GRADIENT DESCENT ALGORITHM

Optimization

Finding best a and b is an optimization problem.
From now on, we will use w instead of a to represent slope. Our linear model is $y=w x+b$,
Our goal is to estimate \mathbf{w} (slope) and \mathbf{b} that minimizes the Cost Function (MSE) given a particular data set (x and y)

Let's assume that it's linear model and we have a data set as follows.

\mathbf{x}	\mathbf{y}
1.0	2.0
2.0	3.0
3.0	4.0

What is optimal w and b? Can you guess?
Yes! Intuitively, we should be able to guess the answer.
$\mathrm{w}=1$ and $\mathrm{b}=1$
(if you could not guess that w and b should both be 1, try to picture the points on a graph in your mind. As x increases by 1 , we can see that y increases by 1 as well so that tells us the slope of the graph. We then know can remember that in our high-school math class to find b, we simply put 0 into x and see what the result is, in this case when $x=0, y=1$ as expected)
But please let's assume we don't know the answer.

Example

\mathbf{x}	\mathbf{y}
1.0	2.0
2.0	3.0
3.0	4.0

- To find optimal w and b , the first step is to set w and b as 0 (zero).
- Then, estimate w first. (we don't change the value of b)
- We just calculate the cost (MSE) when wis $0,1,2$. It is like a simple searching with different values.
- $w=0, b=0$
- Cost $=\left((1 * 0+0-2)^{2}+\left(2^{*} 0+0-3\right)^{2}+\left(3^{*} 0+0-4\right)^{2}\right) / 3=9.67$
$-w=1, b=0$
- Cost $=\left(\left(1^{*} 1+0-2\right)^{2}+\left(2^{*} 1-3\right)^{2}+\left(3^{*} 1-4\right)^{2}\right) / 3=1$
$-w=2, b=0$
- Cost $=\left((1 * 2+0-2)^{2}+(2 * 2-3)^{2}+(3 * 2-4)^{2}\right) / 3=1.67$

Example

- Cost function of w (given the data and $b=0$)

The y-axis represents the error, and the x-axis represents w . The point with the smallest error is the lowermost convex part of the graph. That is, when w is 1 , the error is the smallest. However, since we assume we do not know the answer, to find the optimal w, we need to calculate the error for a random point w_{1} and move w to the side where the error decreases. In other words, the error is smaller for w_{2} than for w_{1}. The error is smaller for w_{3} than for w_{2}.

Gradient descent is a method to find w with the smallest error by comparing errors in this way.

Gradient Descent Algorithm

- Step1: Initialize to 0
- Step2: update w and b that reduce cost function
- Use a gradient of cost function
- Step3: if w and b converge, stop step2. Otherwise, repeat step2
- New w

$$
w^{\prime}:=w-\alpha \cdot \frac{\partial}{\partial w} \operatorname{Cost}(w, b)
$$

$\boldsymbol{\alpha}$ is "Learning Rate"

Little modification

- For optimization, these two cost functions will have same w and b to minimize each cost function
$>\min _{w} \frac{1}{n} \sum_{i=1}^{n}\left(w x_{i}+b-y_{i}\right)^{2}$
\ $\min _{w} \frac{1}{2 n} \sum_{i=1}^{n}\left(w x_{i}+b-y_{i}\right)^{2}$

Partial Differential

$>w^{\prime}:=w-\alpha \cdot \frac{\partial}{\partial w} \operatorname{Cost}(w, b)$
$>w^{\prime}:=w-\alpha \cdot \frac{\partial}{\partial w} \frac{1}{2 n} \sum_{i=1}^{n}\left(w x_{i}+b-y_{i}\right)^{2}$
$\nabla w^{\prime}:=w-\alpha \cdot \frac{1}{2 n} \sum_{i=1}^{n}\left(w x_{i}+b-y_{i}\right) 2 x_{i}$
$>w^{\prime}:=w-\alpha \cdot \frac{1}{n} \sum_{i=1}^{n}\left(w x_{i}+b-y_{i}\right) x_{i}$
\leftarrow Update Rule

Partial Differential

$$
\begin{aligned}
b^{\prime} & =b+\alpha \cdot \frac{b}{\partial b} \operatorname{Cost}(w, b) \\
b^{\prime} & =b+\alpha \cdot \frac{b}{\partial b} \frac{1}{2 n} \sum_{i=1}^{n}\left(w x_{i}+b-y_{i}\right)^{2} \\
b^{\prime} & =b+\alpha \cdot \frac{1}{n} \sum_{i=1}^{n}\left(w x_{i}+b-y_{i}\right)
\end{aligned}
$$

Gradient Descent Algorithm

$$
\begin{aligned}
& w^{\prime}:=w-\alpha \cdot \frac{1}{n} \sum_{i=1}^{n}\left(w x_{i}+b-y_{i}\right) x_{i} \\
& b^{\prime}=b+\alpha \cdot \frac{1}{n} \sum_{i=1}^{n}\left(w x_{i}+b-y_{i}\right)
\end{aligned}
$$

Convex Function


```
import numpy as np
eimport matplotlib.pyplot as plt
data = np.array([[2, 81], [4, 93], [6, 91], [8, 97]])
x = data[:, 0]
y = data[:, 1]
# initialization
w, b = 0, 0
# learning rate
alpha = 0.05
plt.scatter(x, y)
xl = np.linspace(0, 10, 100)
# GD
for i in range(2000):
    w = w - alpha * (1/len(data)) * sum((w * x + b - y) * x)
    b = b - alpha * (1/len(data)) * sum((w * x + b - y))
print("w = %f, b = %f" % (w, b))
plt.plot(xl, w * xl + b)
plt.show()
```


Lab 9 - Gradient Descent Algorithm

- Write a program that estimates optimal w and b by implementing GD algorithm given a data below. (Hint: GD algorithm)
- Answer is about $w=2 . x$ and $b=1 . x$.

x	y
2.3	6.13
1.2	4.71
4.3	11.13
5.7	14.29
3.5	9.54
8.9	22.43

Next time

Today, we have talked about how to optimize parameters (w and b) given a linear model that has only a single independent variable (x).

What if there are multiple variables?

For example, $\mathrm{y}=\mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{2} \mathrm{x}_{2}+\mathrm{w}_{3} \mathrm{x}_{3}+\mathrm{b}$

Next time, we are going to talk about how to estimate the parameters given a multivariable linear model.

