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Function Approximation in Deep RL

Function approximation in Deep RL can be broadly divided into two main approaches:

Value Function Approximation: In this approach, the value function, either v𝜋(s) or q𝜋(s, a), is 
represented using neural networks. These networks aim to approximate the values associated 
with states or state-action pairs. This approach is commonly used in algorithms like Deep 
Q-Networks (DQN), where the goal is to learn the optimal action-value function.

Policy Function Approximation: This approach focuses on directly representing the policy 
function, 𝜋(a|s), using a neural network. The policy network learns to output the probability 
distribution over actions for a given state. Methods like Trust Region Policy Optimization 
(TRPO) and Proximal Policy Optimization (PPO) are examples of algorithms that fall into this 
category, as they aim to find an optimal policy directly.



Reinforcement Learning

Indeed, in the realm of reinforcement learning, we can categorize agents into three main types:

Value-Based Agent: This type of agent operates with a value function. It assesses the value of different 
states or state-action pairs and makes decisions based on these value estimates. Common algorithms 
include Q-learning and Deep Q-Networks (DQN).

Policy-Based Agent: Policy-based agents make decisions directly based on a policy function. These 
agents learn a policy that defines the probability of taking different actions in various states. Methods 
like REINFORCE and Proximal Policy Optimization (PPO) fall under this category.

Actor-Critic Agent: Actor-critic agents combine aspects of both value-based and policy-based 
methods. They employ an actor (policy) network to decide actions and a critic (value) network to 
evaluate the expected rewards. The actor tries to maximize expected rewards, guided by the critic's 
feedback. Examples include Advantage Actor-Critic (A2C) and Advantage Actor-Critic with Generalized 
Advantage Estimation (A3C with GAE).



Reinforcement Learning

https://www.davidsilver.uk/wp-content/uploads/2020/03/pg.pdf



Reinforcement Learning

https://www.sciencedirect.com/science/article/pii/S1364032120309023#fig6
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Value Network

When the policy π is fixed, let's explore 
how to use a neural network to learn 
the value function vθ,π(s). 

Here, we have a value network, which 
is a neural network represented as 
shown in the figure. In this neural 
network, θ represents the parameters. 
This network is designed to return the 
state value for a given input state s.
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Loss function

We may not know the actual state values, but let's define them as vtrue(s). Then, 
we can define the loss function as follows:

L(θ)=Eπ[(vtrue(s)-v(s))2]

Next, we calculate the gradient of this loss function with respect to the 
parameters θ.

∇θL(θ)=-Eπ[(vtrue(s)-vθ(s))∇θvθ(s)]

This is induced using the equation,



Parameter update

Once the gradient has been computed, the next step is to update the parameters.

                                             θ = θ - 𝛂∇θL(θ) 

                                             θ = θ + 𝛂(vtrue(s)-vθ(s))∇θvθ(s)

Since we cannot obtain the actual value function vtrue(s), we will approximate it 
using methods like Monte Carlo (MC) or Temporal Difference (TD) methods.



Parameter update

MC:

TD:
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Deep Q-Learning

A value-based agent operates without explicit policies. There is no π.

Instead, it employs q(s, a) as if it were a policy—a implicit policy.

In Q-learning, tables were used, but Deep Q-learning utilizes neural networks.

In Q-learning, the Bellman Optimality Equation was used. Review the equations!



Loss function & Parameter update

Loss function

Parameter update



Mini-batch

When using the update equation to update parameters in reinforcement learning, 
a mini-batch is a collection of data. A mini-batch can consist of just one 
transition (s, a, r, s') sample, or it can include thousands or even tens of 
thousands of samples. The size of this mini-batch is defined by the user.

The mini-batch size is a user-defined parameter. It can have an impact on the 
performance and efficiency of the learning algorithm. A small mini-batch updates 
parameters more frequently but can introduce noise, while a larger mini-batch 
provides smoother updates but may slow down learning.



Replay Memory



Target Network

Target Network (Target Policy) Q Network (Behavior Policy)



Deep Q-learning pseudo code



Implementation of DQN

The problem we want to solve is CartPole. CartPole is 
one of the environments included in the OpenAI Gym 
library, provided by the company OpenAI. Among these 
environments, it is one of the simplest.

