
Graph Convolutional Networks
Intro to DL

Convolution!!

The core idea of GCN is to generate new node features by combining the features (or signals) of
a node with those of its neighboring nodes through a process known as "graph convolution."

This process allows nodes to aggregate information from their neighbors, facilitating learning
based on local and global graph structures.

https://tkipf.github.io/graph-convolutional-networks/

Convolution!!

For example, in a social network, when predicting the behavior of a user, GCN not
only considers the user’s data but also incorporates data from their friends. This
approach is utilized in various fields, such as predicting molecular structures,
analyzing social networks, and enhancing recommendation systems.

GCN

● The goal is then to learn a function of signals/features on a graph G=(V,E)

which takes as input:
○ A feature description xi for every node i; summarized in a N×D feature matrix X (N: number of

nodes, D: number of input features)

○ A representative description of the graph structure in matrix form; typically in the form of an

adjacency matrix A

● and produces a node-level output Z (an N×F feature matrix, where F is the

number of output features per node).

GCN

Every neural network layer can then be written as a non-linear function

with H(0)=X and H(L)=Z (or z for graph-level outputs), L being the number of layers.
The specific models then differ only in how f(⋅,⋅) is chosen and parameterized.

Example

As an example, let's consider the following very simple form of a layer-wise
propagation rule:

where W(l) is a weight matrix for the l-th neural network layer and σ(⋅) is a
non-linear activation function like the ReLU.

Two limitations

1. Self-loop
2. Normalization

GCN: Propagation Rule

with A^=A+I, where I is the identity matrix and D^ is the diagonal node degree
matrix of A^

.

Implementation 1

Node Classification with CiteSeer data
import torch

from torch_geometric.datasets import Planetoid

import torch_geometric.transforms as T

from torch_geometric.nn import GCNConv

dataset = Planetoid(root='/tmp/CiteSeer', name=' CiteSeer', transform=T.NormalizeFeatures())

data = dataset[0]

In PyTorch Geometric, the syntax dataset[0] is used to access a dataset when you load it. In this context, the dataset
object typically contains graph data structures, and dataset[0] refers to the first graph in the dataset. For datasets like
the Planetoid dataset used in PyTorch Geometric, there is actually only one graph, so calling dataset[0] retrieves the
entire graph data.

Planetoid datasets

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Planetoid.html

Node Classification with CiteSeer data
class GCN(torch.nn.Module):

 def __init__(self):

 super(GCN, self).__init__()

 self.conv1 = GCNConv(dataset.num_node_features, 16)

 self.conv2 = GCNConv(16, dataset.num_classes)

 def forward(self, x, edge_index):

 x = self.conv1(x, edge_index)

 x = torch.relu(x)

 x = torch.dropout(x, p=0.5, train=self.training)

 x = self.conv2(x, edge_index)

 return torch.log_softmax(x, dim=1)

Node Classification with CiteSeer data

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = GCN().to(device)

data = data.to(device)

optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)

model.train()

for epoch in range(200):

 optimizer.zero_grad()

 out = model(data.x, data.edge_index)

 loss = torch.nn.functional.nll_loss(out[data.train_mask], data.y[data.train_mask])

 loss.backward()

 optimizer.step()

Node Classification with CiteSeer data

model.eval()

pred = model(data.x, data.edge_index).argmax(dim=1)

correct = (pred[data.test_mask] == data.y[data.test_mask]).sum()

acc = int(correct) / int(data.test_mask.sum())

print(f'Accuracy: {acc:.4f}')

loss = torch.nn.functional.nll_loss(out[data.train_mask], data.y[data.train_mask])

Negative Log Likelihood Loss

takes log probabilities and actual class labels as
inputs. The log probabilities are typically calculated
using the LogSoftmax function. The actual labels are
represented as integer indices, each indicating the
class of the respective data point.

The loss is calculated using the following formula:

Here, Pi,yi represents the log probability that the

model assigns to the true class yi of the i-th data
point.

Implementation 2

Graph Classification with MUTAG data

● Data Description
○ https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.TUDataset.html
○ The MUTAG dataset consists of chemical compounds represented as graphs, where nodes

represent atoms and edges represent chemical bonds. Each graph is labeled according to its
mutagenic effect on a bacterium. This dataset is commonly used for demonstrating graph classification
tasks, where the objective is to predict whether a chemical compound has mutagenic properties.

Graph Classification with MUTAG data
import torch

import torch.nn.functional as F

from torch_geometric.datasets import TUDataset

from torch_geometric.data import DataLoader

from torch_geometric.nn import GCNConv, global_mean_pool

Load a graph dataset (e.g., MUTAG) from TUDataset

dataset = TUDataset(root='/tmp/MUTAG', name='MUTAG')

dataset = dataset.shuffle()

Split the dataset into training and testing sets

train_dataset = dataset[:150]

test_dataset = dataset[150:]

train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)

test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)

class GCN(torch.nn.Module):

 def __init__(self, hidden_channels):

 super(GCN, self).__init__()

 self.conv1 = GCNConv(dataset.num_node_features, hidden_channels) #64

 self.conv2 = GCNConv(hidden_channels, hidden_channels)

 self.out = torch.nn.Linear(hidden_channels, dataset.num_classes)

 def forward(self, x, edge_index, batch):

 # First graph convolution layer

 x = self.conv1(x, edge_index)

 x = F.relu(x)

 x = F.dropout(x, p=0.5, training=self.training)

 # Second graph convolution layer

 x = self.conv2(x, edge_index)

 x = F.relu(x)

 x = F.dropout(x, p=0.5, training=self.training)

 # Global mean pooling to aggregate graph-level features

 x = global_mean_pool(x, batch) # pooling to a vector

 # Fully connected layer for class prediction

 x = F.log_softmax(self.out(x), dim=1)

 return x

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = GCN(hidden_channels=64).to(device)

optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)

def train():

 model.train()

 for data in train_loader:

 data = data.to(device)

 optimizer.zero_grad()

 out = model(data.x, data.edge_index, data.batch)

 loss = F.nll_loss(out, data.y)

 loss.backward()

 optimizer.step()

def test(loader):

 model.eval()

 correct = 0

 for data in loader:

 data = data.to(device)

 out = model(data.x, data.edge_index, data.batch)

 pred = out.argmax(dim=1)

 correct += int((pred == data.y).sum())

 return correct / len(loader.dataset)

Graph Classification with MUTAG data

Training and evaluation

for epoch in range(1, 201):

 train()

 train_acc = test(train_loader)

 test_acc = test(test_loader)

 if epoch % 10 == 0:

 print(f'Epoch: {epoch:03d}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}')

Graph Pooling

