learning (RL). Most successful RL applica-
tions that operate on these domains have relied on hand-crafted features combined with linear value
functions or policy representations. Clearly, the performance of such systems heavily relies on the
quality of the feature representation.

Recent advances in deep learning have made it possible to extract high-level features from raw sen-
sory data, leading to breakthroughs in computer vision [11, 22, 16] and speech recognition [6, 7].
These methods utilise a range of neural network architectures, including convolutional networks,
multilayer perceptrons, restricted Boltzmann machines and recurrent neural networks, and have ex-
ploited both supervised and unsupervised learning. It seems natural to ask whether similar tech-
niques could also be beneficial for RL with sensory data.

000033
BECTOR ©O 1

Figure 1: Screen shots from five Atari 2600 Games:
Seaquest, Beam Rider

Average Reward on Breakout Average Reward on Seaquest Average Q on Breakout Average Q on Seaquest

21800
§1600
S1400
§1200
©1000
g 800
o 600
& 400
@

s 200
g

Average Action Value (Q)
Average Action Value (Q)

]
°
-1
2
a
w
8
Q
B
8
]
o«
o
=3
©
]
>
<

0 < 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Training Epochs Training Epochs Training Epochs Training Epochs

Figure 2: The two plots on the left show average reward per episode on Breakout and Seaquest
respectively during training. The statistics were computed by running an e-greedy policy with € =
0.05 for 10000 steps. The two plots on the right show the average maximum predicted action-value
of a held out set of states on Breakout and Seaquest respectively. One epoch corresponds to 50000
minibatch weight updates or roughly 30 minutes of training time.

|- Rider | Breakout | Enduro | Pong | Q%bert | Seaquest | S. Tnvaders
Random | 351 | 12 | 0 b 157 | U0 || Im
“Sarsa(3] | 996 | 52 | 130 | 19 | 614 | G665 | 271
Contingeney BT | 1785|6159 | 17| 560|735 |65
DNy | Tes |20 |19 | o5 | S8
Humen | 7456 | 31 | 365 | 3 | 18000 | 28010 | 3690 _

1720

“HNealPel(8] | 1332 | 4 | 01 | 16 | 13% | 800 | 1145 _
5184 4500 | 1740

Table 1: The upper table compares average total reward for various learning methods by running
an e-greedy policy with € = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an e-greedy policy with € = 0.05.

Policy-based Agent

Value-based Agent vs Policy-based Agent

Value-Based Agent:

When faced with various available actions for a given state, these agents opt for
the action 'a' associated with the highest Q(s, a) value.

The Q(s, a) value signifies the anticipated reward achievable by selecting action
'a’ within state 's'. The agent endeavors to learn the optimal policy by consistently
choosing the action with the maximum Q-value.

The choice mechanism of value-based agents is deterministic. In other words,
once the learning process concludes, the action with the highest Q(s, a) value is
always chosen

Value-based Agent vs Policy-based Agent

Policy-Based Agent:
Policy-based agents utilize policy functions to make action selections.

A policy delineates a probability distribution for each action in a given state s,
determining the likelihood of taking a specific action in that state.

The selection process of policy-based agents is stochastic. Consequently, even
when an action is chosen repeatedly within the same state, it may not always be
the same action selected.

Q(s, a) vs 1i(s)

Let's examine a scenario in which the action space is continuous.
For example, one can choose any real value between 0 and 1 as an action.

In value-based agents, the challenge lies in identifying an 'a’ that maximizes the
Q(s, a) value across the entire range of real values.

Conversely, a policy-based agent faces no such issue, as it can promptly make
decisions regarding an action when equipped with the policy function m(s).

Policy-based Agent

Our current objective is to focus on enhancing the policy function
The problem at hand remains unchanged from our previous context.

It remains a model-free problem, and due to the large scale of the environment,
which cannot be accommodated in a table, we will employ a policy network to
represent the policy functions.

Policy Network

Let's redefine the policy network as m (s, a), where 8 represents the network's
parameters.

Our objective is to enhance/train the policy 1 (s, a) as the agent accumulates
experience in its environment.

To achieve this, we require a loss function to adjust the parameters 6. How can
we formulate the loss function for 1 (s, a)?