In CartPole, the objective is to balance a pole on a 
moving cart by moving the cart left or right. There are 
only two possible actions: move the cart left or move 
the cart right. A reward of +1 is given at each time step 
as long as the pole remains upright. The state is 
represented as a vector of length 4:

s = (cart position, cart velocity, pole angle, pole angular 
velocity)



Library import and Hyper-parameters

import gym
import collections
import random

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

learning_rate = 0.0005
gamma         = 0.98
buffer_limit  = 50000
batch_size    = 32



class ReplayBuffer():
    def __init__(self):
        self.buffer = collections.deque(maxlen=buffer_limit)
    
    def put(self, transition):
        self.buffer.append(transition)
    
    def sample(self, n):
        mini_batch = random.sample(self.buffer, n) # random sample
        s_lst, a_lst, r_lst, s_prime_lst, done_mask_lst = [], [], [], [], []
        
        for transition in mini_batch:
            s, a, r, s_prime, done_mask = transition
            s_lst.append(s)
            a_lst.append([a])
            r_lst.append([r])
            s_prime_lst.append(s_prime)
            done_mask_lst.append([done_mask])

        return torch.tensor(s_lst, dtype=torch.float), torch.tensor(a_lst), \
               torch.tensor(r_lst), torch.tensor(s_prime_lst, dtype=torch.float), \
               torch.tensor(done_mask_lst)
    
    def size(self):
        return len(self.buffer)



class Qnet(nn.Module):
    def __init__(self):
        super(Qnet, self).__init__()
        self.fc1 = nn.Linear(4, 128)
        self.fc2 = nn.Linear(128, 128)
        self.fc3 = nn.Linear(128, 2)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
      
    def sample_action(self, obs, epsilon):
        out = self.forward(obs)
        coin = random.random()
        if coin < epsilon:
            return random.randint(0,1)
        else : 
            return out.argmax().item()

Input4

Fully Connected , Relu128

Fully Connected , Relu128

Output2



Train function

def train(q, q_target, memory, optimizer):
    for i in range(10):
        s,a,r,s_prime,done_mask = memory.sample(batch_size)

        q_out = q(s)
        q_a = q_out.gather(1,a)
        max_q_prime = q_target(s_prime).max(1)[0].unsqueeze(1)
        target = r + gamma * max_q_prime * done_mask
        loss = F.smooth_l1_loss(q_a, target)
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()



def main():
    env = gym.make('CartPole-v1')
    q = Qnet()
    q_target = Qnet()
    q_target.load_state_dict(q.state_dict())
    memory = ReplayBuffer()

    print_interval = 20
    score = 0.0  
    optimizer = optim.Adam( q.parameters(), lr=learning_rate)

    for n_epi in range(10000):
        epsilon = max(0.01, 0.08 - 0.01*(n_epi/200)) #Linear annealing from 8% to 1%
        s = env.reset()
        done = False

        while not done:
            a = q.sample_action(torch.from_numpy(s).float(), epsilon)      
            s_prime, r, done, info = env.step(a)
            done_mask = 0.0 if done else 1.0
            memory.put((s,a,r/100.0,s_prime, done_mask))
            s = s_prime

            score += r
            if done:
                break
            
        if memory.size()>2000:
            train(q, q_target, memory, optimizer)

        if n_epi%print_interval==0 and n_epi!=0:
            q_target.load_state_dict(q.state_dict())
            print("n_episode :{}, score : {:.1f}, n_buffer : {}, \
                   eps : {:.1f}%".format(n_epi, score/print_interval, memory.size(), epsilon*100))
            score = 0.0
    env.close()



Results



https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
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Value-based Agent vs Policy-based Agent

Value-Based Agent:

When faced with various available actions for a given state, these agents opt for 
the action 'a' associated with the highest Q(s, a) value.

The Q(s, a) value signifies the anticipated reward achievable by selecting action 
'a' within state 's'. The agent endeavors to learn the optimal policy by consistently 
choosing the action with the maximum Q-value.

The choice mechanism of value-based agents is deterministic. In other words, 
once the learning process concludes, the action with the highest Q(s, a) value is 
always chosen



Value-based Agent vs Policy-based Agent

Policy-Based Agent:

Policy-based agents utilize policy functions to make action selections.

A policy delineates a probability distribution for each action in a given state 's,' 
determining the likelihood of taking a specific action in that state.

