Graph Convolutional Networks
Intro to DL

Published as a conference paper at ICLR 2017

SEMI-SUPERVISED CLASSIFICATION WITH
GRAPH CONVOLUTIONAL NETWORKS

Thomas N. Kipf Max Welling
University of Amsterdam University of Amsterdam
T.N.Kipf@uva.nl Canadian Institute for Advanced Research (CIFAR)

M.Welling@uva.nl

ABSTRACT

We present a scalable approach for semi-supervised learning on graph-structured
data that is based on an efficient variant of convolutional neural networks which
operate directly on graphs. We motivate the choice of our convolutional archi-
tecture via a localized first-order approximation of spectral graph convolutions.
Our model scales linearly in the number of graph edges and learns hidden layer
representations that encode both local graph structure and features of nodes. In
a number of experiments on citation networks and on a knowledge graph dataset
we demonstrate that our approach outperforms related methods by a significant
margin.

Convolution!!

The core idea of GCN is to generate new node features by combining the features (or signals) of
a node with those of its neighboring nodes through a process known as "graph convolution."

This process allows nodes to aggregate information from their neighbors, facilitating learning

based on local and global graph structures.

Hidden layer

Input

BB

RelLU

Hidden layer

https://tkipf.github.io/graph-convolutional-networks/

Convolution!!

For example, in a social network, when predicting the behavior of a user, GCN not
only considers the user’s data but also incorporates data from their friends. This
approach is utilized in various fields, such as predicting molecular structures,
analyzing social networks, and enhancing recommendation systems.

GCN

e The goal is then to learn a function of signals/features on a graph G=(V,E)

which takes as input:

o Afeature description xi for every node i; summarized in a NxD feature matrix X (N: number of
nodes, D: number of input features)

o Arepresentative description of the graph structure in matrix form; typically in the form of an
adjacency matrix A

e and produces a node-level output Z (an NxF feature matrix, where F is the

number of output features per node).

GCN
Every neural network layer can then be written as a non-linear function
I+1) __ [
H"Y = f(HY, 4),

with HO=X and HV=Z (or z for graph-level outputs), L being the number of layers.
The specific models then differ only in how f(-,-) is chosen and parameterized.

Example

As an example, let's consider the following very simple form of a layer-wise
propagation rule:

FHD, A) =0 (AH(Z)W(Z))

where W(is a weight matrix for the I-th neural network layer and o(-) is a
non-linear activation function like the ReLU.

Two limitations

1. Self-loop
2. Normalization

But first, let us address two limitations of this simple model: multiplication with A means that, for every node, we
sum up all the feature vectors of all neighboring nodes but not the node itself (unless there are self-loops in the
graph). We can "fix" this by enforcing self-loops in the graph: we simply add the identity matrix to A.

The second major limitation is that A is typically not normalized and therefore the multiplication with A will
completely change the scale of the feature vectors (we can understand that by looking at the eigenvalues of A).
Normalizing A such that all rows sum to one, i.e. D' A, where D is the diagonal node degree matrix, gets rid of this
problem. Multiplying with DA now corresponds to taking the average of neighboring node features. In practice,
dynamics get more interesting when we use a symmetric normalization, i.e. D_%AD_% (as this no longer amounts
to mere averaging of neighboring nodes). Combining these two tricks, we essentially arrive at the propagation rule
introduced in Kipf & Welling (ICLR 2017):

GCN: Propagation Rule

with A*=A+l, where | is the identity matrix and D” is the diagonal node degree
matrix of A?

Implementation 1

Node Classification with CiteSeer data

import torch
from torch geometric.datasets import Planetoid
import torch geometric.transforms as T

from torch geometric.nn import GCNConv

dataset = Planetoid (root='/tmp/CiteSeer', name=' CiteSeer', transform=T.NormalizeFeatures/())

data = dataset[0]

In PyTorch Geometric, the syntax dataset[0] iS used to access a dataset when you load it. In this context, the dataset
object typically contains graph data structures, and dataset (0] refers to the first graph in the dataset. For datasets like
the r1anetoid dataset used in PyTorch Geometric, there is actually only one graph, so calling dataset[0] retrieves the

entire graph data.

Planetoid datasets

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Planetoid.html

Name #nodes #edges #features #classes
Cora 2,708 10,556 1,433 7
CiteSeer 3,327 9,104 3,703 6

PubMed 19,717 88,648 500 3

Node Classification with CiteSeer data

class GCN(torch.nn.Module) :

def init (self):

super (GCN, self). init ()
self.convl = GCNConv (dataset.num node features, 16)
self.conv2 = GCNConv (16, dataset.num classes)

def forward(self, x, edge index):

x = self.convl (x, edge index)

x = torch.relu(x)

x = torch.dropout (x, p=0.5, train=self.training)
x = self.conv2 (x, edge index)

return torch.log softmax(x, dim=1)

Node Classification with CiteSeer data

device = torch.device('cuda' 1f torch.cuda.is available() else 'cpu')
model = GCN () .to (device)
data = data.to (device)

optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight decay=5e-4)

model.train ()
for epoch in range (200) :
optimizer.zero grad()
out = model (data.x, data.edge index)
loss = torch.nn.functional.nll loss (out[data.train mask], data.yl[data.train mask])
loss.backward()

optimizer.step()