Objective function

The loss function typically quantifies the difference between a neural network's predicted value
and the true value. While we can ascertain the accurate value function through methods like
Monte Carlo (MC) or Temporal Difference (TD), directly determining the true policy function is
not possible.

Instead, we introduce a function to evaluate the policy function as follows:
J(8)

In this expression, the policy 1t is represented by the parameter 6. The function J(8) serves as a
measure of the quality of the policy m (s, a). Consequently, our objective is to enhance J(8),
which signifies the desirability of the policy. To achieve this, we employ gradient ascent to
adjust the parameter 6.

J(6)

J(0) represents the expected value of summation of rewards. We calculate the
expected value because, even when the policy t remains constant, the rewards
can vary. The definition of J(8) is as follows:

J(6)

Certainly, J(0) is indeed a form of a value function, specifically one that
quantifies the expected value of rewards.

If we consider the initial state as s, J(8) can be formulated as:

J(6)

However, it's important to note that episodes do not necessarily commence from
s, in every instance. Consequently, we need to establish a probability distribution
of starting states, denoted as d(s).

J(6)

We now have a function J(8) capable of assessing (s, a). Consequently, you
have the ability to adjust 6 through the process of gradient ascent.

9(—9+OL*V9J(0)

1-step MDP

Nonetheless, determining V J(8) is a non-trivial task.

To simplify the problem, let's begin by examining how to compute V ,J(8) in the
context of a 1-step MDP. A 1-step MDP is defined as an instance in which an
action a is chosen in the initial state s, resulting in the receipt of a reward R, .
after which the episode concludes.

J(0) = D ses d(8) * vry(s)

= ZsES d(s) ZaeA To(s,a) * Ry,

1-step MDP

Now, let's calculate the gradient.

But we cannot calculate it because we do not know Rs .

1-step MDP

VQJ(H) — VQ Zses d(s) ZaeA 7'('9(8, a) * Rs’a
— 2365 d(s) ZaGA Vomo(s,a) * Ry 4
= s d(s) Y i Merg(s, a) * R,

mo(s,a)

=35 d(s) X, amo(s,0) 2 y R

mo(s,a)

- ZsES d(s) ZaeA 779(8? CI/)VglOgTrg(S, a’) * Rs,a

1-step MDP

VoJ(6) = ZSES d(s) ZaeA mo(s,a)Vglogmy(s,a) * R, ,

The reason for this transformation is to utilize the expectation value.

VoJ(0) = E;,[Velogmy(s,a) * R ,]

By using the expectation value (E), we can employ a "sampling-based
methodology.” Since it's an expectation over 1 (s, a), we can place an agent in
the environment following 1,(s, a), and then collect the values of V log m (s, a) *
R, multiple times.

MDP - Policy Gradient Theorem

1-step MDP: VyJ (8) = E,,[Vologme(s,a) * R, 4]

MDP: Vo J () = E,,[Velogmy(s,a) * Qn,(s,a)]

In the case of a general MDP, we use the Q(s, a) instead of R, .- This concept
involves considering rewards accumulated beyond a single step, as the MDP
does not terminate immediately after one step but continues for multiple steps
into the future.

REINFORCE

REINFORCE is a modification of the Policy Gradient Theorem

VoJ(0) = E,,[Velogmy(s,a) * Gy]

REINFORCE

Initialize policy with random parameters 6

for each episode do:
Generate a trajectory T =[(s,, a,,r,), (S, @, T,), ..., (S, @, rp)] using 1@
G =0 # Initialize the return

fort=Tto 1 do:
G =y * G +r,_# Calculate the discounted return

8=06+a*V log(n(als, 8)) * G # Update policy parameters

end for

REINFORCE

Before and after derivative

Gradient —~___ Gt * VQZOQT('Q(S, CL)