The selection process of policy-based agents is stochastic. Consequently, even 
when an action is chosen repeatedly within the same state, it may not always be 
the same action selected.



Q(s, a) vs π(s)

Let's examine a scenario in which the action space is continuous.

For example, one can choose any real value between 0 and 1 as an action.

In value-based agents, the challenge lies in identifying an 'a' that maximizes the 
Q(s, a) value across the entire range of real values.

Conversely, a policy-based agent faces no such issue, as it can promptly make 
decisions regarding an action when equipped with the policy function π(s).



Policy-based Agent

Our current objective is to focus on enhancing the policy function 

The problem at hand remains unchanged from our previous context.

It remains a model-free problem, and due to the large scale of the environment, 
which cannot be accommodated in a table, we will employ a policy network to 
represent the policy functions.



Policy Network

Let's redefine the policy network as πθ(s, a), where θ represents the network's 
parameters. 

Our objective is to enhance/train the policy πθ(s, a) as the agent accumulates 
experience in its environment. 

To achieve this, we require a loss function to adjust the parameters θ. How can 
we formulate the loss function for πθ(s, a)?



Objective function

The loss function typically quantifies the difference between a neural network's predicted value 
and the true value. While we can ascertain the accurate value function through methods like 
Monte Carlo (MC) or Temporal Difference (TD), directly determining the true policy function is 
not possible.

Instead, we introduce a function to evaluate the policy function as follows:

J(θ)
In this expression, the policy π is represented by the parameter θ. The function J(θ) serves as a 
measure of the quality of the policy πθ(s, a). Consequently, our objective is to enhance J(θ), 
which signifies the desirability of the policy. To achieve this, we employ gradient ascent to 
adjust the parameter θ.



J(θ)

J(θ) represents the expected value of summation of rewards. We calculate the 
expected value because, even when the policy π remains constant, the rewards 
can vary. The definition of J(θ) is as follows:



J(θ)

Certainly, J(θ) is indeed a form of a value function, specifically one that 
quantifies the expected value of rewards.

If we consider the initial state as s0, J(θ) can be formulated as:



J(θ)

However, it's important to note that episodes do not necessarily commence from 
s0 in every instance. Consequently, we need to establish a probability distribution 
of starting states, denoted as d(s).



J(θ)

We now have a function J(θ) capable of assessing πθ(s, a). Consequently, you 
have the ability to adjust θ through the process of gradient ascent.

 



1-step MDP

Nonetheless, determining ∇θJ(θ) is a non-trivial task. 

To simplify the problem, let's begin by examining how to compute ∇θJ(θ) in the 
context of a 1-step MDP. A 1-step MDP is defined as an instance in which an 
action a is chosen in the initial state s0, resulting in the receipt of a reward Rs,a, 
after which the episode concludes.



1-step MDP

Now, let's calculate the gradient.

But we cannot calculate it because we do not know Rs,a.



1-step MDP



1-step MDP

The reason for this transformation is to utilize the expectation value.

By using the expectation value (E), we can employ a "sampling-based 
methodology." Since it's an expectation over πθ(s, a), we can place an agent in 
the environment following πθ(s, a), and then collect the values of ∇θlog πθ(s, a) * 
Rs,a multiple times.



MDP - Policy Gradient Theorem

In the case of a general MDP, we use the Q(s, a) instead of Rs,a. This concept 
involves considering rewards accumulated beyond a single step, as the MDP 
does not terminate immediately after one step but continues for multiple steps 
into the future.



REINFORCE

REINFORCE is a modification of the Policy Gradient Theorem



REINFORCE

Initialize policy π with random parameters θ

for each episode do:

    Generate a trajectory τ = [(s1, a1, r1), (s2, a2, r2), ..., (sT, aT, rT)] using π

    G = 0  # Initialize the return

    for t = T to 1 do:

        G = γ * G + rt  # Calculate the discounted return

        θ = θ + α * ∇θ log(π(at|st, θ)) * G  # Update policy parameters

end for



REINFORCE

Before and after derivative

Gradient

Objective 
function



class Policy(nn.Module):
    def __init__(self):
        super(Policy, self).__init__()
        self.data = []
        
        self.fc1 = nn.Linear(4, 128)
        self.fc2 = nn.Linear(128, 2)
        self.optimizer = optim.Adam(self.parameters(), lr=learning_rate)
        
