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Convolution!!

The core idea of GCN is to generate new node features by combining the features (or signals) of 
a node with those of its neighboring nodes through a process known as "graph convolution." 

This process allows nodes to aggregate information from their neighbors, facilitating learning 
based on local and global graph structures.

https://tkipf.github.io/graph-convolutional-networks/



Convolution!!

For example, in a social network, when predicting the behavior of a user, GCN not 
only considers the user’s data but also incorporates data from their friends. This 
approach is utilized in various fields, such as predicting molecular structures, 
analyzing social networks, and enhancing recommendation systems.



GCN

● The goal is then to learn a function of signals/features on a graph G=(V,E) 

which takes as input: 
○ A feature description xi for every node i; summarized in a N×D feature matrix X (N: number of 

nodes, D: number of input features)

○ A representative description of the graph structure in matrix form; typically in the form of an 

adjacency matrix A

● and produces a node-level output Z (an N×F feature matrix, where F is the 

number of output features per node).



GCN

Every neural network layer can then be written as a non-linear function 

with H(0)=X and H(L)=Z (or z for graph-level outputs), L being the number of layers. 
The specific models then differ only in how f(⋅,⋅) is chosen and parameterized.



Example

As an example, let's consider the following very simple form of a layer-wise 
propagation rule:

where W(l) is a weight matrix for the l-th neural network layer and σ(⋅) is a 
non-linear activation function like the ReLU.



Two limitations

1. Self-loop
2. Normalization



GCN: Propagation Rule

with A^=A+I, where I is the identity matrix and D^ is the diagonal node degree 
matrix of A^

.



Implementation 1



Node Classification with CiteSeer data 
import torch

from torch_geometric.datasets import Planetoid

import torch_geometric.transforms as T

from torch_geometric.nn import GCNConv

dataset = Planetoid(root='/tmp/CiteSeer', name=' CiteSeer', transform=T.NormalizeFeatures())

data = dataset[0]

In PyTorch Geometric, the syntax dataset[0]  is used to access a dataset when you load it. In this context, the dataset  
object typically contains graph data structures, and dataset[0]  refers to the first graph in the dataset. For datasets like 
the Planetoid  dataset used in PyTorch Geometric, there is actually only one graph, so calling dataset[0]  retrieves the 
entire graph data.



Planetoid datasets

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Planetoid.html



Node Classification with CiteSeer data 
class GCN(torch.nn.Module):

    def __init__(self):

        super(GCN, self).__init__()

        self.conv1 = GCNConv(dataset.num_node_features, 16)

        self.conv2 = GCNConv(16, dataset.num_classes)

    def forward(self, x, edge_index):

        x = self.conv1(x, edge_index)

        x = torch.relu(x)

        x = torch.dropout(x, p=0.5, train=self.training)

        x = self.conv2(x, edge_index)

        return torch.log_softmax(x, dim=1)



Node Classification with CiteSeer data 

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = GCN().to(device)

data = data.to(device)

optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)

model.train()

for epoch in range(200):

    optimizer.zero_grad()

    out = model(data.x, data.edge_index)

    loss = torch.nn.functional.nll_loss(out[data.train_mask], data.y[data.train_mask])

    loss.backward()

    optimizer.step()



Node Classification with CiteSeer data 

model.eval()

pred = model(data.x, data.edge_index ).argmax(dim=1)

correct = (pred[data.test_mask] == data.y[data.test_mask]).sum()

acc = int(correct) / int(data.test_mask.sum())

print(f'Accuracy: {acc:.4f}')



loss = torch.nn.functional.nll_loss(out[data.train_mask], data.y[data.train_mask])

Negative Log Likelihood Loss

takes log probabilities and actual class labels as 
inputs. The log probabilities are typically calculated 
using the LogSoftmax function. The actual labels are 
represented as integer indices, each indicating the 
class of the respective data point.

The loss is calculated using the following formula:

Here, Pi,yi   represents the log probability that the 

model assigns to the true class yi of the i-th data 
point.



Implementation 2



Graph Classification with MUTAG data 

● Data Description
○ https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.TUDataset.html
○ The MUTAG dataset consists of chemical compounds represented as graphs, where nodes 

represent atoms and edges represent chemical bonds. Each graph is labeled according to its 
mutagenic effect on a bacterium. This dataset is commonly used for demonstrating graph classification 
tasks, where the objective is to predict whether a chemical compound has mutagenic properties.



Graph Classification with MUTAG data 
import torch

import torch.nn.functional as F

from torch_geometric.datasets import TUDataset

from torch_geometric.data import DataLoader

from torch_geometric.nn import GCNConv, global_mean_pool

# Load a graph dataset (e.g., MUTAG) from TUDataset

dataset = TUDataset(root='/tmp/MUTAG', name='MUTAG')

dataset = dataset.shuffle()

# Split the dataset into training and testing sets

train_dataset = dataset[:150]

test_dataset = dataset[150:]

train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)

test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)



class GCN(torch.nn.Module):

    def __init__(self, hidden_channels):

        super(GCN, self).__init__()

        self.conv1 = GCNConv(dataset.num_node_features, hidden_channels) #64

        self.conv2 = GCNConv(hidden_channels, hidden_channels)

        self.out = torch.nn.Linear(hidden_channels, dataset.num_classes)

    def forward(self, x, edge_index, batch):

        # First graph convolution layer

        x = self.conv1(x, edge_index)

        x = F.relu(x)

        x = F.dropout(x, p=0.5, training=self.training)

        # Second graph convolution layer

        x = self.conv2(x, edge_index)

        x = F.relu(x)

        x = F.dropout(x, p=0.5, training=self.training)

        # Global mean pooling to aggregate graph-level features

        x = global_mean_pool(x, batch) # pooling to a vector

        # Fully connected layer for class prediction

        x = F.log_softmax(self.out(x), dim=1)

        return x



device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = GCN(hidden_channels=64).to(device)

optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)

def train():

    model.train()

    for data in train_loader:

        data = data.to(device)

        optimizer.zero_grad()

        out = model(data.x, data.edge_index, data.batch)

        loss = F.nll_loss(out, data.y)

        loss.backward()

        optimizer.step()

def test(loader):

    model.eval()

    correct = 0

    for data in loader:

        data = data.to(device)

        out = model(data.x, data.edge_index, data.batch)

        pred = out.argmax(dim=1)

        correct += int((pred == data.y).sum())

    return correct / len(loader.dataset)



Graph Classification with MUTAG data 

# Training and evaluation

for epoch in range(1, 201):

    train()

    train_acc = test(train_loader)

    test_acc = test(test_loader)

    if epoch % 10 == 0:

        print(f'Epoch: {epoch:03d}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}')



Graph Pooling