Objective Gy * l097T9(8, a) to maximize

function

—Gy * logmy (s, a) * Gy to minimize

class Policy(nn.Module) :
def init (self):
super (Policy, self). init ()
self.data = []

self.fcl = nn.Linear (4, 128)
self.fc2 = nn.Linear (128, 2)
self.optimizer = optim.Adam(self.parameters(), lr=learning rate)

def forward(self, x):
x = F.relu(self.fcl (x))
x = F.softmax (self.fc2(x), dim=0)
return x

def put data(self, item):

self.data.append (item) : N
import gym

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

from torch.distributions import Categorical

def train net (self):
R =0
self.optimizer.zero grad()
for r, prob in self.datd::-1]:
R = r + gamma * R
loss = -torch.log(prob) * R

loss.backward () #Hyperparameters
. learning rate = 0.0002
self.optimizer.step () _
gamma = 0.98

self.data = []

def main () :

env = gym.make ('CartPole-vl1l"'")

pi = Policy()
score = 0.0

print interval

for n epi in range (10000) :

= 20

s = env.reset ()
done = False

while not done:

prob

m = Categorical (prob)

a = m.sample ()

S _prime, r,

S = s_prime
score += r

pi.train net ()

if n epi%print interval==0 and n _epi!=0:
print ("# of episode

score
env.close ()

0.0

info
pi.put data((r,problal))

{},

CartPole-vl forced to terminates at 500 step.
pi(torch.from numpy (s) .float())

env.step(a.item())

avg score

{}".format (n_epi, score/print interval))

Actor-Critic

Actor-Critic

AC (Actor-Critic) is a reinforcement learning paradigm that involves learning both
a policy network (actor) and a value function network (critic) simultaneously.
There are three common variants of AC, as you mentioned:

1. Q AC (Actor-Critic with Q-value)
2. Advantage AC (A2C or A3C - Advantage Actor-Critic)
3. TD AC (Temporal Difference Actor-Critic)

Q Actor-Critic

Q AC employs the original Policy Gradient formula without any modifications.

VoJ(0) = E,,[Vologms(s,a) * Q,(s,a)]

Since we cannot directly access the Q function, we need to train a value network
Q, with parameters w. In other words, we will simultaneously reinforce two
networks: the policy network 1, which acts as the actor responsible for
determining actions a, and the value network Q. which serves as the critic
responsible for evaluating the value of actions.

Initialize Policy network parameters® and Action-value network parameters w

Initialize state s

)

Sampling action a from g(a., s,

While loop
reward r and next stat s’ by taking action a
8=08+a*V log(n,(a,s,)) *Q,(s, a) #Update policy net parameters

)

Sampling action a’ from g(a., s,

w=mw+B (r+yQ (s’, a’) - Q (s, a))VWQW(S, a) # Update action-value net parameters

Advantage Actor-Critic

The advantage, denoted as A(s, a), represents how much additional value or benefit is gained
by taking action 'a' in state 's' compared to the expected value of being in that state, which is
represented by v(s).

Mathematically, it can be expressed as:
A(s, a) = Q(s, @) - v(s)

In other words, the advantage tells us whether taking a specific action in a given state is better
or worse than the average or expected value associated with that state. Positive advantage
indicates that the action is better than average, while negative advantage suggests that the
action is worse than average. This concept is commonly used in policy gradient methods and
actor-critic algorithms to guide the learning process.

Advantage Actor-Critic

V9J(0) = E, [Vé’logﬂ-9(37 a’) * {Qﬂa (S’ a) — Vo (3)}]

Initialize Policy network parameters®,Action-value network parameters w, and
State-value network parametersd.

Initialize state s

)

Sampling action a from g(a., s,

While loop
reward r and next state s’ by taking action a
8=0+a,* V,log(my(a,s,)) *{Q,(s, a) - V¢(s)} # Update policy net parameters

)

Sampling action a’ from g(a., s,

wo=w + 0,(r+yQ (s’, a’) - Q (s, a))VWQW(S, a) # Update action-value net parameters
d = ¢ + a(r+yV,(s’) - Vy(s)) V¢V¢(s) # Update state-value net parameters
a=a

TD Actor-Critic

Advantage Actor-Critic (Advantage AC) typically involves three networks, while
TD Actor-Critic (TD AC) manages to achieve similar goals with just two networks.
The TD error (delta) and Policy Gradient components are as follows:

d=r+~V(s')—-V(s)

VQJ(Q) — Em [Vglogﬂ'g(s, a,) * 5]

Initialize Policy network parameters® and State-value network parametersd.