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.softmax(self.fc2(x), dim=0)
        return x
      
    def put_data(self, item):
        self.data.append(item)
        
    def train_net(self):
        R = 0
        self.optimizer.zero_grad()
        for r, prob in self.data[::-1]:
            R = r + gamma * R
            loss = -torch.log(prob) * R
            loss.backward()
        self.optimizer.step()
        self.data = []

import gym
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical

#Hyperparameters
learning_rate = 0.0002
gamma         = 0.98



def main():
    env = gym.make('CartPole-v1')
    pi = Policy()
    score = 0.0
    print_interval = 20
    
    for n_epi in range(10000):
        s = env.reset()
        done = False
        
        while not done: # CartPole-v1 forced to terminates at 500 step.
            prob = pi(torch.from_numpy(s).float())
            m = Categorical(prob)
            a = m.sample()
            s_prime, r, done, info = env.step(a.item())
            pi.put_data((r,prob[a]))
            s = s_prime
            score += r
            
        pi.train_net()
        
        if n_epi%print_interval==0 and n_epi!=0:
            print("# of episode :{}, avg score : {}".format(n_epi, score/print_interval))
            score = 0.0
    env.close()



Actor-Critic



Actor-Critic

AC (Actor-Critic) is a reinforcement learning paradigm that involves learning both 
a policy network (actor) and a value function network (critic) simultaneously. 
There are three common variants of AC, as you mentioned:

1. Q AC (Actor-Critic with Q-value)
2. Advantage AC (A2C or A3C - Advantage Actor-Critic)
3. TD AC (Temporal Difference Actor-Critic)



Q Actor-Critic

Q AC employs the original Policy Gradient formula without any modifications.

Since we cannot directly access the Q function, we need to train a value network 
Qw with parameters w. In other words, we will simultaneously reinforce two 
networks: the policy network πθ, which acts as the actor responsible for 
determining actions a, and the value network Qw, which serves as the critic 
responsible for evaluating the value of actions.



Initialize Policy network parameters θ and Action-value network parameters w

Initialize state s

Sampling action a from πθ(at, st)

While loop

reward r and next stat s’ by taking action a

θ = θ + α * ∇θ log(πθ(at,st)) * Qw(s, a)  # Update policy net parameters

Sampling action a’ from πθ(at, st)

w = w + β (r+γQw(s’, a’) - Qw(s, a))∇wQw(s, a) # Update action-value net parameters

a = a’

s = s’ 



Advantage Actor-Critic

The advantage, denoted as A(s, a), represents how much additional value or benefit is gained 
by taking action 'a' in state 's' compared to the expected value of being in that state, which is 
represented by v(s).

Mathematically, it can be expressed as:

A(s, a) = Q(s, a) - v(s)

In other words, the advantage tells us whether taking a specific action in a given state is better 
or worse than the average or expected value associated with that state. Positive advantage 
indicates that the action is better than average, while negative advantage suggests that the 
action is worse than average. This concept is commonly used in policy gradient methods and 
actor-critic algorithms to guide the learning process.



Advantage Actor-Critic



Initialize Policy network parameters θ,Action-value network parameters w, and 
State-value network parameters ϕ.

Initialize state s

Sampling action a from πθ(at, st)

While loop

reward r and next state s’ by taking action a

θ = θ + α1 * ∇θ log(πθ(at,st)) * {Qw(s, a) - Vϕ(s)}  # Update policy net parameters

Sampling action a’ from πθ(at, st)

w = w + α2(r+γQw(s’, a’) - Qw(s, a))∇wQw(s, a) # Update action-value net parameters

ϕ = ϕ + α3(r+γVϕ(s’) - Vϕ(s))∇ϕVϕ(s) # Update state-value net parameters

a = a’

s = s’ 



TD Actor-Critic

Advantage Actor-Critic (Advantage AC) typically involves three networks, while 
TD Actor-Critic (TD AC) manages to achieve similar goals with just two networks. 
The TD error (delta) and Policy Gradient components are as follows:



Initialize Policy network parameters θ and State-value network parameters ϕ.