Node Classification with CiteSeer data

model.eval ()

pred = model (data.x, data.edge index).argmax (dim=1)

correct = (predl[data.test mask] == data.yl[data.test mask]) .sum()
acc = int (correct) / int (data.test mask.sum())

print (f'Accuracy: {acc:.4f}")

loss = torch.nn.functional.nll loss(out[data.train mask], data.y[data.train mask])

import torch

import torch.nn as nn

import torch.nn.functional as F

input = torch.randn(3, 5)

print(input)

target = torch.tensor([1, 0, 4])

print(target)
LogSoftmax

batech = 3,

target label

log probs = F.log softmax(input, dim=1)

print(log probs)

NLL Loss

loss = F.nll loss(log probs, target)

print(loss)

tensor([[0.0239,
[

[9760,
tensor([1, 0, 4])
tensor([[-

[_
[-1.1073,
tensor(1.3621)

0.
1.0860, -
0.
1.7438, -
1.4901, -
1L 1

[oNo]

N ©

.8181,
.2967,

3759, -

.9495,

8727, -

.7074,

-0 o

.1691, -
.6897, -
.0396,

-1.5985, -
.8863, -
21229, -

.0136,
.6957,
.7030,

1812,
2717 5 =
=38035; -

ol SN o)

O N

-0.9268],
.9384],
.4365]11)

-2.6944],
.63771,
.6468]11)

class

Negative Log Likelihood Loss

takes log probabilities and actual class labels as
inputs. The log probabilities are typically calculated
using the LogSoftmax function. The actual labels are
represented as integer indices, each indicating the
class of the respective data point.

The loss is calculated using the following formula:

Loss = — Zf\il log(pi,yz’)

Here, Pi,yirepresents the log probability that the

model assigns to the true class yi of the i-th data
point.

Implementation 2

Graph Classification with MUTAG data

e Data Description

o https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets. TUDataset.html

o The MUTAG dataset consists of chemical compounds represented as graphs, where nodes
represent atoms and edges represent chemical bonds. Each graph is labeled according to its
mutagenic effect on a bacterium. This dataset is commonly used for demonstrating graph classification
tasks, where the objective is to predict whether a chemical compound has mutagenic properties.

Name #graphs #nodes #edges #features #classes
MUTAG 188 ~17.9 ~39.6 i 2
ENZYMES 600 ~32.6 ~124.3 3 6
PROTEINS 1,113 ~39.1 ~145.6 3 2
COLLAB 5,000 ~74.5 ~4914.4 0 3
IMDB-BINARY 1,000 ~19.8 ~193.1 0 2

REDDIT-BINARY 2,000 ~429.6 ~995.5 0 2

Graph Classification with MUTAG data

import torch

import torch.nn.functional as F

from torch geometric.datasets import TUDataset
from torch geometric.data import DatalLoader

from torch geometric.nn import GCNConv, global mean pool

Load a graph dataset (e.g., MUTAG) from TUDataset
dataset = TUDataset (root='/tmp/MUTAG', name='MUTAG')

dataset = dataset.shuffle()

Split the dataset into training and testing sets
train dataset = dataset[:150]

test dataset = dataset[150:]

train loader = Dataloader (train dataset, batch size=64, shuffle=True)

test loader = DatalLoader (test dataset, batch size=64, shuffle=False)

class GCN(torch.nn.Module) :
def init (self, hidden channels):
super (GCN, self). init ()
self.convl = GCNConvdataset.num node features hidden channels #64
self.conv2 = GCNConvitidden channels hidden channels

self.out = torch.nn.Linear (hidden channels, dataset.num classes)

def forward(self, x, edge index, batch):

First graph convolution layer

x = self.convl(x, edge index)
x = F.relu(x)
x = F.dropout (x, p=0.5, training=self.training)

Second graph convolution layer
x = self.conv2(x, edge index)
x = F.relu(x)

x = F.dropout (x, p=0.5, training=self.training)

Global mean pooling to aggregate graph-level features

x = global mean pool (x, batch) # pooling to a vector

Fully connected layer for class prediction
x = F.log softmax(self.out(x), dim=1)

return x

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = GCN(hidden channels=64) .to (device)

optimizer = torch.optim.Adam(model.parameters(), 1lr=0.01, weight decay=5e-4)

def train():

model.train ()

for data in train loader:
data = data.to(device)
optimizer.zero grad()
out = model (data.x, data.edge index, data.batch)
loss = F.nll loss(out, data.y)
loss.backward()

optimizer.step ()

def test (loader):

model.eval ()

correct = 0

for data in loader:
data = data.to(device)
out = model (data.x, data.edge index, data.batch)
pred = out.argmax (dim=1)
correct += int ((pred == data.y) .sum())

return correct / len(loader.dataset)

Graph Classification with MUTAG data

Training and evaluation
for epoch in range (1, 201):

train ()

train acc = test(train loader)

test acc = test(test loader)

if epoch % 10 == 0:
print (f'Epoch: {epoch:03d}, Train Acc: {train acc:.4f}, Test Acc: {test acc:.4f}"')

Graph Pooling

import torch
from torch geometric.nn import global mean pool

Example node feature matrix
Assume each node has 3 features and there are 8 nodes in total

X = torch.tensor ([

[1’ 2’ 3]’
[4I 5’ 6]'
[7’ 8' 9]’

[10,; S 195 12]];
[AS7AT 5%
[16; 517,181,
[19, 206, 21],
22, 235 24]

], dtype=torch.float)

batch tensor, indicating the first 4 nodes belong to one graph, and the next 4 to another
batch = torch.tensor([0, 0, 0, 0, 1, 1, 1, 11)

Apply global mean pool
global features = global mean pool(x, batch)

print(global features)

tensor([[5.5000, 6.5000, 7.5000],
[17.56000, 18.5000, 19.5000]])