Initialize state s

)

Sampling action a from g(a., s,
While loop

reward r and next state s’ by taking action a

o = r+YV¢(s’) = \%(s)
8=08+a,* V,log(my(a,s,)) *6 # Update policy net parameters

=9 +aq, 6V¢V¢(s) # Update state-value net parameters

import gym

import torch

import torch.nn as nn

import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import
Categorical

#Hyperparameters
learning rate = 0.0002
gamma = 0.98

n_rollout = 10

class ActorCritic (nn.Module) :
def init (self):
super (ActorCritic, self). init ()
self.data = []

self.fcl = nn.Linear (4,256)

self.fc pi = nn.Linear(256,2)

self.fc v = nn.Linear (256,1)

self.optimizer = optim.Adam(self.parameters(), lr=learning rate)

def pi(self, x, softmax dim = 0):

x = F.relu(self.fcl (x))
x = self.fc pi(x)
prob = F.softmax (x, dim=softmax dim)

return prob

def v(self, x):
x = F.relu(self.fcl (x))
v = self.fc v (x)
return v

def put data(self, transition):
self.data.append(transition)

def make batch (self) :
s 1st, a 1st, r 1st, s prime 1st, done 1st = [], [], [], [], []
for transition in self.data:
s,a,r,s prime,done = transition
s lst.append(s)
a lst.append([a])
r lst.append([r/100.0])
s prime lst.append(s prime)
done mask = 0.0 if done else 1.0
done lst.append ([done mask])

s_batch, a batch, r batch, s _prime batch, done batch = torch.tensor(s_lst, dtype=torch.float), torch.tensor(a_lst), \
torch.tensor (r lst, dtype=torch.float), torch.tensor(s_prime lst,
dtype=torch.float), \
torch.tensor (done 1lst, dtype=torch.float)
self.data = []
return s batch, a batch, r batch, s prime batch, done batch

def train net (self):
s, a, r, s prime, done = self.make batch ()
td target = r + gamma * self.v(s prime) * done
delta = td target - self.v(s)

pi = self.pi(s, softmax dim=1)
pi a = pi.gather(l,a)
loss = -torch.log(pi a) * delta.detach() + F.smooth 11 loss(self.v(s), td target.detach())

self.optimizer.zero grad()
loss.mean () .backward()
self.optimizer.step ()

def main() :
env = gym.make ('CartPole-vl"')
model = ActorCritic()
print interval = 20
score = 0.0

for n_epi in range(10000) :

done = False

s = env.reset ()

while not done:

for t in range(n rollout):

prob = model.pi (torch.from numpy (s).float())
m = Categorical (prob)
a = m.sample () .item()
s _prime, r, done, info = env.step(a)
model.put data((s,a,r,s prime,done))

s = s_prime
score += r

if done:
break

model.train net ()

if n epi%print interval==0 and n epi!=0:
print ("# of episode :{}, avg score : {:.1f}".format(n epi, score/print interval))
score = 0.0
env.close ()

if name == "' main ':
main ()

More topics

PPO

DDPG

World Model
Dreamer3

And Homework 3

New Research Topics 1n
MI@UTRGV

Durg Design

ADCNet: a unified framework for predicting the activity of antibody-drug
conjugates

https://arxiv.org/abs/2401.09176

Deep reinforcement learning for de novo drug design

https://www.science.org/doi/10.1126/sciadv.aap7885

Plan to get a grant soon

https://arxiv.org/abs/2401.09176
https://www.science.org/doi/10.1126/sciadv.aap7885

CRL and Deepmimic

Causal Reinforcement Learning - Sponsored by Google (S100K)
https://crl.causalai.net/

https://arxiv.org/abs/2302.05209

DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based
Character Skills

https://xbpeng.qithub.io/projects/DeepMimic/index.html

https://crl.causalai.net/
https://arxiv.org/abs/2302.05209
https://xbpeng.github.io/projects/DeepMimic/index.html

HEA

Deep learning-based phase prediction of high-entropy alloys: Optimization,
generation, and explanation

https://www.sciencedirect.com/science/article/pii/S0264127520307954

Sponsored by DoD ($4M)

https://www.sciencedirect.com/science/article/pii/S0264127520307954