Initialize state s

Sampling action a from πθ(at, st)

While loop

reward r and next state s’ by taking action a

δ = r+γVϕ(s’) - Vϕ(s)

θ = θ + α1 * ∇θ log(πθ(at,st)) * δ  # Update policy net parameters

ϕ = ϕ + α2 δ∇ϕVϕ(s) # Update state-value net parameters

a = a’

s = s’ 



import gym
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import 
Categorical

#Hyperparameters
learning_rate = 0.0002
gamma         = 0.98
n_rollout     = 10



class ActorCritic(nn.Module):
    def __init__(self):
        super(ActorCritic, self).__init__()
        self.data = []
        
        self.fc1 = nn.Linear(4,256)
        self.fc_pi = nn.Linear(256,2)
        self.fc_v = nn.Linear(256,1)
        self.optimizer = optim.Adam(self.parameters(), lr=learning_rate)
        
    def pi(self, x, softmax_dim = 0):
        x = F.relu(self.fc1(x))
        x = self.fc_pi(x)
        prob = F.softmax(x, dim=softmax_dim)
        return prob
    
    def v(self, x):
        x = F.relu(self.fc1(x))
        v = self.fc_v(x)
        return v
    
    def put_data(self, transition):
        self.data.append(transition)



    def make_batch(self):
        s_lst, a_lst, r_lst, s_prime_lst, done_lst = [], [], [], [], []
        for transition in self.data:
            s,a,r,s_prime,done = transition
            s_lst.append(s)
            a_lst.append([a])
            r_lst.append([r/100.0])
            s_prime_lst.append(s_prime)
            done_mask = 0.0 if done else 1.0
            done_lst.append([done_mask])
        
        s_batch, a_batch, r_batch, s_prime_batch, done_batch = torch.tensor(s_lst, dtype=torch.float), torch.tensor(a_lst), \
                                                          torch.tensor(r_lst, dtype=torch.float), torch.tensor(s_prime_lst, 
dtype=torch.float), \
                                                          torch.tensor(done_lst, dtype=torch.float)
        self.data = []
        return s_batch, a_batch, r_batch, s_prime_batch, done_batch
  
    def train_net(self):
        s, a, r, s_prime, done = self.make_batch()
        td_target = r + gamma * self.v(s_prime) * done
        delta = td_target - self.v(s)
        
        pi = self.pi(s, softmax_dim=1)
        pi_a = pi.gather(1,a)
        loss = -torch.log(pi_a) * delta.detach() + F.smooth_l1_loss(self.v(s), td_target.detach())

        self.optimizer.zero_grad()
        loss.mean().backward()
        self.optimizer.step()   



def main():  
    env = gym.make('CartPole-v1')
    model = ActorCritic()    
    print_interval = 20
    score = 0.0

    for n_epi in range(10000):
        done = False
        s = env.reset()
        while not done:
            for t in range(n_rollout):
                prob = model.pi(torch.from_numpy(s).float())
                m = Categorical(prob)
                a = m.sample().item()
                s_prime, r, done, info = env.step(a)
                model.put_data((s,a,r,s_prime,done))
                
                s = s_prime
                score += r
                
                if done:
                    break                     
            
            model.train_net()
            
        if n_epi%print_interval==0 and n_epi!=0:
            print("# of episode :{}, avg score : {:.1f}".format(n_epi, score/print_interval))
            score = 0.0
    env.close()

if __name__ == '__main__':
    main()



More topics

PPO

DDPG

World Model

Dreamer3

And Homework 3



New Research Topics in 
MI@UTRGV



Durg Design

ADCNet: a unified framework for predicting the activity of antibody-drug 
conjugates

https://arxiv.org/abs/2401.09176

Deep reinforcement learning for de novo drug design

https://www.science.org/doi/10.1126/sciadv.aap7885

Plan to get a grant soon

https://arxiv.org/abs/2401.09176
https://www.science.org/doi/10.1126/sciadv.aap7885


CRL and Deepmimic

Causal Reinforcement Learning - Sponsored by Google ($100K)

https://crl.causalai.net/

https://arxiv.org/abs/2302.05209

DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based 
Character Skills

https://xbpeng.github.io/projects/DeepMimic/index.html

https://crl.causalai.net/
https://arxiv.org/abs/2302.05209
https://xbpeng.github.io/projects/DeepMimic/index.html


HEA

Deep learning-based phase prediction of high-entropy alloys: Optimization, 
generation, and explanation

https://www.sciencedirect.com/science/article/pii/S0264127520307954

Sponsored by DoD ($4M)

https://www.sciencedirect.com/science/article/pii/S0264127520307954

